九年级上册数学广东省广州市2020年中考数学试卷(解析版)
- 格式:doc
- 大小:360.50 KB
- 文档页数:20
2020年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105 B.15.233×106C.1.5233×107D.0.15233×1082.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四3.(3分)下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x104.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形B.该圆锥的主视图是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形6.(3分)一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.(3分)如图,Rt△ABC中,∠C=90°,AB=5,cos A=,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定8.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm9.(3分)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个10.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD 于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知∠A=100°,则∠A的补角等于°.12.(3分)化简:﹣=.13.(3分)方程=的解是.14.(3分)如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为.15.(3分)如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为.16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=mm 时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.18.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.19.(10分)已知反比例函数y=的图象分别位于第二、第四象限,化简:﹣+.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区676873757678808283848585909295乙社区666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=(x>0)的图象经过点A(3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).2020年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:15233000=1.5233×107,故选:C.2.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四【分析】根据条形统计图得出即可.【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,故选:A.3.(3分)下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x10【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式为最简结果,不符合题意;B、原式=6a,不符合题意;C、原式=x11,不符合题意;D、原式=x10,符合题意.故选:D.4.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°【分析】根据三角形的中位线定理得到DE∥BC,根据平行线的性质即可求得∠AED=∠C=68°.【解答】解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∵∠C=68°,∴∠AED=∠C=68°.故选:B.5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形B.该圆锥的主视图是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形【分析】圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,从而得出答案.【解答】解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,故选:A.6.(3分)一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x1+1<x2+2即可得出结论.【解答】解:∵一次函数y=﹣3x+1中,k=﹣3<0,∴y随着x的增大而减小.∵一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),且x1<x1+1<x2+2,∴y3<y2<y1,故选:B.7.(3分)如图,Rt△ABC中,∠C=90°,AB=5,cos A=,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定【分析】根据三角函数的定义得到AC,根据勾股定理求得BC,和⊙B的半径比较即可.【解答】解:∵Rt△ABC中,∠C=90°,AB=5,cos A=,∴==,∴AC=4,∴BC==3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.8.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm【分析】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而可得出CD的长.【解答】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48,∴BD=AB=×48=24,∵⊙O的直径为52,∴OB=OC=26,在Rt△OBD中,OD===10,∴CD=OC﹣OD=26﹣10=16(cm),故选:C.9.(3分)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个【分析】利用一次函数的性质得到a≤0,再判断△=22﹣4a>0,从而得到方程根的情况.【解答】解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是二次方程,∵△=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.10.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD 于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD=S△AOE+S△DOE,即可得到OE+EF 的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知∠A=100°,则∠A的补角等于80°.【分析】根据补角的概念求解可得.【解答】解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.12.(3分)化简:﹣=.【分析】此题先把二次根式化简,再进行合并即可求出答案.【解答】解:﹣=2=.故填:.13.(3分)方程=的解是x=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程=,去分母得:2x=3,解得:x=,经检验x=是分式方程的解.故答案为:x=.14.(3分)如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为(4,3).【分析】根据平移的性质得出四边形ABDC是平行四边形,从而得A和C的纵坐标相同,根据四边形ABDC的面积求得AC的长,即可求得C的坐标.【解答】解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).15.(3分)如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为16.【分析】根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴=,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=10.0mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.【分析】构建二次函数,利用二次函数的性质即可解决问题.【解答】解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x =﹣=10.0时,y有最小值,设w=(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2=nx2﹣2(x1+x2+…+x n)x+(x12+x22+…+x n2),∵n>0,∴当x =﹣=时,w有最小值.故答案为10.0,.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.【分析】根据不等式的性质求出两个不等式的解集,进而求出不等式组的解集即可.【解答】解:解不等式①得:x≥3,解不等式②得:x>2,所以不等式组的解集为:x≥318.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.【分析】运用SAS公理,证明△ABC≌△ADC,得到∠D=∠B=80°,再根据三角形内角和为180°即可解决问题.【解答】解:在△ABC与△ADC 中,,∴△ABC≌△ADC(SAS),∴∠D=∠B=80°,∴∠BCA=180°﹣25°﹣80°=75°.19.(10分)已知反比例函数y =的图象分别位于第二、第四象限,化简:﹣+.【分析】由反比例函数图象的性质可得k<0,化简分式和二次根式,可求解.【解答】解:∵反比例函数y =的图象分别位于第二、第四象限,∴k<0,∴k﹣1<0,∴﹣+=+=k +4+=k+4+|k﹣1|=k+4﹣k+1=5.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社676873757678808283848585909295区乙社666972747578808185858889919698区根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.【分析】(1)根据中位数、众数的意义和计算方法分别求出结果即可;(2)用列表法表示所有可能出现的结果情况,从而求出两人来自同一社区的概率.【解答】解:(1)甲社区:这15位老人年龄出现次数最多的是85岁,因此众数是85岁,从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁;(2)年龄小于79岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,∴P(来自同一个社区)==.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y =(x>0)的图象经过点A(3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.【分析】(1)利用待定系数法求出k,再利用平行四边形的性质,推出AM=CM,推出点M的纵坐标为2.(2)求出点C的坐标,求出OA,OC的长即可解决问题.【解答】解:(1)∵点A(3,4)在y=上,∴k=12,∵四边形ABCD是平行四边形,∴AM=MC,∴点M的纵坐标为2,∵点M在y=上,∴M(6,2).(2)∵AM=MC,A(3,4),M(6,2)∴C(9,0),∴OC=9,OA==5,∴平行四边形ABCD的周长为2(5+9)=28.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.【分析】(1)根据今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%,列出算式即可求解;(2)根据“某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场”列出方程求解即可.【解答】解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.【分析】(1)根据点关于直线的对称点的画法,过点A作BD的垂线段并延长一倍,得对称点C;(2)①根据菱形的判定即可求解;②过B点作BF⊥AD于F,根据菱形的性质,直角三角形的性质,勾股定理,三角形面积公式即可求解.【解答】解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=5,∵E是BC的中点,∴BC=2OE=13,∴OC==12,∴OA=12,∵四边形ABCD是菱形,∴AD=13,∴BF=×12×5×2×2÷13=,故点E到AD的距离是.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.【分析】(1)由等边三角形的性质可得∠ABC=∠BAC=∠ACB=60°,圆周角定理可得∠ADC=∠BDC =60°,可得结论;(2)将△ADC绕点逆时针旋转60°,得到△BHC,可证△DCH是等边三角形,可得四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,即可求解;(3)作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,由轴对称的性质可得EM=DM,DN=NF,可得△DMN的周长=DM+DN+MN=FN+EM+MN,则当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,即最小值为EF=t,由轴对称的性质可求CD=CE=CF,∠ECF=120°,由等腰三角形的性质和直角三角形的性质可求EF=2PE=EC=CD=t,则当CD为直径时,t有最大值为4.【解答】证明:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵∠ADC=∠ABC=60°,∠BDC=∠BAC=60°,∴∠ADC=∠BDC,∴DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数,理由如下:如图1,将△ADC绕点逆时针旋转60°,得到△BHC,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,∴S=x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=EC,PE=PC=EC,∴EF=2PE=EC=CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).【分析】(1)将点A坐标代入解析式可求解;(2)由三角形面积关系,可得BE=CE+1,由对称轴为x=3,可求BC中点M的坐标(3,3),由线段的数量关系,可求EM=,可求解;(3)先求出点F坐标,点D坐标可求直线DF解析式,可得点E坐标,可求DE解析式,可得c=9a,由二次函数的性质可求解.【解答】解:(1)∵抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),∴c﹣5a=a+b+c,∴b=﹣6a;(2)如图,设BC的中点为M,∵B(x1,3),C(x2,3),线段BC上有一点E,∴S1=×BE×3=BE,S2=×CE×3=CE,∵S1=S2+.∴CE+=BE,∴BE=CE+1,∵b=﹣6a,∴抛物线G:y=ax2﹣6ax+c,∴对称轴为x==3,∴BC的中点M坐标为(3,3),∵BE=BM+EM,CE=CM﹣EM,BM=CM,BE=CE+1,∴EM=,∴点E(,3)或(,3);(3)∵直线DE与抛物线G:y=ax2﹣6ax+c的另一个交点F的横坐标为+3,∴y=a()2﹣6a×(+3)+c=﹣9a+c,∴点F(+3,﹣9a+c),∵点D是抛物线的顶点,∴点D(3,﹣9a+c),∴直线DF的解析式为:y=6x﹣18+c﹣9a,∴点E坐标为(,3),又∵点D(3,﹣9a+c),∴直线DE解析式为:y=(6﹣18a﹣2c)x+7c﹣63a﹣18,∵直线DE与直线DF是同一直线,∴6=6﹣18a﹣2c,∴c=9a,∴抛物线解析式为:y=ax2﹣6ax+9a,∵1<x<6,∴当x=3时,y min=0,当x=6时,y max=9a,∴0≤y<9a.。
2020年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是()A.﹣9B.9C.D.﹣2.(3分)一组数据2,4,3,5,2的中位数是()A.5B.3.5C.3D.2.53.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.75.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣26.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2C.16D.47.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+38.(3分)不等式组的解集为()A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤19.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1B.C.D.210.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c <0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=.12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=.13.(4分)若+|b+1|=0,则(a+b)2020=.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为.15.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为.16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.2020年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是()A.﹣9B.9C.D.﹣【分析】根据相反数的定义即可求解.【解答】解:9的相反数是﹣9,故选:A.2.(3分)一组数据2,4,3,5,2的中位数是()A.5B.3.5C.3D.2.5【分析】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.【解答】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.3.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解答】解:点(3,2)关于x轴对称的点的坐标为(3,﹣2).故选:D.4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.7【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.5.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣2【分析】根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.【解答】解:∵在实数范围内有意义,∴2x﹣4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.6.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2C.16D.4【分析】根据中位线定理可得DF=AC,DE=BC,EF=AC,继而结合△ABC的周长为16,可得出△DEF的周长.【解答】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=AC,DE=BC,EF=AC,故△DEF的周长=DE+DF+EF=(BC+AB+AC)=16=8.故选:A.7.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3【分析】先求出y=(x﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【解答】解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.8.(3分)不等式组的解集为()A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2﹣3x≥﹣1,得:x≤1,解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,则不等式组的解集为﹣1≤x≤1,故选:D.9.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1B.C.D.2【分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x即可得出答案.【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.10.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c <0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【分析】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=x(y﹣1).【分析】直接提取公因式x,进而分解因式得出答案.【解答】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.【解答】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.13.(4分)若+|b+1|=0,则(a+b)2020=1.【分析】根据非负数的意义,求出a、b的值,代入计算即可.【解答】解:∵+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.【分析】由x=5﹣y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)﹣4xy计算可得.【解答】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.15.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为45°.【分析】根据∠EBD=∠ABD﹣∠ABE,求出∠ABD,∠ABE即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=(180°﹣∠A)=75°,由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,故答案为45°.16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.【分析】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.【解答】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=,解得,r=,故答案为:.17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2﹣2.【分析】如图,连接BE,BD.求出BE,BD,根据DE≥BD﹣BE求解即可.【解答】解:如图,连接BE,BD.由题意BD==2,∵∠MBN=90°,MN=4,EM=NE,∴BE=MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2﹣2.故答案为2﹣2.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.【分析】根据整式的混合运算过程,先化简,再代入值求解即可.【解答】解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=,y=时,原式=2××=2.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【分析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.【解答】解:(1)x=120﹣(24+72+18)=6;(2)1800×=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【分析】先证△BDF≌△CEF(AAS),得出BF=CF,DF=EF,则BE=CD,再证△ABE≌△ACD(AAS),得出AB=AC即可.【解答】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.【分析】(1)关于x,y的方程组与的解相同.实际就是方程组的解,可求出方程组的解,进而确定a、b的值;(2)将a、b的值代入关于x的方程x2+ax+b=0,求出方程的解,再根据方程的两个解与2为边长,判断三角形的形状.【解答】解:(1)由题意得,关于x,y的方程组的相同解,就是方程组的解,解得,,代入原方程组得,a=﹣4,b=12;(2)当a=﹣4,b=12时,关于x的方程x2+ax+b=0就变为x2﹣4x+12=0,解得,x1=x2=2,又∵(2)2+(2)2=(2)2,∴以2、2、2为边的三角形是等腰直角三角形.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.【分析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2,则OB=,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.【解答】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF===2,∴AB=DF=2,∴OB=,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH==.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.【分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.【解答】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=2;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.【分析】(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD,即可求解;(3)确定直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),即可求解.【解答】解:(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2,故答案为2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=×8﹣×2=3;(3)设点D(m,),则点B(4m,),∵点G与点O关于点C对称,故点G(8m,0),则点E(4m,),设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得并解得:直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,则FG∥BD,故四边形BDFG为平行四边形.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.【分析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.【解答】解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标为(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△DAB∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).。
2020年广州市初中毕业生学业考试数 学题序一二三四五六七八总分得分满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1. 将图1所示的图案通过平移后可以得到的图案是( A )2. 如图2,AB ∥CD ,直线l 分别与AB 、CD 相交,若∠1=130°,则∠2=( C )(A )40° (B )50° (C )130° (D )140° 3. 实数a 、b 在数轴上的位置如图3所示,则a 与b 的大小关系是( C )(A )b a < (B )b a = (C )b a > (D )无法确定4. 二次函数2)1(2+-=x y 的最小值是( A ) (A )2 (B )1 (C )-1 (D )-2 5. 图4是广州市某一天内的气温变化图,根据图4,下列说法中错误..的是( D ) (A )这一天中最高气温是24℃(B )这一天中最高气温与最低气温的差为16℃(C )这一天中2时至14时之间的气温在逐渐升高(D )这一天中只有14时至24时之间的气温在逐渐降低6. 下列运算正确的是( B )(A )222)(n m n m -=- (B ))0(122≠=-m m m (C )422)(mn n m =⋅ (D )642)(m m =7. 下列函数中,自变量x 的取值范围是x ≥3的是( D ) (A )31-=x y (B )31-=x y(C )3-=x y (D )3-=x y8. 只用下列正多边形地砖中的一种,能够铺满地面的是( C ) (A )正十边形 (B )正八边形 (C )正六边形 (D )正五边形9. 已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图5)所示),则sin θ的值为( B ) (A )125 (B )135 (C )1310 (D )131210. 如图6,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=24,则ΔCEF 的周长为( A ) (A )8 (B )9.5 (C )10 (D )11.5二、填空题(本大题共6小题,每小题3分,满分18分) 11. 已知函数xy 2=,当x =1时,y 的值是________2 12. 在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是________9.3 13. 绝对值是6的数是________+6,-614. 已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:________________________________略15. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________2n+516. 如图8是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由________块长方体的积木搭成4三、解答题(本大题共9小题,满分102分。
绝密★启用前2020年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.9的相反数是( )A .9-B .9C .91D .19-2.一组数据2、4、3、5、2的中位数是( )A .5B .3.5C .3D .2.5 3.在平面直角坐标系中,点()3,2关于x 轴对称的点的坐标为( )A .()3,2-B .()2,3-C .()2,3-D .()3,2- 4.若一个多边形的内角和是540︒,则该多边形的边数为( )A .4B .5C .6D .7 5.x 的取值范围是( ) A .2x ≠B .2x ≥C .2x ≤D .2x ≠-6.已知ABC △的周长为16,点D 、E 、F 分别为ABC △三条边的中点,则DEF △的周长为( )A .8B .22C .16D .47.把函数()212y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为( )A .22y x =+B .()211y x =-+C .()222y x =-+D .()213y x =-+8.不等式组()231122x x x --⎧⎪⎨--+⎪⎩≥≥的解集为( )A .无解B .1x ≤C .1x -≥D .11x -≤≤9.如题9图,在正方形ABCD 中,3AB =,点E 、F 分别在边AB 、CD 上,60EFD =︒∠.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( )A .1B .2C .3D .210.如题10图,抛物线2y ax bx c =++的对称轴是直线1x =.下列结论:①0abc >;②240b ac ->;③80a c +<;④520a b c ++>.其中正确的结论有( )A .4个B .3个C .2个D .1二、填空题(本大题7小题,每小题4分,共27分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:xy x -=________.12.如果单项式3m x y 与35n x y -是同类项,那么m n +=________. 13.10b +=,则()2020a b +=________.14.已知5x y =-,2xy =,计算334x y xy +-的值为________.毕业学校_____________姓名________________ 考生号________________________________ _____________-------------在------------------此------------------卷------------------上------------------答------------------题------------------无------------------效----------------15.如题15图,在菱形ABCD 中,30A =︒∠,取大于12AB 的长为半径,分别以点A 、B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE 、BD ,则∠EBD 的度数为________.16.如题16图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120︒的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为________m .17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫、老鼠都理想化为同一平面内的线或点,模型如题17图,90ABC =︒∠,点M 、N 分别在射线BA 、BC 上,MN 长度始终不变,4MN =,E 为MN 的中点,点D 到BA 、BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为________.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:()()()222x y x y x y x +++--,其中2x =,3y =.19.某中学展开主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:等级 非常了解 比较了解 基本了解 不太了解人数(人)247218x(1)求x 的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如题20图,在ABC △中,点D 、E 分别是AB 、AC 边上的点,BD CE =,ABE ACD =∠∠,BE 与CD 相交于点F .求证:ABC △是等腰三角形.四、解答题(二)(本大题3小题,毎小题8分,共24分)21.已知关于x 、y 的方程组231034ax y x y ⎧+=-⎪⎨+=⎪⎩与215x y x by -=⎧⎨+=⎩的解相同.(1)求a 、b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程20x ax b ++=的解,试判断该三角形的形状,并说明理由.22.如题22﹣1图,在四边形ABCD 中,AD BC ∥,90DAB =︒∠,AB 是O 的直径,CO 平分BCD ∠.(1)求证:直线CD 与O 相切;(2)如题22﹣2图,记(1)中的切点为E ,P 为优弧AE 上一点,1AD =,2BC =,求tan APE ∠的值.23.某社区拟建A 、B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35. (1)求每个A 、B 类摊位占地面积各为多少平方米?(2)该社区拟建A 、B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,毎小题10分,共20分)24.如题24图,点B 是反比例函数()80y x x=>图象上一点,过点B 分别向坐标轴作垂线,垂足为A 、C .反比例函数()0ky x x=>的图象经过OB 的中点M ,与AB 、BC 分别交于点D 、E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF 、BG .(1)填空:k =________; (2)求BDF △的面积;(3)求证:四边形BDFG 为平行四边形.25.如题25图,抛物线236y x bx c =++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,33BO AO ==,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D,BC =. (1)求b 、c 的值;(2)求直线BD 的直线解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当ABD △与BPQ △相似时,请直接写出所有满足条件的点Q 的坐标.毕业学校_____________姓名________________ 考生号________________ ________________ _____________-------------在------------------此------------------卷------------------上------------------答------------------题------------------无------------------效----------------2020年广东省初中学业水平考试数学答案解析一、 1.【答案】A【解析】正数的相反数是负数. 【考点】相反数 2.【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数. 【考点】中位数 3.【答案】D【解析】关于x 轴对称:横坐标不变,纵坐标互为相反数. 【考点】对称性 4.【答案】B【解析】()2180540n -⨯︒=︒,解得5n =. 【考点】n 边形的内角和 5.【答案】B【解析】偶数次方根的被开方数是非负数. 【考点】二次根式 6.【答案】A【解析】三角形的中位线等于第三边的一半. 【考点】三角形中位线的性质 7.【答案】C【解析】左加右减,向右x 变为1x -,()()2211222y x y x =--+=-+. 【考点】函数的平移问题 8.【答案】D 【解析】解不等式.【考点】不等式组的解集表示20.【答案】证明:∵BD CE =,ABE ACD =∠∠,DFB CFE =∠∠ ∴()BFDF CFE AAS △≌△ ∴DBF ECF =∠∠∵DBF ABE ECF ACD +=+∠∠∠∠ ∴ABC ACB =∠∠∴AB AC =∴ABC △是等腰三角形【解析】等式的性质、等角对等边.【考点】全等三角形的判定方法,等腰三角形的判定方法四、21.【答案】(1)解:由题意得42x y x y +=⎧⎨-=⎩,解得31x y =⎧⎨=⎩由3315a b ⎧+-⎪⎨+=⎪⎩,解得12a b ⎧=-⎪⎨=⎪⎩(2)该三角形的形状是等腰直角三角形,理由如下: 由(1)得2102x +=-(20x -=12x x ==∴该三角形的形状是等腰三角形∵(224=,(212=∴(((222=+∴该三角形的形状是等腰直角三角形【解析】理解方程组同解的概念,一元二次方程的解法、三角形形状的判断. 【考点】二元一次方程组,一元二次方程,勾股定理逆定理 22.【答案】(1)证明:过点O 作OE CD ⊥交于点E ∵AD BC ∥,90DAB =︒∠ ∴90OBC =︒∠,即OB BC ⊥∵OE CD ⊥,OB BC ⊥,CO 平分BCD ∠ ∴OB OE = ∵AB 是O 的直径∴OE 是O 的半径 ∴直线CD 与O 相切(2)连接OD 、OE∵由(1)得,直线CD 、AD 、BC 与O 相切 ∴由切线长定理可得1AD DE ==,3BC CE ==,ADO EDO =∠∠,BCO ECO =∠∠∴AOD EOD =∠∠,3CD = ∵AE AE =∴12APE AOE AOD ==∠∠∠ ∵AD BC ∥∴180ADE BCE +=︒∠∠∴90EDO ECO +=︒∠∠即90DOC =︒∠ ∵OE DC ⊥,ODE CDO =∠∠ ∴ODE CDO ≌∽△ ∴DE OD OD CD =即13ODOD =∴OD =∵在Rt AOD △中,AO =∴tan AOD AD AO =∠∴an t APE =∠【解析】无切点作垂直证半径,切线长定理,直角三角形的判定,相似三角形的运用、辅助线的作法.【考点】切线的判定,切线长定理,圆周角定理,相似三角形,三角函数23.【答案】(1)解:设每个B 类摊位占地面积为x 平方米,则每个A 类摊位占地面积为()2x +平方米.6060325x x =+ 解得3x =经检验3x =是原方程的解 ∴25x +=(平方米)答:每个A 、B 类摊位占地面积各为5平方米和3平方米.设A 类摊位数量为a 个,则B 类摊位数量为()90a -个,最大费用为y 元. 由903a a -≥,解得22.5a ≤ ∵a 为正整数 ∴a 的最大值为22()403090102700y a a a =+-=+∵100>∴y 随a 的增大而增大∴当22a =时,102227002920y =⨯+=(元) 答:这90个摊位的最大费用为2920元.【解析】分式方程的应用题注意检验,等量关系的确定是关键. 【考点】分式方程的应用,不等式的应用,一次函数应用五、24.【答案】(1)2(2)解:过点D 作DP x ⊥轴交于点P由题意得,8OBC S AB AO k ===矩形,2ADPO S AD AO k ===矩形∴1=4AD AB 即34BD AB = ∵38132BDF S BD AO AB AO ===△(3)连接OE由题意得112OEC S OC CE ==△,142OBC S OC CB ==△∴14CE CB =即13CE BE =∵DEB CEF =∠∠,DBE FCE =∠∠ ∴DEB FEC △∽△∴13CF BD =∵OC GC =,AB OC = ∴4133BD BD BD FG AB CF --=== ∵AB OG ∥ ∴BD FG ∥∴四边形BDFG 为平行四边形【解析】反比例函数k 的几何意义,三角形面积的表示,清楚相似比与线段比的关. 【考点】反比例函数,相似三角形,三角形的面积比,平行四边形的判定25.【答案】解:(1)由题意得()1,0A -,()3,0B ,代入抛物线解析式得0930b c b c -+=++=,解得1322b c ⎧=--⎪⎪⎨⎪=--⎪⎩(2)过点D 作DEx ⊥轴交于点E ∵OC OC ∥,BC =,3OB =∴OB BCOE DC==∴OE =∴点D 的横坐标为D x= ∵点D 是射线BC 与抛物线的交点∴把D x =代入抛物线解析式得1Dy = ∴()1D设直线BD 解析式为y kx m =+,将()3,0B、()1D 代入031k m k m =+⎧⎪=+,解得k m ⎧=⎪⎨⎪=⎩∴直线BD 的直线解析式为y =(3)由题意得an t ABD ∠=,tan 1ADB ∠=由题意得抛物线的对称轴为直线1x =,设对称轴与x 轴交点为M ,()1,P n且0n <,(),0Q x 且3x <①当PBQ ABD △∽△时,tan tan PBQ ABD =∠∠即n -=n -=tan tan PQB ADB =∠∠,即11n x-=-,解得1x =②当PQB ABD △∽△时,tan tan PBQ ADB =∠∠即12n-=,解得2n -=tan tan QPB ABD =∠∠,即1n x -=-1x =-③当PQB DAB △∽△时,tan tan PBQ ABD =∠∠即23n -=3n -=tan tan PQM DAE =∠∠,即1n x -=-1x - ④当PQB ABD △∽△时,tan tan PBQ ABD =∠∠即12n-=,解得2n -=tan tan PQM DAE =∠∠,即1n x -=-5x =-综上所述,113Q ⎛⎫- ⎪ ⎪⎝⎭、()21Q -、31,0Q ⎫-⎪⎪⎝⎭、()45Q - 【解析】分类讨论不重不漏,计算能力要求高.【考点】一次函数,二次函数,平面直角坐标系,相似三角形,三角函数,分类讨论,二次根式计算。
2020年广东省广州市中考数学试卷(考试时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题3分,满分30分)1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×1082.某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四3.下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x104.△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°5.如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形6.一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.如图,Rt△ABC中,∠C=90°,AB=5,cosA=,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定8.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm9.直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个10.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E 作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知∠A=100°,则∠A的补角等于°.12.化简:﹣=.13.方程=的解是.14.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为.15.如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为.16.对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x =mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.三、解答题(本大题共9小题,满分102分)17.(9分)解不等式组:.18.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.19.(10分)已知反比例函数y=的图象分别位于第二、第四象限,化简:﹣+.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:67 68 73 75 76 78 80 82 83 84 85 85 90 92 95甲社区66 69 72 74 75 78 80 81 85 85 88 89 91 96 98乙社区根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=(x>0)的图象经过点A (3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).参考答案与试题解析一、选择题1.【解答】解:15233000=1.5233×107,故选:C.2.【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,故选:A.3.【解答】解:A、原式为最简结果,不符合题意;B、原式=6a,不符合题意;C、原式=x11,不符合题意;D、原式=x10,符合题意.故选:D.4.【解答】解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∵∠C=68°,∴∠AED=∠C=68°.故选:B.5.【解答】解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,故选:A.6.【解答】解:∵一次函数y=﹣3x+1中,k=﹣3<0,∴y随着x的增大而减小.∵一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),且x1<x1+1<x2+2,∴y3<y2<y1,故选:B.7.【解答】解:∵Rt△ABC中,∠C=90°,AB=5,cosA=,∴==,∴AC=4,∴BC==3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.8.【解答】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48,∴BD=AB=×48=24,∵⊙O的直径为52,∴OB=OC=26,在Rt△OBD中,OD===10,∴CD=OC﹣OD=26﹣10=16(cm),故选:C.9.【解答】解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是二次方程,∵△=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.10.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.二、填空题11.【解答】解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.12.【解答】解:﹣=2=.故填:.13.【解答】解:方程=,去分母得:2x=3,解得:x=,经检验x=是分式方程的解.故答案为:x=.14.【解答】解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).15.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴=,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.16.【解答】解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x=﹣=10.0时,y有最小值,设w=(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2=nx2﹣2(x1+x2+…+x n)x+(x12+x22+…+x n2),∵n>0,∴当x=﹣=时,w有最小值.故答案为10.0,.三、解答题17.【解答】解:解不等式①得:x≥3,解不等式②得:x>2,所以不等式组的解集为:x≥318.【解答】解:在△ABC与△ADC中,,∴△ABC≌△ADC(SAS),∴∠D=∠B=80°,∴∠BCA=180°﹣25°﹣80°=75°.19.【解答】解:∵反比例函数y=的图象分别位于第二、第四象限,∴k<0,∴k﹣1<0,∴﹣+=+=k+4+=k+4+|k﹣1|=k+4﹣k+1=5.20.【解答】解:(1)甲社区:这15位老人年龄出现次数最多的是85岁,因此众数是85岁,从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁;(2)年龄小于79岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,∴P(来自同一个社区)==.21.【解答】解:(1)∵点A(3,4)在y=上,∴k=12,∵四边形ABCD是平行四边形,∴AM=MC,∴点M的纵坐标为2,∵点M在y=上,∴M(6,2).(2)∵AM=MC,A(3,4),M(6,2)∴C(9,0),∴OC=9,OA==5,∴平行四边形ABCD的周长为2(5+9)=28.22.【解答】解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.23.【解答】解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=5,∵E是BC的中点,∴BC=2OE=13,∴OC==12,∴OA=12,∵四边形ABCD是菱形,∴AD=13,∴BF=×12×5×2×2÷13=,故点E到AD的距离是.24.【解答】证明:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵∠ADC=∠ABC=60°,∠BDC=∠BAC=60°,∴∠ADC=∠BDC,∴DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数,理由如下:如图1,将△ADC绕点逆时针旋转60°,得到△BHC,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,∴S=x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=EC,PE=PC=EC,∴EF=2PE=EC=CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4.25.【解答】解:(1)∵抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),∴c﹣5a=a+b+c,∴b=﹣6a;(2)如图,设BC的中点为M,∵B(x1,3),C(x2,3),线段BC上有一点E,∴S1=×BE×3=BE,S2=×CE×3=CE,∵S1=S2+.∴CE+=BE,∴BE=CE+1,∵b=﹣6a,∴抛物线G:y=ax2﹣6ax+c,∴对称轴为x==3,∴BC的中点M坐标为(3,3),∵BE=BM+EM,CE=CM﹣EM,BM=CM,BE=CE+1,∴EM=,∴点E(,3)或(,3);(3)∵直线DE与抛物线G:y=ax2﹣6ax+c的另一个交点F的横坐标为+3,∴y=a()2﹣6a×(+3)+c=﹣9a+c,∴点F(+3,﹣9a+c),∵点D是抛物线的顶点,∴点D(3,﹣9a+c),∴直线DF的解析式为:y=6x﹣18+c﹣9a,∴点E坐标为(,3),又∵点D(3,﹣9a+c),∴直线DE解析式为:y=(6﹣18a﹣2c)x+7c﹣63a﹣18,∵直线DE与直线DF是同一直线,∴6=6﹣18a﹣2c,∴c=9a,∴抛物线解析式为:y=ax2﹣6ax+9a,∵1<x<6,∴当x=3时,y min=0,当x=6时,y max=9a,∴0≤y<9a。
2020年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×1082.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四3.(3分)下列运算正确的是()A.√a+√b=√a+b B.2√a×3√a=6√a C.x5•x6=x30D.(x2)5=x104.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C .该圆锥的主视图既是轴对称图形,又是中心对称图形D .该圆锥的主视图既不是轴对称图形,又不是中心对称图形6.(3分)一次函数y =﹣3x +1的图象过点(x 1,y 1),(x 1+1,y 2),(x 1+2,y 3),则( ) A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 27.(3分)如图,Rt △ABC 中,∠C =90°,AB =5,cos A =45,以点B 为圆心,r 为半径作⊙B ,当r =3时,⊙B 与AC 的位置关系是( )A .相离B .相切C .相交D .无法确定8.(3分)往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB =48cm ,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm9.(3分)直线y =x +a 不经过第二象限,则关于x 的方程ax 2+2x +1=0实数解的个数是( ) A .0个B .1个C .2个D .1个或2个10.(3分)如图,矩形ABCD 的对角线AC ,BD 交于点O ,AB =6,BC =8,过点O 作OE ⊥AC ,交AD 于点E ,过点E 作EF ⊥BD ,垂足为F ,则OE +EF 的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,满分18分.) 11.(3分)已知∠A =100°,则∠A 的补角等于 °.12.(3分)化简:√20−√5= . 13.(3分)方程x x+1=32x+2的解是 .14.(3分)如图,点A 的坐标为(1,3),点B 在x 轴上,把△OAB 沿x 轴向右平移到△ECD ,若四边形ABDC 的面积为9,则点C 的坐标为 .15.(3分)如图,正方形ABCD 中,△ABC 绕点A 逆时针旋转到△AB 'C ,AB ',AC '分别交对角线BD 于点E ,F ,若AE =4,则EF •ED 的值为 .16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm )9.9,10.1,10.0,若用a 作为这条线段长度的近似值,当a = mm 时,(a ﹣9.9)2+(a ﹣10.1)2+(a ﹣10.0)2最小.对另一条线段的长度进行了n 次测量,得到n 个结果(单位:mm )x 1,x 2,…,x n ,若用x 作为这条线段长度的近似值,当x = mm 时,(x ﹣x 1)2+(x ﹣x 2)2+…+(x ﹣x n )2最小.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.) 17.(9分)解不等式组:{2x −1≥x +2x +5<4x −1.18.(9分)如图,AB =AD ,∠BAC =∠DAC =25°,∠D =80°.求∠BCA 的度数.19.(10分)已知反比例函数y =k x 的图象分别位于第二、第四象限,化简:k 2k−4−16k−4+√(k+1)2−4k.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区676873757678808283848585909295乙社区666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=kx(x>0)的图象经过点A(3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=132,BD=10,求点E到AD的距离.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧AB̂上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c ﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+3 2.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为6a+3,求y=ax2+bx+c在1<x <6时的取值范围(用含a的式子表示).参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×108【解答】解:15233000=1.5233×107,故选:C.2.(3分)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,故选:A.3.(3分)下列运算正确的是()A.√a+√b=√a+b B.2√a×3√a=6√a C.x5•x6=x30D.(x2)5=x10【解答】解:A、原式为最简结果,不符合题意;B、原式=6a,不符合题意;C、原式=x11,不符合题意;D、原式=x10,符合题意.故选:D.4.(3分)△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°【解答】解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∵∠C=68°,∴∠AED=∠C=68°.故选:B.5.(3分)如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形【解答】解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,故选:A.6.(3分)一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【解答】解:∵一次函数y=﹣3x+1中,k=﹣3<0,∴y随着x的增大而减小.∵一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),且x1<x1+1<x2+2,∴y3<y2<y1,故选:B.7.(3分)如图,Rt△ABC中,∠C=90°,AB=5,cos A=45,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定【解答】解:∵Rt△ABC中,∠C=90°,AB=5,cos A=4 5,∴ACAB =AC5=45,∴AC=4,∴BC=√AB2−AC2=3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.8.(3分)往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB =48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm【解答】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48,∴BD=12AB=12×48=24,∵⊙O的直径为52,∴OB=OC=26,在Rt△OBD中,OD=√OB2−BD2=√262−242=10,∴CD=OC﹣OD=26﹣10=16(cm),故选:C .9.(3分)直线y =x +a 不经过第二象限,则关于x 的方程ax 2+2x +1=0实数解的个数是( ) A .0个B .1个C .2个D .1个或2个【解答】解:∵直线y =x +a 不经过第二象限, ∴a ≤0,当a =0时,关于x 的方程ax 2+2x +1=0是一次方程,解为x =−12, 当a <0时,关于x 的方程ax 2+2x +1=0是二次方程, ∵△=22﹣4a >0,∴方程有两个不相等的实数根. 故选:D .10.(3分)如图,矩形ABCD 的对角线AC ,BD 交于点O ,AB =6,BC =8,过点O 作OE ⊥AC ,交AD 于点E ,过点E 作EF ⊥BD ,垂足为F ,则OE +EF 的值为( )A .485B .325C .245D .125【解答】解:∵AB =6,BC =8,∴矩形ABCD 的面积为48,AO =DO =12AC =5, ∵对角线AC ,BD 交于点O , ∴△AOD 的面积为12, ∵EO ⊥AO ,EF ⊥DO ,∴S △AOD =S △AOE +S △DOE ,即12=12AO ×EO +12DO ×EF , ∴12=12×5×EO +12×5×EF ,∴5(EO+EF)=24,∴EO+EF=24 5,故选:C.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)已知∠A=100°,则∠A的补角等于80°.【解答】解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.12.(3分)化简:√20−√5=√5.【解答】解:√20−√5=2√5−√5=√5.故填:√5.13.(3分)方程xx+1=32x+2的解是x=32.【解答】解:方程xx+1=32x+2,去分母得:2x=3,解得:x=3 2,经检验x=32是分式方程的解.故答案为:x=3 2.14.(3分)如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为(4,3).【解答】解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).15.(3分)如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为16.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴AEDE =EFAE,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.16.(3分)对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=10.0mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=x1+x2+⋯+x nnmm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.【解答】解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x =−−60.06=10.0时,y 有最小值, 设w =(x ﹣x 1)2+(x ﹣x 2)2+…+(x ﹣x n )2=nx 2﹣2(x 1+x 2+…+x n )x +(x 12+x 22+…+x n 2),∵n >0, ∴当x =−−2(x 1+x 2+⋯+x n )2n =x 1+x 2+⋯+x nn时,w 有最小值. 故答案为10.0,x 1+x 2+⋯+x nn.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.) 17.(9分)解不等式组:{2x −1≥x +2x +5<4x −1.【解答】解:{2x −1≥x +2①x +5<4x −1②解不等式①得:x ≥3, 解不等式②得:x >2, 所以不等式组的解集为:x ≥318.(9分)如图,AB =AD ,∠BAC =∠DAC =25°,∠D =80°.求∠BCA 的度数.【解答】解:在△ABC 与△ADC 中, {AB =AD∠BAC =∠DAC AC =AC, ∴△ABC ≌△ADC (SAS ), ∴∠D =∠B =80°,∴∠BCA =180°﹣25°﹣80°=75°.19.(10分)已知反比例函数y =k x 的图象分别位于第二、第四象限,化简:k 2k−4−16k−4+√(k +1)2−4k .【解答】解:∵反比例函数y =kx 的图象分别位于第二、第四象限, ∴k <0, ∴k ﹣1<0,∴k2k−4−16k−4+√(k+1)2−4k=(k−4)(k+4)k−4+√k2−2k+1=k+4+√(k−1)2=k+4+|k﹣1|=k+4﹣k+1=5.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区676873757678808283848585909295乙社区666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.【解答】解:(1)甲社区:这15位老人年龄出现次数最多的是85岁,因此众数是85岁,从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁;(2)年龄小于79岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,∴P(来自同一个社区)=412=13.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=kx(x>0)的图象经过点A(3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.【解答】解:(1)∵点A(3,4)在y=kx上,∴k=12,∵四边形ABCD是平行四边形,∴AM=MC,∴点M的纵坐标为2,∵点M在y=12x上,∴M(6,2).(2)∵AM=MC,A(3,4),M(6,2)∴C(9,0),∴OC=9,OA=√32+42=5,∴平行四边形ABCD的周长为2(5+9)=28.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.【解答】解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=132,BD=10,求点E到AD的距离.【解答】解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=12BD=5,∵E是BC的中点,∴BC=2OE=13,∴OC=√BC2−OB2=12,∴OA=12,∵四边形ABCD 是菱形, ∴AD =13,∴BF =12×12×5×2×2÷13=12013, 故点E 到AD 的距离是12013.24.(14分)如图,⊙O 为等边△ABC 的外接圆,半径为2,点D 在劣弧AB ̂上运动(不与点A ,B 重合),连接DA ,DB ,DC . (1)求证:DC 是∠ADB 的平分线;(2)四边形ADBC 的面积S 是线段DC 的长x 的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M ,N 分别在线段CA ,CB 上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置,△DMN 的周长有最小值t ,随着点D 的运动,t 的值会发生变化,求所有t 值中的最大值.【解答】证明:(1)∵△ABC 是等边三角形, ∴∠ABC =∠BAC =∠ACB =60°,∵∠ADC =∠ABC =60°,∠BDC =∠BAC =60°, ∴∠ADC =∠BDC , ∴DC 是∠ADB 的平分线;(2)四边形ADBC 的面积S 是线段DC 的长x 的函数, 理由如下:如图1,将△ADC 绕点逆时针旋转60°,得到△BHC ,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=√34CD2,∴S=√34x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=12EC,PE=√3PC=√32EC,∴EF=2PE=√3EC=√3CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4√3.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c ﹣5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+3 2.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为6a+3,求y=ax2+bx+c在1<x <6时的取值范围(用含a的式子表示).【解答】解:(1)∵抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),∴c﹣5a=a+b+c,∴b=﹣6a;(2)如图,设BC的中点为M,∵B (x 1,3),C (x 2,3),线段BC 上有一点E , ∴S 1=12×BE ×3=32BE ,S 2=12×CE ×3=32CE , ∵S 1=S 2+32. ∴32CE +32=32BE ,∴BE =CE +1, ∵b =﹣6a ,∴抛物线G :y =ax 2﹣6ax +c , ∴对称轴为x =−6a−2a=3, ∴BC 的中点M 坐标为(3,3),∵BE =BM +EM ,CE =CM ﹣EM ,BM =CM ,BE =CE +1, ∴EM =12,∴点E (72,3)或(52,3);(3)∵直线DE 与抛物线G :y =ax 2﹣6ax +c 的另一个交点F 的横坐标为6a+3,∴y =a (6a+3)2﹣6a ×(6a+3)+c =36a−9a +c , ∴点F (6a+3,36a−9a +c ),∵点D 是抛物线的顶点, ∴点D (3,﹣9a +c ),∴直线DF 的解析式为:y =6x ﹣18+c ﹣9a , ∴点E 坐标为(72,3),又∵点D(3,﹣9a+c),∴直线DE解析式为:y=(6﹣18a﹣2c)x+7c﹣63a﹣18,∵直线DE与直线DF是同一直线,∴6=6﹣18a﹣2c,∴c=9a,∴抛物线解析式为:y=ax2﹣6ax+9a,∵1<x<6,∴当x=3时,y min=0,当x=6时,y max=9a,∴0≤y<9a.。
2020年广东省中考数学试卷和答案解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是()A.﹣9B.9C.D.﹣解析:】根据相反数的定义即可求解.参考答案:解:9的相反数是﹣9,故选:A.点拨:此题主要考查相反数的定义,比较简单.2.(3分)一组数据2,4,3,5,2的中位数是()A.5B.3.5C.3D.2.5解析:】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.参考答案:解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.点拨:本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)解析:】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.参考答案:解:点(3,2)关于x轴对称的点的坐标为(3,﹣2).故选:D.点拨:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.7解析:】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.参考答案:解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.点拨:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣2解析:】根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.参考答案:解:∵在实数范围内有意义,∴2x﹣4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.点拨:此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2C.16D.4解析:】根据中位线定理可得DF=AC,DE=BC,EF=AC,继而结合△ABC的周长为16,可得出△DEF的周长.参考答案:解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=AC,DE=BC,EF=AC,故△DEF的周长=DE+DF+EF=(BC+AB+AC)=16=8.故选:A.点拨:此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2﹣3解析:】先求出y=(x﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.参考答案:解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.点拨:本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.(3分)不等式组的解集为()A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤1解析:】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.参考答案:解:解不等式2﹣3x≥﹣1,得:x≤1,解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,则不等式组的解集为﹣1≤x≤1,故选:D.点拨:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B 恰好落在AD边上,则BE的长度为()A.1B.C.D.2解析:】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE =3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x 即可得出答案.参考答案:解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.点拨:本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个解析:】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.参考答案:解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.点拨:本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=x(y﹣1).解析:】直接提取公因式x,进而分解因式得出答案.参考答案:解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).点拨:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.解析:】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.参考答案:解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.点拨:本题考查同类项的定义,正确根据同类项的定义得到m,n 的值是解题的关键.13.(4分)若+|b+1|=0,则(a+b)2020=1.解析:】根据非负数的意义,求出a、b的值,代入计算即可.参考答案:解:∵+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.点拨:本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.解析:】由x=5﹣y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)﹣4xy计算可得.参考答案:解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.点拨:本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含式子x+y、xy及整体代入思想的运用.15.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD 的度数为45°.解析:】根据∠EBD=∠ABD﹣∠ABE,求出∠ABD,∠ABE即可解决问题.参考答案:解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=(180°﹣∠A)=75°,由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,故答案为45°.点拨:本题考查作图﹣基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.解析:】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.参考答案:解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=,解得,r=,故答案为:.点拨:本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2﹣2.解析:】如图,连接BE,BD.求出BE,BD,根据DE≥BD﹣BE 求解即可.参考答案:解:如图,连接BE,BD.由题意BD==2,∵∠MBN=90°,MN=4,EM=NE,∴BE=MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2﹣2.故答案为2﹣2.点拨:本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.解析:】根据整式的混合运算过程,先化简,再代入值求解即可.参考答案:解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=,y=时,原式=2××=2.点拨:本题考查了整式的混合运算﹣化简求值,解决本题的关键是先化简,再代入值求解.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?解析:】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.参考答案:解:(1)x=120﹣(24+72+18)=6;(2)1800×=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.点拨:本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC 是等腰三角形.解析:】先证△BDF≌△CEF(AAS),得出BF=CF,DF=EF,则BE=CD,再证△ABE≌△ACD(AAS),得出AB=AC即可.参考答案:证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.点拨:本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x 的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.解析:】(1)关于x,y的方程组与的解相同.实际就是方程组的解,可求出方程组的解,进而确定a、b的值;(2)将a、b的值代入关于x的方程x2+ax+b=0,求出方程的解,再根据方程的两个解与2为边长,判断三角形的形状.参考答案:解:(1)由题意得,关于x,y的方程组的相同解,就是程组的解,解得,,代入原方程组得,a=﹣4,b=12;(2)当a=﹣4,b=12时,关于x的方程x2+ax+b=0就变为x2﹣4x+12=0,解得,x1=x2=2,又∵(2)2+(2)2=(2)2,∴以2、2、2为边的三角形是等腰直角三角形.点拨:本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.解析:】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB =DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2,则OB=,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.参考答案:(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF===2,∴AB=DF=2,∴OB=,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH==.点拨:本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.解析:】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.参考答案:解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.点拨:本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x >0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=2;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.解析:】(1)设点B(s,t),st=8,则点M(s,t),则k=s •t=st=2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD,即可求解;(3)确定直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),即可求解.参考答案:解:(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2,故答案为2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=×8﹣×2=3;(3)设点D(m,),则点B(4m,),∵点G与点O关于点C对称,故点G(8m,0),则点E(4m,),设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得,解得,故直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,则FG∥BD,故四边形BDFG为平行四边形.点拨:本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.解析:】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP =30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.参考答案:解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△BAD∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).点拨:本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。
2020年广州市初中毕业生学业考试数学(满分150分,考试用时120分钟)第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×1082.某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四3.下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x104.△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°5.如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形6.一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.如图,Rt△ABC中,∠C=90°,AB=5,cosA=,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定8.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm9.直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个10.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.第二部分非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知∠A=100°,则∠A的补角等于°.12.化简:﹣=.13.方程=的解是.14.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为.15.如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为.16.对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n 个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=mm 时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.18.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.19.(10分)已知反比例函数y=的图象分别位于第二、第四象限,化简:﹣+.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区67 68 73 75 76 78 80 82 83 84 85 85 90 92 95 乙社区66 69 72 74 75 78 80 81 85 85 88 89 91 96 98 根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=(x>0)的图象经过点A (3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B 重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B (x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).答案与解析第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A.152.33×105B.15.233×106C.1.5233×107D.0.15233×108【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:15233000=1.5233×107,故选:C.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四【知识考点】条形统计图.【思路分析】根据条形统计图得出即可.【解答过程】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一,故选:A.【总结归纳】本题考查了条形统计图,能根据图形得出正确的信息是解此题的关键.3.下列运算正确的是()A.+=B.2×3=6C.x5•x6=x30D.(x2)5=x10【知识考点】同底数幂的乘法;幂的乘方与积的乘方;二次根式的混合运算.【思路分析】各项计算得到结果,即可作出判断.【解答过程】解:A、原式为最简结果,不符合题意;B、原式=6a,不符合题意;C、原式=x11,不符合题意;D、原式=x10,符合题意.故选:D.【总结归纳】此题考查了二次根式的混合运算,同底数幂的乘法,以及幂的乘方,熟练掌握运算法则是解本题的关键.4.△ABC中,点D,E分别是△ABC的边AB,AC的中点,连接DE.若∠C=68°,则∠AED=()A.22°B.68°C.96°D.112°【知识考点】三角形中位线定理.【思路分析】根据三角形的中位线定理得到DE∥BC,根据平行线的性质即可求得∠AED=∠C =68°.【解答过程】解:∵点D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,∵∠C=68°,∴∠AED=∠C=68°.故选:B.【总结归纳】本题主要考查了三角形的中位线定理,能熟练地运用三角形的中位线定理是解此题的关键.5.如图所示的圆锥,下列说法正确的是()A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,又不是中心对称图形【知识考点】轴对称图形;中心对称图形;简单几何体的三视图.【思路分析】圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,从而得出答案.【解答过程】解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形,故选:A.【总结归纳】本题主要考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图及轴对称图形、中心对称图形的概念.6.一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),则()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【知识考点】一次函数图象上点的坐标特征.【思路分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x1+1<x2+2即可得出结论.【解答过程】解:∵一次函数y=﹣3x+1中,k=﹣3<0,∴y随着x的增大而减小.∵一次函数y=﹣3x+1的图象过点(x1,y1),(x1+1,y2),(x1+2,y3),且x1<x1+1<x2+2,∴y3<y2<y1,故选:B.【总结归纳】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.如图,Rt△ABC中,∠C=90°,AB=5,cosA=,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A.相离B.相切C.相交D.无法确定【知识考点】直线与圆的位置关系;解直角三角形.【思路分析】根据三角函数的定义得到AC,根据勾股定理求得BC,和⊙B的半径比较即可.【解答过程】解:∵Rt△ABC中,∠C=90°,AB=5,cosA=,∴==,∴AC=4,∴BC==3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.【总结归纳】本题考查了直线与圆的位置关系的应用,注意:直线和圆有三种位置关系:相切、相交、相离.8.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm【知识考点】垂径定理的应用.【思路分析】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而可得出CD的长.【解答过程】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48,∴BD=AB=×48=24,∵⊙O的直径为52,∴OB=OC=26,在Rt△OBD中,OD===10,∴CD=OC﹣OD=26﹣10=16(cm),故选:C.【总结归纳】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个【知识考点】根的判别式;一次函数的性质.【思路分析】利用一次函数的性质得到a≤0,再判断△=22﹣4a>0,从而得到方程根的情况.【解答过程】解:∵直线y=x+a不经过第二象限,∴a≤0,当a=0时,关于x的方程ax2+2x+1=0是一次方程,解为x=﹣,当a<0时,关于x的方程ax2+2x+1=0是二次方程,∵△=22﹣4a>0,∴方程有两个不相等的实数根.故选:D.【总结归纳】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一次函数的性质.10.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD 于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.【知识考点】线段垂直平分线的性质;矩形的性质.【思路分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD=S△AOE+S△DOE,即可得到OE+EF的值.【解答过程】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.【总结归纳】本题主要考查了矩形的性质,解题时注意:矩形的四个角都是直角;矩形的对角线相等且互相平分.第二部分非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知∠A=100°,则∠A的补角等于°.【知识考点】余角和补角.【思路分析】根据补角的概念求解可得.【解答过程】解:∵∠A=100°,∴∠A的补角=180°﹣100°=80°.故答案为:80.【总结归纳】本题主要考查补角,解题的关键是掌握如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.12.化简:﹣=.【知识考点】二次根式的加减法.【思路分析】此题先把二次根式化简,再进行合并即可求出答案.【解答过程】解:﹣=2=.故填:.【总结归纳】此题考查了二次根式的加减,关键是把二次根式化简,再进行合并.13.方程=的解是.【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答过程】解:方程=,去分母得:2x=3,解得:x=,经检验x=是分式方程的解.故答案为:x=.【总结归纳】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为9,则点C的坐标为.【知识考点】三角形的面积;坐标与图形变化﹣平移.【思路分析】根据平移的性质得出四边形ABDC是平行四边形,从而得A和C的纵坐标相同,根据四边形ABDC的面积求得AC的长,即可求得C的坐标.【解答过程】解:∵把△OAB沿x轴向右平移到△ECD,∴四边形ABDC是平行四边形,∴AC=BD,A和C的纵坐标相同,∵四边形ABDC的面积为9,点A的坐标为(1,3),∴3AC=9,∴AC=3,∴C(4,3),故答案为(4,3).【总结归纳】本题考查了坐标与图形的变换﹣平移,平移的性质,平行四边形的性质,求得平移的距离是解题的关键.15.如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C,AB',AC'分别交对角线BD于点E,F,若AE=4,则EF•ED的值为.【知识考点】正方形的性质;旋转的性质;相似三角形的判定与性质.【思路分析】根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.【解答过程】解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴=,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.【总结归纳】本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,找出相关的相似三角形是解题的关键.16.对某条线段的长度进行了3次测量,得到3个结果(单位:mm)9.9,10.1,10.0,若用a作为这条线段长度的近似值,当a=mm时,(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2最小.对另一条线段的长度进行了n次测量,得到n个结果(单位:mm)x1,x2,…,x n,若用x作为这条线段长度的近似值,当x=mm时,(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2最小.【知识考点】二次函数的应用.【思路分析】构建二次函数,利用二次函数的性质即可解决问题.【解答过程】解:设y=(a﹣9.9)2+(a﹣10.1)2+(a﹣10.0)2=3a2﹣60.0a+300.02,∵a=3>0,∴当x=﹣=10.0时,y有最小值,设w=(x﹣x1)2+(x﹣x2)2+…+(x﹣x n)2=nx2﹣2(x1+x2+…+x n)x+(x12+x22+…+x n2),∵n>0,∴当x=﹣=时,w有最小值.故答案为10.0,.【总结归纳】本题考查二次函数的性质,解题的关键是学会构建二次函数解决最值问题.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:.【知识考点】解一元一次不等式组.【思路分析】根据不等式的性质求出两个不等式的解集,进而求出不等式组的解集即可.【解答过程】解:解不等式①得:x≥3,解不等式②得:x>2,所以不等式组的解集为:x≥3【总结归纳】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(9分)如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°.求∠BCA的度数.【知识考点】全等三角形的判定与性质.【思路分析】运用SAS公理,证明△ABC≌△ADC,得到∠D=∠B=80°,再根据三角形内角和为180°即可解决问题.【解答过程】解:在△ABC与△ADC中,,∴△ABC≌△ADC(SAS),∴∠D=∠B=80°,∴∠BCA=180°﹣25°﹣80°=75°.【总结归纳】主要考查了全等三角形的判定及其性质的应用问题;应牢固掌握全等三角形的判定及其性质,这是灵活运用的基础和关键.19.(10分)已知反比例函数y=的图象分别位于第二、第四象限,化简:﹣+.【知识考点】反比例函数的图象;反比例函数的性质.【思路分析】由反比例函数图象的性质可得k<0,化简分式和二次根式,可求解.【解答过程】解:∵反比例函数y=的图象分别位于第二、第四象限,∴k<0,∴k﹣1<0,∴﹣+=+=k+4+=k+4+|k﹣1|=k+4﹣k+1=5.【总结归纳】本题考查了反比例函数的性质,反比例函数图象的性质,平方差公式,分式和二次根式的化简等知识,确定k的取值范围是本题的关键.20.(10分)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区67 68 73 75 76 78 80 82 83 84 85 85 90 92 95 乙社区66 69 72 74 75 78 80 81 85 85 88 89 91 96 98根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.【知识考点】中位数;众数;列表法与树状图法.【思路分析】(1)根据中位数、众数的意义和计算方法分别求出结果即可;(2)用列表法表示所有可能出现的结果情况,从而求出两人来自同一社区的概率.【解答过程】解:(1)甲社区:这15位老人年龄出现次数最多的是85岁,因此众数是85岁,从小到大排列处在中间位置的一个数是82岁,因此中位数是82岁;(2)年龄小于79岁甲社区2人,乙社区的有2人,从4人中任取2人,所有可能出现的结果如下:共有12种可能出现的结果,其中“同一个社区”的有4种,∴P(来自同一个社区)==.【总结归纳】本题考查中位数、众数的意义和计算方法,列表法求随机事件发生的概率,列举出所有可能出现的结果是求出概率的关键.21.(12分)如图,平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=(x>0)的图象经过点A (3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.【知识考点】反比例函数图象上点的坐标特征;平行四边形的性质.【思路分析】(1)利用待定系数法求出k,再利用平行四边形的性质,推出AM=CM,推出点M 的纵坐标为2.(2)求出点C的坐标,求出OA,OC的长即可解决问题.【解答过程】解:(1)∵点A(3,4)在y=上,∴k=12,∵四边形ABCD是平行四边形,∴AM=MC,∴点M的纵坐标为2,∵点M在y=上,∴M(6,2).(2)∵AM=MC,A(3,4),M(6,2)∴C(9,0),∴OC=9,OA==5,∴平行四边形ABCD的周长为2(5+9)=28.【总结归纳】本题考查反比例函数图象上的点的坐标特征,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(12分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.【知识考点】一元一次方程的应用.【思路分析】(1)根据今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%,列出算式即可求解;(2)根据“某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场”列出方程求解即可.【解答过程】解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.【总结归纳】此题主要考查了一元一次方程的应用,正确找出等量关系是解题关键.23.(12分)如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC,交BD于点O.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=,BD=10,求点E到AD的距离.【知识考点】等腰三角形的性质;菱形的判定与性质;作图﹣轴对称变换.【思路分析】(1)根据点关于直线的对称点的画法,过点A作BD的垂线段并延长一倍,得对称点C;(2)①根据菱形的判定即可求解;②过B点作BF⊥AD于F,根据菱形的性质,直角三角形的性质,勾股定理,三角形面积公式即可求解.【解答过程】解:(1)如图所示:点C即为所求;(2)①证明:∵∠ABD=∠ADB,∴AB=AD,∵C是点A关于BD的对称点,∴CB=AB,CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形;②过B点作BF⊥AD于F,∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=5,∵E是BC的中点,∴BC=2OE=13,∴OC==12,∴OA=12,∵四边形ABCD是菱形,∴AD=13,∴BF=×12×5×2×2÷13=,故点E到AD的距离是.【总结归纳】此题主要考查了基本作图以及轴对称变换的作法、菱形的判定与性质,直角三角形的性质,勾股定理,三角形面积等知识,得出BC,AC的长是解题关键.24.(14分)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B 重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.【知识考点】圆的综合题.【思路分析】(1)由等边三角形的性质可得∠ABC=∠BAC=∠ACB=60°,圆周角定理可得∠ADC=∠BDC=60°,可得结论;(2)将△ADC绕点逆时针旋转60°,得到△BHC,可证△DCH是等边三角形,可得四边形ADBC 的面积S=S△ADC+S△BDC=S△CDH=CD2,即可求解;(3)作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,由轴对称的性质可得EM=DM,DN=NF,可得△DMN的周长=DM+DN+MN=FN+EM+MN,则当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,即最小值为EF=t,由轴对称的性质可求CD=CE=CF,∠ECF=120°,由等腰三角形的性质和直角三角形的性质可求EF=2PE=EC=CD=t,则当CD为直径时,t有最大值为4.【解答过程】证明:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵∠ADC=∠ABC=60°,∠BDC=∠BAC=60°,∴∠ADC=∠BDC,∴DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数,理由如下:如图1,将△ADC绕点逆时针旋转60°,得到△BHC,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=CD2,∴S=x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=EC,PE=PC=EC,∴EF=2PE=EC=CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4.【总结归纳】本题是圆的综合题,考查了圆的有关知识,等边三角形的性质,旋转的性质,轴对称的性质等知识,灵活运用这些性质进行推理是本题的关键.25.(14分)平面直角坐标系xOy中,抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),B (x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积为S1,△OCE的面积为S2,S1=S2+.(1)用含a的式子表示b;(2)求点E的坐标:(3)若直线DE与抛物线G的另一个交点F的横坐标为+3,求y=ax2+bx+c在1<x<6时的取值范围(用含a的式子表示).【知识考点】二次函数综合题.【思路分析】(1)将点A坐标代入解析式可求解;(2)由三角形面积关系,可得BE=CE+1,由对称轴为x=3,可求BC中点M的坐标(3,3),由线段的数量关系,可求EM=,可求解;(3)先求出点F坐标,点D坐标可求直线DF解析式,可得点E坐标,可求DE解析式,可得c =9a,由二次函数的性质可求解.【解答过程】解:(1)∵抛物线G:y=ax2+bx+c(0<a<12)过点A(1,c﹣5a),∴c﹣5a=a+b+c,∴b=﹣6a;(2)如图,设BC的中点为M,∵B(x1,3),C(x2,3),线段BC上有一点E,∴S1=×BE×3=BE,S2=×CE×3=CE,∵S1=S2+.∴CE+=BE,∴BE=CE+1,∵b=﹣6a,∴抛物线G:y=ax2﹣6ax+c,∴对称轴为x==3,∴BC的中点M坐标为(3,3),∵BE=BM+EM,CE=CM﹣EM,BM=CM,BE=CE+1,∴EM=,∴点E(,3)或(,3);(3)∵直线DE与抛物线G:y=ax2﹣6ax+c的另一个交点F的横坐标为+3,∴y=a()2﹣6a×(+3)+c=﹣9a+c,∴点F(+3,﹣9a+c),∵点D是抛物线的顶点,∴点D(3,﹣9a+c),∴直线DF的解析式为:y=6x﹣18+c﹣9a,∴点E坐标为(,3),又∵点D(3,﹣9a+c),∴直线DE解析式为:y=(6﹣18a﹣2c)x+7c﹣63a﹣18,∵直线DE与直线DF是同一直线,∴6=6﹣18a﹣2c,∴c=9a,∴抛物线解析式为:y=ax2﹣6ax+9a,∵1<x<6,∴当x=3时,y min=0,当x=6时,y max=9a,∴0≤y<9a.【总结归纳】本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,三角形面积公式,一次函数图象的性质,求出c=9a是本题的关键.。
2020年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3分)(2020•广东)9的相反数是( ) A .﹣9B .9C .19D .−19【分析】根据相反数的定义即可求解. 【解答】解:9的相反数是﹣9, 故选:A .【点评】此题主要考查相反数的定义,比较简单.2.(3分)(2020•广东)一组数据2,4,3,5,2的中位数是( ) A .5B .3.5C .3D .2.5【分析】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数. 【解答】解:将数据由小到大排列得:2,2,3,4,5, ∵数据个数为奇数,最中间的数是3, ∴这组数据的中位数是3. 故选:C .【点评】本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.(3分)(2020•广东)在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( ) A .(﹣3,2)B .(﹣2,3)C .(2,﹣3)D .(3,﹣2)【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答即可. 【解答】解:点(3,2)关于x 轴对称的点的坐标为(3,﹣2). 故选:D .【点评】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.(3分)(2020•广东)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.7【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.(3分)(2020•广东)若式子√2x−4在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣2【分析】根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.【解答】解:∵√2x−4在实数范围内有意义,∴2x﹣4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.【点评】此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.(3分)(2020•广东)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2√2C.16D.4【分析】根据中位线定理可得DF=12AC,DE=12BC,EF=12AC,继而结合△ABC的周长为16,可得出△DEF的周长.【解答】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=12AC,DE=12BC,EF=12AC,故△DEF的周长=DE+DF+EF=12(BC+AB+AC)=12×16=8.故选:A.【点评】此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.(3分)(2020•广东)把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( ) A .y =x 2+2B .y =(x ﹣1)2+1C .y =(x ﹣2)2+2D .y =(x ﹣1)2﹣3【分析】先求出y =(x ﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【解答】解:二次函数y =(x ﹣1)2+2的图象的顶点坐标为(1,2), ∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2), ∴所得的图象解析式为y =(x ﹣2)2+2. 故选:C .【点评】本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式. 8.(3分)(2020•广东)不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A .无解B .x ≤1C .x ≥﹣1D .﹣1≤x ≤1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【解答】解:解不等式2﹣3x ≥﹣1,得:x ≤1, 解不等式x ﹣1≥﹣2(x +2),得:x ≥﹣1, 则不等式组的解集为﹣1≤x ≤1, 故选:D .【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 9.(3分)(2020•广东)如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为()A.1B.√2C.√3D.2【分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x即可得出答案.【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.【点评】本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.(3分)(2020•广东)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【分析】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)(2020•广东)分解因式:xy﹣x=x(y﹣1).【分析】直接提取公因式x,进而分解因式得出答案.【解答】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(4分)(2020•广东)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.【解答】解:∵单项式3x m y 与﹣5x 3y n 是同类项, ∴m =3,n =1, ∴m +n =3+1=4. 故答案为:4.【点评】本题考查同类项的定义,正确根据同类项的定义得到关于m ,n 的方程组是解题的关键.13.(4分)(2020•广东)若√a −2+|b +1|=0,则(a +b )2020= 1 . 【分析】根据非负数的意义,求出a 、b 的值,代入计算即可. 【解答】解:∵√a −2+|b +1|=0, ∴a ﹣2=0且b +1=0, 解得,a =2,b =﹣1,∴(a +b )2020=(2﹣1)2020=1, 故答案为:1.【点评】本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a 、b 的值是解决问题的关键.14.(4分)(2020•广东)已知x =5﹣y ,xy =2,计算3x +3y ﹣4xy 的值为 7 .【分析】由x =5﹣y 得出x +y =5,再将x +y =5、xy =2代入原式=3(x +y )﹣4xy 计算可得.【解答】解:∵x =5﹣y , ∴x +y =5,当x +y =5,xy =2时, 原式=3(x +y )﹣4xy =3×5﹣4×2 =15﹣8 =7, 故答案为:7.【点评】本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含这式子x +y 、xy 及整体代入思想的运用.15.(4分)(2020•广东)如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则∠EBD 的度数为 45° .【分析】根据∠EBD =∠ABD ﹣∠ABE ,求出∠ABD ,∠ABE 即可解决问题. 【解答】解:∵四边形ABCD 是菱形, ∴AD =AB ,∴∠ABD =∠ADB =12(180°﹣∠A )=75°, 由作图可知,EA =EB , ∴∠ABE =∠A =30°,∴∠EBD =∠ABD ﹣∠ABE =75°﹣30°=45°, 故答案为45°.【点评】本题考查作图﹣基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(4分)(2020•广东)如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为13m .【分析】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径. 【解答】解:由题意得,阴影扇形的半径为1m ,圆心角的度数为120°, 则扇形的弧长为:120π×1180,而扇形的弧长相当于围成圆锥的底面周长,因此有: 2πr =120π×1180,解得,r =13, 故答案为:13.【点评】本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.(4分)(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M ,N 分别在射线BA ,BC 上,MN 长度始终保持不变,MN =4,E 为MN 的中点,点D 到BA ,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为 2√5−2 .【分析】如图,连接BE ,BD .求出BE ,BD ,根据DE ≥BD ﹣BE 求解即可. 【解答】解:如图,连接BE ,BD .由题意BD =√22+42=2√5, ∵∠MBN =90°,MN =4,EM =NE , ∴BE =12MN =2,∴点E 的运动轨迹是以B 为圆心,2为半径的圆, ∴当点E 落在线段BD 上时,DE 的值最小, ∴DE 的最小值为2√5−2. 故答案为2√5−2.【点评】本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)(2020•广东)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=√2,y=√3.【分析】根据整式的混合运算过程,先化简,再代入值求解即可.【解答】解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.【点评】本题考查了整式的混合运算﹣化简求值,解决本题的关键是先化简,再代入值求解.19.(6分)(2020•广东)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【分析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.【解答】解:(1)x=120﹣(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【点评】本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.(6分)(2020•广东)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【分析】先证△BDF≌△CEF(AAS),得出BF=CF,DF=EF,则BE=CD,再证△ABE ≌△ACD(AAS),得出AB=AC即可.【解答】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,{∠DBF=∠ECF ∠BFD=∠CFE BD=CE,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE和△ACD中,{∠ABE=∠ACD ∠A=∠ABE=CD,∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)(2020•广东)已知关于x,y的方程组{ax+2√3y=−10√3,x+y=4与{x−y=2,x+by=15的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.【分析】(1)关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.实际就是方程组{x +y =4x −y =2的解,可求出方程组的解,进而确定a 、b 的值;(2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与2√6为边长,判断三角形的形状.【解答】解:(1)由题意得,关于x ,y 的方程组的相同解,就是程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =﹣4√3,b =12;(2)当a =﹣4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2﹣4√3x +12=0,解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.【点评】本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.(8分)(2020•广东)如图1,在四边形ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD . (1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE ̂上一点,AD =1,BC =2.求tan ∠APE 的值.【分析】(1)证明:作OE ⊥CD 于E ,证△OCE ≌△OCB (AAS ),得出OE =OB ,即可得出结论;(2)作DF ⊥BC 于F ,连接BE ,则四边形ABFD 是矩形,得AB =DF ,BF =AD =1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2√2,则OB=√2,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.【解答】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,{∠OEC=∠OBC ∠OCE=∠OCB OC=OC,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO ⊥BE ,∴∠BCH +∠CBH =∠CBH +∠ABE =90°, ∴∠ABE =∠BCH , ∵∠APE =∠ABE , ∴∠APE =∠BCH , ∴tan ∠APE =tan ∠BCH =OB BC =√22.【点评】本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键. 23.(8分)(2020•广东)某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社区拟建A ,B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.【分析】(1)设每个B 类摊位的占地面积为x 平方米,则每个A 类摊位占地面积为(x +2)平方米,根据用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.【解答】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.【点评】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)(2020•广东)如图,点B是反比例函数y=8x(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=kx(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C 对称,连接BF,BG.(1)填空:k=2;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.【分析】(1)设点B (s ,t ),st =8,则点M (12s ,12t ),则k =12s •12t =14st =2;(2)△BDF 的面积=△OBD 的面积=S △BOA ﹣S △OAD ,即可求解; (3)确定直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F (5m ,0),即可求解.【解答】解:(1)设点B (s ,t ),st =8,则点M (12s ,12t ),则k =12s •12t =14st =2, 故答案为2;(2)△BDF 的面积=△OBD 的面积=S △BOA ﹣S △OAD =12×8−12×2=3;(3)设点D (m ,2m),则点B (4m ,2m),∵点G 与点O 关于点C 对称,故点G (8m ,0), 则点E (4m ,12m),设直线DE 的表达式为:y =sx +n ,将点D 、E 的坐标代入上式得{2m =ms +n 12m=4ms +n ,解得{k =−12m 2b =52m, 故直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F (5m ,0), 故FG =8m ﹣5m =3m ,而BD =4m ﹣m =3m =FG , 则FG ∥BD ,故四边形BDFG 为平行四边形.【点评】本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.(10分)(2020•广东)如图,抛物线y=3+√36x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ 相似时,请直接写出所有满足条件的点Q的坐标.【分析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=√3,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.【解答】解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=3+√36(x+1)(x﹣3)=3+√36x2−3+√33x−3+√32,∴b=−3+√33,c=−3+√32;(2)如图1,过点D作DE⊥AB于E,∴CO ∥DE , ∴BC CD=BO OE,∵BC =√3CD ,BO =3, ∴√3=3OE, ∴OE =√3,∴点D 横坐标为−√3, ∴点D 坐标(−√3,√3+1), 设直线BD 的函数解析式为:y =kx +b , 由题意可得:{√3+1=−√3k +b 0=3k +b ,解得:{k =−√33b =√3,∴直线BD 的函数解析式为y =−√33x +√3;(3)∵点B (3,0),点A (﹣1,0),点D (−√3,√3+1), ∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1, ∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C (0,√3), ∴OC =√3,∵tan ∠COB =COBO =√33, ∴∠COB =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2, ∴DK =√AD 2−AK2=√8−4=2,∴DK =AK , ∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N (1,0),若∠CBO =∠PBO =30°, ∴BN =√3PN =2,BP =2PN , ∴PN =2√33,BP =4√33, 当△BAD ∽△BPQ , ∴BP BA=BQ BD,∴BQ =4√33×(2√3+2)4=2+2√33,∴点Q (1−2√33,0); 当△BAD ∽△BQP , ∴BP BD=BQ AB,∴BQ=4√33×423+2=4−4√33,∴点Q(﹣1+4√33,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=√2BN=2√2,当△BAD∽△BPQ,∴BPAD =BQ BD,∴√22√2=2√3+2,∴BQ=2√3+2∴点Q(1﹣2√3,0);当△BAD∽△PQB,∴BPBD =BQAD,∴BQ=2√2×2√22√3+2=2√3−2,∴点Q(5﹣2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(﹣1+4√33,0)或(1﹣2√3,0)或(5﹣2√3,0).【点评】本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。
绝密*启用前2020年广州市中考试题数学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时102分钟注意事项:1.)2.)A. B.C.D.图1 【分析】图1是一个直角题型,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.【答案】C【涉及知识点】面动成体【点评】本题属于基础题,主要考查学生是否具有基本的识图能力,以及对点线面体之间关系的理解,考查知识点单一,有利于提高本题的信度.【推荐指数】★3.(2010广东广州,3,3分)下列运算正确的是()A.-3(x-1)=-3x-1 B.-3(x-1)=-3x+1C.-3(x-1)=-3x-3 D.-3(x-1)=-3x+3【分析】去括号时,要按照去括号法则,将括号前的-3与括号内每一项分别相乘,尤其需要注意,-3与-1相乘时,应该是+3而不是减3.4.DE知,5.3<x <2.【点评】解不等式组是考查学生的基本计算能力,求不等式组解集的时候,可先分别求出组成不等式组的各个不等式的解集,然后借助数轴或口诀求出所有解集的公共部分.【推荐指数】★★★6.(2010广东广州,6,3分)从图2的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称称图形的卡片的概率是()图2A .1B .1C .3D .17. )4×2×3 主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.【推荐指数】★★★★8. (2010广东广州,8,3分)下列命题中,正确的是( )A .若a ·b >0,则a >0,b >0B .若a ·b <0,则a <0,b <0C .若a ·b =0,则a =0,且b =0D .若a ·b =0,则a =0,或b =0【分析】A 项中a ·b >0可得a 、b 同号,可能同为正,也可能同为负;B 项中a ·b <0可得a 、b 异号,所以错误;C 项中a ·b =0可得a 、b 中必有一个字母的值为0,但不一定同时为零.【答案】D【涉及知识点】乘法法则命题真假【点评】本题主要考查乘法法则,只有深刻理解乘法法则才能求出正确答案,需要考生具备一定的思维能力.【推荐指数】★★9.(2010广东广州,9,3分)若a<11=()A.a﹣2 B.2﹣a C.a D.﹣aa--,由于a<1,所以a-1<0,因此a1=11a-10,依次β+10w;a19.第二部分(非选择题共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.(2010广东广州,11,3分)“激情盛会,和谐亚洲”第16届亚运会将于2010年11月在广州举行,广州亚运城的建筑面积约是358000平方米,将358000用科学记数法表示为_______.【分析】358000可表示为3.58×100000,100000=105,因此358000=3.58×105.【答案】3.58×105【涉及知识点】科学记数法【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成a ×10n 的形式(其中1≤a <10,n 为整数,这种计数法称为科学记数法),其方法是(1)确定a ,a 是只有一位整数的数;(2)确定n ;当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).【推荐指数】★★★★★ 12.(2010广东广州,12,3分)若分式51-x 有意义,则实数x 的取值范围是_______.13.(14.(π.用等.【推荐指数】★★★★ 15.(2010广东广州,15,3分)因式分解:3ab 2+a 2b =_______.【分析】3ab 2+a 2b =ab (3b +a ). 【答案】ab (3b +a )【涉及知识点】提公因式法因式分解【点评】本题是对基本运算能力的考查,因式分解是整式部分的重要内容,也是分式运算和二次根式运算的基础,因式分解的步骤,一提(提公因式),二套(套公式,主要是平方差公式和完全平方公式),三分组(对于不能直接提公因式和套公式的题目,我们可将多项式先分成几组后后,分组因式分解).【推荐指数】★★★16.(2010广东广州,16,3分)如图4,BD是△ABC的角平分线,∠ABD=36°,∠C=72°,则图中的等腰三角形有_____个.=72°,所以△ABD△BDC 17.【推荐指数】★★★18.(2010广东广州,18,9分)如图5,在等腰梯形ABCD中,AD∥BC.求证:∠A+∠C=180°ADB C【分析】由于AD∥BC,所以∠A+∠B=180°,要想说明∠A+∠C=180°,只需根据等腰梯形的两底角相等来说明∠B=∠C即可.19.(【涉及知识点】分式化简,一元二次方程根的判别式【点评】本题需要综合运用分式和一元二次方程来解决问题,考查学生综合运用多个知识点解决问题的能力,属于中等难度的试题,具有一定的区分度.20.(2010广东广州,20,10分)广州市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:(1)本次问卷调查取样的样本容量为_______,表中的m值为_______.(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图6所对应的扇形的圆心角的度数,并补全扇形统计图.(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?m【推荐指数】★★★★★21.(2010广东广州,21,12分)已知抛物线y=-x2+2x+2.(1)该抛物线的对称轴是,顶点坐标;(2)选取适当的数据填入下表,并在图7的直角坐标系内描点画出该抛物线的图象;(3)若该抛物线上两点A(x1,y1),B(x2,y2)的横坐标满足x1>x2>1,试比较y1与y2的大小.22.(2010广东广州,22,12分)目前世界上最高的电视塔是广州新电视塔.如图8所示,新电视塔高AB为610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D 处测得塔顶B的仰角为39°.(1)求大楼与电视塔之间的距离AC;(2)求大楼的高度CD(精确到1米)45°39°D CAE B【分析】(1)由于∠ACB =45°,∠A =90°,因此△ABC 是等腰直角三角形,所以AC =AB =610;(2)根据矩形的对边相等可知:DE =AC =610米,在Rt △BDE 中,运用直角三角形的边角23.(m 三角形知识求出CE 的长即可求出点C 的横坐标.【答案】解:(1)∵ 图像过点A (-1,6),861m -=-. ∴m -8-1=6 (2)分别过点A 、B 作x 轴的垂线,垂足分别为点D 、E ,由题意得,AD =6,OD =1,易知,AD ∥BE , ∴△CBE ∽△CAD ,∴CB BE=. 24.(【分析】(1)连接OA ,OP 与AB 的交点为F ,则△OAF 为直角三角形,且OA =1,OF =12,借助勾股定理可求得AF 的长;ABC值CDHAC+=13,∵弦AB垂直平分线段OP,∴OF=12OP=12,AF=BF.在Rt△OAF中,∵AF,∴AB=2AF(2)∠ACB是定值.理由:由(1)易知,∠AOB=120°,因为点D 为△ABC 的内心,所以,连结AD 、BD ,则∠CAB =2∠DAE ,∠CBA =2∠DBA , 因为∠DAE +∠DBA =12∠AOB =60°,所以∠CAB +∠CBA =120°,所以∠ACB =60°; (3)记△ABC 的周长为l ,取AC ,BC 与⊙D 的切点分别为G ,H ,连接DG ,DC ,DH ,则有DG =DH =DE ,DG ⊥AC ,DH ⊥BC .∴ABD ACD BCD S S S S ∆∆∆=++=1AB •DE +1BC •DH +1AC •DG =1(AB +BC +AC ) •DE =1l •DE . 2DEDE =4的切线,∴∠CG =tan30DG =DE,BH =3DE = 25.(3,012x +C 1,试的面积;若改变,请说明理由.【分析】(1)要表示出△ODE的面积,要分两种情况讨论,①如果点E在OA边上,只需求出这个三角形的底边OE长(E点横坐标)和高(D点纵坐标),代入三角形面积公式即可;②如果点E在AB边上,这时△ODE的面积可用长方形OABC的面积减去△OCD、△OAE、△BDE的面积;(2)重叠部分是一个平行四边形,由于这个平行四边形上下边上的高不变,因此决定重叠部分面积是否变化的因素就是看这个平行四边形落在OA边上的线段长度是否变化.【答案】(1)由题意得B(3,1).若直线经过点A(3,0)时,则b=32∴S=S矩-(S△OCD+S△OAE+S△DBE)=3-[12(2b-1)×1+12×(5-2b)·(52b-)+12×3(32b-)]=252b b-∴2312535222b b S b b b ⎧<≤⎪⎪=⎨⎪-<<⎪⎩(2)如图3,设O 1A 1与CB 相交于点M ,OA 与C 1B 1相交于点N ,则矩形OA 1B 1C 1与矩形OABC 的重叠部分的面积即为四边形DNEM 的面积。
2020年广州市初中毕业生学业考试数学第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A. 5⨯ D. 80.1523310⨯1.523310152.3310⨯ B. 615.23310⨯ C. 7【答案】C【解析】【分析】根据科学记数法的表示方法表示即可.【详解】15233000=71.523310⨯,故选C.【点睛】本题考查科学记数法的表示,关键在于熟练掌握科学记数法的表示方法.2.某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A. 套餐一B. 套餐二C. 套餐三D. 套餐四【答案】A【解析】【分析】通过条形统计图可以看出套餐一出现了50人,最多,即可得出答案.【详解】解:通过观察条形统计图可得:套餐一一共出现了50人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一;故选:A .【点睛】本题主要考查了条形统计图,明白条形统计图能清楚地表示出每个项目的数据,从条形统计图中得到必要的信息是解决问题的关键.3.下列运算正确的是( )=B. =C. 5630x x x ⋅=D. ()5210x x = 【答案】D【解析】【分析】根据二次根式的加法法则,二次根式的乘法法则,同底数幂的相乘,幂的乘方运算法则依次判断即可得到答案.【详解】A 不是同类二次根式,不能进行加法运算,故该选项错误;B 、6a =,故该选项错误;C 、5611x x x ⋅=,故该选项错误;D 、()5210x x =,故该选项正确,故选:D.【点睛】此题考查计算能力,正确掌握二次根式的加法法则,二次根式的乘法法则,同底数幂的相乘,幂的乘方运算法则是解题的关键.4.ABC ∆中,点,D E 分别是ABC ∆的边AB ,AC 的中点,连接DE ,若68C ∠=︒,则AED =∠( )A. 22︒B. 68︒C. 96︒D. 112︒【答案】B【解析】【分析】根据点,D E 分别是ABC ∆的边AB ,AC 的中点,得到DE 是ABC ∆的中位线,根据中位线的性质解答.【详解】如图,∵点,D E 分别是ABC ∆的边AB ,AC 的中点,∴DE 是ABC ∆的中位线,∴DE ∥BC ,∴AED =∠68C ∠=︒,故选:B.【点睛】此题考查三角形中位线的判定及性质,平行线的性质,熟记三角形的中位线的判定定理是解题的关键.5.如图所示的圆锥,下列说法正确的是( )A. 该圆锥的主视图是轴对称图形B. 该圆锥的主视图是中心对称图形C. 该圆锥的主视图既是轴对称图形,又是中心对称图形D. 该圆锥的主视图既不是轴对称图形,又不是中心对称图形【答案】A【解析】【分析】首先判断出圆锥的主视图,再根据主视图的形状判断是轴对称图形,还是中心对称图形,从而可得答案.【详解】解:圆锥的主视图是一个等腰三角形,所以该圆锥的主视图是轴对称图形,不是中心对称图形,故A 正确,该圆锥的主视图是中心对称图形,故B 错误,该圆锥的主视图既是轴对称图形,又是中心对称图形,故C 错误,该圆锥的主视图既不是轴对称图形,又不是中心对称图形,故D 错误,故选A .【点睛】本题考查的简单几何体的三视图,同时考查了轴对称图形与中心对称图形的识别,掌握以上知识是解题的关键.6.一次函数31y x =-+的图象过点()11,x y ,()121,x y +,()132,x y +,则( ) A. 123y y y <<B. 321y y y <<C. 213y y y <<D. 312y y y <<【答案】B【解析】【分析】根据一次函数的图象分析增减性即可.【详解】因为一次函数的一次项系数小于0,所以y 随x 增减而减小.故选B .【点睛】本题考查一次函数图象的增减性,关键在于分析一次项系数与零的关系.7.如图,Rt ABC ∆中,90C ∠=︒,5AB =,4cos 5A =,以点B 为圆心,r 为半径作B ,当3r =时,B 与AC 的位置关系是( )A. 相离B. 相切C. 相交D. 无法确定 【答案】B【解析】【分析】 根据Rt ABC ∆中,90C ∠=︒, 4cos 5A =,求出AC 的值,再根据勾股定理求出BC 的值,比较BC 与半径r 的大小,即可得出B 与AC 的位置关系.【详解】解:∵Rt ABC ∆中,90C ∠=︒, 4cos 5A =, ∴cosA=45AC AB = ∵5AB =,∴AC=4∴BC=223BC AC -=当3r =时,B 与AC 的位置关系是:相切故选:B【点睛】本题考查了由三角函数解直角三角形,勾股定理以及直线和圆的位置关系等知识,利用勾股定理解求出BC 是解题的关键.8.往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm =,则水的最大深度为( )A. 8cmB. 10cmC. 16cmD. 20cm【答案】C【解析】【分析】 过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA ,根据垂径定理即可求得AD 的长,又由⊙O 的直径为52cm ,求得OA 的长,然后根据勾股定理,即可求得OD 的长,进而求得油的最大深度DE 的长.【详解】解:过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA , 由垂径定理得:11482422AD AB cm ==⨯=, ∵⊙O 的直径为52cm ,∴26OA OE cm ==,在Rt AOD ∆中,由勾股定理得:2222=2624=10O m O A D A D c -=-,∴261016DE OE OD cm =-=-=,∴油的最大深度为16cm ,故选:C .【点睛】本题主要考查了垂径定理的知识.此题难度不大,解题的关键是注意辅助线的作法,构造直角三角形,利用勾股定理解决.9.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A. 0个B. 1个C. 2个D. 1个或2个【答案】D【解析】【分析】根据直线y x a =+不经过第二象限,得到0a ≤,再分两种情况判断方程的解的情况.【详解】∵直线y x a =+不经过第二象限,∴0a ≤,∵方程2210ax x ++=,当a=0时,方程为一元一次方程,故有一个解,当a<0时,方程为一元二次方程,∵∆=2444b ac a -=-,∴4-4a>0,∴方程有两个不相等的实数根,故选:D.【点睛】此题考查一次函数的性质:利用函数图象经过的象限判断字母的符号,方程的解的情况,注意易错点是a 的取值范围,再分类讨论.10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A. 485B. 325C. 245D. 125【答案】C【解析】【分析】根据勾股定理求出AC=BD=10,由矩形的性质得出AO=5,证明AOE ADC 得到OE 的长,再证明DEF DBA 可得到EF 的长,从而可得到结论.【详解】∵四边形ABCD 是矩形,AC BD ∴=,90ABC BCD ADC BAD ∠=∠=∠=∠=︒6AB =,8BC =8AD BC ∴==,6DC AB ==2210AC AB BC ∴+=,10BD =,152OA AC ∴==, OE AC ⊥,90AOE ∴∠=︒AOE ADC ∴∠=∠,又CAD DAC ∠=∠,AOEADC ∴, AO AE EO AD AC CD∴==, 58106AE EO ∴==, 254AE ∴=,154OE =, 74DE ∴=, 同理可证,DEF DBA ,DE EF BD BA∴=,74106FF ∴=, 2120EF ∴=, 1521244205OE EF ∴+=+=, 故选:C .【点睛】本题主要考查了矩形的性质和相似三角形的判定与性质,熟练掌握判定与性质是解答此题的关键.第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知100A ∠=︒,则A ∠的补角等于________︒.【答案】80【解析】【分析】根据补角的概念计算即可.【详解】∠A 的补角=180°-100°=80°,故答案为:80.【点睛】本题考查补角的概念,关键在于牢记基础知识.12.=__________.【解析】【分析】先化简二次根式,再进行合并即可求出答案.==,【点睛】本题考查了二次根式的加减,关键是二次根式的化简,再进行合并.13.方程3122x x x =++的解是_______. 【答案】32 【解析】【分析】根据分式方程的解法步骤解出即可. 【详解】3122x x x =++ 左右同乘2(x +1)得: 2x =3解得x =32. 经检验x =32是方程的跟. 故答案为: 32. 【点睛】本题考查解分式方程,关键在于熟练掌握分式方程的解法步骤.14.如图,点A 的坐标为()1,3,点B 在x 轴上,把OAB ∆沿x 轴向右平移到ECD ∆,若四边形ABDC 的面积为9,则点C 的坐标为_______.【答案】(4,3)【解析】【分析】过点A 作AH ⊥x 轴于点H ,得到AH=3,根据平移的性质证明四边形ABDC 是平行四边形,得到AC=BD ,根据平行四边形的面积是9得到9BD AH ⋅=,求出BD 即可得到答案.【详解】过点A 作AH ⊥x 轴于点H ,∵A (1,3),∴AH=3,由平移得AB ∥CD ,AB=CD ,∴四边形ABDC 是平行四边形,∴AC=BD ,∵9BD AH ⋅=,∴BD=3,∴AC=3,∴C(4,3)故答案为:(4,3).【点睛】此题考查平移的性质,平行四边形的判定及性质,直角坐标系中点到坐标轴的距离与点坐标的关系.15.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB ',AC '分别交对角线BD 于点,E F ,若4AE =,则EF ED ⋅的值为_______.【答案】16【解析】【分析】根据正方形及旋转的性质可以证明AEF DEA ~,利用相似的性质即可得出答案.【详解】解:在正方形ABCD 中,BAC=ADB 45∠∠=︒,∵ABC ∆绕点A 逆时针旋转到AB C ''∆,∴B AC =BAC 45''∠∠=︒,∴EAF=ADE 45∠∠=︒,∵AEF=AED ∠∠,∴AEF DEA ~, ∴AE EF DE AE=, ∴22EF ED AE 416•===.故答案为:16.【点睛】本题考查了正方形的性质,旋转的性质,相似三角形的判定及性质,掌握正方形的性质,旋转的性质,相似三角形的判定及性质是解题的关键.16.对某条线段的长度进行了3次测量,得到3个结果(单位:mm )9.9,10.1,10.0,若用a 作为这条线段长度的近以值,当a =______mn 时,222(9.9)(10.1)(10.0)a a a -+-+-最小.对另一条线段的长度进行了n 次测量,得到n 个结果(单位:mm )12,,,n x x x ,若用x 作为这条线段长度的近似值,当x =_____mm 时,()()()22212n x x x x x x -+-++-最小.【答案】 (1). 10.0; (2). 12nx x x n+++.【解析】 【分析】(1)把222(9.9)(10.1)(10.0)a a a -+-+-整理得:2360.0300.02a a -+,设2360.0300.02y a a =-+,利用二次函数性质求出当10.0a =时有最小值; (2)把()()()22212n x x x x x x -+-++-整理得:()()222212122n n nx x x x x x x x -++++++, 设()()222212122n n y nx x x x x x x x =-++++++,利用二次函数的性质即可求出当y 取最小值时x 的值.【详解】解:(1)整理222(9.9)(10.1)(10.0)a a a -+-+-得:2360.0300.02a a -+, 设2360.0300.02y a a =-+, 由二次函数的性质可知:当60.010.023a -=-=⨯时,函数有最小值, 即:当10.0a =时,222(9.9)(10.1)(10.0)a a a -+-+-的值最小, 故答案为:10.0;(2)整理()()()22212n x x x x x x -+-++-得:()()222212122n n nx x x x x x x x -++++++,设()()222212122n n y nx x x x x x x x =-++++++,由二次函数性质可知:当()121222n nx x x x x x x nn-++++++=-=⨯时,()()222212122n n y nx x x x x x x x =-++++++有最小值,即:当12n x x x x n+++=时,()()()22212n x x x x x x -+-++-的值最小,故答案为:12nx x x n+++.【点睛】本题考查了二次函数模型的应用,关键是设()()()22212n y x x x x x x =-+-++-,整理成二次函数,利用二次函数的性质—何时取最小值来解决即可.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.解不等式组:212541x x x x -+⎧⎨+<-⎩. 【答案】x ≥3 【解析】 【分析】根据解不等式组的解法步骤解出即可. 【详解】212541x x x x -+⎧⎨+<-⎩①②由①可得x ≥3,由②可得x>2,∴不等式的解集为:x ≥3.【点睛】本题考查解不等式组,关键在于熟练掌握解法步骤.18.如图,AB AD =,25BAC DAC ∠=∠=︒,80D ∠=︒.求BCA ∠的度数.【答案】75°. 【解析】 【分析】由三角形的内角和定理求出∠DCA=75°,再证明△ABC ≌△ADC ,即可得到答案. 【详解】∵25DAC ∠=︒,80D ∠=︒, ∴∠DCA=75°, ∵AB AD =,25BAC DAC ∠=∠=︒,AC=AC , ∴△ABC ≌△ADC , ∴∠BCA=∠DCA=75°. 【点睛】此题考查三角形的内角和定理,全等三角形的判定及性质,这是一道比较基础的三角形题.19.已知反比例函数k y x =的图象分别位于第二、第四象限,化简:2216(1)444k k k k k -+---.【答案】5 【解析】 【分析】由反比例函数图象的性质可得k <0,化简分式时注意去绝对值. 【详解】由题意得k <0.()()22222441616(1)4=214214444k k k k k k k k k k k k k k k +---++-+++-=+-+----()24141415k k k k k k ++-=++-=+-+==【点睛】本题考查反比例函数图象的性质和分式的化简,关键在于去绝对值时符号的问题.20.为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下: 甲社区 67 68 73 75 76 78 80 82 83 84 85 85 90 92 95 乙社区 666972747578808185858889919698根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.【答案】(1)中位数是82,众数是85;(2)13. 【解析】 【分析】(1)根据中位数及众数的定义解答; (2)列树状图解答即可.【详解】(1)甲社区老人的15个年龄居中的数为:82,故中位数为82, 出现次数最多的年龄是85,故众数是85;(2)这4名老人的年龄分别为67,68,66,69岁,分别表示为A 、B 、C 、D , 列树状图如下:共有12种等可能的情况,其中2名老人恰好来自同一个社区的有4种,分别为AB ,BA ,CD ,DC , ∴P (这2名老人恰好来自同一个社区)=41123=. 【点睛】此题考查统计知识,会求一组数据的中位数、众数,能列树状图求事件的概率,熟练掌握解题的方法是解题的关键.21.如图,平面直角坐标系xOy 中,OABC 的边OC 在x 轴上,对角线AC ,OB 交于点M ,函数()0ky x x=>的图象经过点()3,4A 和点M .(1)求k 的值和点M 的坐标; (2)求OABC 的周长.【答案】(1)k=12,M (6,2);(2)28 【解析】 【分析】(1)将点A (3,4)代入ky x=中求出k 的值,作AD ⊥x 轴于点D ,ME ⊥x 轴于点E ,证明△MEC ∽△ADC ,得到12ME MC AD CA ==,求出ME=2,代入12y x=即可求出点M 的坐标; (2)根据勾股定理求出OA=5,根据点A 、M 的坐标求出DE ,即可得到OC 的长度,由此求出答案. 【详解】(1)将点A (3,4)代入ky x=中,得k=3412⨯=, ∵四边形OABC 是平行四边形, ∴MA=MC ,作AD ⊥x 轴于点D ,ME ⊥x 轴于点E , ∴ME ∥AD , ∴△MEC ∽△ADC , ∴12ME MC AD CA ==, ∴ME=2,将y=2代入12yx=中,得x=6,∴点M的坐标为(6,2);(2)∵A(3,4),∴OD=3,AD=4,∴225OA OD AD=+=,∵A(3,4),M(6,2),∴DE=6-3=3,∴CD=2DE=6,∴OC=3+6=9,∴OABC的周长=2(OA+OC)=28.【点睛】此题考查平行四边形的性质,待定系数法求反比例函数的解析式,求函数图象上点的坐标,勾股定理,相似三角形的判定及性质.22.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.【答案】(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.【解析】【分析】(1)根据今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%,列出式子即可求出答案;(2)根据“某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场”列出方程,求解即可.【详解】解:(1)依题意得:()501-50%=25⨯(万元)(2)设明年改装的无人驾驶出租车是x 辆,则今年改装的无人驾驶出租车是(260-x )辆,依题意得:()50260x +25x=9000⨯-解得:x=160答:(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆. 【点睛】本题考查了一元一次方程的实际应用问题,解题的关键是找到数量关系,列出方程. 23.如图,ABD ∆中,ABD ADB ∠=∠.(1)作点A 关于BD 的对称点C ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BC ,DC ,连接AC ,交BD 于点O . ①求证:四边形ABCD 是菱形;②取BC 的中点E ,连接OE ,若132OE =,10BD =,求点E 到AD 的距离. 【答案】(1)见解析;(2)①见解析:②12013.【解析】 【分析】(1)过点A 做BD 的垂线交BD 于点M ,在AM 的延长线上截取AM CM =,即可求出所作的点A 关于BD 的对称点C ;(2)①利用ABD ADB ∠=∠,AC BD ⊥得出BO DO =,利用AO CO =,以及AC BD ⊥得出四边形ABCD 是菱形;②利用OE 为中位线求出AB 的长度,利用菱形对角线垂直平分得出OB 的长度,进而利用Rt AOB ∆求出AO 的长度,得出对角线AC 的长度,然后利用面积法求出点E 到AD 的距离即可.【详解】(1)解:如图:点C 即为所求作的点;(2)①证明:∵ABD ADB ∠=∠,AC BD ⊥, 又∵AO AO =, ∴ABO ADO ∆≅∆; ∴BO DO =,又∵AO CO =,AC BD ⊥ ∴四边形ABCD 是菱形;②解:∵四边形ABCD 是菱形, ∴AO CO =,BO DO =,AC BD ⊥ 又∵10BD =, ∴=5BO , ∵E 为BC 的中点, ∴CE BE =, ∵AO CO =,∴OE 为ABC ∆的中位线, ∵132OE =, ∴13AB =, ∴菱形的边长为13, ∵AC BD ⊥,=5BO在Rt AOB ∆中,由勾股定理得:222AO AB BO =-,即:22135=12AO -, ∴12224AC =⨯=,设点E 到AD 的距离为h ,利用面积相等得:12410132h ⨯⨯=, 解得:12013h =,即E 到AD 的距离为12013.【点睛】本题考查了对称点的作法、菱形的判定以及菱形的面积公式的灵活应用,牢记菱形的判定定理,以及对角线乘积的一半等于菱形的面积是解决本题的关键.24.如图,O 为等边ABC ∆的外接圆,半径为2,点D 在劣弧AB 上运动(不与点,A B 重合),连接DA ,DB ,DC .(1)求证:DC 是ADB ∠的平分线;(2)四边形ADBC 的面积S 是线段DC 的长x 的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点,M N 分别在线段CA ,CB 上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置,DMN ∆的周长有最小值t ,随着点D 的运动,t 的值会发生变化,求所有t 值中的最大值.【答案】(1)详见解析;(2)是, 23(234)4S x x =<≤;(3)3【解析】 【分析】(1)根据等弧对等角的性质证明即可;(2)延长DA 到E,让AE=DB,证明△EAC ≌△DBC,即可表示出S 的面积;(3)作点D 关于直线BC 、AC 的对称点D 1、D 2,当D 1、M 、N 、D 共线时△DMN 取最小值,可得t =D 1D 2,有对称性推出在等腰△D 1CD 2中,t =3x ,D 与O 、C 共线时t 取最大值即可算出. 【详解】(1)∵△ABC 为等边三角形,BC=AC , ∴AC BC =,都为13圆, ∴∠AOC=∠BOC=120°, ∴∠ADC=∠BDC=60°, ∴DC 是∠ADB 的角平分线. (2)是.如图,延长DA 至点E ,使得AE=DB . 连接EC ,则∠EAC=180°-∠DAC =∠DBC . ∵AE =DB ,∠EAC =∠DBC,AC =BC , ∴△EAC ≌△DBC(SAS), ∴∠E=∠CDB=∠ADC=60°, 故△EDC 是等边三角形,∵DC=x ,∴根据等边三角形的特殊性可知DC 边上的高为3x ∴2133(234)2DBCADCEACADCCDES SSSSSx x x x =+=+==⋅⋅=<≤.(3)依次作点D 关于直线BC 、AC 的对称点D 1、D 2,根据对称性 C △DMN =DM+MN+ND=D 1M+MN+ND 2.∴D 1、M 、N 、D 共线时△DMN 取最小值t ,此时t =D 1D 2, 由对称有D 1C=DC=D 2C=x ,∠D 1CB=∠DCB ,∠D 2CA=∠DCA, ∴∠D 1CD 2=∠D 1CB+∠BCA+∠D 2CA=∠DCB+60°+∠DCA=120°.∴∠CD 1D 2=∠CD 2D 1=60°,在等腰△D 1CD 2中,作CH ⊥D 1D 2,则在Rt △D 1CH 中,根据30°特殊直角三角形的比例可得D 1H=133CD x =, 同理D 2H=23322CD x = ∴t =D 1D 2=33DC x =.∴x 取最大值时,t 取最大值.即D 与O 、C 共线时t 取最大值,x =4. 所有t 值中的最大值为43.【点睛】本题考查圆与正多边形的综合以及动点问题,关键在于结合题意作出合理的辅助线转移已知量. 25.平面直角坐标系xOy 中,抛物线()2:012G y ax bx c a =++<<过点()1,5A c a -,()1,3B x ,()2,3C x ,顶点D 不在第一象限,线段BC 上有一点E ,设OBE △的面积为1S ,OCE △的面积为2S ,1232S S =+. (1)用含a 的式子表示b ; (2)求点E 的坐标;(3)若直线DE 与抛物线G 的另一个交点F 的横坐标为63a +,求2y ax bx c =++在16x <<时的取值范围(用含a 的式子表示).【答案】(1)6b a =-;(2)7,32E ⎛⎫⎪⎝⎭或5,32E ⎛⎫ ⎪⎝⎭;(3)当16x <<时,有0<y <9.a 【解析】【分析】(1)把()1,5A c a -代入:()2:012G y ax bx c a =++<<,即可得到答案; (2)先求解抛物线的对称轴,记对称轴与BC 的交点为H ,确定顶点的位置,分情况利用1232S S =+,求解OEH S ,从而可得答案;(3)分情况讨论,先求解DE 的解析式,联立一次函数与二次函数的解析式,再利用一元二次方程根与系数的关系求解,c 结合二次函数的性质可得答案.【详解】解:(1)把()1,5A c a -代入:()2:012G y ax bx c a =++<<, 5,c a a b c ∴-=++6,b a ∴=-(2)6,b a =-∴ 抛物线:()26012,y ax ax c a =-+<< ∴ 抛物线的对称轴为:63,2a x a-=-= 顶点D 不在第一象限, ∴顶点D 在第四象限,如图,设1x <2,x 记对称轴与BC交点为H ,则,BH CH = ,OBH OCH S S ∴=1232S S =+, 3,2OBH OHE OCH OHE SS S S ∴+=-+ 3,4OHE S ∴= 133,24EH ∴⨯= 1,2EH ∴= 7,3,2E ⎛⎫∴ ⎪⎝⎭当1x >2,x 同理可得:5,3.2E ⎛⎫ ⎪⎝⎭综上:7,32E ⎛⎫⎪⎝⎭或5,3.2E ⎛⎫ ⎪⎝⎭ (3)()22639,y ax ax c a x c a =-+=-+-()3,9,D c a ∴-当7,32E ⎛⎫ ⎪⎝⎭,设DE 为:,y kx b =+ 73239k b k b c a⎧+=⎪∴⎨⎪+=-⎩解得:621876318k c a b c a =-+⎧⎨=--⎩DE ∴为()621876318,y c a x c a =-++--()26621876318y ax ax c y c a x c a ⎧=-+⎪∴⎨=-++--⎪⎩消去y 得:()26224663180,ax c a x c a +-+--++= 由根与系数的关系得:6622433,c a a a-+-++=- 解得:9,c a = ()22693,y ax ax a a x ∴=-+=-当1x =时,4,y a =当6x =时,9,y a =当3x =时,0y =,当16x <<时,有0<y <9.a 当5,32E ⎛⎫ ⎪⎝⎭,()3,9,D c a - 同理可得DE 为:()218654518,y c a x c a =---++()22186545186y c a x c a y ax ax c ⎧=---++∴⎨=-+⎩同理消去y 得:()21226645180,ax a c x c a +-++--= 612266,a c a a-+∴+=- 解得:96,c a =+()2269636,y ax ac a a x ∴=-++=-+此时,顶点在第一象限,舍去,综上:当16x <<时,有0<y <9.a【点睛】本题考查的是利用待定系数法求解一次函数的解析式,二次函数的解析式,二次函数图像上点的坐标特点,二次函数的性质,同时考查了二次函数与一元二次方程的关系,一元二次方程根与系数的关系,掌握以上知识是解题的关键。
2020年广东省初中学业水平考试数学(满分为120分,考试用时为90分钟)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.9的相反数是()A.﹣9 B.9 C.D.﹣2.一组数据2,4,3,5,2的中位数是()A.5 B.3.5 C.3 D.2.53.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)4.若一个多边形的内角和是540°,则该多边形的边数为()A.4 B.5 C.6 D.75.若式子在实数范围内有意义,则x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x≠﹣26.已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8 B.2C.16 D.47.把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=(x﹣1)2﹣38.不等式组的解集为()A.无解B.x≤1 C.x≥﹣1 D.﹣1≤x≤19.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1 B.C.D.210.如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题7小题,每小题4分,共28分)11.分解因式:xy﹣x=.12.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=.13.若+|b+1|=0,则(a+b)2020=.14.已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为.15.如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)24 72 18 x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案与解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.9的相反数是()A.﹣9 B.9 C.D.﹣【知识考点】相反数.【思路分析】根据相反数的定义即可求解.【解题过程】解:9的相反数是﹣9,故选:A.【总结归纳】此题主要考查相反数的定义,比较简单.2.一组数据2,4,3,5,2的中位数是()A.5 B.3.5 C.3 D.2.5【知识考点】中位数.【思路分析】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.【解题过程】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.【总结归纳】本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解题过程】解:点(3,2)关于x轴对称的点的坐标为(3,﹣2).故选:D.【总结归纳】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.若一个多边形的内角和是540°,则该多边形的边数为()A.4 B.5 C.6 D.7【知识考点】多边形内角与外角.【思路分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解题过程】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.【总结归纳】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.若式子在实数范围内有意义,则x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x≠﹣2【知识考点】二次根式有意义的条件.【思路分析】根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.【解题过程】解:∵在实数范围内有意义,∴2x﹣4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.【总结归纳】此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8 B.2C.16 D.4【知识考点】三角形中位线定理.【思路分析】根据中位线定理可得DF=AC,DE=BC,EF=AC,继而结合△ABC的周长为16,可得出△DEF的周长.【解题过程】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=AC,DE=BC,EF=AC,故△DEF的周长=DE+DF+EF=(BC+AB+AC)=16=8.故选:A.【总结归纳】此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=(x﹣1)2﹣3【知识考点】二次函数图象与几何变换.【思路分析】先求出y=(x﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【解题过程】解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.【总结归纳】本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.不等式组的解集为()A.无解B.x≤1 C.x≥﹣1 D.﹣1≤x≤1【知识考点】解一元一次不等式组.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解题过程】解:解不等式2﹣3x≥﹣1,得:x≤1,解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,则不等式组的解集为﹣1≤x≤1,故选:D.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1 B.C.D.2【知识考点】正方形的性质;翻折变换(折叠问题).【思路分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x即可得出答案.【解题过程】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.【总结归纳】本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【知识考点】二次函数图象与系数的关系;抛物线与x轴的交点.【思路分析】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解题过程】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.【总结归纳】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.二、填空题(本大题7小题,每小题4分,共28分)11.分解因式:xy﹣x=x(y﹣1).【知识考点】因式分解﹣提公因式法.【思路分析】直接提取公因式x,进而分解因式得出答案.【解题过程】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).【总结归纳】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【知识考点】34:同类项.【思路分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.【解题过程】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.【总结归纳】本题考查同类项的定义,正确根据同类项的定义得到m,n的值是解题的关键.13.若+|b+1|=0,则(a+b)2020=1.【知识考点】16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【思路分析】根据非负数的意义,求出a、b的值,代入计算即可.【解题过程】解:∵+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.【总结归纳】本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.【知识考点】33:代数式求值.【思路分析】由x=5﹣y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)﹣4xy计算可得.【解题过程】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.【总结归纳】本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含式子x+y、xy及整体代入思想的运用.15.如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为45°.【知识考点】KG:线段垂直平分线的性质;L8:菱形的性质;N2:作图—基本作图.【思路分析】根据∠EBD=∠ABD﹣∠ABE,求出∠ABD,∠ABE即可解决问题.【解题过程】解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=(180°﹣∠A)=75°,由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,故答案为45°.【总结归纳】本题考查作图﹣基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.【知识考点】M5:圆周角定理;MP:圆锥的计算.【思路分析】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.【解题过程】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=,解得,r=,故答案为:.【总结归纳】本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2﹣2.【知识考点】KP:直角三角形斜边上的中线;M8:点与圆的位置关系.【思路分析】如图,连接BE,BD.求出BE,BD,根据DE≥BD﹣BE求解即可.【解题过程】解:如图,连接BE,BD.由题意BD==2,∵∠MBN=90°,MN=4,EM=NE,∴BE=MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2﹣2.故答案为2﹣2.【总结归纳】本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.【知识考点】4J:整式的混合运算—化简求值.【思路分析】根据整式的混合运算过程,先化简,再代入值求解即可.【解题过程】解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=,y=时,原式=2××=2.【总结归纳】本题考查了整式的混合运算﹣化简求值,解决本题的关键是先化简,再代入值求解.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)24 72 18 x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【知识考点】用样本估计总体.【思路分析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.【解题过程】解:(1)x=120﹣(24+72+18)=6;(2)1800×=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【总结归纳】本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【知识考点】KD:全等三角形的判定与性质;KI:等腰三角形的判定.【思路分析】先证△BDF≌△CEF(AAS),得出BF=CF,DF=EF,则BE=CD,再证△ABE≌△ACD(AAS),得出AB=AC即可.【解题过程】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.【总结归纳】本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.【知识考点】二元一次方程组的解;解二元一次方程组;一元二次方程的解;根与系数的关系.【思路分析】(1)关于x,y的方程组与的解相同.实际就是方程组的解,可求出方程组的解,进而确定a、b的值;(2)将a、b的值代入关于x的方程x2+ax+b=0,求出方程的解,再根据方程的两个解与2为边长,判断三角形的形状.【解题过程】解:(1)由题意得,关于x,y的方程组的相同解,就是程组的解,解得,,代入原方程组得,a=﹣4,b=12;(2)当a=﹣4,b=12时,关于x的方程x2+ax+b=0就变为x2﹣4x+12=0,解得,x1=x2=2,又∵(2)2+(2)2=(2)2,∴以2、2、2为边的三角形是等腰直角三角形.【总结归纳】本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.【知识考点】直角梯形;圆周角定理;切线的判定与性质;解直角三角形.【思路分析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2,则OB=,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.【解题过程】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF===2,∴AB=DF=2,∴OB=,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH==.【总结归纳】本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.【知识考点】B7:分式方程的应用;C9:一元一次不等式的应用.【思路分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.【解题过程】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.【总结归纳】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=2;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.【知识考点】GB:反比例函数综合题.【思路分析】(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD,即可求解;(3)确定直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),即可求解.【解题过程】解:(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2,故答案为2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=×8﹣×2=3;(3)设点D(m,),则点B(4m,),∵点G与点O关于点C对称,故点G(8m,0),则点E(4m,),设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得,解得,故直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,则FG∥BD,故四边形BDFG为平行四边形.【总结归纳】本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.【知识考点】HF:二次函数综合题.【思路分析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.【解题过程】解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△BAD∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).【总结归纳】本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。
2020年广州市初中毕业生学业考试数 学(满分:120分 考试时间:90分钟).一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个符合题目要求).1..广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15 233 000人次,将15 233 000用科学记数法表示应为( )A .5152.3310⨯ B .615.23310⨯ C .71.523310⨯ D .80.1523310⨯ {答案}C{解析}本题考查了科学记数法,将一个比较大的数表示为10n a ⨯的形式,其中“a “部分的取值范围是” 1||10a ≤<”,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.因此本题选C ..2..某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图1的条形统计图,根据图中的信息,学生最喜欢的套餐种类是( )A .套餐一 B .套餐二 C .套餐三 D .套餐四{答案}A{解析}本题考查了众数,一组数据中出现次数最多的数据就是这一组数据的众数.由图1可得,选“套餐一”的人数最多,达到了调查人数的一半,因此本题选A ..3..下列运算正确的是( )A=B.=C .5630x x x ⋅=D .()5210x x ={答案}D{解析}本题考查了二次根式的运算和整式的乘法, A 选项考查了二次根式的加法,只有同类二次根不是同类二次根式,不能合并;B选项考查了二次根式的乘法,正确的计算过程应是:2236a =⨯⨯=;选项C 考查了同底数幂的乘法,底数不变,指数相加,正确的结果应是11x ;D 选项考查了幂的乘方,底数不变,指数相乘,所以计算结果正确.因此本题选D ..4..△ABC 中,点D ,E 分别是△ABC 的边AB ,AC 的中点,连接DE ,若∠C=68゜,则∠AED=( )A .22゜ B .68゜ C .96゜ D .112゜ {答案}B{解析}本题考查了三角形中位线定理,由题目条件可知,DE 是△ABC 的中位线,三角形的中位线平行图1套餐种类于第三边,所以DE//BC ,所以∠AED=∠C=68゜,因此本题选B ..5..如图2所示的圆锥,下列说法正确的是( )A .该圆锥的主视图是轴对称图形;B .该圆锥的主视图是中心对称图形;C .该圆锥的主视图既是轴对称图形,又是中心对称图形;D .该圆锥的主视图既不是轴对称图形,又不是中心对称图形 {答案}A{解析}本题考查了立体图形的三视图,圆锥的主视图是从正面看到的图形,所以它的主视图是等腰三角形,等腰三角形是轴对称图形,但不是中心对称图形,因此本题选A ..6..一次函数31y x =-+的图象过点(1x ,1y ),(11x +,2y )(12x +,3y ),则( )A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<{答案}B{解析}本题考一次函数的性质,因为30k =-<,所以y 随x 的增大而减小,即x 越大,对应的y 值越小.因为11212x x x <+<+,所以对应的函数值大小为:321y y y <<,因此本题选B ..7..如图3,Rt △ABC 中,∠C=90゜,AB=5,cosA=45,以点B 为圆心,r 为半径作⊙B ,当r=3时,⊙B 与AC 的位置关系是( )A .相离B .相切C .相交D .无法确定{答案}B{解析}本题考查了直线与圆的位置关系,当圆心到直线的距离r>d 时,直线与圆相交;当r=d 时,直线与圆相切;当r<d 时,直线与圆相离.根据题目条件cosA=AC AB =45,可得AC=4,再根据勾股定理可得BC=3,即圆心B 到直线AC 的距离BC=3=r ,所以⊙B 与AC 相切. 因此本题选B ..8..往直径为52cm 的圆柱形容器内装入一些水以后,截面如图4所示,若水面宽AB=48cm ,则水的最大深度为( )图2C图3A .8cmB .10cmC .16cmD .20cm{答案}C{解析}本题考查了垂径定理,解答过程如下:过点O 作OC ⊥AB 于D ,交⊙O 于点C ,连接OA .由题意,OA=OC =26cm ,AD=12AB=24cm ,再由勾股定理可得:OC=10cm ,所以水深CD=OC-OD=26-10=16cm.因此本题选C ..9..直线y x a =+不经过第二象限,则关于x 的方程2ax +( )A .0个 B .1个 C .2个 2个 {答案}D{解析}不经过第二象限”可得0a ≤.当0a =时,原方程即为210x +=,此时实数解只有1个;当0a <时,此一元二次方程的根的判别式24440b ac a ∆=-=->,此时方程有2个不相等的实数根.因此关于x 的方程2210ax x ++=实数解的个数为1个或2个.因此本题选D .本题容易漏掉0a =的情况..10..如图5,矩形ABCD 的对角线AC 、BD 交于点O ,AB=6,BC=8,过点O 作OE ⊥AC ,交AD 于点E ,过点E 作EF ⊥BD ,垂足为F ,则OE+EF 的值为( )图5A .485B .325C .245D .125{答案}C{解析}本题考查了矩形的性质,由勾股定理可得AC=10,再由矩形的对角线相等且互相平分的性质可得,OA=OD=5. △ABD 的面积为24,OA 为△ABD 的中线,由中线等分面积可得,△AOD 的面积为12.再由等面积法即可得OE+EF 的值.过程如下: ∵AOE EOD AOD S S S ∴111222OA OE OD EF 即11551222OE EF∴OE+EF=245图4DBA图4因此本题选C .{题型:填空题}二、填空题(本题共6个小题,每小题3分,共18分.只要求填写最后结果).11..已知∠A=100゜,则∠A 的补角等于 ゜.{答案}80{解析}本题考查了补角的定义,如果两个角的和等于180゜,则这两个角互为补角,因此本题答案是80..12..= .{答案{解析}=..13..方程3122x x x的解是 .{答案}32x{解析}本题考查了分式方程的解法,过程如下: 解:3121x x x两边同乘21x ,得23x 32x检验:当32x时,21x ≠0 ∴ 原分式方程的解为32x,因此本题答案是32x ..14..如图6,点A 的坐标为(1,3),点B 在x 轴上,把△OAB 沿x 轴向右平移到△ECD ,若四边形ABDC 的面积为9,则点C 的坐标为 .{答案}(4,3){解析}本题考查了图形平移的坐标特点、平行四边形的性质,由平移的性质可得,四边形ABDC 为平行四边形,由A 的坐标可得,□ABDC 的高为3,因为□ABDC 的面积为9,所以底BD=3,由此可得△OAB 向右平移了3个单位长度,所以A (1,3)向右平移3个单位长度得到C 为(4,3),因此本题答案是(4,3).图6.15..如图7,正方形ABCD 中,△ABC 绕点A 逆时针旋转到△AB ′C ′,AB ′,AC ′分别交对角线BD 于点E ,F ,若AE=4,则EF •ED 的值为 .{答案}16{解析}本题考查了正方形的性质,旋转的性质,相似三角形的判定,相似三角形的性质。
广东省广州市2020年中考数学试卷(解析版)一、选择题.(2020广州)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.如图所示的几何体左视图是()A.B.C.D.【分析】根据几何体的左视图的定义判断即可.【解答】解:如图所示的几何体左视图是A,故选A.【点评】本题考查了由几何体来判断三视图,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.3.据统计,2020年广州地铁日均客运量均为6 590 000人次,将6 590 000用科学记数法表示为()A.6.59×104B.659×104C.65.9×105D.6.59×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6 590 000用科学记数法表示为:6.59×106.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.【分析】最后一个数字可能是0~9中任一个,总共有十种情况,其中开锁只有一种情况,利用概率公式进行计算即可.【解答】解:∵共有10个数字,∴一共有10种等可能的选择,∵一次能打开密码的只有1种情况,∴一次能打开该密码的概率为.故选A.【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.5.下列计算正确的是()A.B.xy2÷C.2D.(xy3)2=x2y6【分析】分别利用二次根式加减运算法则以及分式除法运算法则和积的乘方运算法则化简判断即可.【解答】解:A、无法化简,故此选项错误;B、xy2÷=2xy3,故此选项错误;C、2+3,无法计算,故此选项错误;D、(xy3)2=x2y6,正确.故选:D.【点评】此题主要考查了二次根式加减运算以及分式除法运算和积的乘方运算,正确掌握相关运算法则是解题关键.6.一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320t B.v=C.v=20t D.v=【分析】根据路程=速度×时间,利用路程相等列出方程即可解决问题.【解答】解:由题意vt=80×4,则v=.故选B.【点评】本题考查实际问题的反比例函数、路程、速度、时间之间的关系,解题的关键是构建方程解决问题,属于中考常考题型.7.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD=()A.3 B.4 C.4.8 D.5【分析】直接利用勾股定理的逆定理得出△ABC是直角三角形,进而得出线段DE是△ABC 的中位线,再利用勾股定理得出AD,再利用线段垂直平分线的性质得出DC的长.【解答】解:∵AB=10,AC=8,BC=6,∴BC2+AC2=AB2,∴△ABC是直角三角形,∵DE是AC的垂直平分线,∴AE=EC=4,DE∥BC,且线段DE是△ABC的中位线,∴DE=3,∴AD=DC==5.故选:D.【点评】此题主要考查了勾股定理以及其逆定理和三角形中位线的性质,正确得出AD的长是解题关键.8.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是()A.ab>0 B.a﹣b>0 C.a2+b>0 D.a+b>0【分析】首先判断a、b的符号,再一一判断即可解决问题.【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴ab<O,故A错误,a﹣b<0,故B错误,a2+b>0,故C正确,a+b不一定大于0,故D错误.故选C.【点评】本题考查一次函数与不等式,解题的关键是学会根据函数图象的位置,确定a、b 的符号,属于中考常考题型.9.对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7)D.图象与x轴有两个交点【分析】先用配方法把函数化为顶点式的形式,再根据其解析式即可求解.【解答】解:∵二次函数y=﹣+x﹣4可化为y=﹣(x﹣2)2﹣3,又∵a=﹣<0∴当x=2时,二次函数y=﹣x2+x﹣4的最大值为﹣3.故选B.【点评】本题考查了二次函数的性质,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.10.定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a 的值为()A.0 B.1 C.2 D.与m有关【分析】由根与系数的关系可找出a+b=1,ab=m,根据新运算,找出b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a),将其中的1替换成a+b,即可得出结论.【解答】解:∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1,ab=m.∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.故选A.【点评】本题考查了根与系数的关系,解题的关键是找出a+b=1,ab=m.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之积与两根之和是关键.二.填空题.(本大题共六小题,每小题3分,满分18分.)11.分解因式:2a2+ab=a(2a+b).【分析】直接把公因式a提出来即可.【解答】解:2a2+ab=a(2a+b).故答案为:a(2a+b).【点评】本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.12.代数式有意义时,实数x的取值范围是x≤9.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,9﹣x≥0,解得,x≤9,故答案为:x≤9.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.13.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB 的方向平移7cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为13cm.【分析】直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【解答】解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故答案为:13.【点评】此题主要考查了平移的性质,根据题意得出BE的长是解题关键.14.分式方程的解是x=﹣1.【分析】根据解分式方程的方法可以求得分式方程的解,记住最后要进行检验,本题得以解决.【解答】解:方程两边同乘以2x(x﹣3),得x﹣3=4x解得,x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,故原分式方程的解是x=﹣1,故答案为:x=﹣1.【点评】本题考查分式方程的解,解题的关键是明确解分式方程的解得方法,注意最后要进行检验.15.如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,AB=12,OP=6,则劣弧AB的长为8π.【分析】连接OA、OB,由切线的性质和垂径定理易得AP=BP=,由锐角三角函数的定义可得∠AOP=60°,利用弧长的公式可得结果.【解答】解:连接OA、OB,∵AB为小⊙O的切线,∴OP⊥AB,∴AP=BP=,∵=,∴∠AOP=60°,∴∠AOB=120°,∠OAP=30°,∴OA=2OP=12,∴劣弧AB的长为:==8π.故答案为:8π.【点评】本题主要考查了切线的性质,垂径定理和弧长公式,利用三角函数求得∠AOP=60°是解答此题的关键.16.如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是①②③.【分析】首先证明△ADE≌△GDE,再求出∠AEF、∠AFE、∠GEF、∠GFE的度数,推出AE=EG=FG=AF,由此可以一一判断.【解答】证明:∵四边形ABCD是正方形,∴AD=DC=BC=AB,∠DAB=∠ADC=∠DCB=∠ABC=90°,∠ADB=∠BDC=∠CAD=∠CAB=45°,∵△DHG是由△DBC旋转得到,∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,在RT△ADE和RT△GDE中,,∴AED≌△GED,故②正确,∴∠ADE=∠EDG=22.5°,AE=EG,∴∠AED=∠AFE=67.5°,∴AE=AF,同理EG=GF,∴AE=EG=GF=FA,∴四边形AEGF是菱形,故①正确,∵∠DFG=∠GFC+∠DFC=∠BAC+∠DAC+∠ADF=112.5°,故③正确.∵AE=FG=EG=BG,BE=AE,∴BE>AE,∴AE<,∴CB+FG<1.5,故④错误.故答案为①②③.【点评】本题考查正方形的性质、全等三角形的判定和性质、菱形的判定和性质、等腰直角三角形的性质等知识,解题的关键是通过计算发现角相等,学会这种证明角相等的方法,属于中考常考题型.三、解答题17.解不等式组并在数轴上表示解集.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:解不等式2x<5,得:x<,解不等式3(x+2)≥x+4,得:x≥﹣1,∴不等式组的解集为:﹣1≤x<,将不等式解集表示在数轴上如图:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.【分析】首先证明OA=OB,再证明△ABO是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴AO=OB,∵AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABD=60°.【点评】本题考查矩形的性质、等边三角形的判定和性质等知识,熟练掌握矩形的性质是解题的关键,属于基础题,中考常考题型.19.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为个小组打,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:小组研究报告小组展示答辩甲91 80 78乙81 74 85丙79 83 90(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?【分析】(1)根据表格可以求得各小组的平均成绩,从而可以将各小组的成绩按照从大到小排列;(2)根据题意可以算出各组的加权平均数,从而可以得到哪组成绩最高.【解答】解:(1)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是:(分),从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是:(分),由上可得,甲组的成绩最高.【点评】本题考查算术平均数、加权平均数、统计表,解题的关键是明确题意,找出所求问题需要的条件.20.已知A=(a,b≠0且a≠b)(1)化简A;(2)若点P(a,b)在反比例函数y=﹣的图象上,求A的值.【分析】(1)利用完全平方公式的展开式将(a+b)2展开,合并同类型、消元即可将A进行化解;(2)由点P在反比例函数图象上,即可得出ab的值,代入A化解后的分式中即可得出结论.【解答】解:(1)A=,=,=,=.(2)∵点P(a,b)在反比例函数y=﹣的图象上,∴ab=﹣5,∴A==﹣.【点评】本题考查了分式的化解求值以及反比例函数图象上点的坐标特征,解题的关键是:(1)将原分式进行化解;(2)找出ab值.本题属于基础题,难度不大,解决该题型题目时,先将原分式进行化解,再代入ab求值即可.21.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)【分析】利用尺规作∠EAC=∠ACB即可,先证明四边形ABCD是平行四边形,再证明CD∥AB即可.【解答】解:图象如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CD.【点评】本题考查尺规作图、平行四边形的判定和性质等知识,解题的关键是学会利用尺规作一个角等于已知角,属于基础题,中考常考题型.22.如图,某无人机于空中A处探测到目标B,D,从无人机A上看目标B,D的俯角分别为30°,60°,此时无人机的飞行高度AC为60m,随后无人机从A处继续飞行30m到达A′处,(1)求A,B之间的距离;(2)求从无人机A′上看目标D的俯角的正切值.【分析】(1)解直角三角形即可得到结论;(2)过A′作A′E⊥BC交BC的延长线于E,连接A′D,于是得到A′E=AC=60,CE=AA′=30,在Rt△ABC中,求得DC=AC=20,然后根据三角函数的定义即可得到结论.【解答】解:(1)由题意得:∠ABD=30°,∠ADC=60°,在Rt△ABC中,AC=60m,∴AB===120(m);(2)过A′作A′E⊥BC交BC的延长线于E,连接A′D,则A′E=AC=60,CE=AA′=30,在Rt△ABC中,AC=60m,∠ADC=60°,∴DC=AC=20,∴DE=50,∴tan∠AA′D=tan∠A′DC===.答:从无人机A′上看目标D的俯角的正切值是.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.23.如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD 与△BCE相似时,求点E的坐标.【分析】(1)设直线AD的解析式为y=kx+b,用待定系数法将A(,),D(0,1)的坐标代入即可;(2)由直线AD与x轴的交点为(﹣2,0),得到OB=2,由点D的坐标为(0,1),得到OD=1,求得BC=5,根据相似三角形的性质得到或,代入数据即可得到结论.【解答】解:(1)设直线AD的解析式为y=kx+b,将A(,),D(0,1)代入得:,解得:.故直线AD的解析式为:y=x+1;(2)∵直线AD与x轴的交点为(﹣2,0),∴OB=2,∵点D的坐标为(0,1),∴OD=1,∵y=﹣x+3与x轴交于点C(3,0),∴OC=3,∴BC=5∵△BOD与△BCE相似,∴或,∴==或,∴BE=2,CE=,或CE=,∴E(2,2),或(3,).【点评】本题考查了相似三角形的性质,待定系数法求函数的解析式,正确的作出图形是解题的关键.24.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.【分析】(1)根据题意得出△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,得出1﹣4m≠0,解不等式即可;(2)y=m(x2﹣2x﹣3)+x+1,故只要x2﹣2x﹣3=0,那么y的值便与m无关,解得x=3或x=﹣1(舍去,此时y=0,在坐标轴上),故定点为(3,4);(3)由|AB|=|x A﹣x B|得出|AB|=|﹣4|,由已知条件得出≤<4,得出0<|﹣4|≤,因此|AB|最大时,||=,解方程得出m=8,或m=(舍去),即可得出结果.【解答】(1)解:当m=0时,函数为一次函数,不符合题意,舍去;当m≠0时,∵抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B,∴△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,∴1﹣4m≠0,∴m≠;(2)证明:∵抛物线y=mx2+(1﹣2m)x+1﹣3m,∴y=m(x2﹣2x﹣3)+x+1,抛物线过定点说明在这一点y与m无关,显然当x2﹣2x﹣3=0时,y与m无关,解得:x=3或x=﹣1,当x=3时,y=4,定点坐标为(3,4);当x=﹣1时,y=0,定点坐标为(﹣1,0),∵P不在坐标轴上,∴P(3,4);(3)解:|AB|=|x A﹣x B|=== ==||=|﹣4|,∵<m≤8,∴≤<4,∴﹣≤﹣4<0,∴0<|﹣4|≤,∴|AB|最大时,||=,解得:m=8,或m=(舍去),∴当m=8时,|AB|有最大值,此时△ABP的面积最大,没有最小值,则面积最大为:|AB|y P=××4=.【点评】本题是二次函数综合题目,考查了二次函数与一元二次方程的关系,根的判别式以及最值问题等知识;本题难度较大,根据题意得出点P的坐标是解决问题的关键.25.如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°(1)求证:BD是该外接圆的直径;(2)连结CD,求证:AC=BC+CD;(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.【分析】(1)要证明BD是该外接圆的直径,只需要证明∠BAD是直角即可,又因为∠ABD=45°,所以需要证明∠ADB=45°;(2)在CD延长线上截取DE=BC,连接EA,只需要证明△EAF是等腰直角三角形即可得出结论;(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,证明△AMF是等腰三角形后,可得出AM=AF,MF=AM,然后再证明△ABF≌△ADM可得出BF=DM,最后根据勾股定理即可得出DM2,AM2,BM2三者之间的数量关系.【解答】解:(1)∵=,∴∠ACB=∠ADB=45°,∵∠ABD=45°,∴∠BAD=90°,∴BD是△ABD外接圆的直径;(2)在CD的延长线上截取DE=BC,连接EA,∵∠ABD=∠ADB,∴AB=AD,∵∠ADE+∠ADC=180°,∠ABC+∠ADC=180°,∴∠ABC=∠ADE,在△ABC与△ADE中,,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE=90°,∵=∴∠ACD=∠ABD=45°,∴△CAE是等腰直角三角形,∴AC=CE,∴AC=CD+DE=CD+BC;(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,连接BF,由对称性可知:∠AMB=ACB=45°,∴∠FMA=45°,∴△AMF是等腰直角三角形,∴AM=AF,MF=AM,∵∠MAF+∠MAB=∠BAD+∠MAB,∴∠FAB=∠MAD,在△ABF与△ADM中,,∴△ABF≌△ADM(SAS),∴BF=DM,在Rt△BMF中,∵BM2+MF2=BF2,∴BM2+2AM2=DM2.【点评】本题考查圆的综合问题,涉及圆周角定理,等腰三角形的性质,全等三角形的性质与判定,勾股定理等知识,综合程度较高,解决本题的关键就是构造等腰直角三角形.。