求一次函数的表达式教案(教学设计)
- 格式:pdf
- 大小:101.00 KB
- 文档页数:4
八年级数学上册5.7用二元一次方程组确定一次函数表达式教学设计(新版北师大版)一. 教材分析《八年级数学上册5.7用二元一次方程组确定一次函数表达式》这一节,主要让学生学会如何利用二元一次方程组来确定一次函数的表达式。
通过这一节的学习,学生能够理解两个变量的关系,掌握用方程组求解一次函数的方法,并能够运用到实际问题中。
二. 学情分析学生在学习了八年级上册的前置知识后,对一次函数、二元一次方程等概念已经有了初步的理解。
但在如何将实际问题转化为方程组,并用方程组求解一次函数表达式方面,还需要进一步的引导和训练。
三. 教学目标1.理解两个变量之间的关系,能够将实际问题转化为二元一次方程组。
2.学会用二元一次方程组确定一次函数的表达式。
3.能够运用所学的知识解决实际问题。
四. 教学重难点1.教学重点:如何将实际问题转化为二元一次方程组,并用方程组求解一次函数表达式。
2.教学难点:如何引导学生理解两个变量之间的关系,并能够灵活运用到实际问题中。
五. 教学方法采用问题驱动法,引导学生通过自主探究、合作交流的方式来学习本节内容。
在教学过程中,注重让学生经历知识的形成过程,培养学生的数学思维能力和解决问题的能力。
六. 教学准备1.准备相关的教学PPT,用于展示和引导学生思考。
2.准备一些实际问题,用于让学生练习和巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考两个变量之间的关系,并提问如何用方程组来表示这种关系。
2.呈现(10分钟)呈现相关的PPT,引导学生总结出用二元一次方程组确定一次函数表达式的步骤和方法。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,尝试用二元一次方程组确定一次函数表达式。
教师巡回指导,并给予反馈。
4.巩固(10分钟)选取一些典型的问题,让学生独立完成,检查他们对知识的掌握情况。
5.拓展(5分钟)引导学生思考:在实际问题中,如何确定二元一次方程组的解?如何判断解的合理性?6.小结(5分钟)让学生总结本节课所学的内容,回答问题:什么是二元一次方程组?如何用二元一次方程组确定一次函数表达式?7.家庭作业(5分钟)布置一些相关的练习题,让学生巩固所学知识。
5.7用二元一次方程组确定一次函数表达式〔教案〕教学目的知识与技能:1.进一步理解二元一次方程与一次函数之间的联络,体会知识之间的普遍性和知识之间的互相转化.2.理解待定系数法,会用二元一次方程组确定一次函数的表达式.过程与方法:让学生体会一次函数与二元一次方程组的互相联络,感受“数形结合〞在数学研究中的作用.情感态度与价值观:通过积极参与数学学习活动,培养学生独立考虑,团结合作的精神.教学重难点【重点】利用二元一次方程组确定一次函数的表达式.【难点】应用方程与函数的联络解决实际问题.教学准备【老师准备】教材图5 - 3及例题.【学生准备】复习二元一次方程组与一次函数的关系.教学过程一、导入新课导入一:师:上节课,我们学习了二元一次方程与一次函数,那么二元一次方程(组)与一次函数有哪些联络?生1:以一个二元一次方程的解为坐标的点组成的图象与相应的一次函数的图象一样,是一条直线.生2:确定两条直线交点的坐标,就相当于求相应的二元一次方程组的解;另一方面,解一个二元一次方程组就相当于确定相应两条直线交点的坐标.师:因此,方程问题可以通过函数知识来解决;反之,函数问题也可以通过方程知识来解决.这节课我们就来学惯用二元一次方程组确定一次函数的表达式.(板书课题:7用二元一次方程组确定一次函数表达式)[设计意图]回忆旧知,体会函数和方程之间的联络,为后面利用二元一次方程组确定一次函数的表达式埋下伏笔.导入二:[过渡语]第四章我们学习了一次函数表达式的简单求法,首先我们看这个问题.如以下图所示,直线l是一次函数的图象.答复以下问题.(1)b=,k=;(2)当x=30时,y=;(3)当y=30时,x=.问题1:【课件1】一般设一次函数的表达式为什么?问题2:【课件2】确定一次函数的表达式关键是确定哪个参数的值?问题3:【课件3】确定一次函数的表达式需要几个点的坐标?问题4:【课件4】确定一次函数的表达式需要几个步骤?问题5:【课件5】当一次函数的图象与y轴相交时,交点的纵坐标与一次函数的表达式中的b的取值有关吗?[处理方式]通过合作交流,自主完成上面的问题,帮助学生回忆已学过的知识.对于题目下的各个问题可以多找几个同学归纳总结,总结不准确的地方,老师点拨.问题1,2,3学生比拟容易得出答案,问题4在学生总结的根底上,老师点拨确定一次函数表达式的一般步骤为:(1)设函数表达式为y=kx+b.(2)根据条件列出关于k,b的方程.(3)解方程.(4)把求出的k,b值代回表达式中即可.问题5可以让学生结合图象得出当一次函数的图象与y轴相交时,交点的纵坐标就是一次函数表达式中的b的值.师:同学们对已学过的知识掌握得很好.此题中的b的值可以直接由一次函数图象与y轴交点的纵坐标确定.但有些题目b值不能直接给出,我们将如何解决呢?这节课我们将研究实际问题中的用二元一次方程组确定一次函数表达式.(板书课题:7用二元一次方程组确定一次函数表达式)二、新知构建[过渡语]用画图象的方法能不能准确地解决问题呢?〔1〕、用图象法解决问题的缺乏之处出示教材“引例〞:A,B两地相距100 km,甲、乙两人骑车同时分别从A,B两地相向而行.假设他们都保持匀速行驶,那么他们各自到A地的间隔s(km)都是骑车时间t(h)的一次函数,1 h后乙间隔A地80 km;2 h后甲间隔A地30 km.经过多长时间两人将相遇?让学生讨论:(1)考虑:你有几种解决上述问题的方法?它们各有什么缺乏之处?(2)对照教材,比拟你的做法与小明、小颖、小亮的做法有什么不同,与同伴交流.(3)考虑讨论:图象法和代数法在解决问题时有什么不同?学生讨论后老师小结:在上面的问题中,用画图象的方法可以直观地获得问题的结果,但有时却难以准确获得问题的结果,为了获得准确的结果,我们一般用代数方法.[设计意图] 通过实际问题情境,进一步加强函数与方程的联络,让学生在用多种方法解决问题的考虑和比拟中体会作图象方法与代数方法各自的特点,为讲解待定系数法确定一次函数的表达式做好铺垫.同时理解知识之间有着广泛的联络.通过“小明的方法求出的结果准确吗?〞自然过渡到本节课的主要内容.〔2〕、用待定系数法确定一次函数的表达式出示教材例题:某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量那么需购置行李票,且行李费y (元)是行李质量x (kg)的一次函数.李明带了60 kg 的行李,交了行李费5元;张华带了90 kg 的行李,交了行李费10元.(1)写出y 与x 之间的函数表达式;(2)旅客最多可免费携带多少千克的行李?引导学生分析设出关系式并解答.展示学生研究的结果并进展讲评,出示答案.解:(1)设y =kx +b ,根据题意,得{5=60k +b,①10=90k +b.②.②-①,得30k=5,k=16代入①,得b=-5.将k=16x-5.所以y=16(2)当x=30时,y=0.所以旅客最多可免费携带30 kg的行李.【老师总结】待定系数法:先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法.待定系数法求一次函数表达式的一般步骤是:(1)先设出一次函数的一般形式,即y=kx+b(k≠0);(2)将自变量x的值及与它对应的函数y的值代入所设的表达式中,得到关于待定系数k和b的方程组;(3)解方程组,求出待定系数的值,进而写出函数表达式.[知识拓展]求正比例函数表达式,只要一对x,y的对应值就可以.因为它只有一个待定系数;而求一次函数的表达式,那么需要两组x,y的对应值.三、课堂总结四、课堂练习1.直线y=kx+b在坐标系中的位置如下图,那么 ()A.k =-12,b =-1B.k =-12,b =1C.k =12,b =-1D.k =12,b =1 解析:设函数表达式为y =kx +b ,由图可得函数图象过点(2,0)和(0,1),将这两点坐标代入得{0=2k +b,1=b,解得{k =−12,b =1.应选B . 2.函数y =kx +b (k ≠0)的图象与y 轴交点的纵坐标为-2,且当x =2时,y =1.那么此函数的表达式为 .解析:将(0,-2)与(2,1)代入y =kx +b 得{b =−2,2k +b =1,解得{k =32,b =−2,那么函数解析式为y =32x-2.故填y =32x-2. 3.一次函数y =kx +b 的图象经过点A (1,-1)和点B (-1,3),求这个一次函数的表达式.解:依题意将A (1,-1)与B (-1,3)代入y =kx +b ,得{k +b =−1,-k +b =3,解得{k =−2,b =1,∴所求的表达式为y =-2x +1. 五、板书设计7 用二元一次方程组确定一次函数表达式①、用图象法解决问题的缺乏之处②、用待定系数法确定一次函数的表达式六、布置作业①、教材作业【必做题】教材习题5.8第1,2题.【选做题】教材习题5.8第3题.②、课后作业【根底稳固】1.一次函数的图象经过点A(-2,-1),且与直线y=2x-3平行.那么此函数的表达式为()A.y=x+1B.y=2x+3C.y=2x-1D.y=-2x-52.某个一次函数的图象与x轴、y轴的交点坐标分别是(-2,0),(0,4),求这个函数的表达式.3.一个一次函数的图象平行于直线y=-2x,且经过点A(-4,2),求这个函数的表达式.4.某商场搞促销活动,一次性购置x件T恤的价格为y元,x与y之间的关系如下表:x/件 1 2 3 4y/元38 68 90 108能将y看成x的一次函数吗?4.直线l与直线y=2x+1的交点的横坐标为-1,与直线y=-x+2的交点2的纵坐标为1,求直线l对应的函数表达式.【才能提升】6.根据以下各小题中的条件,求相应的一次函数关系式.(1)一次函数的图象经过点A(2,4),B(0,2),求其表达式;(2)一次函数的图象如下图,求其表达式;(3)一次函数的图象经过点A(2,0)且与直线y=-x+3平行,求其表达式;(4)一次函数的图象经过点P(1,2)且与直线y=2x+3的交点在y轴上,求其表达式.7.某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费方法,某户居民应交水费y(元)与用水量x(吨)的函数关系如下图.(1)分别写出当0≤x≤15和x>15时,y与x的函数关系式;(2)假设某用户10月份用水量为10吨,那么应交水费多少元?假设该用户11月份交了51元的水费,那么他该月用水多少吨?【拓展探究】8.某超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y (个)与甲品牌文具盒的数量x (个)之间的函数关系如下图.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.(1)根据图象,求y 与x 之间的函数关系式;(2)求甲、乙两种品牌的文具盒的进货单价.【答案与解析】1.B(解析:设此函数的表达式为y =kx +b ,因为该直线与直线y =2x-3平行,所以k =2,又因为图象经过点A (-2,-1),所以将此点的坐标及k 的值代入表达式即可求出b.)2.解:设一次函数表达式为y =kx +b ,由题意得{0=−2k +b,b =4,∴{k =2,b =4.故这个一次函数的表达式为y =2x +4.3.解:设一次函数表达式为y =kx +b ,∵它的图象平行于直线y =-2x ,∴k =-2,又∵该函数图象经过点(-4,2),∴函数表达式为y =-2x-6.4.解:假设y 与x 的关系为一次函数关系,设为y =kx +b ,由题可知该直线经过点(1,38)和点(2,68),从而38=k +b ,68=2k +b ,k =30,b =8.∴y =30x +8,当x =3时,y =30×3+8=98≠90,∴y 不是x 的一次函数.5.解:把x =-12代入y =2x +1,得y =0,∴直线l 与直线y =2x +1的交点坐标为(-12,0);同理可求得直线l 与直线y =-x +2的交点坐标为(1,1).设直线l 的解析式为y =kx +b ,将(-12,0),(1,1)代入,可求得表达式为y =23x +13.6.解:(1)设y =kx +b ,∵图象经过点A (2,4),B (0,2),∴{4=2k +b,2=b,解得{k =1,b =2.∴所求一次函数表达式为y =x +2. (2)设y =kx +b ,根据图象可知点(1,0),(0,-2)在直线y =kx +b 上,∴{k +b =0,-2=b,解得{k =2,b =−2.∴所求一次函数表达式为y =2x-2. (3)设y =kx +b ,∵函数y =kx +b 的图象与直线y =-x +3平行,∴k =-1,又∵其图象经过点A (2,0),∴0=-1×2+b ,解得b =2.∴所求一次函数表达式为y =-x +2. (4)设y =kx +b ,∵直线y =2x +3与y 轴的交点为(0,3),而直线y =kx +b 与直线y =2x +3的交点在y 轴上,∴直线y =kx +b 与y 轴的交点就是(0,3),∴3=b ,又∵直线y =kx +b 经过点P (1,2),∴{b =3,2=k +b,解得{k =−1,b =3.∴所求一次函数表达式为y =-x +3.7.解:(1)当0≤x ≤15时,设y =k 1x ,根据题意得27=15k 1,解得k 1=95,所以当0≤x ≤15时,y =95x ;当x >15时,设y =k 2x +b ,根据题意可得方程组{27=15k 2+b,39=20k 2+b,解这个方程组,得{k 2=125,b =−9.所以当x >15时,y =125x-9. (2)当x =10时,代入y =95x 中,得y =18.故10月份应交水费18元.当y =51时,代入y =125x-9中,得x =25.那么11月份用水25吨. 8.解:(1)设y 与x 之间的函数关系式为y =kx +b ,由函数图象,得{250=50k +b,100=200k +b,解得{k =−1,b =300.所以y 与x 之间的函数关系式为y =-x +300. (2)因为y =-x +300,所以当x =120时,y =180.设甲品牌的进货单价是a 元,那么乙品牌的进货单价是2a 元,由题意得120a +180×2a=7200,解得a=15,所以乙品牌的进货单价是2×15=30(元).答:甲、乙两种品牌的文具盒的进货单价分别为15元、30元.。
4.4确定一次函数的表达时间教学目标知识与技能1、根据函数的图像确定一次函数的表达式2、会运用一次函数的思想解决实际问题过程与方法让学生经历观察、操作、合作、探究、交流、推理等活动,体会数学的建模、数形结合思想,进一步发展推理能力及有条理表达能力情感态度与价值观使学生经历探索、合作、交流的学习过程,激发学生对数学的兴趣,获得成功的体验。
教学重点根据所给信息确定一次函数的表达式。
教学难点体会数学的建模、数形结合思想。
教学过程一、复习:1.复习提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数具有什么性质?(4)一次函数和正比例函数有怎样的关系?学生回答…….2.预习:1.怎样确定一次函数的表达式?2.确定一次函数表达式的步骤有哪些?二、引入新课:(5分钟)v(米/秒)与其下滑时间t(秒 )的关系如图所示.1)写出v与t之间的关系式?2)下滑3秒时物体的速度是多少?t三、讲授新课:1、想一想(1)确定正比例函数的表达式需要几个点的坐标?(一个)(2)确定一次函数的表达式需要几个点的坐标?(两个)。
总结:在确定函数表达式时,要求几个系数就需要知道几个点的坐标2、例题讲解:例1 :在弹性限度内,弹簧的长度 y(厘米)是所挂物体质量 x(千克)的一次函数。
一根弹簧不挂物体时长14.5厘米;当所挂物体的质量为3千克时,弹簧长16厘米。
请写出 y 与x之间的关系式,并求当所挂物体的质量为4千克时弹簧的长度。
解:设y=kx+b(k≠0)由题意得:14.5=b,16=3k+b,解得:b=14.5 ; k=0.5.所以在弹性限度内,当x=4时,y=0.5×4+14.5=16.5(厘米).即物体的质量为4千克时,弹簧长度为16.5厘米.总结规律:求一次函数表达式的步骤:(1)设——设函数表达式y=kx+b(2)代——将点的坐标代入y=kx+b中,列出关于k,b的方程。
(3)求——解方程,求k,b。
4.4 用待定系数法确定一次函数表达式1.从题目中获取待定系数法所需要的两个点的条件;(难点)2.用待定系数法求一次函数的解析式.(重点)一、情境导入弹簧的长度y (厘米)在一定的限度内是所挂重物质量x (千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米.求这个一次函数的关系式.一次函数解析式怎样确定?需要几个条件?二、合作探究 探究点一:用待定系数法求一次函数解析式【类型一】 两点确定一次函数解析式 一次函数经过点A (3,5)和点B (-4,-9).(1)求此一次函数的解析式; (2)假设点C (m ,2)是该函数图象上的一点,求C 点的坐标.解析:(1)将点A (3,5)和点B (-4,-9)分别代入一次函数y =kx +b (k ≠0),列出关于k 、b 的二元一次方程组,通过解方程组求得k 、b 的值;(2)将点C 的坐标代入(1)中的一次函数解析式,即可求得m 的值.解:(1)设其解析式为y =kx +b (k 、b 是常数,且k ≠0),那么⎩⎪⎨⎪⎧5=3k +b ,-9=-4k +b ,∴⎩⎪⎨⎪⎧k =2,b =-1,∴其解析式为y =2x -1; (2)∵点C (m ,2)在函数y =2x -1的图象上,∴2=2m -1,∴m =32,∴点C 的坐标为(32,2).方法总结:解答此题时,要注意一次函数的一次项系数k ≠0这一条件,所以求出结果要注意检验一下.【类型二】 由函数图象确定一次函数解析式如图,一次函数的图象与x 轴、y 轴分别相交于A ,B 两点,如果A 点的坐标为(2,0),且OA =OB ,试求一次函数的解析式.解析:求出B 点的坐标,根据待定系数法即可求得函数解析式.解:∵OA =OB ,A 点的坐标为(2,0).∴点B 的坐标为(0,-2).设一次函数的解析式为y =kx +b (k ≠0),那么⎩⎪⎨⎪⎧2k +b =0,b =-2,解得⎩⎪⎨⎪⎧k =1,b =-2,∴一次函数的解析式为y =x -2. 方法总结:此题考查用待定系数法求一次函数解析式,解题的关键是利用所给条件得到关键点的坐标,进而求得函数解析式. 【类型三】 由三角形的面积确定一次函数解析式如图,点B 的坐标为(-2,0),AB 垂直x 轴于点B ,交直线l 于点A ,如果△ABO 的面积为3,求直线l 的解析式.解析:三角形AOB 的面积等于OB 与AB 乘积的一半,根据OB 与面积求出AB 的长,确定出A 点坐标,设直线l 的解析式为y =kx ,将A 点坐标代入求出k 的值,即可确定直线l 的解析式.解:∵S△AOB=12OB·AB=3,即12×AB=3,AB=3,即A点坐标为(-2设直线l的解析式为y=kx,将A坐标代入得:-3=-2k,即k,那么直线l的解析式为yx.方法总结:解决此题的关键是根据直线与坐标轴围成的三角形的面积确定另一个点的坐标.【类型四】利用图形变换确定一次函数解析式一次函数y=kx+b的图象过点(1,2),且其图象可由正比例函数y=kx向下平移4个单位得到,求一次函数的解析式.解析:先把(1,2)代入y=kx+b得k+b =2,再根据y=kx向下平移4个单位得到y =kx+b得到b=-4,然后求出k的值即可.解:把(1,2)代入y=kx+b得k+b=2,∵y=kx向下平移4个单位得到y=kx+b,∴b=-4,∴k-4=2,解得k=6.∴一次函数的解析式为y=6x-4.方法总结:此题考查了一次函数的图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,向上平移m个单位,那么平移后直线的解析式为y=kx+b+m.探究点二:用待定系数法求一次函数解析式的应用【类型一】由实际问题确定一次函数解析式水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其局部刻度线不清晰(如图),表中记录的是该体温计局部清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数的自变量的取值范围);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.解析:(1)设y关于x的函数关系式为y =kx+b,由统计表的数据建立方程组求出其解即可;(2)当x,代入(1)的解析式就可以求出y 的值.解:(1)设y关于x的函数关系式为y=kx+b,由题意,得⎩⎪⎨⎪⎧35k+b,40k+b,解得:⎩⎪⎨⎪⎧k=54,b,∴y=54x+29.75.∴y关于x的函数关系式为y =54x+29.75;(2)当x,y=54×+29.75=37.5.℃.方法总结:此题考查了待定系数法求一次函数的解析式的运用,由解析式根据自变量的值求函数值的运用,解答时求出函数的解析式是关键.【类型二】与确定函数解析式有关的综合性问题如图,A、B是分别在x轴上位于原点左右侧的点,点P(2,m)在第一象限内,直线P A交y轴于点C(0,2),直线PB交y轴于点D,S△AOP=12.(1)求点A的坐标及m的值;(2)求直线AP的解析式;(3)假设S△BOP=S△DOP,求直线BD的解析式.解析:(1)由于S△POA=S△AOC+S△COP,根据三角形面积公式得到12×OA·2+12×2×2=12,可计算出OA =10,那么A 点坐标为(-10,0),然后再利用S △AOP =12×10×m=12求出m ;(2)A 点和C 点坐标,可利用待定系数法确定直线AP 的解析式;(3)利用三角形面积公式由S △BOP =S △DOP ,PB =PD ,即点P 为BD 的中点,那么可确定B 点坐标为(4,0),D 点坐标为(0,245),然后利用待定系数法确定直线BD 的解析式.解:(1)∵S △POA =S △AOC +S △COP ,∴12×OA ·2+12×2×2=12,∴OA =10,∴A 点坐标为(-10,0),∵S △AOP =12×10×m =12,∴m =125;(2)设直线AP 的解析式为y =kx +b ,把A (-10,0),C (0,2)代入得⎩⎪⎨⎪⎧-10k +b =0,b =2,解得⎩⎪⎨⎪⎧k =15,b =2,∴直线AP 的解析式为y =15x +2;(3)∵S △BOP =S △DOP ,∴PB =PD ,即点P 为BD 的中点,∵P 点坐标为(2,125),∴B点坐标为(4,0),D 点坐标为(0,245),设直线BD 的解析式为y =mx +n ,把B (4,0),D (0,245)代入得⎩⎪⎨⎪⎧4m +n =0,n =245,解得⎩⎨⎧m =-65,n =245,∴直线BD 的解析式为y =-65x+245. 三、板书设计用待定系数法求一次函数解析式 1.待定系数法的定义2.用待定系数法求一次函数解析式的步骤教学中,要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律.教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题,教师从中点拨、引导,并和学生一起学习,探讨,真正做到教学相长.4.5 一次函数的应用第1课时 利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱? 二、合作探究探究点:一次函数与实际问题利用图象(表)解决实际问题 我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下图. (1)求a 的值,并求出该户居民上月用水8t 应收的水费; (2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式; (3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨? 解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量. 解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元; (2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t. 方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:元,那么这两种水果各购进多少千克? (2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元? 解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x 千克,那么购进乙种水果(140-x )千克,根据题意可得5x +9(140-x )=1000,解得x =65,∴140-x =75(千克).答:购进甲种水果65千克,乙种水果75千克; (2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W ,由题意可得W =3x +4(140-x )=-x +560,故W 随x 的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x ≤3x ,解得x ≥35,∴当x =35时,W 最大=-35+560=525(元),故140-35=105(千克). 答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】建立一次函数模型解决实际问题某商场欲购进A、B两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.(1)求y关于x的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:由表格中的信息可得到A、B两种品牌每箱的利润,再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B种饮料有(500-x)箱,那么y=(63-55)x+(40-35)(500-x)=3xy=3x+2500(0≤x≤500);(2)由题意,得55x+35(500-x)≤x≤125.∴当x=125时,y最大值=3×125+2500=2875.∴该商场购进A、B两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23.答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题 2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。
一次函数复习课教学设计一、复习目标知识目标:了解一次函数的概念,掌握一次函数的图象和性质;能正确画出一次函数的图象,并能根据图象探索函数的性质;能根据具体条件列出一次函数的关系式。
能力目标:理解数形结合的数学思想,强化数学的建模意识,提高利用演绎和归纳进行复习的能力。
情感目标:通过对零散知识点的系统整理,让学生认识到事物是有规律可循的,同时帮助他们提高复习的效果,增进数学学习的兴趣。
教学重点与难点重点:根据不同条件求一次函数的解析式。
难点:根据函数图象探索其性质、体会函数与方程、函数与几何的转换。
教法与学法教法分析: 经过精心的整理,我把本单元的知识归纳成“六个知识要点”,采用的“演绎法”向学生传授。
由于是复习课,我采用边讲边练和问题教学的方式。
学法指导: 在这节课之前,我已经让全班同学拟定复习计划书,很多同学在计划书中都提出函数是难点,希望能多复习一点,我把这一信息反馈给班级,使全班同学都有一种意见得到尊重的满足感,并产生了强烈的主动求知欲望。
另外,通过向学生展示我对本单元的归纳,培养学生自己动脑,自己归纳总结的能力,从而掌握一种良好的复习方法。
二、教学过程(一)、知识回顾:由于是复习课,所以开门见山做课前练习。
(二)、提出“六个知识要点”:本单元的知识点比较繁多,而且在初中数学中所占的地位也比较重要。
因此,我用“六点”来对于本单元进行复习:知识点1、一般形式:1、选择题:分析:这类题目是考察同学们对函数解析式的特征的理解,在讲解时要突出两个疑难:一是一次函数中自变量的指数等于1,而不是0;二是一次函数解析式中自变量的系数不为零。
知识点2:直线与坐标的交点:函数y=kx+b图象与X轴交点是()与Y轴交点是()知识点3:一次函数图像与特征:是指一次函数的图象在坐标系中的位置,直线经过的象限:一般的,一条直线都经过三个象限,由于新教材不注重k,b的符号决定直线经过的象限的理解,且加上我班学生的基础较差,成绩一般。
一次函数教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!一次函数教案【优秀10篇】在数学的学习中等差求和公式是学习的重点的内容,以下内容是本店铺为您带来的10篇《一次函数教案》,亲的肯定与分享是对我们最大的鼓励。
八年级《一次函数》教学设计(5篇)八年级《一次函数》教学设计篇一教学目标:(知识与技能,过程与方法,情感态度价值观)(一)教学知识点1、一元一次不等式与一次函数的关系、2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较、(二)能力训练要求1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识、2、训练大家能利用数学知识去解决实际问题的能力、(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用、教学重点了解一元一次不等式与一次函数之间的关系、教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答、教学过程创设情境,导入课题,展示教学目标1、张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。
你能帮帮张大爷选择一种电话卡吗?2、展示学习目标:(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣学生自主研学指出探究方向,巡回指导学生,答疑解惑探究一:一元一次不等式与一次函数的关系。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:(1) x取何值时,2x-5=0?(2) x取哪些值时,2x-50?(3) x取哪些值时,2x-50?(4) x取哪些值时,2x-53?问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y1 ?你是怎样求解的?与同伴交流让每个学生都投入到探究中来养成自主学习习惯小组合作互学巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。
《一次函数》教案(共5则)第一篇:《一次函数》教案《一次函数》教案马才义一.教学目标1、经历一般规律的探索过程,发展学生的抽象思维能力。
2、理解一次函数和正比例函数的概念,能根据所给的条件写出简单的一次函数表达式,发展学生的数学应用能力。
教学重点、难点重点:理解一次函数和正比例函数的概念。
难点:能根据所给的条件写出简单的一次函数表达式。
二。
教学过程(一)问题的提出题的提出饮料每箱12瓶,售价55元,求买饮料的总价Y(元)与所买瓶数X(瓶)的关系式。
2 某弹簧的自然长度为3厘米,在弹簧限度内,所挂物体的质量X每增加12千克,弹簧长度Y增加0。
5厘米。
(1)计算所挂物体的质量为1千克2千克3千克4千克5千克、、、、、、X千克弹簧长度,并填入下表;X/千克 0 1 2 3 4 5、、、X Y/厘米(2)你能写出X与Y的函数之间的关系吗?(二)做一做某汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升。
(1)完成下表路程X/千米 0 50 100 150 200 300、、、余油Y/升(2)你能写出X与Y的函数之间的关系吗?说明:各题中的X 都有一定的限制。
问:观察上述关系式的特点,总结规律。
(三)一次函数定义、正比例函数的定义若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)则称y是x的一次函数(x是自变量,y是因变量)。
特别地,当b=0时,称y是x的正比例函数。
(四)讲例例1写出下列各题中x与y之间的关系式,并判断y是否为x一次函数?是否为正比例函数?(1)汽车以60千米/时的速度行使,行使路程y(千米)与行使时间x(时)之间的关系。
(2)圆的面积y (cm2)与它的半径x(cm)之间的关系。
(3)一棵树现高50cm,每个月长高2cm,x月后这棵树的高度为y(cm)。
分析:本题较为简单,由学生完成。
例2 我国现行个人工资、薪金所得税征收办法规定:月收入不超过800元的部分不收税;月收入超过800元但不超过1300元的部分征收5%的所得税……如某人月收入1160元,他应缴个人工资、薪金所得税为(1160—800)*5%=18(元)。
待定系数法求一次函数表达式教案用待定系数法求一次函数表达式教案一、教学目标根据课标要求和学生认知特点,制定以下三维教学目标:1.知识与技能了解两个条件确定一个一次函数和一个条件确定一个正比例函数。
理解待定系数法,会用待定系数法确定一次函数的表达式。
2.过程与方法通过探索求解一次函数表达式的过程,感悟数学中数与形的结合,培养学生分析和解决问题的能力。
3.情感、态度与价值观渗透数形结合的思想,培养良好的自我尝试和大胆创新的精神。
二、教学重点与难点:1.重点:用待定系数法确定一次函数的表达式。
2.难点:用待定系数法解决抽象的函数问题。
3.教学关键:根据所给信息,找出两个条件,进而求出一次函数表达式。
三、教学方法采用高效6+1教学模式,让学生在自主、合作、探究中研究。
四、教学过程一、导入(创设情景,导入新课)1.如果两个变量x和y之间的关系是正比例函数,那么它的表达式是什么?它的图像是什么?2.如果两个变量x和y之间的关系是一次函数,那么它的表达式是什么?它的图像是什么?3.画出函数y=x+3的图像。
师生活动:提出问题,让学生回答,然后再提出问题,从而成功导入新课。
设计意图:复正比例函数和一次函数的定义,以及画一次函数和正比函数的图像,为研究本节内容铺垫,并初步体会从数到形的思想。
出示本节研究目标)设计意图:让学生根据研究目标使研究更有针对性。
二、研究自学课本96、97页的“观察与思考”和例1,独立完成以下三个题目:1.已知一次函数的图像经过点(3,5)和(-4,-9),求这个一次函数的表达式。
2.已知正比例函数的图像过点(3,4),求这个正比例函数的表达式。
3.XXX将父母给的零用钱按月相等的存放在储蓄盒内,准备捐给希望工程。
第2个月XXX的储蓄盒内有80元,第4个月XXX的储蓄盒内有120元。
已知盒内钱数与存钱月数之间是一次函数关系。
①求出盒内钱数y(元)与存钱月数x(月)之间的函数关系式。
②根据关系式计算,XXX经过几个月才能存够200元?三、总结1.请举例说明如何用待定系数法确定一次函数的表达式。
沪科版数学八年级上册《求一次函数的表达式》教学设计一. 教材分析沪科版数学八年级上册《求一次函数的表达式》是学生在学习了初中数学基础知识后,对一次函数的定义、性质有了初步了解的基础上进行学习的。
本节课的内容包括一次函数的表达式、一次函数的图像和一次函数的应用。
通过本节课的学习,使学生掌握一次函数的表达式,了解一次函数的图像特点,提高学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了实数、代数式等基础知识,对函数的概念、性质有所了解,具备了一定的逻辑思维能力和问题解决能力。
但学生对一次函数的表达式的推导过程,以及如何应用一次函数解决实际问题还需加强。
三. 教学目标1.知识与技能:理解一次函数的表达式,学会用一次函数表示实际问题中的数量关系。
2.过程与方法:通过合作交流,培养学生的团队协作能力;通过自主探究,提高学生的问题解决能力。
3.情感态度价值观:激发学生学习数学的兴趣,培养学生的创新精神,使学生感受到数学与生活的紧密联系。
四. 教学重难点1.一次函数的表达式。
2.如何用一次函数解决实际问题。
五. 教学方法采用问题驱动法、合作交流法、自主探究法等教学方法,引导学生主动参与,提高学生的学习兴趣和问题解决能力。
六. 教学准备1.教学课件:制作一次函数的表达式、图像和应用的教学课件。
2.教学素材:准备一些实际问题,用于引导学生用一次函数解决。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用课件展示一次函数的图像,引导学生回顾一次函数的定义和性质,为新课的学习做好铺垫。
2.呈现(10分钟)呈现一次函数的表达式,引导学生通过观察、分析、归纳,总结一次函数的表达式。
3.操练(10分钟)分组讨论,让学生试着用一次函数的表达式解决实际问题,培养学生的团队协作能力和问题解决能力。
4.巩固(10分钟)针对学生解决实际问题的过程,进行讲解和点评,纠正学生的错误,巩固一次函数的表达式的应用。
沪科版数学八年级上册《求一次函数的表达式》教学设计1一. 教材分析沪科版数学八年级上册《求一次函数的表达式》是学生在学习了初中数学基础知识后,进一步深入研究一次函数的内容。
本节课主要让学生掌握一次函数的表达式,了解一次函数的性质,以及如何运用待定系数法求一次函数的表达式。
教材通过丰富的实例和实际问题,激发学生的学习兴趣,培养学生的动手操作能力和解决问题的能力。
二. 学情分析八年级的学生已经掌握了初中数学基础知识,对函数有一定的认识。
但在求一次函数的表达式方面,部分学生可能还存在一定的困难。
因此,在教学过程中,教师要关注学生的个体差异,针对不同程度的学生进行有针对性教学,提高他们的数学素养。
三. 教学目标1.让学生掌握一次函数的表达式,了解一次函数的性质。
2.培养学生运用待定系数法求一次函数的表达式的能力。
3.提高学生解决问题的能力,培养学生的团队协作精神。
四. 教学重难点1.一次函数的表达式及其求法。
2.一次函数的性质及其应用。
五. 教学方法1.情境教学法:通过生活实例引入一次函数,激发学生的学习兴趣。
2.启发式教学法:引导学生思考,自主探究一次函数的表达式求法。
3.小组合作学习法:培养学生团队协作,共同解决问题。
4.反馈评价法:及时了解学生的学习情况,针对性地进行教学调整。
六. 教学准备1.教学课件:制作生动有趣的教学课件,辅助教学。
2.实例素材:收集与一次函数相关的生活实例,用于导入和巩固环节。
3.练习题库:准备一定数量的一次函数练习题,用于操练和巩固环节。
4.板书设计:提前设计好板书,突出一次函数的表达式和性质。
七. 教学过程1.导入(5分钟)利用生活实例引入一次函数的概念,激发学生的学习兴趣。
如:交通工具的速度与时间的关系,商品的售价与数量的关系等。
2.呈现(10分钟)介绍一次函数的一般形式:y=kx+b(k≠0,k、b为常数)。
并通过实例解释一次函数的表达式。
3.操练(10分钟)学生分组讨论,运用待定系数法求一次函数的表达式。
一次函数教案12篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如演讲稿、工作总结、工作计划、心得体会、教学总结、事迹材料、优秀作文、教学设计、合同范文、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as speeches, work summaries, work plans, experiences, teaching summaries, deeds materials, excellent essays, teaching designs, contract samples, and other materials. If you want to learn about different data formats and writing methods, please pay attention!一次函数教案12篇一次函数教案1一、课程标准要求:①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。
求一次函数的表达式
【教学目标】
1.知识与技能
(1)了解两个条件可确定一次函数。
(2)能根据所给信息(图像、表格、实际问题等)利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题。
2.过程与方法
经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步发展数形结合的思想方法。
3.情感态度与价值观
经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维。
【教学重难点】
1.重点:根据所给信息,利用待定系数法确定一次函数的表达式。
2.难点:在实际问题情景中寻找条件,确定一次函数的表达式。
【教学过程】
一、复习引入(5分钟,学生口答,全班回忆知识)
内容:提问:
(1)什么是一次函数?
(2)一次函数的图象是什么?
(3)一次函数具有什么性质?
二、初步探究(10分钟,学生思考问题,小组合作探究)
1.内容1:
展示实际情境
提供两个问题情境,供老师选用。
实际情境一:某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒)的关系如图所示。
(1)写出v 与t 之间的关系式;
(2)下滑3秒时物体的速度是多少?
分析:要求v 与t 之间的关系式,首先应观察图象,确定函数的类
型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解
析式求出待定系数即可。
实际情境二:假定甲、乙二人在一项赛跑中路程与时间的关
系如图所示。
(1)这是一次多少米的赛跑?
(2)甲、乙二人谁先到达终点?
(3)甲、乙二人的速度分别是多少?
(4)求甲、乙二人与的函数关系式。
2.内容2:想一想:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?
三、深入探究(10分钟,教师引导学生利用已知数量列关系式,全班交流)
1.例1 在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的一次函数,当所挂物体的质量为1千克时,弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米。
写出y 与x 之间的关系式,并求出所挂物体的质量为4千克时弹簧的长度。
解:设,根据题意,得
14.5=, ①
16=3+,②
将代入②,得。
所以在弹性限度内,。
当时,(厘米)。
y x y x b kx y +=b k b 5.14=b 5.0=k 5.145.0+=x y 4=x 5.165.1445.0=+⨯=
y
即物体的质量为千克时,弹簧长度为厘米。
2.想一想:大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求一次函数表达式的步骤。
求函数表达式的步骤有:
(1)设一次函数表达式。
(2)根据已知条件列出有关方程。
(3)解方程。
(4)把求出的k ,b 值代回到表达式中即可。
四、课时小结(5分钟,教师强化知识点的应用)
总结本课知识与方法
1.本节课主要学习了怎样确定一次函数的表达式,在确定一次函数的表达式时可以用待定系数法,即先设出解析式,再根据题目条件(根据图象、表格或具体问题)求出,的值,从而确定函数解析式。
其步骤如下:(1)设函数表达式;(2)根据已知条件列出有关k ,b 的方程;(3)解方程,求k ,b ;4.把k ,b 代回表达式中,写出表达式。
2.本节课用到的主要的数学思想方法:数形结合、方程的思想。
【作业布置】
1.若一次函数的图象经过A (-1,1),则 ,该函数图象经过点
B (1, )和点
C ( ,0)。
2.如图,直线是一次函数的图象,填空:
(1) , ;
(2)当时, ;
(3)当时, 。
45.16k b b x y +=2=b l b kx y +
==b =k 30=x =y 30=y =x
3.已知直线与直线平行,且与y 轴交于点(0,2),求直线的表达式。
l x y 2-=l。