西华大学降压斩波电路(3)(有实验数据图)
- 格式:pdf
- 大小:217.47 KB
- 文档页数:4
摘要直流斩波电路是将直流电变成另一种固定电压或可调电压的DC-DC变换器 , 如果改变开关的动作频率,或改变直流电流接通和断开的时间比例,就可以改变加到负载上的电压、电流平均值。
在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。
随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。
直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。
全控型电力电子器件MOSFET在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。
关键词:Buck Chopper MOSFET Simulink 高频开关目录1 降压斩波电路主电路基本原理 (1)2 MOSFET基本性能简介 (5)2.1 电力MOSFET的结构和工作原理 (5)2.1.1 电力MOSFET的结构 (5)2.1.2 功率MOSFET的工作原理 (6)2.2 功率MOSFET的基本特性 (6)2.2.1 静态特性 (6)2.2.2 动态特性 (7)2.3 电力MOSFET的主要参数 (8)3 电力MOSFET驱动电路 (9)3.1 MOSFET的栅极驱动 (9)3.2 MOSFET驱动电路介绍及分析 (9)3.2.1 不隔离的互补驱动电路 (9)3.2.2 隔离的驱动电路 (10)3.2.3 驱动电路的设计方案比较 (13)4 保护电路设计 (15)4.1 主电路的保护电路设计 (15)4.2 MOSFET的保护设计 (15)5 仿真结果 (17)心得体会 (23)参考文献 (24)1 降压斩波电路主电路基本原理高频开关稳压电源已广泛运用于基础直流电源、交流电源、各种工业电源,通信电源、通信电源、逆变电源、计算机电源等。
它能把电网提供的强电和粗电,它是现代电子设备重要的“心脏供血系统”。
BUCK变换器是开关电源基本拓扑结构中的一种,BUCK变换器又称降压变换器,是一种对输入输出电压进行降压变换的直流斩波器,即输出电压低于输入电压,由于其具有优越的变压功能,因此可以直接用于需要直接降压的地方。
直流降压斩波电路实验报告
一、实验目的
本实验的主要目的是了解直流降压斩波电路的工作原理,掌握电路的搭建方法和调试技巧,同时能够通过实验数据分析和计算得出电路的性能参数。
二、实验原理
直流降压斩波电路是一种常用的电源调节电路,它可以将高压直流电源转换为低压直流电源。
该电路由三个部分组成:变压器、整流滤波器和斩波稳压器。
其中变压器主要起到降压作用,整流滤波器则可以将交流信号转换为直流信号,并对信号进行平滑处理,最后斩波稳压器则可以对输出信号进行稳定控制。
三、实验步骤
1. 搭建直流降压斩波电路。
2. 连接示波器和负载。
3. 调节变压器输出电压为所需输出值。
4. 调节斩波管触发角度和输出信号稳定性。
5. 记录实验数据并进行分析。
四、实验注意事项
1. 实验过程中应注意安全,避免触电等事故。
2. 严格按照步骤操作,避免误操作导致电路损坏。
3. 实验数据应准确记录,避免误差产生。
五、实验结果分析
通过实验数据的分析和计算,可以得出直流降压斩波电路的性能参数。
其中包括输出电压、输出电流、效率等指标。
同时还可以观察到斩波
管的触发角度对输出信号稳定性的影响,并对电路进行优化调整。
六、实验总结
本次实验通过搭建直流降压斩波电路并进行调试和分析,深入了解了
该电路的工作原理和性能参数计算方法。
同时也提高了我们的实验技
能和安全意识,为今后的学习和科研奠定了基础。
降压斩波电路实验总结一、实验目的本实验旨在掌握降压斩波电路的工作原理及其在电子电路中的应用。
二、实验原理降压斩波电路是一种常见的电源滤波电路,主要由变压器、二极管、滤波电容和负载组成。
其工作原理是将交流输入信号经过变压器降压后,经过二极管整流成为脉冲信号,再通过滤波电容进行平滑处理,最终输出直流信号给负载使用。
三、实验器材1. 220V/24V变压器2. 1N4007二极管3. 4700μF/25V滤波电容4. 10kΩ调节电位器5. 100Ω/1W负载电阻6. 示波器7. 直流稳压电源四、实验步骤1. 将220V/24V变压器接入交流稳压源,并将输出端口接到示波器上。
2. 将1N4007二极管接入变压器输出端口,并将正极连接到滤波电容的正极上。
3. 将10kΩ调节电位器连接到滤波电容的负极上,并将调节电位器的中间引脚连接到负载电阻上。
4. 将示波器的探头连接到滤波电容的正极上,并将负载电阻接入示波器的另一端口。
5. 打开直流稳压电源,并将输出端口连接到调节电位器的中间引脚上。
6. 调节直流稳压电源的输出电压,观察示波器显示的输出信号波形及幅值。
五、实验结果及分析在实验过程中,通过调节直流稳压电源输出电压,可以观察到滤波后的输出信号幅值随着输入信号幅值的变化而变化。
当输入信号幅值较大时,滤波后的输出信号幅值也较大;当输入信号幅值较小时,滤波后的输出信号幅值也相应减小。
此外,在实验过程中还需注意以下几点:1. 二极管接法要正确,否则会导致整流不完整甚至烧毁二极管。
2. 滤波电容容量要合适,过小会导致滤波效果不佳,过大会增加成本和体积。
3. 负载电阻要根据实际需要选择合适的阻值,过小会导致电流过大甚至烧毁元件,过大会降低输出功率。
六、实验结论通过本次实验,我们掌握了降压斩波电路的工作原理及其在电子电路中的应用。
同时,我们还了解到了二极管接法、滤波电容容量和负载电阻选择等方面的注意事项。
这些知识对于我们今后的学习和工作都具有重要意义。
电子电力技术实训报告题目:升降压复合斩波电路实验系别:专业:姓名:学号:指导老师设计时间: 2009.12.28--12.31目录封面 (1)目录 (2)前言 (3)第一章课程设计目的与要求一、课程设计目的........................... .. (4)二、课程设计的预备知识 (4)三、课程设计要求 (4)第二章斩波电路的控制与驱动电路一、SG3525内部结构 (5)二、控制驱动电路 (5)三、PWM控制直流电机原理 (6)第三章升降压复合斩波电路实验一、实验目的 (7)二、实验所需挂件及附件 (7)三、实验线路及原理 (7)四、实验内容 (9)五、实验方法 (9)六、注意事项 (12)七、结论 (13)第四章心得体会一、心得体会 (14)第五章鸣谢与参考文献一、鸣谢 (14)二、参考文献.......................................................... . (14)前言直流传动是斩波电路应用的传统领域,而开关电源则是斩波电路应用的新领域,前者的应用是逐渐萎缩,而后者的应用方兴未艾、欣欣向荣,是电力电子领域的一大热点。
DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。
直流变换电路的用途非常广泛,包括直流电动机传动、开关电源、单相功率因数校正,以及用于其他领域的交直流电源。
直流斩波器在把直流变换成另一电压直流的过程中,依靠的是脉冲宽度调制(PWM)的工作方式,因此直流斩波调速系统也称直流脉宽调速系统。
斩波器的工作方式有:脉宽调制方式(Ts不变,改变ton)和频率调制方式(ton不变,改变Ts)两种。
前者较为通用,后者容易产生干扰。
当今世界软开关技术使得DC/DC变换器发生了质得变化和飞跃。
直流斩波电路中的主开关元件需要有自关断能力,采用晶闸管则需附加强迫关断电路,且晶闸管的开关频率太低,所以目前的斩波电路已经不再采用晶闸管的了。
实验四直流降压斩波电路一实验目的1.理解降压斩波电路的工作原理及波形情况,掌握该电路的工作状态及结果。
2.研究直流降压斩波电路的全过程3.掌握降压斩波电路MATLAB的仿真方法,会设置各模块的参数。
二预习内容要点1. 降压斩波电路工作的原理及波形2. 输入值输出值之间的关系三实验内容及步骤1.降压斩波电路(Buck Chopper)的原理图如图所示。
图中V为全控型器件,选用IGBT。
D为续流二极管。
由图4-12b中V的栅极电压波形UGE可知,当V处于通态时,电源Ui向负载供电,UD=Ui。
当V处于断态时,负载电流经二极管D续流,电压UD近似为零,至一个周期T结束,再驱动V导通,重复上一周期的过程。
负载电压的平均值为:图式中ton为V处于通态的时间,toff为V处于断态的时间,T为开关周期,α为导通占空比,简称占空比或导通比(α=ton/T)。
由此可知,输出到负载的电压平均值UO最大为Ui,若减小占空比α,则UO随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。
2.(1)器件的查找以下器件均是在MATLAB R2017b环境下查找的,其他版本类似。
有些常用的器件比如示波器、脉冲信号等可以在库下的Sinks、Sources中查找;其他一些器件可以搜索查找(2)连接说明有时查找出来的器件属性并不是我们想要的例如:示波器可以双击示波器进入属性后进行设置。
(3)参数设置1.双击直流电源把电压设置为200V。
负载电动势20V。
’2.双击脉冲把周期设为,占空比设为30%,40%,80%,(可多设几组)延迟角设为30度,由于属性里的单位为秒,故把其转换为秒即,30×360;3.双击负载把电阻设为10Ω,电感设为;4.双击示波器把Number of axes设为3,同时把History选项卡下的Limit data points to last前面的对勾去掉;5.晶闸管和二极管参数保持默认即可四仿真及其结果仿真波形及分析占空比为40%占空比为60%占空比为80%图仿真波形图占空比从图中可以看出输出电压随占空比的变化而变化其关系为U0=ɑUi五、实验总结IGBT的门极驱动条件密切地关系到他的静态和动态特性。
■降压斩波电路(Buck Chopper )◆电路分析☞使用一个全控型器件V ,若采用晶闸管,需设置使晶闸管关断的辅助电路。
☞设置了续流二极管VD ,在V 关断时给负载中电感电流提供通道。
☞主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。
◆工作原理☞ t=0时刻驱动V 导通,电源E 向负载供电,负载电压o u =E ,负载电流o i 按指数曲线上升。
☞ t=1t 时控制V 关断,二极管VD 续流,负载电压o u 近似为零,负载电流呈指数曲线下降,通常串接较大电感L 使负载电流连续且脉动小。
降压斩波电路的原理图及波形a )电路图b )电流连续时的波形c )电流断续时的波形◆基本的数量关系 电流连续时负载电压的平均值为*1式中,on t 为V 处于通态的时间,off t 为V 处于断态的时间,T 为开关周期,α为导通占空比,简称占空比或导通比。
*2 负载电流平均值为:电流断续时,负载电压o u 平均值会被抬高,一般不希望出现电流断续的情况。
斩波电路有三种控制方式☞脉冲宽度调制(PWM ):T 不变,改变on t 。
☞频率调制:on t 不变,改变T 。
☞混合型:on t 和T 都可调,改变占空比5.1.2 升压斩波电路■升压斩波电路◆工作原理☞假设L 和C 值很大。
☞ V 处于通态时,电源E 向电感L 充电,电流恒定I1,电容C 向负载R 供电,输出电压Uo 恒定。
☞ V 处于断态时,电源E 和电感L 同时向电容C 充电,并向负载提供能量。
◆基本的数量关系☞当电路工作于稳态时,一个周期T 中电感L 积蓄的能量与释放的能量相等,即*3*4 即: E E T t E t t t U on off on on o α==+=RE U I m o o-=()off o on t I E U t EI 11-=E tT E t t t U off off off on o =+=☞将升压比的倒数记作β,即Toff t =β,则β和导通占空比α有如下关系 : *5*5还可以表示成 *6输出电压高于电源电压,关键有两个原因:一是L 储能之后具有使电压泵升的作用,二是电容C 可将输出电压保持住。
降压斩波电路实验报告篇一:电力电子实验报告直流斩波电路的性能研究实验五直流斩波电路的性能研究(六种典型线路)一、实验目的 (1)熟悉直流斩波电路的工作原理。
(2)熟悉各种直流斩波电路的组成及其工作特点。
(3)了解 PWM 控制与驱动电路的原理及其常用的集成芯片。
二、实验所需挂件及附件三、实验线路及原理 1、主电路①、降压斩波电路(Buck Chopper)降压斩波电路(Buck Chopper)的原理图及工作波形如图4-12 所示。
图中 V 为全控型器件,选用 IGBT。
D 为续流二极管。
由图 4-12b 中 V 的栅极电压波形 UGE 可知,当 V 处于通态时,电源 Ui 向负载供电,UD=Ui。
当 V 处于断态时,负载电流经二极管 D 续流,电压 UD 近似为零,至一个周期 T 结束,再驱动 V 导通,重复上一周期的过程。
负载电压的平均值为:U o式中 ton 为 V 处于通态的时间,toff 为 V 处于断态的时间,T 为开关周期,α为导通占空比,简称占空比或导通比(α=ton/T)。
由此可知,输出到负载的电压平均值 UO 最大为 Ui,若减小占空比α,则 UO 随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。
ton tU i on U ??aU i ton ? t offT iUiCE GUGEt Ttofft+L1C1+ Uo-UD UOUiVUD -t t-(b)波形图图 4-12 降压斩波电路的原理图及波形(Boost Chopper)(Boost Chopper)的原理图及工作波形如图 4-13 所示。
电路也使用一个全控型器件 V。
由图 4-13b 中 V 的栅极电压波形 UGE 可知,当 V 处于通态时,电源 Ui 向电感 L1 充电,充电电流基本恒定为 I1,同时电容 C1 上的电压向负载供电,因 C1 值很大,基本保持输出电压 UO 为105恒值。
设 V 处于通态的时间为 ton,此阶段电感 L1 上积蓄的能量为 UiI1ton。