浙教版八年级下数学竞赛练习卷(1)
- 格式:doc
- 大小:76.00 KB
- 文档页数:2
初二数学竞赛试卷姓名 得分一、填空题(每小题3分,共30分)1.当x 时,x 23-有意义,x 时12+-x 有意义 2.当x= 时,分式1036522-++-x x x x 的值为零。
3.已知方程02)6(92=-++-k x k x 有两个相等的实数根,则k= 这两个相等的根是 4.如图,在△ABC 中,AB=AC ,EF 是AB 的垂直平分线,若BC=10,△BFC 的周长为22,则△ABC 的周长是5.若实数a,b 满足039)2(22=+-+-a ab a 则a= b=6.若 —2<x<2 化简=--+-x x x 34427.若322-+-a ax x 是一个完全平方式,则a 的值8.已知 521=+x x ,则=-xx 19.m 为 时,关于x 的方程234222+=-+-x x mx x 会产生增根10.如图,若直角三角形两直角边上的中线AE,BD的长分别为5和102 则斜边AB=A BCEF C D E二、选择题(每小题3分,共30分)1.已知方程032=+-x kx 有两个实数根,则k 的取值范围---------------------( )A 0121≠≤k k 且 B 121≥k C 121≤k D 0121≠<k k 且 2.如果等腰三角形的两条边长是方程01222=+-x x 的两个根,则它的周长是( )A 123123-+或B 123+C 123-D 122+3.三角形内有一点,这点到三个顶点的距离相等,则这个点一定三角形的--( )A 三边垂直平分线的交点B 三条中线的交点C 三条高线的交点D 三条内角平分线的交点 4.计算56145614--+的值------------------------------------------------------( )A 1 B5 C 52 D 55.一项工程,甲队独做需用m 天,乙队独做需用n 天,若甲,乙两队合作完成这项工程,所需天数------------------------------------------------------------------------------( )A n m 11+B mn n m +C n m mn +D n m +6.已知,b a b a +=+111那么baa b +等于------------------------------------------------( )A —1B 1C —2D 2 7.若0<a<1,则a a aa +⨯+÷-+11)11(2122可化简为--------------------------------( ) Aa a+-11 B 11+-a a C 21a - D 12-a 8.已知542c b a ==则cb a cb a +--+2的值------------------------------------------------------( )A 1B 3C 921D 1139.如图,S △ABC=6,BD :DC=3:5,AK :KD=4:5,则 S △CDK=------------------( )A 15B 12.5C 7.5D 14.510.若yx y yx y y x +--==则51,31等于-----------------------------------------( )A 31B 3C 31- D —3三.解答题1. 解方程:(每小题5分,共10分)(1)0242142222=+-+---xx x x x x(2)1211)10)(9(1)1(1)1(1=+++⋅⋅⋅+++-x x x x x x2.方程0)2443()1(2222=++++++b ab a x a x 有实根,求a,b 的值(10分)3.甲乙两车分别从A ,B 两地相向而行,已知甲车比乙车早出发15分钟,甲,乙两车的速度比2:3,相遇时甲车比乙车少走6千米,并且乙车从B 地到A 地需要211小时,求A ,B 两地相距的距离为多少千米?(10分)4.如图,Rt △ABC 中 ∠C=90o,D 为AB 上点,作DE ⊥BC 于E ,若BE=AC ,BD=21,DE+BC=1求证:∠ABC=30o (10分)ACEB D。
绝密★启用前浙教版2018-2019学年八年级数学竞赛试卷A题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共8小题,3*8=24)1.设a=﹣(﹣2)2,b=﹣(﹣3)3,c=﹣(﹣42),则﹣[a﹣(b﹣c)]=()A.15 B.7 C.﹣39 D.472.方程的解是x=()A.B.﹣C.D.﹣3.以下三个判断中,正确的判断的个数是()(1)x2+3x﹣1=0,则x3﹣10x=﹣3(2)若b+c﹣a=2+,c+a﹣b=4﹣,a+b﹣c=﹣2,则a4+b4+c4﹣2(a2b2+b2c2+c2a2)=﹣11 (3)若a2=a1q,a3=a2q,a4=a3q,则a1+a2+a3+a4=(q≠1)A.0 B.1 C.2 D.34.如图,D,E,F为等边三角形ABC三边中点,AE、BF、CD交于O,DE,EF,FD为三条中位线,则图中能数出不同的直角三角形的个数是()A.36 B.32 C.30 D.285.5名学生身高两两不同,把他们按从高到低排列,设前三名的平均身高为a米,后两名的平均身高为b米.又前两名的平均身高为c米,后三名的平均身高为d米,则()A.B.C.D.以上都不对6.把红珠、蓝珠各四颗串成一条(项链可以旋转,翻转),则实质不同的串法数是()A.6 B.7 C.8 D.107.能整除任意5个连续整数之和的最大整数是()A.1 B.2 C.3 D.58.一个屏幕封闭图形,只要有一条边不是直线段,就称为曲边形,例如圆、弓形、扇形等都是曲边形,则如图中,可以数出()个不同的曲边形.A.42 B.36 C.30 D.28第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,3*8=24)9.已知a﹣b=4,ab+c2+4=0,则a+b+c的值为.10.已知,则的值为.11.在平面直角坐标系中,点P[m(m+1),m﹣1](m为实数)不可能在第象限.12.有一只手表每小时比准确时间慢3分钟,若在清晨4:30与准确时间对准,则当天上午手表指示的时间是10:50,准确时间应该是.13.如图,P是平行四边形ABCD内一点,且S△P AB=5,S△P AD=2,则阴影部分的面积为.14.若10个数据的平均数是,平方和是10,则方差是.15.若直线323x+457y=1103与直线177x+543y=897的交点坐标是(a,b),则a2+2004b2的值是.16.某校组织师生春游,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可以少租一辆,且余30个座位.则该校去参加春游的人数为;若已知45座客车的租金为每辆250元,60座客车租金为每辆300元,这次春游同时租用这两种客车,其中60座客车比45座客车多租1辆,所以租金比单独一种客车要节省,按这种方案需要租金元.评卷人得分三.解答题(共4小题,52分)17.(10分)已知关于x、y的方程组:,求出所有整数a,使得方程组有整数解(即x、y都是整数),并求出所有的整数解.18.(12分)求出所有的正整数n,使得12+22+32+42+…+n2﹣(n+1)2﹣(n+2)2﹣(n+3)2﹣…﹣(2n﹣1)2﹣(2n)2=﹣10115.(参考公式:1+2+3+4+…+n=)19.(15分)某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.根据上表的表格中的数据,求a、b、c.20.(15分)如图,把一张长10cm,宽8cm的长方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使无盖长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你认为折合而成的无盖长方体盒子的侧面积有可能等于52cm2吗?请说明理由;(3)如果把长方形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的长方形,然后折合成一个有盖的长方体盒子,那么它的侧面积(指的是高为剪去的正方形边长的长方体的侧面积)可以达到30cm2吗?请说明理由.参考答案与试题解析1.解:a=﹣(﹣2)2=﹣4,b=﹣(﹣3)3=27,c=﹣(﹣42)=16,∴﹣[a﹣(b﹣c)],=﹣[﹣4﹣(27﹣16)],=15.故选:A.2.解:移项合并同类项得:﹣[﹣(﹣1﹣x)﹣]=,∴﹣(﹣1﹣x)﹣=﹣,移项合并同类项得:﹣(﹣1﹣x)=,∴﹣1﹣x=﹣,∴x=﹣,故选:D.3.解:(1)x3﹣10x=x(x2﹣10)=x(1﹣3x﹣10)=﹣3(x2+3x)=﹣3,故(1)正确;(2)a4+b4+c4﹣2(a2b2+b2c2+c2a2)=(a2﹣b2﹣c2)2﹣4b2c2=(a2﹣b2﹣c2+2bc)(a2﹣b2﹣c2﹣2bc)=(a+b﹣c)(a﹣b+c)(a+b+c)(a﹣b﹣c)又知b+c﹣a=2+,c+a﹣b=4﹣,a+b﹣c=﹣2,可得a+b+c=4+,故a4+b4+c4﹣2(a2b2+b2c2+c2a2)=﹣11,故(2)正确;(3)当q=1时,a1+a2+a3+a4=4a1,当q≠1时,a1+a2+a3+a4=,故(3)正确,正确的有3个,故选D.4.解:①∵DE,EF,FD为等边△ABC三条中位线,∴AB=AC=BC,∴EF AB,ED AC,∴四边形CEDF是菱形,∴EF⊥CD,∴在菱形CEDF中有6个不同的直角三角形:Rt△CEG、Rt△CFG、Rt△DGE、Rt△DFG、Rt△EOG、Rt△FOG;同理,在菱形ADEF、菱形BEFD中各有6个不同的直角三角形;②∵D为等边三角形ABC三边中点,∴CD⊥AB,∴△ADC、△BDC、AOD、△BOD是直角三角形;同理,以BF、AE为直角边的三角形各有4个;综上所述,图中能数出的直角三角形由6×3+4×3=30(个);故选:C.5.解:∵3a+2b=2c+3d,∵a>d,∴2a+2b<2c+2d,∴a+b<c+d,∴<,即>,故选:B.6.解:①第一个●和第二个●两珠间隔0个蓝珠,即●●…;②第一个●和第二个●两珠间隔1个蓝珠,即●○●…;③第一个●和第二个●两珠间隔2个蓝珠,即●○○●…;④第一个●和第二个●两珠间隔3个蓝珠,即●○○○●…;⑤第一个●和第二个●两珠间隔4个蓝珠,即●○○○○●…;⑥第二个●和第三个●两珠间隔2个蓝珠,即●●○○…;⑦第二个●和第三个●两珠间隔3个蓝珠,即●●○○○…;⑧第二个●和第三个●两珠间隔4个蓝珠,即●●○○○○••;∵项链可以旋转,翻转,∴第三个●和第四个●两珠间隔珠的情况和第一和第二红珠间隔相同,以此类推…∴共8种方法.故选:C.7.解:设五个连续整数分别为a﹣2,a﹣1,a,a+1,a+2,所以这五个数的和为a﹣2+a﹣1+a+a+1+a+2=5a,因为5a是5的倍数,所以不论a为何值,五个连续整数的和都可以被5整除.故选:D.8.解:数曲边形,一定要有弧,五角星把圆周分成5个弧,我们按含有1个弧、2个弧、…、5个弧来分类,仅含1个弧有两种情况,每种情况按5个弧转一圈各有5个曲边形,共有5+5个;仅含2个弧可以分相连和不相连2种情况,相连的2个弧,按5个弧转一圈有5个曲边形;不相连的2个弧,似乎又有2种情况,按5个弧转一圈各有5个曲边形,但实际上转圈数时这两种情况是重复的,故不相连的2个弧可数出5个曲边形;仅含3个弧可以分相连和不相连2种情况,每种情况按5个弧转一圈可数出有5个曲边形,共有5+5个;仅含4个弧的情况,每种情况按5个弧转一圈可数出有5个曲边形;含全部5个弧的情况,1个曲边形.综上,一共有5+5+5+5+5+5+5+1=36个.故选:B.9.解:∵a﹣b=4,∴a=b+4,代入ab+c2+4=0,可得(b+4)b+c2+4=0,(b+2)2+c2=0,∴b=﹣2,c=0,∴a=b+4=2.∴a+b+c=0.故答案为:0.10.解:根据非负数性质可知a﹣1=0且ab﹣2=0解得a=1 b=2则原式=裂项得;故答案为11.解:(1)当m(m+1)>0时,有或,所以m>0或m<﹣1,因此m﹣1>﹣1或m﹣1<﹣2,即P[m(m+1),m﹣1]可能经过第一或四象限.(2)当m(m+1)<0时,有或,所以﹣1<m<0,因此﹣2<m﹣1<﹣1,即P[m(m+1),m﹣1]经过第三象限.综合得,P[m(m+1),m﹣1]不经过第二象限.12.解:设标准时间经过了x分钟,则57:60=380:x.解得x=400.400分钟合6小时40分钟,再加4小时30分钟=11小时10分钟.所以准确时间应该是11:10.故应填:11:10.13解:∵S△P AB+S△PCD=S▱ABCD=S△ACD,∴S△ACD﹣S△PCD=S△P AB,则S△P AC=S△ACD﹣S△PCD﹣S△P AD,=S△P AB﹣S△P AD,=5﹣2,=3.故答案为:3.14.解:方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=[x12+x22+…+x n2﹣2(x1+x2+…+x n)+n2]=[x12+x22+…+x n2﹣2×n+n2]=[x12+x22+…+x n2]﹣2=×10﹣()2=.故填.15.解:把323x+457y=1103与177x+543y=897联立,解得,∴a=2,b=1,因此a2+2004b2=2008.故答案为:2008.16.解:设该校去参加春游的人数为a人,则有,解得:a=270设租用45座客车x辆,则租用60座客车(x+1)辆,由题意若单独租45座客车需要270÷45=6辆,租金250×6=1500元,若单独租60座客车需要(270+30)÷60=5辆,租金300×5=1500元,则有:,解得:2≤x<∵x为正整数∴x=2即租45座客车2辆,60座客车3辆,此时租金为:250×2+300×3=1400(元).故答案为270,1400.17.解:解原方程组得,,假设x=1时,可求得a=﹣7,y=﹣1;同样设x为其他整数,a、y的值都不能为整数,∴原方程组的整数解为.18.解:原式可化为:12﹣(n+1)2+22﹣(n+2)2+…n2﹣(2n)2=﹣10115,﹣n(n+2)﹣n(n+4)﹣n(n+6)﹣…﹣n(3n)=﹣10115,﹣n(n+2+n+4+n+6+…+3n﹣2+3n)=﹣10115,﹣n3﹣2n(1+2+3+…+n)=﹣10115,﹣n3﹣2n()=﹣10115,2n3+n2=10115∴n=17.19.解:设每月用水量为xm3,支付水费为y元.则y=,由题意知:0<c≤5∴8<8+c≤13从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得解得b=2,2a=c+19 ⑤再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9﹣a)+c,即2a=c+17 ⑥⑥与⑤矛盾.故9≤a,则一月份的付款方式应选①式,则8+c=9,∴c=1代入⑤式得,a=10.答:a=10,b=2,c=1.20.解:(1)设剪去的正方形边长为xcm,由题意,得(10﹣2x)(8﹣2x)=48,即x2﹣9x+8=0解得x1=8(不合题意,舍去),x2=1.∴剪去的正方形的边长为1cm.…(2分)(2)折合而成的无盖长方体盒子的侧面积不可能等于52 cm2,理由如下:设剪去的正方形边长为xcm,由题意,得2[x(10﹣2x)+x(8﹣2x)]=52…(2分)整理得2x2﹣9x+13=0∵△=b2﹣4ac=81﹣4×2×13<0,∴原方程没有实数解.即折合而成的无盖长方体盒子的侧面积不可能等于52 cm2.…(2分)(3)设剪去的正方形边长为xcm,若按图1所示的方法剪折,解方程,得该方程没有实数解.…(3分)若按图2所示的方法剪折,解方程,得.∴当按图2所示的方法剪去的正方形边长为cm或3cm时,能使得到的有盖长方体盒子的侧面积达到30 cm2.…(3分)。
A浙教版八年级数学竞赛班级 姓名 成绩一、选择题(每题5分,共30分) 1、若032≥≥a a ,则( )A 、3a a ≥B 、3a a ≤C 、1≥aD 、10<<a 2、在中,AB=3,BC=4,ABC ∠的平分线把长边AD 分成的 两条线段的比是 ( )A 3:1 B3:2 C4:1 D 4:23、在平面直角坐标系中,称横、纵坐标均为整数的点为整点,如图 (1)所示的正方形内(包括边界)整点的个数是( ) A .13 B .21 C .17 D .254、如图(2)将六边形ABCDEF 沿着直线GH 折叠,使点A 、B 落在 六边形CDEFGH 的内部,则下列结论一定正确的是( ) A .∠1+∠2=900°-2(∠C+∠D+∠E+∠F ) B .∠1+∠2=1080°-2(∠C+∠D+∠E+∠F ) C .∠1+∠2=720°-(∠C+∠D+∠E+∠F )D .∠1+∠2=360°-12(∠C+∠D+∠E+∠F )5、如图,菱形ABCD 中,∠ABC=120°,F 是DC 的中点, AF 的延长线交BC 的延长线于E,则直线BF 与 直线DE 所夹的锐角的度数为( ) A .30° B .40° C .50° D .60°6、某公司的员工分别住在A 、B 、C 三个小区,A 区住员工 30人,B 区住员工15人,C 区住员工10人,三个小区在 一条直线上,位置如图1所示,若公司的班车只设一个停 靠点,为使所有员工步行到停靠点的路程总和最短,那么 停靠点的位置应该在( )A 、A 区B 、B 区C 、C 区D 、A 、B 、C 三区以外的一个位置 二、填空题(每题5分,共30分) 7、=++++++++201020091431321211 。
8、如图,是由10把相同的折扇组成的“蝶恋花”(图a )和梅花图 案(图b)(图中的折扇无重叠)。
2020-2021学年浙江省八年级下学期数学竞赛卷1 一.选择题(共8小题)1.设a=﹣2,则代数式a3+4a2﹣a+6的值为()A.6B.4C.2+2D.2﹣2【解答】解:∵a=﹣2,∴(a+2)2=()2,即a2+4a=1,∴a3+4a2﹣a+6=a(a2+4a)﹣a+6=a×1﹣a+6=6.故选:A.2.关于x的方程x2﹣bx+4=0有两个相等的正实数根,则b的值为()A.4B.﹣4C.﹣4或4D.0【解答】解:∵关于x的方程x2+bx+4=0有两个相等的正实数根,∴△=b2﹣4×1×4=b2﹣16=0,解得:b=4.故选:A.3.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.450°C.540°D.720°【解答】解:如图,在四边形ACEH中,∠A+∠C+∠E+∠1=360°,在四边形BDFP中,∠B+∠D+∠F+∠2=360°,∵180°﹣∠1+180°﹣∠2+∠G=180°,∴∠A+∠C+∠E+∠1+∠B+∠D+∠F+∠2+180°﹣∠1+180°﹣∠2+∠G=360°+360°+180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=360°+180°=540°.故选:C.4.如图,在Rt△ABC中,∠C=90°,AC=3,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,且OC=4,那么BC的长等于()A.3B.5C.2D.【解答】解:如图,作EQ⊥x轴,以C为坐标原点建立直角坐标系,CB为x轴,CA为y轴,则A(0,3).设B(x,0),由于O点为以AB一边向三角形外作正方形ABEF的中心,∴AB=BE,∠ABE=90°,∵∠ACB=90°,∴∠BAC+∠ABC=90°,∠ABC+∠EBQ=90°,∴∠BAC=∠EBQ,在△ABC和△BEQ中,∴△ACB≌△BQE(AAS),∴AC=BQ=3,BC=EQ,设BC=EQ=x,∴O为AE中点,∴OM为梯形ACQE的中位线,∴OM=,又∵CM=CQ=,∴O点坐标为(,),根据题意得:OC=4=,解得x=5,则BC=5.故选:B.5.如图正方形ABCD的顶点A在第二象限y=图象上,点B、点C分别在x轴、y轴负半轴上,点D在第一象限直线y=x的图象上,若S阴影=,则k的值为()A.﹣1B.C.D.﹣2【解答】解:如图,过点A作AG⊥x轴,过点D作DE⊥x轴,作DF⊥AG交y轴于H,∴四边形DHOE是矩形∵∠ADC=∠HDE=90°∴∠ADC﹣∠FDC=∠HDE﹣∠FDC∴∠ADF=∠CDE,∵点D在第一象限直线y=x的图象上,∴DH=DE,且∠ADF=∠CDE,∠DHM=∠DEN∴△DHM≌△DEN(ASA)∴S△DHM=S△DNE,∴=S四边形DHOE=DH×DE∴DH=DE=同理可证:△AFD≌△BGA≌△COB≌△DHC∴AF=HD=BG=OC,AG=DF=BO=HC∴OC=HD==AF=BG∴CH=∴AG==BO∴GO=∴点A坐标(﹣,)∴k=﹣×=﹣故选:B.6.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54°B.60°C.66°D.72°【解答】解:过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;连接EG,在Rt△BEC中,EG是斜边上的中线,则BG=GE=FG=BC;∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°﹣108°=72°.故选:D.7.若m是关于x的方程x2﹣2020x+1=0的根,则(m2﹣2020m+4)•(m2﹣2020m﹣5)的值为()A.18B.﹣18C.20D.﹣20【解答】解:∵m是关于x的方程x2﹣2020x+1=0的根,∴m2﹣2020m+1=0,∴m2﹣2020m=﹣1,∴(m2﹣2020m+4)•(m2﹣2020m﹣5)=(﹣1+4)×(1﹣5)=﹣18.故选:B.8.如图,四边形OABC为平行四边形,A在x轴上,且∠AOC=60°,反比例函数y=(k >0)在第一象限内过点C,且与AB交于点E.若E为AB的中点,且S△OCE=8,则OC的长为()A.8B.4C.D.【解答】解:过点C作CD⊥x轴于点D,过点E作EF⊥x轴于点F,如图:∵四边形OABC为平行四边形,∴OC=AB,OC∥AB,∴∠EAF=∠AOC=60°,在Rt△COD中,∵∠DOC=60°,∴∠DOC=30°,设OD=t,则CD=t,OC=AB=2t,在Rt△EAF中,∵∠EAF=60°,AE=AB=t,∴AF=,EF=AF=t,∵点C与点E都在反比例函数y=的图象上,∴OD×CD=OF×EF,∴OF==2t,∴OA=2t﹣=t,∴S四边形OABC=2S△OCE,∴t×t=2×8,∴解得:t=(舍负),∴OC=.故选:D.二.填空题(共6小题)9.已知关于x的一元二次方程(1﹣2k)x2﹣2x﹣1=0有两个不相等的实数根,则k 的取值范围﹣3≤k<4且k≠.【解答】解:∵关于x的一元二次方程(1﹣2k)x2﹣2x﹣1=0有两个不相等的实数根,∴,解得:﹣3≤k<4且k≠.故答案为:﹣3≤k<4且k≠.10.若<0,化简﹣﹣3的结果为﹣2x.【解答】解:由题意得,或,解得,﹣2<x<,则原式=|5﹣3x|﹣|x﹣2|﹣3=5﹣3x﹣2+x﹣3=﹣2x,故答案为:﹣2x.11.如图,双曲线y=(x>0)的图象上.△OA1B1,△A1A2B2,…,△A n﹣1A n B n均为正三角形,过B1作B1C⊥x轴于C,过B2作B2D⊥x轴于D,则点A n的坐标为(,0).【解答】解:∵点B1,B2在双曲线y=(x>0)的图象上,∴OC•B1C=3,∵△OA1B1,△A1A2B2,…,△A n﹣1A n B n均为正三角形,∴B1C=OC,∴OC=,∴OA1=2,∴;连接OB2,则OD•B2D=3,∵OD=OA1+A1D=2+,,∴∴,∴,同理可得,,…由上可知,.故答案为:(,0).12.P是正方形ABCD内一点,AB=5,P A=,PC=5,则PB=或2.【解答】解:如图所示,∴PB==或PB==2,故答案为:或2.13.已知x1,x2,x3,x4,x5为正整数,任取四个数求和,只能得到44,45,46,47这样四个结果,则这5个数的众数是11.【解答】解:根据题意,设这个重复的和为z,可得:(x1+x2+x3+x4+x5)×4=44+45+46+47+z,可得:z=46,可得五个数据之和为57,所以五个数据为:10,11,12,13,11,故答案为:1114.如图,已知直线y=kx(k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连接AC.若△ABC是等腰三角形,则k的值是或.【解答】解:∵点B是y=kx和y=的交点,y=kx=,∴点B坐标为(,2),同理可求出点A的坐标为(,),∵BD⊥x轴,∴点C横坐标为,纵坐标为,∴BA=,AC=,BC=,∴BA2﹣AC2=k>0,∴BA≠AC,若△ABC是等腰三角形,①当AB=BC时,则=,解得:k=±(舍去负值);②当AC=BC时,同理可得:k=;故答案为:或.三.解答题(共4小题)15.已知x﹣y=6,,求的值.【解答】解:∵x﹣y=6,∴,∴,∵+=•+•=(+)=9,∴,即,∴=(﹣)=×=4.16.已知实数a,b,c满足:a+b+c=2,abc=4.(1)求a,b,c中的最大者的最小值;(2)求|a|+|b|+|c|的最小值.【解答】解:(1)不妨设a是a,b,c中的最大者,即a≥b,a≥c,由题设知a>0,且b+c=2﹣a,.于是b,c是一元二次方程的两实根,≥0,a3﹣4a2+4a﹣16≥0,(a2+4)(a﹣4)≥0.所以a≥4.又当a=4,b=c=﹣1时,满足题意.故a,b,c中最大者的最小值为4.(2)因为abc>0,所以a,b,c为全大于0或一正二负.①若a,b,c均大于0,则由(1)知,a,b,c中的最大者不小于4,这与a+b+c=2矛盾.②若a,b,c为或一正二负,设a>0,b<0,c<0,则|a|+|b|+|c|=a﹣b﹣c=a﹣(2﹣a)=2a﹣2,由(1)知a≥4,故2a﹣2≥6,当a=4,b=c=﹣1时,满足题设条件且使得不等式等号成立.故|a|+|b|+|c|的最小值为6.17.如图,四边形ABCD是矩形,E是对角线BD上不同于B、D的任意一点,AF=BE,∠DAF=∠CBD.(1)求证:△ADF≌△BCE;(2)求证:四边形ABEF是平行四边形;(3)试确定当点E在什么位置时,四边形AEDF为菱形?并说明理由.【解答】(1)证明:∵四边形ABCD是矩形,∴AD=BC,在△ADF和△BCE中,,∴△ADF≌△BCE(SAS);(2)证明:∵四边形ABCD是矩形,∴AD∥BC,∠BAD=90°,∴∠DBC=∠ADB,∵∠DAF=∠CBD,∴∠DAF=∠ADB,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形;(3)解:当E为BD的中点时,四边形AEDF变为菱形,理由如下:如图所示:∵E为BD的中点,∠BAD=90°,∴AE=BE=DE,∵AF=BE,AF∥BD,∴AF∥DE,AF=DE,AF=AE,∴四边形AEDF是平行四边形,∴四边形AEDF是菱形.18.请你利用直角坐标平面上任意两点(x1,y1),(x2,y2)间的距离公式d=解答下列问题:已知:反比例函数y=与正比例函数y=x的图象交于A,B两点(A在第一象限),点F1(﹣2,﹣2),F2(2,2)在直线y=x上.设点P(x0,y0)是反比例函数y=图象上的任意一点,记点P与F1,F2两点之间的距离之差d=|PF1﹣PF2|.(1)试比较线段AB的长度与d的大小,并由此归纳出双曲线的一个重要定义(用简练的语言表述).(2)现请你在反比例函数y=第一象限内的分支上找一点P,使点P到F2(2,2)和点C(6,4)的距离之和最小,求点P的坐标.【解答】:解由y=和y=x组成的方程组可得A、B两点的坐标分别为,(,)、(﹣,﹣),线段AB的长度=4.∵点P(x0,y0)是反比例函数y=图象上一点,∴y0=.∴PF1==||,PF2==||,∴d=|PF1﹣PF2|=|||﹣|||,当x0>0时,d=4;当x0<0时,d=4.因此,无论点P的位置如何,线段AB的长度与d一定相等.由此可知:到两个定点的距离之差(取正值)是定值的点的集合(轨迹)是双曲线.(2)由条件PF2=PF1﹣4,知PF2+PC=PF1+PC﹣4,由F1,﹣P,C三点共线时最小,此时可解得P(2,1).。
浙教版八年级数学竞赛试题卷(一、精心选一选(本题有10个小题,每小题4分,共40分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在相应的括号内。
1. 不论x 、y 为何实数,346422+-+-y y xy x 的值总是 ( )A.正数B.负数 C . 0 D. 非负数2. 一次函数y=ax-3a+1的图象必通过一定点,此定点坐标是 ( ) A. (1,3) B. (0,1) C. (3,1) D.(0,3)3.若关于x 的方程x 2-2k x-1=0有两个不相等的实数根,则直线y=kx +3必不经过 ( )A. 第三象限B. 第四象限C. 第一、二象限D. 第三、四象限 4.某商品的进价是100元,标价为150元,商店要求以利润率不低于5%的售价打折出售,售货员最低可打 ( )A.8折B. 7折C.6折D. 9折 5.梯形的两底角之和为900,上底长为5,下底长为11,则连结两底中点的线段长是 ( )A. 3B.4C.5D.6 6.已知M (3,2)、N (1,-1),点P 在y 轴上,使PM+PN 最短,则点P 的坐标是( )A .(0,21-) B. (0,0) C. (0,611) D.(0,41-)7.如果等腰三角形一腰上的高线等于腰长的一半,那么它的底角等于 ( )A .750 B. 150 C. 300 D 750或1508.如图,D 、E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,∠α=300时,则∠CDE ( ) A .150 B.300 C.450 D.2009.某商店有5袋面粉,各袋重量在25~30公斤之间,店里有一磅秤,但只有能称50~70公斤重量的秤砣,现要确定各袋面粉的重量,至少要称 ( )A .4次B .5次C .6次 D. 7次10.如图,正方形ABCD 的边长为2,点E 在AB 边上.四边形EFGB 也为正方形,设△AFC 的面积为S ,则 ( ) A .S=2 B .S=2.4 C .S=4 D .S 与BE 长度有关二.细心填一填(本题有10个小题,每小题4分,共40分)11.如果不等式组⎩⎨⎧<->-01a x x 无解,则a 的取值范围是____________12.如图的号码是由14位数字组成的,每一位数字写在下面的方格中,若任何相邻的三个数字之和都等于14,则x 的值等于13. 若一个数的平方根等于这个数的立方根,则这个数是14..如图是2002年北京第24届国际数学家大会会标,它由4个全等 的直角三角形拼合而成,若图中大、小正方形的面积分别为13和1, 则直角三角形的较长直角边长为 .15.如图△ABC 中,AC >AB ,AB=4,AC=x ,AD 平分∠BAC ,BD ⊥AD 于D ,点E 是BC 的中点,DE=y ,则y 关于x 的 函数关系式为 16.已知1=-b a ,122-=-b a ,则=-20082008b a_________17.已知方程0119992001)2000(2=-⨯-x x 较大的根为α,方程0199919982=-+x x 较小的根为βαβ-则,的值是 。
八年级下数学竞赛试题浙八年级下数学竞赛试题浙版一、选择题(每题3分,共30分)1. 已知一个直角三角形的两个直角边分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 82. 一个数的立方根等于它本身,这个数可以是:A. 1B. -1C. 0D. 1和-13. 一个圆的半径为5,求圆的面积。
A. 25πB. 50πC. 75πD. 100π4. 下列哪个数是无理数?A. 3.14B. 0.333...C. πD. √25. 一个长方体的长、宽、高分别是2、3和4,求其体积。
A. 24B. 12C. 36D. 486. 如果一个数的相反数是-7,那么这个数是:A. 7B. -7C. 0D. 147. 一个数的绝对值是5,这个数可以是:A. 5B. -5C. 5或-5D. 08. 一个等腰三角形的两个底角相等,如果顶角为60°,求底角的大小。
A. 60°B. 45°C. 30°D. 90°9. 一个正六边形的内角是:A. 120°B. 108°C. 90°D. 60°10. 已知一个二次方程 \( ax^2 + bx + c = 0 \) 的解是2和-3,求\( b \) 的值。
A. -7B. -5C. 7D. 5二、填空题(每题4分,共20分)11. 一个数的平方根是4,这个数是________。
12. 一个数的绝对值是8,这个数可以是________。
13. 一个直角三角形的两个直角边分别是6和8,斜边的长度是________。
14. 一个数的立方是-27,这个数是________。
15. 一个圆的直径是10,这个圆的周长是________。
三、解答题(每题10分,共50分)16. 证明勾股定理:在一个直角三角形中,斜边的平方等于两直角边的平方和。
17. 解方程 \( 2x^2 - 7x + 3 = 0 \) 并求出解。
八年级数学竞赛试卷真题一.填空题(3′×8=24′):1、如图,已知a ∥b ,∠1=40︒,则∠2=________度.2、在函数21-=x y 中,自变量x 的取值范围是3、有两名学员小林和小明练习射击,第一轮10枪打完后,两 人打靶的环数如图所示,通常新手的成绩不太稳定,那么 根据图中的信息,估计小林和小明两人中新手是 .4、如图,在△ABC 中,AB=AC=32cm ,DE 是AB 的垂直平分线,分别交AB 、AC 于 D 、E 两点.若BC=21cm ,则△BCE 的周长是 cm .5、如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是 .6、如图,已知函数b ax y +=和kx y =的图像交点P ,则可根据图像可得关于x 、y 的二元一次方程组的⎩⎨⎧=+=kx y bax y 的解是___________________.7、在数轴上截取从0至3的对应线段AB ,实数m 对应AB 上的点M ,如图1;将AB 折成正三角形,使点A ,B 重合于点P ,如图2;建立平面直角坐标系,平移此三角形,使它关于y 轴对称,且点P 的坐标为(0,2),PM 与x 轴交于点N (n ,0),如图3,当m =3时,则n = .(第1题图)bac21(第3题图)(第5题图)(第4题图)xyPy=ax+b y=kx-4-2(第6题图)8、如图,在ABC ∆中,AC AB =,40ABC ∠=︒,BD 是ABC ∠的平分线,延长BD 至E ,使DE AD =, 连结CE ,则ECA ∠的度数为 度.二、选择题(3′×10=30′):11、若b a <,则下列各式中一定成立的是……………………………………………………( ) A .0>-b a B .0<-b a C .0>ab D .0<ab12、已知等腰三角形的一边长为4,另一边长为8,则它的周长是……………………………( )A .12B .16C .20D .16或2013、八年级(1)班50名学生的年龄统计结果如右表所示:则此班学生年龄的众数、中位数 分别为………………………………………………………………………………………… ()A .14,14B .15,14C .14,15D .15,1614、若点A (n ,2) 在y 轴上,则 点B (n -2 ,n +1) 在 ………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限15、下列各图中,是立方体的表面展开图的是………………………………………………… ()A .B .C .D .16、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3) 是……………………………………………………………………………………………… ( )A .20cmB .10cmC .14cmD .无法确定17、一次函数b kx y +=的图象如图所示,当0<x 时,y 的取值范围是……………………( )A .0<yB .0>yC .02<<-yD .2-<y18、如果直线y =2x +m 与两坐标轴围成的三角形面积等于4,则m 的值是………((第8题图) AB(第16题图)1-2xy(第17题图)年龄 13 14 15 16 人数422231DMCABP)A .±3B .3C .±4D .419、如图,是一个由几块相同的小正方体搭成的立体图形的三视图,则这堆立体图形中的小正方体共有…………………………………………………………………………………………… ( )块.主视图左视图俯视图A .7或8B .8或9C . 9或10D .10或1120、如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点,设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是………… ( )xy 0 1 22.5xy 0 1 2 2.5y 0 1 2 2.5y0 1 2 2.5三.解答题(共6小题,46分)19、(本题6分)解不等式组 ⎪⎩⎪⎨⎧≤+--+<-1215312)1(315x x x x 并求它的整数解。
八年级数学试卷一、选择题:(本题有10小题,每小题4分,共40分。
)1.如图,已知:AB ∥CD ,若∠1=50°,则∠2的度数是( ) A 、50° B 、60° C 、130° D 、120°2.以下各组数据能作为直角三角形三边长的是 ( ) A 、2,1,5 B 、5,11,12 C 、6,12,13 D 、5,12,133.已知等腰三角形一边是3,一边是6,则它的周长等于( )A .12B .15C . 12 或15D .18或154.如果用 表示1个立方体,用 表示两个立方体叠加,用 表示3个立方体叠加,那么下面右图由7个立方体叠成的几何体, 从正前方观察,可画出的平面图形是( )A C D5. 某体育用品商店新进一批运动服,每件进货价为120元,试销两天的情况如下为了增加销售量,你认为该店确定这批运动服单价时应更关心这组数据的( ) A .平均数 B .中位数 C .众数 D .方差6.甲、乙两同学最近几次测验的平均分都是86分,但甲几次测验成绩的方差是0.61,乙的方差是1.72,由上述信息可知( )A 、甲的成绩比乙的好;B 、乙的成绩比甲好;C 、甲的成绩波动比乙的大;D 、乙的成绩波动比甲大。
7.下列调查,比较容易用普查方式的是( )A 、了解青田某中学学生体育中考的成绩B 了解青田县中小学生的近视率C 、了解青田县居民年人均收入D 、了解某一天离开青田县的人口流量8.下图可以沿线折叠成一个带数字的立方体,每三个带数字的面交于立方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小是( )(A ) 7 (B ) 8 (C ) 9 (D ) 109.某校要了解八年级女生的体重,以掌握她们的身体发育情况,从八年级500名女生中抽出50名进行检测,就这个问题来说, 下面说法中正确的是( )A 、500名女生是总体B 、500名女生是个体C 、50是样本容量D 、500名女生是总体的一个样本 10.国庆假期中,小华与同学到休博园去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8千米,又往北走2千米,遇到障碍后又往西走3千米,再折向北走到6千米处往东拐,仅走了1千米,就找到了宝藏,则门口A 到藏宝点B 的直线距售价(元) 280 250 220 200 160 件数 2 4 7 18 5_C_ A第7题 学校 班级 姓名 考号16 38 AB21 2 36 4 5 _ B_ D_1 _ 2左视图主视图俯视图 离是( )千米。
湖州四中八(下)竞赛题姓名 班级一、化简计算(每小题4分) 1. 14425081010⨯⨯.. 2.521312321⨯÷;3. 2484554+-+ 4 、2332326--5. 3)154276485(÷+- 6、(231⎛+ ⎝7、⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛+121580325.12712 8、(()2771+--二、选择适当的方法解方程(每小题4分) 9、; 10、.11、12、13、; 14、15、; 16、17、18、解关于x 的一元二次方程:()0012422≠=--a ax x a19、02222=-+-n m mx x 20.()()2222222,06b a b ab a+=-+-+求21、用配方法求262+-x x 的最小值; 22、用配方法求1232++-x x 的最大值23、对于任意实数x ,试比较两代数x x x 42323--+1与10433++x x 的值的大小。
24、已知二次三项式2)6(92-++-m x m x 是一个完全平方式,试求m 的值.25、关于x 的一元二次方程()0422=+++kx k kx 有两个不相等的实数根,求k 的取值范围;26、已知()0053222≠=-+y xy y x ,求yx的值。
27.若142=++y xy x ,282=++x xy y ,则x+y 的值为28.如果012=-+x x ,那么代数式7223-+x x 的值。
29. 已知实数a 、b 满足条件: 求ab -的平方根。
30.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件;要使每天获得利润700元,请你帮忙确定售价。
绝密★启用前2018-2019学年浙教版八年级数学竞赛试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共6小题,每小题4分,共24分)1.已知m为正整数,且关于x,y的二元一次方程组有整数解,则m2的值为()A.4 B.1,4 C.1,4,49 D.无法确定2.已知+=3,则代数式的值为()A.3 B.﹣2 C.﹣D.﹣3.正方形ABCD中,点P,Q分别是边AB,AD上的点,连接PQ、PC、QC,下列说法:①若∠PCQ=45°,则PB+QD=PQ;②若AP=AQ=,∠PCQ=36°,则;③若△PQC是正三角形,若PB=1,则AP=.其中正确的说法有()A.3个B.2个C.1个D.0个4.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为()A.B.C.D.5.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间6.试卷上有6道选择题,每题有3个选项,结果阅卷老师发现,在所有卷子中任选3张答卷,都有一道题的选择互不相同,请问最多有()人参加了这次考试.A.11 B.12 C.13 D.14第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明二.填空题(共6小题,每小题4分,共24分)7.一条大河有A、B两个港口,水由A流向B,水流速度是4千米/时,甲、乙两船同时由A向B行驶,各自不停地在A、B之间往返航行.甲在静水中的速度是28千米/时,乙在静水中的速度是20千米/时,已知两船第二次迎面相遇与甲船第二次追上乙船(不算开始时甲、乙在A处的那一次)的地点相距40千米,则A、B两港口的距离为千米.8.在环行自行车赛场内,甲、乙、丙三人骑自行车进行训练,他们的速度是:甲每分钟圈,乙每分钟圈,丙每分钟圈,他们同时出发,起点如图所示(甲从A点出发,沿圆周逆时针运动;乙从B点出发,沿圆周逆时针运动;丙从C点出发,沿圆周顺时针运动),则出发后分三人第一次相遇.9.表2、表3是从表1中截取的一部分,则a+b=表1表2表310.杨辉是我国南宋时期杰出的数学家和教育家,下图是杨辉在公元1261年著作《详解九章算法》里面的一张图,即“杨辉三角”,该图中有很多规律,请仔细观察,解答下列问题:(1)图中给出了七行数字,根据构成规律,第8行中从右边数第3个数是;(2)利用不完全归纳法探索出第n行中的所有数字之和为.11.已知x、y、z满足,对于数a、[a]表示不大于a的最大整数,{a}=a﹣[a],则10(x+y)+z的值为.12.甲、乙、丙三人进行智力抢答活动,规定:第一个问题由乙提出,由甲、丙抢答.以后在抢答过程中若甲答对1题,就可提6个问题,乙答对1题就可提5个问题,丙答对l题就可提4个问题,供另两人抢答.抢答结束后,总共有16个问题没有任何人答对,则甲、乙、丙答对的题数分别是.三.解答题(共4小题,52分)13.(12分)观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=()2=.根据以上规律填空:(1)13+23+33+…+n3=()2=[]2.(2)猜想:113+123+133+143+153=.14.(12分)某中学的1号教学大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行了测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)该中学的2号教学大楼,有和1号教学大楼相同的正门和侧门共5道,若这栋大楼的教室里最多有1920名学生,安全检查规定,在紧急情况下,全大楼学生应在4分钟内通过这5道门安全撤离,该栋大楼正门和侧门各有几道?15.(14分)如图1,小明将一张长方形纸片沿对角线剪开,得到两张三角形纸片(如图2)量得它们的斜边长为10cm,较小锐角为30°再将这两张三角形纸片摆成如图3的形状,但点B、C、F、D 在同一条直线上,且点C与点F重合(在图3至图6中统一用F表示).小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮忙解决.(1)将图3中的△ABC沿BD向右平移到图4的位置,使点B与点F重合,请你求出平移的距离;(2)将图3中的△ABC绕点F顺时针方向旋转30°到图5的位置,A1F交DE于G,若DG=kEG,求k的值;(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.16.(14分)探究问题:(1)阅读理解:①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P 为△ABC的费马点,此时P A+PB+PC的值为△ABC的费马距离;②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB•CD+BC•DA=AC•B D.此为托勒密定理;(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C),已知点P为等边△ABC外接圆的上任意一点.求证:PB+PC=P A;②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在上任取一点P′,连接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+;第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离.(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.参考答案与试题解析1.解:两式相加得:(3+m)x=10,则x=,代入第二个方程得:y=,当方程组有整数解时,3+m是10和15的公约数.∴3+m=±1或±5.即m=﹣2或﹣4或2或﹣8.又∵m是正整数,∴m=2,则m2=4.故选:A.2.解:+==3,即a+2b=6ab,则原式===﹣,故选:D.3.(1)证明:延长AB至点E,使BE=DQ,连接EC,AC,∵正方形ABCD,∴∠BCA=∠DCA=45°,CD=DA=AB=BC,∠D=∠EBC=90°,∴在△BEC和△DQC中,,∴△BEC≌△DQC(SAS),∴CE=CQ,∠BCE=∠DCQ,∵∠PCQ=45°,∴∠DCQ+∠PCB=45°,∴∠BCE+∠PCB=45°,即∠ECP=45°,∵在△PCE和△PCQ中,,∴△PCE≌△PCQ(SAS),∴PE=PQ,∵PE=PB+BE=PB+QD,∴PQ=PB+QD,(2)过点Q作∠PQC的角平分线,交PC于点E,∵正方形ABCD,∴∠A=∠D=∠B=90°,AD=AB=BC=CD,∵∠PCQ=36°,AP=AQ=,∴PQ=2,PB=QD,∴PE=PC﹣2,∵在△PBC和△QDC中,,∴△PBC≌△QDC(SAS),∴QC=PC,∴∠CPQ=∠CQP=72°,∴∠PQE=∠EQC=36°,∴QE=QP=EC=2,∵△QPE∽△CQP,∴PQ:QC=PE:PQ,即PQ2=PE•PC,∵PQ=2,∴PE•PC=4,∵PE=PC﹣2,∴PC2﹣2PC﹣4=0,解得:PC1=1﹣<0(舍去),PC2=1+,∴PC=+1,(3)取PC的中点E,连接BE,做BM⊥PC于点M,∵正方形ABCD,∴BC=CD=AB=AD,∠D=∠B=∠A=∠BCD=90°,∵△PCQ为正三角形,∴QC=PQ=PC,∠QCP=60°,∵在Rt△PBC和Rt△QDC中,,∴Rt△PBC≌Rt△QDC(HL),∴∠BCP=∠DCQ=,PB=QD,∵E为PC的中点,∴BE=EC=PE=,∴∠BEM=30°,∴2BM=BE,∴4BM=PC,∵PC=AP,∴4BM=AP,∵BM⊥PC,∠BCP=15°,∴∠PBM=15°,∴△PBM∽△PCB,∴BP:PC=BM:BC,∵PB=1,∴BC=AB=AP+1,∴,∴AP2﹣AP﹣1=0,解得:AP1=1+,AP2=1﹣<0(舍去),∴AP=+1,∴其中说法正确的共3个,故选:A.4.解:这10个有理数,每9个相加,一共得出另外10个数,由于原10个有理数互不相等,可以轻易得出它们相加后得出的另外10个数也是互不相等的,而这10个数根据题意都是分母22的既约真分数,而满足这个条件的真分数恰好正好有10个,∴这10项分别是:1/22,3/22,5/22,7/22,9/22,13/22,15/22,17/22,19/22,21/22.它们每一个都是原来10个有理数其中9个相加的和,那么,如果再把这10个以22为分母的真分数相加,得出来的结果必然是原来的10个有理数之和的9倍.所以,10个真分数相加得出结果为5,于是所求的10个有理数之和为5/9.故选:D.5.解:①以点A为停靠点,则所有人的路程的和=15×300+10×900=13500(米),②以点B为停靠点,则所有人的路程的和=30×300+10×600=15000(米),③以点C为停靠点,则所有人的路程的和=30×900+15×600=36000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(300﹣m)+10(900﹣m)=13500+5m>13500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(300+n)+15n+10(600﹣n)=15000+35n>13500.∴该停靠点的位置应设在点A;故选:A.6.解:法一:第一道题有三个人分别选了1、2、3;第二道题他们三个人选了同一个答案(就是1吧,因为所有答案条件相同无所谓的),另外两个人选了2、3;第三道题他们五个人选了1,其他两个人选了2、3;第四题他们7个选1,另两个2、3;第五题他们9个选1,另两个2、3;第六题他们11个选1,另两个2、3;一共13人.只有这种情况才能保证随便三张卷子都有1题答案互不相同,这是抽屉定理中的穷举法.法二:首先只有一道试题时候最多3人,只有两道试题的时候最多4人,这个很容易用穷举法知道.现在,如果有14人做这道题的话,14人中任取3人的组合共有364种,根据抽屉原理,这里至少有122种取法第一题的答案相同.同样,在这122种取法中,至少41种取法第2题答案相同,接下来有14种取法第3题答案相同,5种取法第4题答案相同,这样根据两道题时候的情况,可以知道14人是不可能的,所以最多13人.7.解:设A、B两个港口的距离为d,甲顺水速度:28+4=32千米/时,甲逆水速度:28﹣4=24千米/时,乙顺水速度:20+4=24千米/时,乙逆水速度:20﹣4=16千米/时,第二次相遇地点:从A到B:甲速:乙速=32:24=4:3,甲到B,乙到E;甲从B到A,速度24,甲速:乙速=24:24=1:1,甲、乙在EB的中点F点第一次相遇;乙到B时,甲到E,这时甲速:乙速=24:16=3:2,甲到A点时,乙到C点;甲又从A顺水,这时甲速:乙速=32:16=2:1,所以甲、乙第二次相遇地点是AC处的点H,AH=×AB=AB=d,第二次追上地点:甲比乙多行1来回时第一次追上,多行2来回时第二次追上.甲行一个来回2AB时间+=d乙行一个来回2AB时间+=,一个来回甲比乙少用时间:﹣=,甲多行2来回的时间是:×2=,说明乙第二次被追上时行的来回数是:=4,甲第二次追上乙时,乙在第5个来回中,甲在第7个来回中.甲行6个来回时间是×6=,乙行4个来回时间是×4=,﹣=,从A到B甲少用时间:﹣=,说明第二次追上是在乙行到第五个来回的返回途中.﹣=,从B到A,甲比乙少用时间:﹣=,=,追上地点是从B到A的中点C处.根据题中条件,HC=40(千米),即=40,解得d=240千米.故答案为:240.8.解:设出发后x分钟后三人第一次相遇,由甲和乙相遇得:x=,解得:x=5,此时,甲逆时针行驶了=圈,当出发5分钟后,丙顺时针行驶了×5=圈,此时,甲乙丙第一次相遇.故答案为:5.9.解:表2中,∵15是5的3倍,24是6的4倍,∴a是5的6倍是30,或a是7的4倍是28,表3中,∵16是2的8倍,24是3的8倍,∴b是4的7倍是28,∴a+b=30+28=58或a+b=28+28=56.故答案为:58或56.10.解:(1)设第n行第2个数为a n(n≥2,n为正整数),第n行第3个数为b n(n≥3,n为正整数),观察,发现规律:∵a2=1,a3=2,a4=3,a5=4,a6=5,∴a n=n﹣1;∵b3=1,b4=3=1+2=b3+2,b5=6=3+3=b4+3,b6=10=6+4=b5+4,…,∴b n﹣b n﹣1=n﹣2,∴b n=b3+b4﹣b3+b5﹣b4+b6﹣b5+…+b n﹣b n﹣1=1+2+3+…+n﹣2=.当n=8时,b3==21;故答案为:21;(2)∵第1行数字之和1=20,第2行数字之和2=21,第3行数字之和4=22,第4行数字之和8=23,…∴第n行数字之和为2n﹣1.故答案为:2n﹣1.11.解:∵{a}=a﹣[a],∴a={a}+[a],∵①+②+③得:x+[x]+{x}+y+[y]+{y}+z+[z]+{z}=0.6,2x+2y+2z=0.6,x+y+z=0.3④,④﹣①得:{y}+[z]=1.2,所以{y}=0.2,[z]=1,④﹣②得:{x}+[y]=0.1,所以[y]=0,{x}=0.1,④﹣③得:[x]+{z}=﹣1,所以{z}=0,[x]=﹣1,∴x=[x]+{x}=﹣1+0.1=﹣0.9,y=[y]+{y}=0+0.2=0.2,z=[z]+{z}=1+0=1,∴10(x+y)+z=10×(﹣0.9+0.2)+1=﹣6.12.解:设甲、乙、丙答对得题数分别为x,y,z,根据题意列方程得,6x+5y+4z+1=x+y+z+16,整理得,5x+4y+3z=15,∵x,y,z为非负整数.∴x=1,y=1,z=2;或x=0,y=3,z=1.故答案为:(1,1,2)或(0,3,1).13.解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)∵1+2+…+n=(1+n)+[2+(n﹣1)]+…+[+(n﹣+1)]=,∴13+23+33+…+n3=(1+2+…+n)2=[]2;(2)113+123+133+143+153=13+23+33+...+153﹣(13+23+33+ (103)=(1+2+…+15)2﹣(1+2+…+10)2=1202﹣552=11375.故答案为:1+2+3+4+5;225;1+2+…+n;;11375.14.解:(1)设平均每分钟一道正门可通过x名学生,一道侧门可以通过y名学生.则,解得.答:平均每分钟一道正门可通过120名学生,一道侧门可以通过80名学生;(2)设该栋大楼正门有m道,侧门有n道,则,解得.故该栋大楼正门有2道,侧门有3道.15.解:∵AB=DE=10,∠A=∠D=30°,∴FB=FE=5,∠B=∠FED=60°,FD=EF=5.(1)如图4,FC1=BF=5,所以△ABC沿BD向右平移的距离为5;(2)∵△ABC绕点F顺时针方向旋转30°到图5的位置,∴∠AF A1=30°,∴∠A1FD=60°,而∠D=30°,∴FG⊥CD,∴EG=EF=,∴DG=10﹣=,∴DG=3EG,∴k的值为3;(3)∵△ABF沿直线AF翻折到图6的位置,∴B1F=BF=EF,∠AB1F=∠B=60°,∴DB1=AE,∠DB1H=∠AEH=120°,而∠DHB1=∠AHE,在△DB1H与△AEH中,∵∠DB1H=∠AEH,DB1=AE,∠DHB1=∠AHE,∴△DB1H≌△AEH,∴AH=DH.16.(2)①证明:由托勒密定理可知PB•AC+PC•AB=P A•BC∵△ABC是等边三角形∴AB=AC=BC,∴PB+PC=P A,②P′D、AD,(3)解:如图,以BC为边长在△ABC的外部作等边△BCD,连接AD,则知线段AD的长即为最短距离.∵△BCD为等边三角形,BC=4,∴∠CBD=60°,BD=BC=4,∵∠ABC=30°,∴∠ABD=90°,在Rt△ABD中,∵AB=3,BD=4,∴AD===5(km),∴从水井P到三村庄A、B、C所铺设的输水管总长度的最小值为5km.。
2013学年第二学期学科竞赛 八 年 级 数 学 试 卷一、选择题(每小题5分,共30分)1.若平行四边形的一边长为10,则它的两条对角线长可以是…………… ( )A .8和16B .6和8C .6和12D .24和42.一组数据x 1,x 2,…,x n 的平均数为5,方差为16,其中n 是正整数,则另一组数据3x 1+2,3x 2+2,…,3x n +2的平均数和标准差分别是…………………………………… ( )A .15,144B .17,144C .17,12D .7,163.已知一元二次方程01282=+-x x 的两个解恰好是等腰△ABC 的底边长和腰长,则△ABC 的周长为…………………………………………………… ( )A .14B .10C .11D .14或104.三角形的三条边长分别为2、k 、4, 若k 满足方程361212622+--+-k k k k =0, 则k 的值为………………………………………………………………………… ( )A .2B .3C .3或4D .2或3 5.如图四边形ABCD 中,∠BAD =125°,∠B =∠D =90°,在BC ,CD 上分别找一点M ,N ,使△AMN 周长最小时,则∠AMN +∠ANM 的度是…………………………………( )A .130B .120°C .110°D .100°6.如图,以Rt △BCA 的斜边BC 为一边在△BCA 的同侧作正方形BCEF ,设正方形的中心为O , 连结AO ,如果AB =8,AO =122,那么AC 的长为……………………………( )A .24B .32C .8D .16(第5题图) (第6题图)二、填空题(每小题5分,共30分).7.一个n 边形的内角和等于外角和的3倍,则n = .8.函数121x y x x =---中,自变量x 的取值范围是_________________.9.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,则应邀请 支球队参加比赛. 10.已知实数a ,b 满足,24)3(2422a b a b a =+-+++-则a +b 的值是 .11.如图,正方形ABCD 边长为2,AB ∥x 轴,AD ∥y 轴,顶点A 恰好落在双曲线y =x21上,边CD 、BC 分别交双曲线于点E 、F ,若线段AE 过原点,则S △AEF = .12.如图,∠MON =90°,矩形ABCD 的顶点A 、B 分别在边OM 、ON 上,当B 在边ON 上运动时,A 随之在OM 上运动,矩形ABCD 的形状保持不变,其中AB =4,BC =2,运动过程中,点D 到点O 的最大距离为 .(第11题图) (第12题图)三、解答题(共60分)13.(本题10分)已知在如图4×4的方格中,有一个格点三角形ABC (三个顶点均在格点上),其中AB =5,BC =22,AC =17.(1)请你在方格中画出该三角形;(2)求△ABC 中AC 边上的高的长(结果保留根号).14.(本题12分)如图,矩形ABCD中,对角线AC与BD相交于点O,已知AB=6,BC=8,P是AD边上任意一点,作PE⊥AC于点E,PF⊥BD于点F.(1)求PE+PF长.(2)过O作OG⊥AC交AD于点G,求AG长.15.(本题12分)如图,在线段AB上任取一点E,在AB的同侧作等边△ADE和△BCE,连结CD,P、Q、M、N分别是AB、BC、CD、DA的中点.(1)判断四边形PQMN的形状,并证明你的结论;(2)若AE=6,EB=3,求此时四边形PQMN的周长(结果保留根号)16.(本题13分)如图,正比例函数y =x 21的图像与反比例函数y =)0( k x k 在第一象限的图像交于A 点,过A 点作x 轴的垂线,垂足为M ,已知△AOM 的面积为1,点B (-1,t )为反比例函数在第三象限图像上的点.(1)试求出k 值及点B 的坐标.(2)在x轴上是否存在点P ,使AB =AP ,请直接写出满足条件的点P 的坐标.(3)在y 轴上找一点P ,使|PA -PB |的值 最大,并求出P 点坐标.17.(本题13分)阅读材料:一元二次方程根与系数有如下关系:若x1,x2是一元二次方程ax 2+bx +c =0(a ≠0)的两根,则x1+x2=-a b ,x1x2=ac ,这个定理人们称之为韦达定理. 例:若x1,x2是一元二次方程3x 2-7x +1=0的两根,则x1+x2=37,x1x2=31,反之,以x1,x2为两根的一元二次方程(二次项系数为1)为x 2-(x1+x2)x +x1x2=0. 例:以2和3为两根的一元二次方程(二次项系数为1)为x 2-5x +6=0. 仔细阅读上面材料,并解答下面问题:已知:实数a 、b 、c 满足a +b +c =2,abc =4.(1)求a 、b 、c 中最大者的最小值.(2)求|a |+|b |+|c |的最小值.思路点拨:不妨设a ≥b ,a ≥c ,由条件得b +c =2-a ,bc =a4,构造以b 、c 为实根的一元二次方程.八年级数学参考答案 一、选择题(本题有6个小题,每小题5分,共30分) 1. 2. 3. 4. 5. 6.A C A BC B二、填空题(本题有6小题,每小题5分,共30分)7. 8 ; 8. 21<x ≤1; 9. 810. 1; 11. 34; 12. 22+2;三、解答题(共 60分)13、 (本题10分)解:(1)△ABC 就是所求的三角形.(2)设AC 边上的高为h.∵S △ABC =8-2-2-1=3∴21AC ·h=3∴17h=6∴h=1717614、 (本题12分)解:(1)连结PO在矩形ABCD 中,AO =DO =21AC ,∠ABC =90°∴AC =2286 =10∴AO =DO =5∵S △AOD =S △AOP + S △DOP∴41S 矩=21AO ·PE +21DO ·PF∴41 ×6×8=21×5(PE +PF ) ∴PE +PF =524 (2)连结CG∵四边形ABCD 是矩形∴AO =CO ,∠ADC =90°, AD =BC =8, DC =AB =6∵OG ⊥AC∴GO 是AC 的中垂线∴CG =AG设AG =CG =x,则DG =8-x由勾股定理得:CG 2=DG 2+CD 2∴x2=(8-x)2+62 ∴x=425 15.(本题12分)证明:(1)四边形PQMN 是菱形,理由如下连结AC 、BD .∵ PQ 为△ABC 的中位线,∴ PQ 21AC 同理 MN 21AC .MQ 21BD ∴MN PQ ,∴ 四边形PQMN 为平行四边形.又∵△AEC 和△DEB 中,AE =DE ,EC =EB ,∠AED =60°=∠CEB∴∠AEC =∠DEB ∴ △AEC ≌△DEB∴ AC =BD ,∴MN =MQ∴ 四边形PQMN 是菱形(2)过点D 作DF ⊥AB 于F ,则DF =又DF 2+FB 2=DB 2∴DB =∴由①知四边形PQMN 是菱形,可计算得周长是16.(本题13分)解:(1)∵△AOM 的面积为1, ∴21k=1,解得k=2,∴反比例函数的解析式为y=x2 把B (-1,t)代入y=x2,解得t=-2 ∴B 点坐标为(-1,-2).(2)存在.满足条件的点P 的坐标为(2+17,0),(2-17,0)(3)作B 点关于y轴的对称点C ,如图,则C 点坐标为(1,-2)∴PB =PC , ∴|PA -PB |=|PA -PC |≤AC∴当点P ,C ,A 共线时,|PA -PB |的值最大.设直线AC 的解析式为y =mx +n ,把A (2,1),C (1,-2)代入,得直线AC 的解析式为y =3x -5.把x=0代入y =3x -5得y=-5, ∴P 点坐标为(0,-5).17.(本题13分)解:(1)不妨设a ≥b ,a ≥c∵b +c =2-a , bc =a 4 ∴b ,c 为一元二次方程x 2-(2-a )x +a4=0的两个实根. ∴△=(2-a)2-4×a 4≥0,即(a2+4)(a-4)≥0,得 a≥4,当a=4,b=c=-1时,a、b、c满足条件,故a、b、c中最大者的最小值为4.(2)a、b、c只可能一正二负,设a>0,b<0,c<0,则|a|+|b|+|c|=a-b-c=2a-2,由(1)知a≥4,故2a-2≥6,当a=4,b=c=-1时,a、b、c满足条件,且使|a|+|b|+|c|=2a-2≥6中等号成立,故|a|+|b|+|c|的最小值为6.。
浙教版八年级第二学期五月份竞赛练习卷一、选择题1.下列图案都是由字母“m”经过变形、组合而成的,其中不是中心对称图形的是( ). . . .A .(2,1)和(-12,1)B .(2,-1)和(-12,1)C .(-2,1)和(12,1) D .(-1,-2)和(-1,12)7.如图,在正五边形ABCDE 中,连接AC ,AD ,则∠CAD 的度数是( )A .30°B .36°C .45°D .60°8.在▱ABCD 中,M 为CD 的中点,如DC=2AD ,则AM 、BM 夹角度数是( ) A .90° B .95° C .85° D .100°9.某班同学毕业时都将自己 的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( )A .x (x+1)=1035B .x (x-1)=1035×2C .x (x-1)=1035D .2x (x+1)=103510.定义:如果一元二次方程ax 2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax 2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ) A .a=c B .a=b C .b=c D .a=b=c 二、填空题11.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为________.ABC三、解答题19、某数学老师将本班学生的身高数据(精确到厘米)交给甲、乙两同学,要求他们各自独立地绘制一幅频数分布直方图,甲绘制的图如图1所示,乙绘制的图如图2所示.经检查确认,甲绘制的直方图是正确的,乙在整理数据与绘图过程中均有个别错误.(1)问该班学生有多少人?分组 分组 5 10 15 201117图1 图21(2)某同学身高为165厘米,他说:“我们班上比我高的人不超过”,他的说法正确吗?4(3)请指出乙在整理数据或绘图过程中所存在的一个..错误.(4)设该班学生身高数据的中位数为a,试写出a的值20、如图,在平行四边形ABCD中,∠ABC=3∠A,点E在CD上,CE=1,EF⊥CD于E,AD=1,求BF的长.21.戒烟一小时,健康亿人行”.今年国际无烟日,小华就公众对在餐厅吸烟的态度进行了随机抽样调查,主要有四种态度:A.顾客出面制止;B.劝说进吸烟室;C.餐厅老板出面制止;D.无所谓.他将调查结果绘制了两幅不完整的统计图.请你根据图中的信息回答下列问题:(1)这次抽样的公众有人;(2)请将统计图①补充完整;(3)在统计图②中,“无所谓”部分所对应的圆心角是度;(4)若城区人口有20万人,估计赞成“餐厅老板出面制止”的有万人.并根据统计信息,谈谈自己的感想.(不超过30个字)22.如果关于x的一元二次方程(a-1)x a2+a+ax+1=0的一个整数根恰好是关于x的方程(m2+m)x2+3mx-3=0的一个根,试求a和m的值.23.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.。
A B C D M N HE盐官片八年级数学竞赛试题(考试时间:90分钟,总分:120分)一、选择题(每小题3分,共42分)1、在下列八个数:3.1415926,0.151151115… ,10049,0.2, π1,7,722,327中,无理数的个数是 ( )A 2B 3C 4D 5 2、下列图形中,不是轴对称图形的是① ② ③ ④ ⑤A 、①⑤B 、②⑤C 、④⑤D 、①②3、如图,数轴上A B ,两点表示的数分别是1和2,点A 关于点B的对称点是点C ,则点C 所表示的数是( ) A .21-B .12+C .222-D .221-4、已知|a|=5,2b =3,且ab>0,则a+b=( ) A 、8 B 、—2 C 、8或—8 D 、2或—25、如图;已知,∠EAC=∠BAD,AC=AD,增加下列条件中的其中一个:①AB=AE,②BC=ED, ③∠C=∠D,④∠B=∠E; C其中能使△ABC ≌△AED 的个数有 E ( ) A. 4个 B. 3个. B A C. 2个 D. 1个 D 6、△ABC 中,A (—2,—3)、B (—1,—1)、C (0,1),将△ABC 绕B 点顺时针旋转90度,则点A 对应的点A`的坐标为( ) A 、(3,0)B 、(3,1)C 、(4,1)D 、(4,0)7、直角坐标系中,A (1,1)在坐标轴上找点B 使 △AOB 为等腰三角形的点共有( )个A、6 B、7 C、8 D、98、如图,先将正方形纸片对折,折痕为MN,再把B 点折叠在 折痕MN 上,折痕为AE,点B 在MN 上的对应点为H,沿 AH 和DH 剪下,这样剪得的三角形中 ( )A ,AD DH AH ≠=B ,AD DH AH ==C ,DH AD AH ≠= D ,AD DH AH ≠≠9、如果一个三角形两边的平分线的交点在第三边上,则这个三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、不能确定10、已知点A 的坐标为(1,0),点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为A 、(0,0)B 、 11(,)22- C 、22(,)22- D 、 11(,)22-11、如图,等腰直角△ABC 中AB=AC ,将其按下图所示的方式折叠两次.第2次折叠第1次折叠C 'DDCBA 'A 'ABCCBA若DA ’=1,给出下列说法: ①DC ’ 平分∠BDA ’; ②BA ’ 长为21+; ③△BC ’D 是等腰三角形; ④△CA ’D 的周长等于BC 的长. 其中正确的有( )(A )1个 (B )2个 (C )3个 (D )4个12、如图所示,∠AOB 是一个钢架,且∠AOB=10º, 为了使钢架更加牢固,需在内部添加一些钢管EF 、FG 、 GH …添加钢管的长度都与OE 相等,则最多能添加这 样的钢管的根数为( )A 、15B 、9C 、8D 、7 13、甲、乙两人骑车从学校出发,先上坡到距学校6千米的A 地,再下坡到距学校16千米的B 地,甲、乙两人行程y(千米)与时间x (小时)之间的函数关系如图所示.若甲、乙两人同时从B 地按原路返回到学校,返回时,甲和乙上、下坡的速度仍保持不变.则下列结论:①乙往返行程中的平均速度相同;②乙从学校出发45分钟后追上甲;③乙从B 地返回到学校用时1小时18分钟;④甲、乙返回时在下坡路段相遇.其中正确的结论有( ) A .②③ B .①④ C .①②④ D .②③④ 14、如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P , BE 与CD 交于点Q ,连结PQ .以下五个结论: ① AD =BE ;② PQ ∥AE ;③ AP =BQ ;④ DE =DP ;⑤ ∠AOB =60°.恒成立的有( )个.A 、1B 、2C 、3D 、4二、填空题(每小题3分,共18分)15、正数A 的平方根为2m -4与3m -1,则A 的值为__________。
八年级数学竞赛练习题一、选择题:1、方程431=-++x x 的整数解有()A 、2个B 、3个C 、5个D 、无穷多个2、若等式98332-=--+x xx n x m 对任意的)3(±≠x x 恒成立,则=mn ()A 、8B 、-8C 、16D 、-16 3、若x >z ,y >z ,则下列各式中一定成立的是()A 、x+y >4zB 、x+y >3zC 、x+y >2zD 、x+y >z4、规定[]a 表示不超过a 的最大整数。
当1-=x 时,代数式6323+-nx mx 的值为16,则=⎥⎦⎤⎢⎣⎡-n m 32( )。
A 、-4B 、-3C 、3D 、45、如图所示,在直角扇形ABC 内,分别以AB 和AC 为直径作半圆,两条半圆弧相交于点D ,整个图形被分成4321,,,S S S S 四部分,则42S S 和的大小关系是()。
A 、42<S SB 、42=S SC 、42>S SD 、无法确定6、初二(1)班共有35名学生,其中21的男生和31的女生骑自行车上学,那么该班骑自行车上学的学生的人数最少是()。
A 、9B 、10C 、11D 、127、有A 、B 、C 三把刻度尺,它们的刻度都是从0到30个单位(单位长度各不相同),设三把尺子的0刻度和30刻度处到尺子边缘的长度可以忽略不计,现用其中的一把尺子量度另两把尺子的长度。
已知用C 尺量度,得A 尺比B 尺长6个单位;用A 尺量度,得B 尺比C 尺长10个单位;则用B 尺量度,A 尺比C 尺()。
A 、长15个单位B 、短15个单位C 、长5个单位D 、短5个单位二、填空题:8、654321,,,,,x x x x x x 都是正数,且1165432=x x x x x x ,2265431=x x x x x x ,3365421=x xx x x x ,4465321=x x x x x x ,6564321=x x x x x x ,9654321=x xx x x x ,则=654321x x x x x x 。
初二数学竞赛试题一选择题:1、与18是同类二次根式的是( ) A 243272112D C B2、数的大小关系是与5665大小都是无理数,不能比较D C B A 566556655665<=>3、在①线段②等边三角形③平行四边形④矩形⑤菱形⑥正方形这六种图形中,既是轴对称图形又是中心对称图形的有( )种A 3B 4C 5D 64、16的算术平方根是 ( )A 4B 4±C 2D 2±5、在线段的比是 ( )A 3:1 B3:2 C4:1 D 4:2二 填空题6 121的平方根是7 当a 时,式子a -3在实数范围内有意义。
8 在平行四边形ABCD 中,已知 140=∠+∠B A ,则B ∠的度数是9 若菱形两条对角线长分别是10cm 和24cm ,则此菱形的边长是 cm 10 8的倒数是11 已知一个矩形的长为1234,宽为32,则它面积相等的正方形的边长是 12 在实数范围内分解因式:=-32x中,AB=3,BC=4,ABC ∠的平分线把长边AD 分成的两条13 直角边长分别为6cm 和8cm 的直角三角形斜边上的中线长是 cm14 已知正方形的对角线长为2cm ,则其面积是 2cm15 若菱形的周长是,相邻的两个内角的度数比是1:2,那么这个菱形的较短的一条对角线的长是 cm 。
三 计算题 16 1476⨯⨯ 17 753131248+- 18x x x x 1246932-+ 19⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-5.0431381427四 简答题:知一个多边形的内角和是外角和的3倍,求这个多边形的边数。
21 已知x 、y 都是实数,且()0212=-++y x ,求xy 21的值。
五 画图题22画一个矩形ABCD ,使AB=2cm ,BC=3cm六 解答题23 已知1213+-a a 是最简二次根式,试求(34+2a )的算术平方根。
七 证明题24 如图,已知在直三角形ABC 中,ACB C ∠=∠,90 的平分线CD 交AB 于D,DF//BC,DE//AC.求证:四边形DECF 是正方形B C E F DA。
2013学年第二学期八年级综合知识竞赛数 学 试 卷一、选择题(每小题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .BC . D2.如图,已知平行四边形ABCD 中,∠B =4∠A ,则∠C =( )A .18ºB .36ºC .144ºD .72º3.已知一组数据:12,5,9,5,14,下列说法不正确的是( )A.平均数是9B.中位数是9C.众数是5D.方差是54.若点P (a ,2)与Q (-1,b )关于坐标原点对称,则a ,b 分别为( )A .-1,2B .1,-2C .1,2D .-1,-25.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角形中( )A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°6、菱形具有而矩形不一定具有的性质是 ( )A .内角和等于3600B .对角相等C .对角线互相垂直D .对边平行且相等7.已知210k k <<,则是函数11-=x k y 和xk y 2=的图象大致是( )8.定义:如果一元二次方程)0(02≠=++a c bx ax 满足0=+-c b a ,我们称这个方程为“阿凡达”方程,已知02=++c bx ax 是阿凡达方程,且有两个相等的实数根,则下列正确的是( )A.b a =B.c a =C.c b a ==2D.c b =9、如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BF CF =,四边形DCFE 是平行四边形,则图中阴影部分的面积为( ).A .8B .6C .4D .310.如图,①②③④⑤五个平行四边形拼成一个含30º内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为26cm 2,四边形ABCD 面积是19cm 2,则①②③④四个平行四边形周长的总和为( )A .64cmB .48cmC . 36cmD .24cm二、填空题(每小题3分,共24分)11.使式子4x -有意义的条件是 。
八年级数学竞赛练习卷(1)徐秀前编辑于2014/2/16 姓名__________
一、选择题(每题5分,共25分)
1、满足x2﹣4y2=2011的整数对(x,y)的组数是()
A、0
B、1
C、2
D、3
2、右图是我国古代的“杨辉三角形”,按其数字构成规律,请在图中第八行所有○中填好应填的数字,则这前8行36个数的和等于()
A、257
B、256
C、255
D、254
第2题第5题第9题
3、四边形ABCD中,AD∥BC,∠ABC=80°,AD=AB=BC,CH⊥AB于H.连接DH,则∠CHD的度数为()
A、30°
B、35°
C、40°
D、45°
4、化简的结果是()
A、1
B、
C、
D、
5、如图,边长为1的正方形EFGH在边长为3的正方形ABCD所在平面上移动,始终保持EF∥AB.线段CF的中点为M,DH的中点为N,则线段MN的长为()
A、B、C、D、
二、填空题(每题7分,共35分)
6、已知a,b,c是非零有理数,且满足,则
等于_________.
7、已知AD是△ABC的中线,∠ABC=30°,∠ADC=45°,则∠ACB=_________度.
8、关于x、y的方程的正整数解(x,y)共有_________组.
9、两张大小相同的纸片,每张都分成7个大小相同的矩形,放置如右图,重合的顶点记作A,顶点C
在另一张纸的分隔线上,若,则AB的长是_________.
10、连续的n个自然数,在每个数写成标准的质因数乘积分解式后,每个质因数都是奇数次幂,这样
的n个连续的自然数称为一个“连n奇异组”,如n=3时,22=21×111,23=231,24=23×31,则22,23,24就是一个“连3奇异组”.那么“连n奇异组”中n的最大可能值是_________.
三、(满分10分)
11、在△ABC中,∠ABC=60°,∠ACB=40°,P为∠ABC的平分线与∠ACB的平分线的交点,求证:AB=PC.
四、(满分15分)
12、关于m和n的方程5m2﹣6mn+7n2=2011是否存在整数解?如果存在,请写出一组解来;如果不存在,请说明理由.
五、(满分15分)
13、如图,矩形ABCD是一个长为1000米、宽为600米的货场,A、D是入口.现拟在
货场内建一个收费站P,在铁路线BC段上建一个发货站台H,设铺设公路AP、DP以及PH之长度和为l.
(1)求l的最小值.
(2)请指出当l取最小值时,收费站P和发货站台H的几何位置.。