微积分发展史
- 格式:doc
- 大小:122.50 KB
- 文档页数:4
微积分发展简史一、微积分的创立微积分中的极限、穷竭思想可以追溯到两千五百年前的古希腊文明,著名的毕达哥拉斯学派,经过了漫长时期的酝酿,到了17世纪,在工业革命的刺激下,终于通过牛顿(Newton)和莱布尼兹(Leibniz)的首创脱颖而出了。
大约从15世纪初开始的文艺复兴时期起,工业、农业、航海事业与上古贸易的大规模发展,刺激着自然科学蓬勃发展,到了17世纪开始进入综合突破的阶段,而所有这些所面临的数学困难,最后汇总成四个核心问题,并最终导致微积分的产生。
这四个问题是:1.运动中速度、加速度与距离之间的虎丘问题,尤其是非匀速运动,使瞬时变化率的研究成为必要;2.曲线求切线的问题,例如要确定透镜曲面上的任一点的法线等;3.有确定炮弹最大射程,到求行星轨道的近日点与远日点等问题提出的求函数的极大值、极小值问题;4.当然还有千百年来人们一直在研究如何计算长度、面积、体积与重心等问题。
第一、二、三问题导致微分的概念,第四个问题导致积分的概念。
微分与积分在17世纪之前还是比较朦胧的概念,而且是独立发展的。
开普勒(Kepler)、伽利略(Galileo)、费马(Fermat)、笛卡尔(Descartes)、卡瓦列里(Cavalieri)等学者都做出了杰出贡献。
1669,巴罗(Barrow,牛顿的老师)发表《几何讲义》,首次以几何的面貌,用语言表达了“求切线”和“求面积”是两个互逆的命题。
这个比较接近于微积分基本定理。
牛顿和莱布尼兹生长在微积分诞生前的水到渠成的年代,这时巨人已经形成,牛顿和莱布尼兹之所以能完成微积分的创立大业,正事由于它们占到了前辈巨人们的肩膀上,才能居高临下,才能高瞻远瞩,终于或得了真理。
可以这样说:微积分的产生是量变(先驱们的大量工作的积累)到质变(牛顿和莱布尼兹指出微分与积分是对矛盾)的过程,是当时历史条件(资本主义萌芽时期)下的必然产物。
微积分基本定理的建立标志着微积分的诞生。
牛顿自1664年起开始研究微积分,钻研了伽利略、开普勒、瓦利斯(Wallis),尤其是笛卡尔的著作。
微积分发展简史一、微积分的创立微积分中的极限、穷竭思想可以追溯到两千五百年前的古希腊文明,著名的毕达哥拉斯学派,经过了漫长时期的酝酿,到了17世纪,在工业革命的刺激下,终于通过牛顿(Newton)和莱布尼兹(Leibniz)的首创脱颖而出了。
大约从15世纪初开始的文艺复兴时期起,工业、农业、航海事业与上古贸易的大规模发展,刺激着自然科学蓬勃发展,到了17世纪开始进入综合突破的阶段,而所有这些所面临的数学困难,最后汇总成四个核心问题,并最终导致微积分的产生。
这四个问题是:1. 运动中速度、加速度与距离之间的虎丘问题,尤其是非匀速运动,使瞬时变化率的研究成为必要;2. 曲线求切线的问题,例如要确定透镜曲面上的任一点的法线等;3. 有确定炮弹最大射程,到求行星轨道的近日点与远日点等问题提出的求函数的极大值、极小值问题;4. 当然还有千百年来人们一直在研究如何计算长度、面积、体积与重心等问题。
第一、二、三问题导致微分的概念,第四个问题导致积分的概念。
微分与积分在17世纪之前还是比较朦胧的概念,而且是独立发展的。
开普勒(Kepler )、伽利略(Galileo )、费马(Fermat)、笛卡尔(Descartes )、卡瓦列里(Cavalieri )等学者都做出了杰出贡献。
1669,巴罗(Barrow,牛顿的老师)发表《几何讲义》,首次以几何的面貌,用语言表达了“求切线”和“求面积”是两个互逆的命题。
这个比较接近于微积分基本定理。
牛顿和莱布尼兹生长在微积分诞生前的水到渠成的年代,这时巨人已经形成,牛顿和莱布尼兹之所以能完成微积分的创立大业,正事由于它们占到了前辈巨人们的肩膀上,才能居高临下,才能高瞻远瞩,终于或得了真理。
可以这样说:微积分的产生是量变(先驱们的大量工作的积累)至V质变(牛顿和莱布尼兹指出微分与积分是对矛盾)的过程,是当时历史条件(资本主义萌芽时期)下的必然产物。
微积分基本定理的建立标志着微积分的诞生。
微积分学的发展史微积分学是数学的一个重要分支,它研究变量在某一变化过程中的变化规律,广泛应用于物理学、工程学、经济学等领域。
本文将回顾微积分学的发展历程,从其历史起源到现代应用,以便更好地理解这一重要学科。
微积分学起源于17世纪,当时科学家们开始研究物体的运动规律,例如物体的速度、加速度等。
这些研究需要数学工具来分析变化过程,于是微积分学应运而生。
微积分的最初发展由牛顿和莱布尼兹两大巨头分别独立给出,他们从不同的角度解决了微积分的基本问题。
牛顿是一位著名的物理学家,他在研究力学的过程中创立了微积分学。
他将物体的运动规律表示为数学方程,然后通过求解这些方程来获得物体的运动轨迹和性质。
这种做法为微积分学提供了重要的物理背景和实践应用,推动了微积分学的发展。
莱布尼兹是一位杰出的数学家,他在研究代数和几何的过程中独立发展出了微积分学。
他将数学中的无限小量、极限等概念引入微积分学,为微积分学提供了更为严格和系统的数学基础。
莱布尼兹的贡献为微积分学在数学领域的发展和应用打下了坚实的基础。
笛卡尔是一位杰出的哲学家和数学家,他在研究几何学的过程中提出了笛卡尔引理,为微积分学提供了重要的哲学基础。
该引理表明,几何图形可以由其元素之间的关系来确定,这种思想为微积分学中极限、导数等概念的形成提供了重要的启示。
欧拉是一位杰出的数学家和物理学家,他在研究力学和流体力学的过程中提出了欧拉公式,为微积分学在物理学领域的应用提供了重要的工具。
该公式可以用以描述物体在受力作用下的运动规律,为微积分学在物理学中的应用提供了重要的实例。
现代微积分学已经发展成为一门极其重要的学科,它在物理学、工程学、经济学等领域都有广泛的应用。
例如,在物理学中,微积分可以描述物体的运动规律、电磁场、引力场等;在工程学中,微积分可以用于优化设计、控制工程、计算机图形学等;在经济学中,微积分可以用于预测市场趋势、金融风险管理、人口模型等。
随着科学技术的发展,微积分学的应用前景将更加广阔。
微积分的创立者是牛顿和莱布尼兹严格微积分的奠基者是柯西和威尔斯特拉斯关于微积分的故事,曾经一度迷惑着我,今天有幸弄清其中原委,以消心中疑云。
微积分的萌芽可以追溯到古代的希腊、中国和印度,酝酿于17世纪的欧洲。
1.牛顿和莱布尼兹创立了微积分1.1 牛顿的“流数术”牛顿(I.Newton,1642-1727)1642年生于英格兰伍尔索普村的一个农民家庭。
1661年牛顿进入剑桥大学三一学院,受教于巴罗。
笛卡儿的《几何学》和沃利斯的《无穷算术》,这两部著作引导牛顿走上了创立微积分之路。
牛顿于1664年秋开始研究微积分问题,在家乡躲避瘟疫期间取得了突破性进展。
1666年牛顿将其前两年的研究成果整理成一篇总结性论文—《流数简论》,这也是历史上第一篇系统的微积分文献。
在简论中,牛顿以运动学为背景提出了微积分的基本问题,发明了“正流数术”(微分);从确定面积的变化率入手通过反微分计算面积,又建立了“反流数术”;并将面积计算与求切线问题的互逆关系作为一般规律明确地揭示出来,将其作为微积分普遍算法的基础论述了“微积分基本定理”。
这样,牛顿就以正、反流数术亦即微分和积分,将自古以来求解无穷小问题的各种方法和特殊技巧有机地统一起来。
正是在这种意义下,牛顿创立了微积分。
牛顿对于发表自己的科学著作持非常谨慎的态度。
1687年,牛顿出版了他的力学巨著《自然哲学的数学原理》,这部著作中包含他的微积分学说,也是牛顿微积分学说的最早的公开表述,因此该巨著成为数学史上划时代的著作。
而他的微积分论文直到18世纪初才在朋友的再三催促下相继发表。
1.2 莱布尼茨的微积分工作莱布尼茨(W.Leibniz,1646-1716)出生于德国莱比锡一个教授家庭,青少年时期受到良好的教育。
1672年至1676年,莱布尼茨作为梅因茨选帝侯的大使在巴黎工作。
这四年成为莱布尼茨科学生涯的最宝贵时间,微积分的创立等许多重大的成就都是在这一时期完成或奠定了基础。
微积分的发展历史1. 古希腊时期:微积分的起源可以追溯到古希腊时期,早在公元前5世纪,数学家祖克里斯特斯(Zeno of Elea)就提出了诸如阿基里斯赛跑等著名的悖论,引发了对无穷小和无穷大的思考。
2. 阿基米德和群测强微积分:在古希腊和古罗马时期,一些数学家如阿基米德和群测强(Archimedes)开始探索几何学和代数学的基本概念,在解决实际问题的过程中也涉及到了微积分的雏形。
3.牛顿和莱布尼兹的发现:17世纪,英国科学家牛顿和德国数学家莱布尼兹几乎同时独立发现了微积分的基本原理。
牛顿将微积分用于机械学和物理学的研究,而莱布尼兹则用它来解决代数和几何方程。
这两位伟大的数学家将微积分作为一门独立的学科加以发展并系统化。
4. 微积分的形式化建立:18世纪,欧拉(Leonhard Euler)将微积分的概念进一步抽象化和形式化,构建了函数和级数的理论,为微积分的应用奠定了坚实的基础。
5. 国际象棋问题的解决:19世纪初,法国数学家拉格朗日(Joseph-Louis Lagrange)研究国际象棋中的一个问题,首次利用微积分的方法进行了解决。
这个问题不仅使微积分在数学界引起了重视,也增强了人们对微积分的研究兴趣。
6. 分析学的发展:19世纪,数学分析学迎来了一个又一个的里程碑。
来自法国的布尔巴基(Augustin-Louis Cauchy)和庞加莱(Henri Poincaré)等人对极限、连续性和导数等概念进行了严格的定义和证明,进一步完善了微积分的理论。
7.微积分的应用:20世纪初期,微积分得到了广泛应用,特别是在物理学、工程学和经济学等领域。
爱因斯坦的相对论理论、量子力学的发展以及现代金融学等都离不开微积分的支持。
8.持续发展和改进:自20世纪起,微积分一直在不断发展和改进。
函数论、复分析及它们与微积分的关系等新理论的出现,使微积分的应用更加广泛,对更加复杂的问题提供了更加深入的分析。
微积分的发展史微积分的发展史微积分是数学中的一个重要分支,发挥着重要的作用,它具有重要的实用价值,是现代数学中一门重要的学科。
微积分在古代有着很长的历史,从古至今,在发展的过程中,受到了许多著名的数学家的不懈努力,其演变虽然有一定的规律,但是发展也呈现出复杂的趋势,下面来看看微积分的发展历史。
一:古代的微积分古代微积分的发源可以追溯到公元前三世纪古希腊哲学家斐波那契和欧几里德的古典时代,他们最早提出了微积分的相关概念,比如斐波那契提出的“变化率”的思想,欧几里德提出的“误差积分”的思想,他们发明出来的数学模型也是微积分发展的基础。
二:新罗马时代的微积分新罗马时期的微积分研究已经开始流行,公元七世纪达·索马里(d’Alembert)等科学家在此期间正式提出“积分”的概念,但他们只是把微积分引入到数学体系中,并没有真正深入的研究。
三:十七世纪的微积分在十七世纪,英国数学家派克完成了微积分的重大突破,他把斐波那契和欧几里德的相关概念作为微积分的基础,将微积分作为一个独立的学科,开始全面系统地研究微积分,由此开创了微积分的新观念,彻底改变了古代的微积分的思维模式,他的成果也在欧洲开始流行。
四:十八世纪的微积分到了十八世纪,派克的微积分在欧洲开始广泛受到关注和应用,微积分的研究开始更加深入和系统化,出现了许多在微积分领域有重大贡献的著名数学家,比如拉格朗日,瓦西里和弗拉基米尔,他们的成就使微积分的研究得到进一步的发展。
五:十九世纪的微积分到了十九世纪,微积分的研究开始发生重大变化,出现了许多在微积分领域有重大贡献的著名数学家,比如高斯,尤金和庞加莱,他们的发现把微积分推向了新的高度。
同时也有一些新的应用,使微积分的研究发生了重大变化,这个时期也是微积分发展史上的一个重要时期。
六:二十世纪的微积分到了二十世纪,微积分的研究取得了重大的进展,出现了许多在微积分领域有重大贡献的著名数学家,比如黎曼,爱因斯坦和明斯基,他们的成就使微积分的研究取得了突破性的进展,使微积分得到了全面的发展,成为现代数学中重要的学科之一。
微积分的发展史范文微积分是现代数学中的一个重要分支,涉及对函数的导数和积分等概念的研究。
微积分的发展经历了几个重要的阶段,从古希腊数学的一些零散的想法,到17世纪初牛顿和莱布尼茨的独立发现,再到19世纪的完善和推广,微积分已经成为现代科学和工程中的基础理论。
早在公元前4世纪,古希腊数学家欧几里得提出了一种用极限概念来研究曲线斜率的方法。
在此之后,亚历山大的阿基米德在第三世纪前后也使用了一些近似方法来研究圆周率和测量圆的面积。
然而,在古希腊时期,微积分的概念还没有被系统地发展出来。
微积分真正的发展始于17世纪初,当时牛顿和莱布尼茨几乎同时独立地发现了微积分的基本原理和方法。
牛顿将微积分应用于天文学和物理学,而莱布尼茨则将其应用于几何学和计算问题。
通过牛顿和莱布尼茨的努力,微积分的基本概念如导数和积分被建立起来,并形成了一套完整的理论体系。
在18世纪,微积分的研究得到了进一步的推广和完善。
欧拉是18世纪最重要的数学家之一,他对微积分进行了深入的研究。
欧拉发展了一些重要的概念和技巧,例如级数、复变函数和微分方程等,为微积分的应用和推进做出了巨大贡献。
此外,拉格朗日和拉普拉斯等数学家也对微积分进行了深入的研究,并为微积分的发展提供了许多重要的思想和方法。
到了19世纪,微积分的研究进入了一个全新的阶段。
拉格朗日的求导法则和莱布尼茨的积分法则等基本概念和技巧被进一步推广和完善。
庞加莱、魏尔斯特拉斯和威尔逊等数学家对微积分理论进行了深入研究,提出了许多重要的定理和方法。
特别是庞加莱在微分方程理论方面的贡献,使微积分得到了进一步的应用和发展。
20世纪是微积分研究的蓬勃发展阶段。
在这个时期,微积分被广泛应用于物理学、工程学、经济学和计算机科学等领域。
随着计算机的普及和计算能力的提高,微积分的数值方法和近似计算技术得到了极大的发展。
微分方程的数值解法、积分的数值计算、函数逼近和插值等都在这个时期得到了广泛的应用。
总体而言,微积分的发展历程可以概括为:古希腊数学的零散想法,17世纪牛顿和莱布尼茨的独立发现,18世纪的推广和完善,19世纪的深入研究,以及20世纪的应用和发展。
微积分发展史简述微积分是数学中的重要分支,广泛应用于自然科学、工程学、经济学等领域。
它的发展历史可以追溯到古希腊时期,但直到17世纪才得到了系统的发展和完善。
本文将简要介绍微积分的发展史。
1. 古希腊时期:微积分的雏形在古希腊时期,数学家们对于几何学有着深入的研究。
亚里士多德和欧几里得等人提出了许多与微积分相关的概念,如无穷小量和极限。
然而,由于当时的数学工具和观念的限制,微积分的发展受到了很大的阻碍。
2. 牛顿和莱布尼茨:微积分的创始人17世纪,牛顿和莱布尼茨几乎同时独立地发展出微积分学。
牛顿创立了微积分的主要思想和方法,他提出了差分和积分的概念,并建立了微分方程和牛顿运动定律等基本理论。
莱布尼茨独立地发展出了微积分的符号表示法,引入了微积分中的极限和导数的概念。
牛顿和莱布尼茨的工作为微积分的发展奠定了基础。
3. 微积分的完善:极限与连续性18世纪,欧拉和拉格朗日等数学家对微积分进行了深入的研究和发展。
欧拉进一步完善了微积分的符号表示法,并提出了欧拉公式等重要结果。
拉格朗日则对微积分中的极限和连续性进行了系统的研究,提出了拉格朗日中值定理和泰勒展开等重要定理。
这些工作使微积分的理论更加严谨和完备。
4. 微积分的应用:物理学和工程学19世纪,微积分的应用开始扩展到物理学和工程学等实际问题中。
拉普拉斯和傅里叶等数学家使用微积分的方法解决了一系列的物理学问题,为微积分的应用奠定了基础。
同时,微积分也在工程学中得到了广泛的应用,如力学、电磁学和流体力学等领域。
微积分的应用使得工程学的发展取得了重大的突破。
5. 微积分的发展与现代数学的关系20世纪,微积分的发展与现代数学的发展密切相关。
在集合论和数理逻辑的基础上,数学家们对微积分的理论进行了深入的研究和推广。
勒贝格和黎曼等数学家提出了测度论和黎曼积分等新的概念和方法,为微积分的发展带来了新的思路和工具。
同时,微积分也成为了现代数学的重要组成部分,在数学的其他分支中得到了广泛的应用。
微积分的发展历史微积分是数学中的一个重要分支,它主要研究一些连续变化的函数之间的关系,以及这些函数的一些量的变化规律。
微积分的历史可以追溯到古希腊时期,但是直到17世纪初期,微积分才真正成为独立的数学分支。
以下是微积分的发展历史。
1. 古希腊时期古希腊数学家阿基米德(287 BC - 212 BC)就是微积分的先驱之一。
他发明了一种称为“方法论”的技术,这种技术可以用来求解一些几何问题,例如圆的面积和球体的体积。
这种技术可以用来求解一些连续变化的函数的面积或体积问题。
2. 17世纪初期17世纪初期,数学家牛顿(1643-1727)和莱布尼茨(1646-1716)几乎同时发明了微积分。
他们的发现彻底改变了数学的面貌。
牛顿的微积分是基于几何直觉的发现,而莱布尼茨的微积分则是基于代数记号的发现。
3. 18世纪在18世纪,微积分的研究得到了进一步发展。
法国数学家欧拉(1707-1783)和拉格朗日(1736-1813)在微积分的研究中做出了重要的贡献。
欧拉在微积分中引入了复数,这对微积分的发展具有重要的意义。
拉格朗日发现了微积分中的一些基本定理,例如拉格朗日中值定理和柯西中值定理。
4. 19世纪19世纪是微积分的发展中最重要的一个世纪。
数学家高斯(1777-1855)和魏尔斯特拉斯(1815-1897)在微积分的研究中做出了重要的贡献。
高斯发现了极值问题的解法,魏尔斯特拉斯则首次使用了极限的概念来解决微积分中的一些问题。
5. 20世纪20世纪是微积分发展的最后一个世纪。
在这个世纪里,微积分的研究得到了深入的发展。
数学家费曼(1918-1988)提出了路径积分理论,这个理论对微积分的研究有着重要的意义。
同时,微积分还应用于物理学、工程学和经济学等领域,在这些领域中发挥着至关重要的作用。
微积分的发展历史可以追溯到古希腊时期,但是直到17世纪初期,微积分才真正成为独立的数学分支。
在18世纪和19世纪,微积分得到了进一步的发展,20世纪中期,微积分已经成为了一个重要的数学分支,并被广泛应用于各个领域。
微积分的产生——划时代的成就.1 微积分思想的萌芽1.1 古希腊罗马——微分、积分思想的发源地原子论朴素的微分和积分思想.古希腊的原子论者具有朴素的微分和积分思想,该学派的创始人是留基伯(Leucippcus of Miletus),代表人物则是百科全书式的学者德漠克利特(Democritus of Abdera).原子论者把宇宙间的万物看成由不可再分的原子构成,以及原子虽然不能再分但仍有内部结构的思想,表现在数学上就是对于表示有限的长度、面积和体积的量x ,进行了一次微分(dx)和二次微分(dx 2). 德漠克利特曾用原子论思想第一次算出圆锥和棱锥的体积分别等于和它们同底同高的圆柱和棱柱体积的三分之一.极限法的早期形式穷竭法.为了计算曲边形的面积和体积,欧多克斯(Eudoxus of Cnidos )曾提出了一个计算方法,这个方法在17世纪时被人称为“穷竭法”.用现代的符号表示就是:如果对于任意的正整数n ,等式k b a nn =(常数)成立,且当n →∞时,A a n →,B b n →,则有k BA =.他用这个方法证明了德漠克利特已得出的求圆锥和棱锥体积的公式.阿基米德(Archimedes)对穷竭法也作出了重要贡献,他在《圆的度量》、《论圆柱和球》、《抛物线求积》、《论螺线》等著作中,应用了穷竭法,并引用了近似现代微积分中的“大和”与“小和”概念.并且他用这种方法计算出了球的体积和表面积、抛物线弓形的面积以及一些旋转体的体积等数学问题.芝诺的拟难.芝诺(Zero of Elea)是古希腊爱利亚学派的代表人,他虽然不是一个科学家,更谈不上是一位数学家,但他提出的四个拟难——二分法、阿基里斯追龟、飞箭、运动场,客观上把微积分中的离散和连续的对立统一惹人注目地摆了出来,对微积分发展有一定的影响.其中“二分法”和“阿基里斯追龟”涉及无穷运算问题,比如,收敛的无穷级数,虽有无穷多项,但其和仍为有限的;“飞箭”则是一个典型的导数问题,运动的物体在每一时刻不仅有速度,而且还有加速度等;“运动场”明显地同运动的两个相反的方向即正负概念有关.1.2 阿拉伯和欧洲中世纪——无限和运动的研究在整个中世纪,希腊文化遗产在某种程度上是由逐渐缩小的、以君士坦丁堡为中心的拜占庭帝国保存下来的.但是,在黑暗时代的几个世纪中,有效地利用这些遗产,并且最后把它们输送到西欧去的,却是地中海地区的阿拉伯政权.代数和三角学的确立.从7世纪开始,阿拉伯帝国逐渐崛起,到8世纪,它已成为一个地跨亚、欧、非三洲,阿拉伯帝国在所辖的较大城市建立图书馆和天文馆,政府组织人力进行天文观测,编制星表,集中学者翻译和注释希腊罗马古典名著.正当欧洲处在黑暗时期,“阿拉伯数学”却成了这时期西方科学的代表.希腊罗马的古典名著正是通过“阿拉伯人”的工作才得以保存下来,这是阿拉伯人对人类文明的重要贡献之一.不仅如此,阿拉伯也是东西科学文化交流的桥梁,今天通行的“印度—阿拉伯数码”以及我国古代“四大发明”等,都是通过阿拉伯从东方传到西方去的,这为欧洲以后科学文化的复苏创造了重要条件.有继承才有发展,阿拉伯人在保留古希腊罗马文化和传统文化的同时,也有一定的发展和创造.代数和三角学的确立就是他们对数学所做出的贡献.对无限和运动的研究.这一时期,除了“印度—阿拉伯数码”的逐渐普及,代数和三角学已经确立以及数学符号化已有端倪外,对无限的讨论以及对运动和速度的研究已成为数学家们注意的中心.例如德国的红衣主教库萨的尼古拉,把圆与三角形分别看成边数最多和边数最少的多边形,把无限大和零分别看成自然数的上界和下界.他还说尽管“世界不是无限的,但毕竟不能认为它是有限的,因为世界没有一条把它包围起来的界限”,这表明了他把无限看作一个过程的潜无限思想.14世纪英国很有声誉的数学家苏依塞斯的重要著作《算术》中,已有变量、极大和极小概念的原始形式,预示了变数和导数即将进入数学领域.他所使用的“流数”、“流量”等概念,被300年后的牛顿所采用.在无限问题上他指出,要解决所有关于无限的诡辩,只要认识到有限和无限不能有它们的比就行了,这是关于对有限和无限应有不同的论证的最早认识.1.3 古代中国——面积、体积与极限思想的丰富简单几何图形面积和体积的计算.在微积分的发展历史上,对任意封闭的平面曲线围成图形面积的计算,和任意封闭的空间曲线包围立体图形体积的计算,是产生积分概念的主要途径之一.计算面积和体积可以追溯到原始农业社会,根据我国甲骨文记载,约在300年以前的殷代,就把耕种的土地分成方形小块以求面积.积分概念就是在初等几何计算面积和体积的基础上逐渐形成的.《庄子》和《墨经》中的极限思想.极限概念是微积分区别于初等数学的特有概念,没有极限概念就没有现代的微积分.战国时代的《庄子·天下篇》中,有不少极限思想,其中最脍炙人口的一句话是:“一尺之椎,日取其半,万世不竭.”可以理解为无穷无尽、永远达不到极限的潜无限思想.无穷或无限概念,是极限概念的特殊情况,是微积分的重要概念.《墨经》也是战国时代的重要著作之一,该书对有穷和无穷作了明确的区分.该书说,“穷,或有前,不容尺也”,意思是有穷就是有边界的区域,用尺沿一个方向去量它一定能量完;“穷,或不容尺,有穷;莫不容尺,无穷也”,即有穷就是能量尽这个区域,如果量不尽,就是无穷.与此同时《墨经》也有丰富的微分思想,比如:“端,体之无厚而最前者也”;“端,无间也”;“非半则不动,说在端”.第一句话就是说,“端”就是不可度量且位于物体的最前面的东西.第二和第三句是说,如果没有空隙、也不能再进行分割的就是端.这是对构成物质的最基本的元素相当精确的定义,实际上就是对物体经“化整为零”后的微分概念.极限思想的运用——割圆术.我国三国时的数学家刘徽提出的“割圆术”,他从圆内接正六边形做起,令边数成倍地增加,逐步推求圆内接正12边形,正24边形,……,直到正3072边形,用这个正3072边形面积来逼近圆面积,就得到π的较精确的值3.1416,“割之弥细,所失弥少;割之又割,以至于不可割,则与圆周合体而无所失矣.”这就包含着微积分中“无限细分,无限求和”的思想方法.另外,古代与中世纪中国学者在天文历法研究中曾涉及到天体运动的不均匀性及有关的极大、极小值问题,如郭守敬《授时历》中求“月离迟疾”(月亮运行的最快点和最慢点)、求月亮白赤道交点与黄赤道交点距离的极值(郭守敬甚至称之为“极数”)等问题,但东方学者以惯用的数值手段(“招差术”,即有限差分计算)来处理,从而回避了连续变化率.总之,在17世纪以前,真正意义上的微分学研究的例子可以说是较少的.2微积分孕育的半个世纪在历史上,积分概念和方法的产生先于微分.积分的原理,溯源于古希腊人所创造的计算面积、体积和弧长相联系的求和方法,在古代的穷竭法中就已萌芽.微分思想虽然可追溯到古希腊,但它的概念和法则几乎是16世纪下半叶后与近代力学同时产生和发展起来的.微分思想和积分思想起初互不相干,基本上是平行而又独立地发展着,都是对具体问题采取具体的方法,尽管在思想上有某些相似之处,但毕竟没有形成统一的方法.这两个统一方法形成后建立起其间联系又晚一些.直至17世纪上半叶,以力学为中心的一系列问题向数学提出了挑战,迫使数学家探索新的数学思想和方法来解决求曲线的长度、曲线围成的面积和体积、物体的重心、变化率和切线、函数的极值、物体在任意时刻的速度和加速度等大量生产、科研实践中提出的数学问题.对上述问题的研究以及对二项式定理和级数的讨论所形成的数学思想和方法的成熟和发展,孕育了微积分的诞生.2.1积分学概念和方法的产生在积分概念和方法的形成过程中,最有代表性的工作主要有:2.1.1 开普勒的同维无穷小方法开普勒(Johannes Kepler,1571-1630)是德国著名天文学家、力学家和数学家,在大学学习时曾接触到哥白尼学说,他的思想受毕达哥拉斯和柏拉图的影响较大,认为宇宙是上帝安排的和谐的体系,但他不象前人那样盲目相信,而是尊重事实.他寻求宇宙是和谐体系的显著成绩是先后总结出行星运动三定律,其中第一定律认为行星绕日运动并非是匀速运动,其轨道也不是圆而是椭圆.这就从根本上打破了传统的、权威的观念,是对哥白尼的天文学的重大发展. 图5-1 开普勒开普勒的父亲好喝酒,以开酒馆为业,少年时期的开普勒常帮父亲营业.他发现当时酒商求奥地利酒桶容积的方法不精确,经过研究在1615年发表《测量酒桶的新立体几何》,该书分为三个部分,第一部分是阿基米德式的空间几何,其中大约有90个旋转体的体积是阿基米德没有研究过的;第二部分重点是研究酒桶体积的求法;第三部分是这一方法的应用.在该书中,开普勒对古希腊的原子论方法作了发展——用无数个同维小元素之和来确定曲边形的面积及旋转体的体积.例如,把圆当作无限多个边的正多边形从而把无限多个以圆心为顶点的等腰三角形面积之和计为圆面积,于是得到圆面积等于周长乘半径之半. []n S S S A ∆++∆+∆=2121 221r rs π== 图 5-2他还认为球的体积是无数个小圆锥的体积之和,这些圆锥的顶点在球心,底面则是球面的一部分;将圆锥看成是极薄的圆盘之和,并由此计算出它的体积,然后进一步证明球的体积是半径乘以球面面积的三分之一⎪⎭⎫ ⎝⎛⨯⨯=3142R R V π.开普勒还用类似的方法算出了圆柱、圆环以及苹果形、柠檬形等的体积.开普勒的方法并不严格.比如,当圆分解为其底为一点之等腰三角形时,无异于说这时的三角形是一个线段,圆的面积是无数条线段(即半径)之和.在一些问题中,开普勒也确认面积就是直线之和.用无数个同维无穷小之和计算面积和体积是开普勒的基本思想,虽然还不严格,但确有合理之处,这也是开普勒方法的精华,他化曲为直和微小元求和的思想,对积分学很富有启发性. 2.1.2卡瓦列里和托里拆利的不可分量法“不可分元”并无严格的定义,费尔马、帕斯卡和罗伯瓦尔等都有类似思想,但是以卡瓦列里的思想最典型. 卡瓦列里(BonaventuraCavalieri,1598-1647)是意大利的牧师,也是伽俐略的学生.他的积分思想同古代原子论一脉相承,但比开普勒的方法更普遍,称之为“不可rS i O分元法”.这一思想集中体现在他的《用新方法促进的连续不可分量的几何学》(1635)和《六个几何问题》中两部著作之中.卡瓦列里认为线是由无限多个点组成,就象链条由珠子穿成的一样;面是由无限多条平行线段组成,就象布是由线织成的一样;立体则是由无限多个平行平面组成,就象书是由每一页积累成的一样;不过它们都是对无穷多个组成部分来说的.换句话说,他把几何图形看成是比它低一维的几何元素构成的:线是点的总和,平面是直线的总和, 图5-3 卡瓦列里立体是平面的总和,他分别把这些元素叫做线、面和体的“不可分量”.他建立了一条关于这些不可分量的普遍原理,后以“卡瓦列里原理”著称:两个等高的立体,如果它们的平行于底面且离开底面有相等距离的截面面积之间总有给定的比,那么这两个立体的体积之间也有同样的比.卡瓦列里利用这条原理计算出许多立体图形的体积,然而他对积分学创立最重要的贡献还在于证明了:如果两线段之比为2:1,则其平方和之比为3:1,立方和之比为4:1,直到九次方和之比为10:1,实际上已相当于今天的积分式⎰++=an n a n dx x 0111 (n 为自然数) 使早期的积分学突破了体积计算的现实原型而向一般算法过渡.卡瓦列里的不可分量方法比他的前人包括开普勒所使用的方法更接近于普遍的积分学算法,开普勒曾向同行们提出一个挑战问题:求抛物线弓形绕弦旋转而成的旋转体体积.卡瓦列里用自己的方法解决了开普勒的问题.人们认为,以卡瓦列里为代表的不可分量法就是17世纪初期的积分法,也是牛顿和莱布尼茨以前积分思想发展的高峰.卡瓦列里虽然克服了开普勒用各自不同的直线图形表示不同的曲边图形对应的不可分量之间的关系,而非每个面积中的不可分量全体,这就避免了无限的概念,自然就造成了理论上的不可克服的矛盾.同时,卡瓦列里求积法还具有不注意代数和算术的纯几何缺点.对卡瓦列里不可分量法作出重要修正的是他的朋友、伽利略的学生、意大利的托里拆利(E.Torricelli,1608-1647).1646年卡瓦列里发表《关于无限抛物线》中批评说:“把不可分元看成是相等的,即把点与点在长度上、线与线在宽度上、面与面在厚度上看成相等的说法纯属空话,它既难以证明,又无直观基础.”他以圆和三角形的不可分元为例说明二者的不可分元并不相同:一个是具有极小中心角的扇形,一个是具 图 5-4有微小宽度的带状体.所以他用开普勒的同维无穷小去代替卡瓦列利的不可分量,同时又保留了不可分量法在求积上的有效性,不但取得了曲线求积问题的许多成果,而且在理论上向近代积分靠近了一步.2.1.2 费马、帕斯卡和沃里斯等人的推进费马于1636年提出了一个相当于近代定积分的积分法,用统一的矩形条分割曲线形;用矩形面积近似地代替曲边形面积;利用曲线方程求出矩形面积,并以其构成的几何级数之和近似地得到曲线面积;对和式取极限使近似值转化为精确值.而帕斯卡则采取等分x 轴上的区间和略去无穷序列之和的高阶差的方法,这对牛顿、莱布尼茨产生了很大的影响.费马还将其积分法用于求弧长,他把曲线长视为微小线段长之和,再把线段长度之和转化为求曲线围成的面积来获得结果.英国数学家沃里斯1656年发表《无穷的算术》,使卡瓦列里、费马的不可分法得到系统的推广.他用数的语言把几何方法算术化,使无限的概念以解析的形式出现,开辟了用级数表示函数的道路,使得无限算术代替了有限算术,这对确立微积分奠定了重要的思想基础.沃里斯还利用微分三角形,给出了近代意义的弧微分概念和计算公式:22dy dx ds +=,但未能给出弧长的计算方法.到17世纪60年代,求积法已取得十分丰富的成果,发展得相当完善了.2.2微分学概念和法则的发展以上介绍的微积分准备阶段的工作,主要采用几何方法并集中于积分问题,解析几何的诞生改变了这一状况.解析几何的两位创始人笛卡儿和费马,都是将坐标方法引入微分学问题研究的前锋.2.2.1费马借助微小增量作切线费马在1637年发表了《求最大值和最小值的方法》,记述了一个求曲线切线的方法,这个方法的大意如下:设PT 是曲线在P 点的切线(如图5-5),TQ 叫次切线,只要知其长,就可确定T 点,再连接PT 就可以了.为了确定TQ ,设QQ 1为TQ 的微小增量,其长为E (即今之△x ), ∵△TQP ∽△PRT 1 ∴1RT PRQP TQ = 费马认为,当E(=PR)很小时,RT 1同RP 1几乎相等,因此有QPP Q E RP E QP TQ -==111 图 5-5 用现在的符号,把QP 写成)(x f ,于是有)()()(x f E x f E x f TQ -+= 即 )()()(x f E x f x f E TQ -+⋅=这时,费马先用E 除分子和分母,然后再让E=0就得到TQ 的数值(即今之)()(x f x f TQ '=).费马用这个方法解决了许多难题,应当说,这是微分方法的第一个真正值得注意的先驱工作.但是,他没有通过割线移动来决定切线,也没有通过计算斜率的极限来求切线.割线移动决定切线的思想,是笛卡儿1638年提出来的.2.2.2笛卡儿“圆法”求曲线)(x f y =过点))(,(x f x P 的切线,笛卡儿的方法是首先确定曲线在点P 处的法线与x 轴的焦点C 的位置,然后作该法线的过点P 的垂线,便可得到所求的切线.如图5-6,过C 点作半径r=CP 的圆,因CP 是曲线)(x f y =在P 点处的法线,那么点P 应是该曲线与圆222)(r v x y =-+的“重交点”(在一般情况下所作圆与曲线还会相交于P 点附近的另一点).如果[]2)(x f 是多项式,有垂交点就相当于方程 222)()]([r x v x f =-+ P T 1P 1RT Q Q 1将以P 点的横坐标x 为重根.但具有重根e x =的多项式的形式必须是∑⋅-i i x c e x 2)(,笛卡儿把上述方程有重根 的条件写成: ∑-=--+i i x c e x r x v x f 2222)()()]([, 图 5-6然后用比较系数法求得v 与e 的关系.带入x e =,就得到用x 表示的v ,这样过点P 的切线的斜率就是)(x f x v -. 以抛物线kx y =2为例,kx x f y ==)(,方程22)(r x v kx =-+有重根的条件为: 222)()(e x r x v kx -=--+令x 的系数相等,得e v k 22-=-,即k e v 21+=.代入x e =,于是次法距k x v 21=-,求出抛物线过点()kx x ,的切线斜率是xk kx k x f x v 212/)(==-. 笛卡儿的代数方法在推动微积分的早期发展方面有很大的影响,牛顿就是以笛卡儿圆法为起跑点而踏上研究微积分的道路的.笛卡儿圆法在确定重根时会导致极繁复的代数计算,1658年荷兰数学家胡德(J.Hudde)提出了一套构造曲线切线的形式法则,称为“胡德法则”.胡德法则为确定笛卡儿圆法所需的重根提供了机械的算法,可以完成求任何代数曲线的切线斜率时所要进行的计算.2.2.3费马求极值的方法用代数方法求函数的极大值和极小值,是产生微分学的重要途径之一.记载费马求极大值与极小值方法这份手稿,实际上是他写给梅森(M.Mersenne)的一封信,梅森是当时欧洲科学界领头任务伽利略、费马、笛卡儿、帕斯卡等人之间保持书信交往的中心.费马的方法用现在的符号表示大意如下:设)(x f 是x (x 就是费马的A )的某个多项式,现在讨论)(x f y =的极大值.如果)(x f 在x 点达到极大值,则对充分小的E>0必有:)(E x f +<)(x f 和)(E x f -<)(x f将此二不等式之左边展开则有:+++=+2)()()()()(E x Q x E x P x f E x f <)(x f-+-=-2)()()()()(E x Q x E x P x f E x f <)(x f消去这两个不等式两边的共同项,再用E 除则分别给出下面两个不等式:++E x Q x P )()(<0-+-E x Q x P )()(<0当E 充分小时,此二式左边的符号完全由)(x P 确定.可见,当)(x P 0≠时,此二式不可能有同一的符号,因此必须)(x P =0,从此式解出x 就是所求的极大值.同理可以求出极小值.费马的方法实际上就是,当计算有理整函数)(x f 的极值时,先计算它的导数x x f x x f x f x ∆-∆+='→∆)()(lim )(0,再令0)(='x f ,解之就是极值点. 不难看出,费马的方法尚有不足之处:第一,费马没有引入无穷小概念,我们在解释他的E 时设为“充分小”,是为了同今天的思想相一致,但费马并没有如此表述;第二,正如他自己所说,把求极值的方法普遍化问题尚缺乏证明;第三,令0)(=x P ,只是求出极值的必要条件,而不是充分条件.尽管费马求极值方法尚有不足之处,但已接近今天之形式,他已经看到了求切线和求极值有相同的数学结构.可以认为,在微分学的先驱工作中,费马是比较成熟的一个,无论是求切线还是求极值,他的方法在当时的影响都比较大.2.3微积分系统理论探索的前夜这里将要介绍的是帕斯卡、沃里斯和巴罗等人的工作,他们的工作对牛顿和莱布尼茨的微积分的产生有着直接的关系,如过把卡瓦列利和费马等人看作微积分先驱的杰出代表,则这几个人的工作是向牛顿和莱布尼茨微积分的过渡.2.3.1帕斯卡等的无穷小方法布莱斯·帕斯卡(Pascal Blaise,1623-1662)的一生,虽然只有39岁,而他的一段黄金时期(30-35岁)又专门研究神学,但是他在数学上的成就却很大.他是世界上第一架计算机的设计者,是概率论和射影几何的奠基人之一,提出了西方数学史所谓的“帕斯卡三角形”,他也是一位哲学家,并很有写作才能.他同罗伯瓦尔和费马一起,被称为当时法国数学界的三巨头.帕斯卡在积分学方面做的工作,是以他名字命名的三角形有 图5-7 帕斯卡一定关系.因为用这个三角形可以比较容易地求出自然数幂的二项式的展开式,不过帕斯卡是用文字表述的.他凭借这个结果并引入无穷小概念,算出了以曲线n x y =为一边的曲边梯形的面积.他把无穷小概念也应用于微分学,在他的《四分之一圆的正弦论》(1659)这部著作中,有一幅被称之为“微分三角形”的图形(图5-8).他说,当区间(即图中的RR=EK)很小时,则“弧可以代替切线”.通过“微分三角形”说明可以用直线代替,并进一步作出切线.把无穷小概念引入数学,是微积分发展史上的重要事件.以无穷小作基础才能把曲线看成直线.有人认为,如果帕斯卡能在无穷小的基础上寄兴趣于算术的考虑并致力于切线的求法,那么他就有可能比牛顿和莱布尼茨更早地击中微积 图 5-8分的要害.事实上,帕斯卡的工作对莱布尼茨的微积分产生了直接的影响. 2.3.2沃里斯的算术化英国的沃里斯(J.Wallis,1616-1703)是一位牧师的儿子,受过良好的古典教育.在剑桥大学学习期间专攻神学,以后对数学感兴趣.从1649年B AR I D KR E E C起任牛津大学的“沙维教授”,是17世纪时的英国仅次于牛顿的著名数学家.在微积分的先驱者中,沃斯里的算术化工作很有意义,可以说,没有算术化就没有牛顿的微积分.沃里斯接受了韦达、笛卡儿和费马等前辈们的思想——应用代数研究几何问题,他试图使算术完全脱离几何表示.另外在求积问题上,他 图5-9 沃里斯接受卡瓦列利的不可分元思想和流行的略去无穷小方法,并且应用尚不精确的无穷大和无穷小概念.他在数学史上第一次用符号∞表示无穷大,用∞1表示无穷小或零量,并把它们和有限数同样看待,一起参加运算.沃里斯在他的重要著作《无穷算术》(1655)一书中用算术方法得到如下的定理:“若有一无穷数列,从0开始按任意指数不断增加,那么,这些数之和与各数均等于其最大数的同样数目之和的比值为该指数+11.”用今天的符号表示就是⎰+=1011n dx x n (n 是整数或分数),这表明卡瓦列利和帕斯卡等所确定的关系⎰++=a n n a n dx x 0111 (n 为正整数),当n 为分数时仍然成立. 2.3.3巴罗的求切线和求积的互逆性 英国的伊萨克·巴罗(Isaac Barrow,1630-1677)是微积分发展史上最重要的人物之一,他本人也是神学家,精通希腊文和阿拉伯文,所以对希腊古典著作很有造诣;曾任剑桥大学教授、副校长,是牛顿的老师,1669年即牛顿26岁的那年,他主动宣布牛顿的学识已超过自己,并把“卢卡斯教授”职位让给牛顿,成了数学史上的佳话.他的主要著作是《光学和几何讲义》.巴罗的数学观基本上与希腊人相同,认为只有几何才是数学,而代数他认为不应该看成数学,应包括到逻辑中去.尽管他偏爱几何,但对 图5-10 巴罗 即将临产的微积分也有深刻的理解.巴罗曾设想曲线是由所谓的“线元”构成的,而线则是线元之延长,这是不可分元的不同说法,不过巴罗最有意义的贡献是把“求切线”和“求积”作为互逆问题联系起来.比如,他的《几何讲义》第十讲的命题十一和第十一讲的命题十九,用今天的符号表示分别是:(1)如果⎰=xzdx y 0,则zdx dy = (2)如果zdx dy =,则⎰=xy zdx 0 (设x=0时y=0)巴罗还采用帕斯卡二十年代提出而沃里斯正在使用的“微分三角形”思想来求曲线的切线.微分三角形是指由自变量增量x ∆和函数增量y ∆为直角边所构成的直角三角形.他第一个认识到xy ∆∆对于决定切线有重大意义,于是将微分三角形和费马的方法结合起来,从而得到比费马更优越的方法.实际上,巴罗已经接触到了微分的本质,因为x y ∆∆可以用来决定导数. 微积分的先驱们的工作,以费马和巴罗为标志而结束,由于历史的局限性,上述数学家关注的是具体几何特有的解答方法,而未注意大量成果的优越性、创造性和普遍性能够提炼成新的统一的方法构成一门新的学科,也就是需要创立具有普遍意义的抽象概念、具有一般符号和一整套解析形式与规则的可以应用的微积分学.牛顿和莱布尼茨正是在这样的时刻出。
微积分的产生——划时代的成就.1 微积分思想的萌芽1.1 古希腊罗马——微分、积分思想的发源地原子论朴素的微分和积分思想.古希腊的原子论者具有朴素的微分和积分思想,该学派的创始人是留基伯(Leucippcus of Miletus),代表人物则是百科全书式的学者德漠克利特(Democritus of Abdera).原子论者把宇宙间的万物看成由不可再分的原子构成,以及原子虽然不能再分但仍有内部结构的思想,表现在数学上就是对于表示有限的长度、面积和体积的量x ,进行了一次微分(dx)和二次微分(dx 2). 德漠克利特曾用原子论思想第一次算出圆锥和棱锥的体积分别等于和它们同底同高的圆柱和棱柱体积的三分之一.极限法的早期形式穷竭法.为了计算曲边形的面积和体积,欧多克斯(Eudoxus ofCnidos )曾提出了一个计算方法,这个方法在17世纪时被人称为“穷竭法”.用现代的符号表示就是:如果对于任意的正整数n ,等式k b a nn =(常数)成立,且当n →∞时,A a n →,B b n →,则有k BA =.他用这个方法证明了德漠克利特已得出的求圆锥和棱锥体积的公式.阿基米德(Archimedes)对穷竭法也作出了重要贡献,他在《圆的度量》、《论圆柱和球》、《抛物线求积》、《论螺线》等著作中,应用了穷竭法,并引用了近似现代微积分中的“大和”与“小和”概念.并且他用这种方法计算出了球的体积和表面积、抛物线弓形的面积以及一些旋转体的体积等数学问题.芝诺的拟难.芝诺(Zero of Elea)是古希腊爱利亚学派的代表人,他虽然不是一个科学家,更谈不上是一位数学家,但他提出的四个拟难——二分法、阿基里斯追龟、飞箭、运动场,客观上把微积分中的离散和连续的对立统一惹人注目地摆了出来,对微积分发展有一定的影响.其中“二分法”和“阿基里斯追龟”涉及无穷运算问题,比如,收敛的无穷级数,虽有无穷多项,但其和仍为有限的;“飞箭”则是一个典型的导数问题,运动的物体在每一时刻不仅有速度,而且还有加速度等;“运动场”明显地同运动的两个相反的方向即正负概念有关.1.2 阿拉伯和欧洲中世纪——无限和运动的研究在整个中世纪,希腊文化遗产在某种程度上是由逐渐缩小的、以君士坦丁堡为中心的拜占庭帝国保存下来的.但是,在黑暗时代的几个世纪中,有效地利用这些遗产,并且最后把它们输送到西欧去的,却是地中海地区的阿拉伯政权.代数和三角学的确立.从7世纪开始,阿拉伯帝国逐渐崛起,到8世纪,它已成为一个地跨亚、欧、非三洲,阿拉伯帝国在所辖的较大城市建立图书馆和天文馆,政府组织人力进行天文观测,编制星表,集中学者翻译和注释希腊罗马古典名著.正当欧洲处在黑暗时期,“阿拉伯数学”却成了这时期西方科学的代表.希腊罗马的古典名著正是通过“阿拉伯人”的工作才得以保存下来,这是阿拉伯人对人类文明的重要贡献之一.不仅如此,阿拉伯也是东西科学文化交流的桥梁,今天通行的“印度—阿拉伯数码”以及我国古代“四大发明”等,都是通过阿拉伯从东方传到西方去的,这为欧洲以后科学文化的复苏创造了重要条件.有继承才有发展,阿拉伯人在保留古希腊罗马文化和传统文化的同时,也有一定的发展和创造.代数和三角学的确立就是他们对数学所做出的贡献.对无限和运动的研究.这一时期,除了“印度—阿拉伯数码”的逐渐普及,代数和三角学已经确立以及数学符号化已有端倪外,对无限的讨论以及对运动和速度的研究已成为数学家们注意的中心.例如德国的红衣主教库萨的尼古拉,把圆与三角形分别看成边数最多和边数最少的多边形,把无限大和零分别看成自然数的上界和下界.他还说尽管“世界不是无限的,但毕竟不能认为它是有限的,因为世界没有一条把它包围起来的界限”,这表明了他把无限看作一个过程的潜无限思想.14世纪英国很有声誉的数学家苏依塞斯的重要著作《算术》中,已有变量、极大和极小概念的原始形式,预示了变数和导数即将进入数学领域.他所使用的“流数”、“流量”等概念,被300年后的牛顿所采用.在无限问题上他指出,要解决所有关于无限的诡辩,只要认识到有限和无限不能有它们的比就行了,这是关于对有限和无限应有不同的论证的最早认识.1.3 古代中国——面积、体积与极限思想的丰富简单几何图形面积和体积的计算.在微积分的发展历史上,对任意封闭的平面曲线围成图形面积的计算,和任意封闭的空间曲线包围立体图形体积的计算,是产生积分概念的主要途径之一.计算面积和体积可以追溯到原始农业社会,根据我国甲骨文记载,约在300年以前的殷代,就把耕种的土地分成方形小块以求面积.积分概念就是在初等几何计算面积和体积的基础上逐渐形成的.《庄子》和《墨经》中的极限思想.极限概念是微积分区别于初等数学的特有概念,没有极限概念就没有现代的微积分.战国时代的《庄子·天下篇》中,有不少极限思想,其中最脍炙人口的一句话是:“一尺之椎,日取其半,万世不竭.”可以理解为无穷无尽、永远达不到极限的潜无限思想.无穷或无限概念,是极限概念的特殊情况,是微积分的重要概念.《墨经》也是战国时代的重要著作之一,该书对有穷和无穷作了明确的区分.该书说,“穷,或有前,不容尺也”,意思是有穷就是有边界的区域,用尺沿一个方向去量它一定能量完;“穷,或不容尺,有穷;莫不容尺,无穷也”,即有穷就是能量尽这个区域,如果量不尽,就是无穷.与此同时《墨经》也有丰富的微分思想,比如:“端,体之无厚而最前者也”;“端,无间也”;“非半则不动,说在端”.第一句话就是说,“端”就是不可度量且位于物体的最前面的东西.第二和第三句是说,如果没有空隙、也不能再进行分割的就是端.这是对构成物质的最基本的元素相当精确的定义,实际上就是对物体经“化整为零”后的微分概念.极限思想的运用——割圆术.我国三国时的数学家刘徽提出的“割圆术”,他从圆内接正六边形做起,令边数成倍地增加,逐步推求圆内接正12边形,正24边形,……,直到正3072边形,用这个正3072边形面积来逼近圆面积,就得到π的较精确的值3.1416,“割之弥细,所失弥少;割之又割,以至于不可割,则与圆周合体而无所失矣.”这就包含着微积分中“无限细分,无限求和”的思想方法.另外,古代与中世纪中国学者在天文历法研究中曾涉及到天体运动的不均匀性及有关的极大、极小值问题,如郭守敬《授时历》中求“月离迟疾”(月亮运行的最快点和最慢点)、求月亮白赤道交点与黄赤道交点距离的极值(郭守敬甚至称之为“极数”)等问题,但东方学者以惯用的数值手段(“招差术”,即有限差分计算)来处理,从而回避了连续变化率.总之,在17世纪以前,真正意义上的微分学研究的例子可以说是较少的.2微积分孕育的半个世纪在历史上,积分概念和方法的产生先于微分.积分的原理,溯源于古希腊人所创造的计算面积、体积和弧长相联系的求和方法,在古代的穷竭法中就已萌芽.微分思想虽然可追溯到古希腊,但它的概念和法则几乎是16世纪下半叶后与近代力学同时产生和发展起来的.微分思想和积分思想起初互不相干,基本上是平行而又独立地发展着,都是对具体问题采取具体的方法,尽管在思想上有某些相似之处,但毕竟没有形成统一的方法.这两个统一方法形成后建立起其间联系又晚一些.直至17世纪上半叶,以力学为中心的一系列问题向数学提出了挑战,迫使数学家探索新的数学思想和方法来解决求曲线的长度、曲线围成的面积和体积、物体的重心、变化率和切线、函数的极值、物体在任意时刻的速度和加速度等大量生产、科研实践中提出的数学问题.对上述问题的研究以及对二项式定理和级数的讨论所形成的数学思想和方法的成熟和发展,孕育了微积分的诞生.2.1积分学概念和方法的产生在积分概念和方法的形成过程中,最有代表性的工作主要有:2.1.1 开普勒的同维无穷小方法开普勒(Johannes Kepler,1571-1630)是德国著名天文学家、力学家和数学家,在大学学习时曾接触到哥白尼学说,他的思想受毕达哥拉斯和柏拉图的影响较大,认为宇宙是上帝安排的和谐的体系,但他不象前人那样盲目相信,而是尊重事实.他寻求宇宙是和谐体系的显著成绩是先后总结出行星运动三定律,其中第一定律认为行星绕日运动并非是匀速运动,其轨道也不是圆而是椭圆.这就从根本上打破了传统的、权威的观念,是对哥白尼的天文学的重大发展. 图5-1 开普勒开普勒的父亲好喝酒,以开酒馆为业,少年时期的开普勒常帮父亲营业.他发现当时酒商求奥地利酒桶容积的方法不精确,经过研究在1615年发表《测量酒桶的新立体几何》,该书分为三个部分,第一部分是阿基米德式的空间几何,其中大约有90个旋转体的体积是阿基米德没有研究过的;第二部分重点是研究酒桶体积的求法;第三部分是这一方法的应用.在该书中,开普勒对古希腊的原子论方法作了发展——用无数个同维小元素之和来确定曲边形的面积及旋转体的体积.例如,把圆当作无限多个边的正多边形从而把无限多个以圆心为顶点的等腰三角形面积之和计为圆面积,于是得到圆面积等于周长乘半径之半. []n S S S A ∆++∆+∆=Λ2121 221r rs π== 图 5-2他还认为球的体积是无数个小圆锥的体积之和,这些圆锥的顶点在球心,底面则是球面的一部分;将圆锥看成是极薄的圆盘之和,并由此计算出它的体积,然后进一步证明球的体积是半径乘以球面面积的三分之一⎪⎭⎫ ⎝⎛⨯⨯=3142R R V π.开普勒还用类似的方法算出了圆柱、圆r S iO环以及苹果形、柠檬形等的体积.开普勒的方法并不严格.比如,当圆分解为其底为一点之等腰三角形时,无异于说这时的三角形是一个线段,圆的面积是无数条线段(即半径)之和.在一些问题中,开普勒也确认面积就是直线之和.用无数个同维无穷小之和计算面积和体积是开普勒的基本思想,虽然还不严格,但确有合理之处,这也是开普勒方法的精华,他化曲为直和微小元求和的思想,对积分学很富有启发性.2.1.2卡瓦列里和托里拆利的不可分量法“不可分元”并无严格的定义,费尔马、帕斯卡和罗伯瓦尔等都有类似思想,但是以卡瓦列里的思想最典型.卡瓦列里(BonaventuraCavalieri,1598-1647)是意大利的牧师,也是伽俐略的学生.他的积分思想同古代原子论一脉相承,但比开普勒的方法更普遍,称之为“不可分元法”.这一思想集中体现在他的《用新方法促进的连续不可分量的几何学》(1635)和《六个几何问题》中两部著作之中.卡瓦列里认为线是由无限多个点组成,就象链条由珠子穿成的一样;面是由无限多条平行线段组成,就象布是由线织成的一样;立体则是由无限多个平行平面组成,就象书是由每一页积累成的一样;不过它们都是对无穷多个组成部分来说的.换句话说,他把几何图形看成是比它低一维的几何元素构成的:线是点的总和,平面是直线的总和,图5-3 卡瓦列里立体是平面的总和,他分别把这些元素叫做线、面和体的“不可分量”.他建立了一条关于这些不可分量的普遍原理,后以“卡瓦列里原理”著称:两个等高的立体,如果它们的平行于底面且离开底面有相等距离的截面面积之间总有给定的比,那么这两个立体的体积之间也有同样的比.卡瓦列里利用这条原理计算出许多立体图形的体积,然而他对积分学创立最重要的贡献还在于证明了:如果两线段之比为2:1,则其平方和之比为3:1,立方和之比为4:1,直到九次方和之比为10:1,实际上已相当于今天的积分式⎰++=an n a n dx x 0111 (n 为自然数) 使早期的积分学突破了体积计算的现实原型而向一般算法过渡.卡瓦列里的不可分量方法比他的前人包括开普勒所使用的方法更接近于普遍的积分学算法,开普勒曾向同行们提出一个挑战问题:求抛物线弓形绕弦旋转而成的旋转体体积.卡瓦列里用自己的方法解决了开普勒的问题.人们认为,以卡瓦列里为代表的不可分量法就是17世纪初期的积分法,也是牛顿和莱布尼茨以前积分思想发展的高峰.卡瓦列里虽然克服了开普勒用各自不同的直线图形表示不同的曲边图形对应的不可分量之间的关系,而非每个面积中的不可分量全体,这就避免了无限的概念,自然就造成了理论上的不可克服的矛盾.同时,卡瓦列里求积法还具有不注意代数和算术的纯几何缺点.对卡瓦列里不可分量法作出重要修正的是他的朋友、伽利略的学生、意大利的托里拆利(E.T orricelli,1608-1647).1646年卡瓦列里发表《关于无限抛物线》中批评说:“把不可分元看成是相等的,即把点与点在长度上、线与线在宽度上、面与面在厚度上看成相等的说法纯属空话,它既难以证明,又无直观基础.”他以圆和三角形的不可分元为例说明 二者的不可分元并不相同:一个是具有极小中心角的扇形,一个是具 图 5-4有微小宽度的带状体.所以他用开普勒的同维无穷小去代替卡瓦列利的不可分量,同时又保留了不可分量法在求积上的有效性,不但取得了曲线求积问题的许多成果,而且在理论上向近代积分靠近了一步.2.1.2 费马、帕斯卡和沃里斯等人的推进费马于1636年提出了一个相当于近代定积分的积分法,用统一的矩形条分割曲线形;用矩形面积近似地代替曲边形面积;利用曲线方程求出矩形面积,并以其构成的几何级数之和近似地得到曲线面积;对和式取极限使近似值转化为精确值.而帕斯卡则采取等分x 轴上的区间和略去无穷序列之和的高阶差的方法,这对牛顿、莱布尼茨产生了很大的影响.费马还将其积分法用于求弧长,他把曲线长视为微小线段长之和,再把线段长度之和转化为求曲线围成的面积来获得结果.英国数学家沃里斯1656年发表《无穷的算术》,使卡瓦列里、费马的不可分法得到系统的推广.他用数的语言把几何方法算术化,使无限的概念以解析的形式出现,开辟了用级数表示函数的道路,使得无限算术代替了有限算术,这对确立微积分奠定了重要的思想基础.沃里斯还利用微分三角形,给出了近代意义的弧微分概念和计算公式:22dy dx ds +=,但未能给出弧长的计算方法.到17世纪60年代,求积法已取得十分丰富的成果,发展得相当完善了.2.2微分学概念和法则的发展以上介绍的微积分准备阶段的工作,主要采用几何方法并集中于积分问题,解析几何的诞生改变了这一状况.解析几何的两位创始人笛卡儿和费马,都是将坐标方法引入微分学问题研究的前锋.2.2.1费马借助微小增量作切线费马在1637年发表了《求最大值和最小值的方法》,记述了一个求曲线切线的方法,这个方法的大意如下:设PT 是曲线在P 点的切线(如图5-5),TQ 叫次切线,只要知其长,就可确定T 点,再连接PT 就可以了.为了确定TQ ,设QQ 1为TQ 的微小增量,其长为E (即今之△x ),∵△TQP ∽△PRT 1 P T 1P 1R∴1RT PR QP TQ = 费马认为,当E(=PR)很小时,RT 1同RP 1几乎相等,因此有QPP Q E RP E QP TQ -==111 图 5-5 用现在的符号,把QP 写成)(x f ,于是有)()()(x f E x f E x f TQ -+= 即 )()()(x f E x f x f E TQ -+⋅=这时,费马先用E 除分子和分母,然后再让E=0就得到TQ 的数值(即今之)()(x f x f TQ '=).费马用这个方法解决了许多难题,应当说,这是微分方法的第一个真正值得注意的先驱工作.但是,他没有通过割线移动来决定切线,也没有通过计算斜率的极限来求切线.割线移动决定切线的思想,是笛卡儿1638年提出来的.2.2.2笛卡儿“圆法”求曲线)(x f y =过点))(,(x f x P 的切线,笛卡儿的方法是首先确定曲线在点P 处的法线与x 轴的焦点C 的位置,然后作该法线的过点P 的垂线,便可得到所求的切线.如图5-6,过C 点作半径r=CP 的圆,因CP 是曲线)(x f y =在P 点处的法线,那么点P 应是该曲线与圆222)(r v x y =-+的“重交点”(在一般情况下所作圆与曲线还会相交于P 点附近的另一点).如果[]2)(x f 是多项式,有垂交点就相当于方程222)()]([r x v x f =-+将以P 点的横坐标x 为重根.但具有重根e x =的多项式的形式必须是∑⋅-i i x c e x 2)(,笛卡儿把上述方程有重根 的条件写成:∑-=--+i i x c e x r x v x f 2222)()()]([, 图 5-6然后用比较系数法求得v 与e 的关系.带入x e =,就得到用x 表示的v ,这样过点P 的切线的斜率就是)(x f x v -. 以抛物线kx y =2为例,kx x f y ==)(,方程22)(r x v kx =-+有重根的条件为: 222)()(e x r x v kx -=--+令x 的系数相等,得e v k 22-=-,即k e v 21+=.代入x e =,于是次法距k x v 21=-,求出抛物线过点()kx x ,的切线斜率是xk kx k x f x v 212/)(==-. 笛卡儿的代数方法在推动微积分的早期发展方面有很大的影响,牛顿就是以笛卡儿圆法为起跑点而踏上研究微积分的道路的.笛卡儿圆法在确定重根时会导致极繁复的代数计算,1658年荷兰数学家胡德(J.Hudde)提出了一套构造曲线切线的形式法则,称为“胡德法则”.胡德法则为确定笛卡儿圆法所需的重根提供了机械的算法,可以完成求任何代数曲线的切线斜率时所要进行的计算.2.2.3费马求极值的方法用代数方法求函数的极大值和极小值,是产生微分学的重要途径之一.记载费马求极大值与极小值方法这份手稿,实际上是他写给梅森(M.Mersenne)的一封信,梅森是当时欧洲科学界领头任务伽利略、费马、笛卡儿、帕斯卡等人之间保持书信交往的中心.费马的方法用现在的符号表示大意如下:设)(x f 是x (x 就是费马的A )的某个多项式,现在讨论)(x f y =的极大值.如果)(x f 在x 点达到极大值,则对充分小的E>0必有:)(E x f +<)(x f 和)(E x f -<)(x f将此二不等式之左边展开则有:ΛΛ+++=+2)()()()()(E x Q x E x P x f E x f <)(x fΛΛ-+-=-2)()()()()(E x Q x E x P x f E x f <)(x f消去这两个不等式两边的共同项,再用E 除则分别给出下面两个不等式:ΛΛ++E x Q x P )()(<0ΛΛ-+-E x Q x P )()(<0当E 充分小时,此二式左边的符号完全由)(x P 确定.可见,当)(x P 0≠时,此二式不可能有同一的符号,因此必须)(x P =0,从此式解出x 就是所求的极大值.同理可以求出极小值.费马的方法实际上就是,当计算有理整函数)(x f 的极值时,先计算它的导数xx f x x f x f x ∆-∆+='→∆)()(lim )(0,再令0)(='x f ,解之就是极值点. 不难看出,费马的方法尚有不足之处:第一,费马没有引入无穷小概念,我们在解释他的E 时设为“充分小”,是为了同今天的思想相一致,但费马并没有如此表述;第二,正如他自己所说,把求极值的方法普遍化问题尚缺乏证明;第三,令0)(=x P ,只是求出极值的必要条件,而不是充分条件.尽管费马求极值方法尚有不足之处,但已接近今天之形式,他已经看到了求切线和求极值有相同的数学结构.可以认为,在微分学的先驱工作中,费马是比较成熟的一个,无论是求切线还是求极值,他的方法在当时的影响都比较大.2.3微积分系统理论探索的前夜这里将要介绍的是帕斯卡、沃里斯和巴罗等人的工作,他们的工作对牛顿和莱布尼茨的微积分的产生有着直接的关系,如过把卡瓦列利和费马等人看作微积分先驱的杰出代表,则这几个人的工作是向牛顿和莱布尼茨微积分的过渡.2.3.1帕斯卡等的无穷小方法布莱斯·帕斯卡(Pascal Blaise,1623-1662)的一生,虽然只有39岁,而他的一段黄金时期(30-35岁)又专门研究神学,但是他在数学上的成就却很大.他是世界上第一架计算机的设计者,是概率论和射影几何的奠基人之一,提出了西方数学史所谓的“帕斯卡三角形”,他也是一位哲学家,并很有写作才能.他同罗伯瓦尔和费马一起,被称为当时法国数学界的三巨头.帕斯卡在积分学方面做的工作,是以他名字命名的三角形有 图5-7 帕斯卡一定关系.因为用这个三角形可以比较容易地求出自然数幂的二项式的展开式,不过帕斯卡是用文字表述的.他凭借这个结果并引入无穷小概念,算出了以曲线n x y 为一边的曲边梯形的面积.他把无穷小概念也应用于微分学,在他的《四分之一圆的正弦论》(1659)这部著作中,有一幅被称之为“微分三角形”的图形(图5-8).他说,当区间(即图中的RR=EK)很小时,则“弧可以代替切线”.通过“微分三角形”说明可以用直线代替,并进一步作出切线.把无穷小概念引入数学,是微积分发展史上的重要事件.以无穷小作基础才能把曲线看成直线.有人认为,如果帕斯卡能在无穷小的基础上寄兴趣于算术的考虑并致力于切线的求法,那么他就有可能比牛顿和莱布尼茨更早地击中微积 图 5-8分的要害.事实上,帕斯卡的工作对莱布尼茨的微积分产生了直接的影响.2.3.2沃里斯的算术化英国的沃里斯(J.Wallis,1616-1703)是一位牧师的儿子,受过良好的古典教育.在剑桥大学学习期间专攻神学,以后对数学感兴趣.从1649年起任牛津大学的“沙维教授”,是17世纪时的英国仅次于牛顿的著名数学家.在微积分的先驱者中,沃斯里的算术化工作很有意义,可以说,没有算术化就没有牛顿的微积分.沃里斯接受了韦达、笛卡儿和费马等前辈们的思想——应用代数研究几何问题,他试B AR I D KR E E C图使算术完全脱离几何表示.另外在求积问题上,他 图5-9 沃里斯接受卡瓦列利的不可分元思想和流行的略去无穷小方法,并且应用尚不精确的无穷大和无穷小概念.他在数学史上第一次用符号∞表示无穷大,用∞1表示无穷小或零量,并把它们和有限数同样看待,一起参加运算.沃里斯在他的重要著作《无穷算术》(1655)一书中用算术方法得到如下的定理:“若有一无穷数列,从0开始按任意指数不断增加,那么,这些数之和与各数均等于其最大数的同样数目之和的比值为该指数+11.”用今天的符号表示就是⎰+=1011n dx x n (n 是整数或分数),这表明卡瓦列利和帕斯卡等所确定的关系⎰++=a n n a n dx x 0111 (n 为正整数),当n 为分数时仍然成立. 2.3.3巴罗的求切线和求积的互逆性英国的伊萨克·巴罗(Isaac Barrow,1630-1677)是微积分发展史上最重要的人物之一,他本人也是神学家,精通希腊文和阿拉伯文,所以对希腊古典著作很有造诣;曾任剑桥大学教授、副校长,是牛顿的老师,1669年即牛顿26岁的那年,他主动宣布牛顿的学识已超过自己,并把“卢卡斯教授”职位让给牛顿,成了数学史上的佳话.他的主要著作是《光学和几何讲义》.巴罗的数学观基本上与希腊人相同,认为只有几何才是数学,而代数他认为不应该看成数学,应包括到逻辑中去.尽管他偏爱几何,但对 图5-10 巴罗即将临产的微积分也有深刻的理解.巴罗曾设想曲线是由所谓的“线元”构成的,而线则是线元之延长,这是不可分元的不同说法,不过巴罗最有意义的贡献是把“求切线”和“求积”作为互逆问题联系起来.比如,他的《几何讲义》第十讲的命题十一和第十一讲的命题十九,用今天的符号表示分别是:(1)如果⎰=xzdx y 0,则zdx dy =。
微积分发展史微积分真正成为一门数学学科,是在十七世纪,然而在此这前微积分已经一步一步地跟随人类历史的脚步缓慢发展着。
着眼于微积分的整个发展历史,在此分为四个时期:1.早期萌芽时期。
2.建立成型时期。
3.成熟完善时期。
4.现代发展时期。
早期萌芽时期:1、古西方萌芽时期:公元前七世纪,泰勒斯对图形的面积、体积与的长度的研究就含有早期微积分的思想,尽管不是很明显。
公元前三世纪,伟大的全能科学家阿基米德利用穷竭法推算出了抛物线弓形、螺线、圆的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的公式,其穷竭法就类似于现在的微积分中的求极限。
此外,他还计算出Π的近似值,阿基米德对于微积分的发展起到了一定的引导作用。
2、古中国萌芽时期:三国后期的刘徽发明了著名的“割圆术”,即把圆周用内接或外切正多边形穷竭的一种求圆周长及面积的方法。
“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。
”不断地增加正多边形的边数,进而使多边形更加接近圆的面积,在我国数学史上算是伟大创举。
另外在南朝时期杰出的祖氏父子更将圆周率计算到小数点后七位数,他们的精神值得我们学习。
此外祖暅之提出了祖暅原理:“幂势即同,则积不容异”,即界于两个平行平面之间的两个几何体,被任一平行于这两个平面的平面所截,如果两个截面的面积相等,则这两个几何体的体积相等,比欧洲的卡瓦列利原理早十个世纪。
祖暅之利用牟合方盖(牟合方盖与其内切球的体积比为4:Π)计算出了球的体积,纠正了刘徽的《九章算术注》中的错误的球体积公式。
建立成型时期:1.十七世纪上半叶:这一时期,几乎所有的科学大师都致力于解决速率、极值、切线、面积问题,特别是描述运动与变化的无限小算法,并且在相当短的时间内取得了极大的发展。
天文学家开普勒发现行星运动三大定律,并利用无穷小求和的思想,求得曲边形的面积及旋转体的体积。
意大利数学家卡瓦列利与同时期发现卡瓦列利原理(祖暅原理),利用不可分量方法幂函数定积分公式,此外,卡瓦列利还证明了吉尔丁定理(一个平面图形绕某一轴旋转所得立体图形体积等于该平面图形的重心所形成的圆的周长与平面图形面积的乘积。
微积分发展简史一、微积分的创立微积分中的极限、穷竭思想可以追溯到两千五百年前的古希腊文明,著名的毕达哥拉斯学派,经过了漫长时期的酝酿,到了17世纪,在工业革命的刺激下,终于通过牛顿(Newton)和莱布尼兹(Leibniz)的首创脱颖而出了。
大约从15世纪初开始的文艺复兴时期起,工业、农业、航海事业与上古贸易的大规模发展,刺激着自然科学蓬勃发展,到了17世纪开始进入综合突破的阶段,而所有这些所面临的数学困难,最后汇总成四个核心问题,并最终导致微积分的产生。
这四个问题是:1.运动中速度、加速度与距离之间的虎丘问题,尤其是非匀速运动,使瞬时变化率的研究成为必要;2.曲线求切线的问题,例如要确定透镜曲面上的任一点的法线等;3.有确定炮弹最大射程,到求行星轨道的近日点与远日点等问题提出的求函数的极大值、极小值问题;4.当然还有千百年来人们一直在研究如何计算长度、面积、体积与重心等问题。
第一、二、三问题导致微分的概念,第四个问题导致积分的概念。
微分与积分在17世纪之前还是比较朦胧的概念,而且是独立发展的。
开普勒(Kepler)、伽利略(Galileo)、费马(Fermat)、笛卡尔(Descartes)、卡瓦列里(Cavalieri)等学者都做出了杰出贡献。
1669,巴罗(Barrow,牛顿的老师)发表《几何讲义》,首次以几何的面貌,用语言表达了“求切线”和“求面积”是两个互逆的命题。
这个比较接近于微积分基本定理。
牛顿和莱布尼兹生长在微积分诞生前的水到渠成的年代,这时巨人已经形成,牛顿和莱布尼兹之所以能完成微积分的创立大业,正事由于它们占到了前辈巨人们的肩膀上,才能居高临下,才能高瞻远瞩,终于或得了真理。
可以这样说:微积分的产生是量变(先驱们的大量工作的积累)到质变(牛顿和莱布尼兹指出微分与积分是对矛盾)的过程,是当时历史条件(资本主义萌芽时期)下的必然产物。
微积分基本定理的建立标志着微积分的诞生。
牛顿自1664年起开始研究微积分,钻研了伽利略、开普勒、瓦利斯(Wallis),尤其是笛卡尔的著作。
近代数学本质上可以说是变量数学。
文艺复兴以来资本主义生产力的发展,对科学技术提出了全新的要求:机械的普遍使用引起了对机械运动的研究;世界贸易的高涨促使航海事业的空前发达,而测定船舶位置问题要求准确地研究天体运行的规律;武器的改进刺激了弹道问题的探讨,等等,总之,到了16世纪,对运动与变化的研究已变成自然科学的中心问题。
这就迫切地需要一种新的数学工具,从而导致了变量数学亦即近代数学的诞生。
变量数学的第一个里程碑是解析几何的发明。
解析几何的基本思想是在平面上引进所谓“坐标”的概念,并借助这种坐标在平面上的点和有序实数对(),x y 之间建立一一对应的关系。
每一对实数(),x y 都对应于平面上的一个点;反之,每一个点都对应于它的坐标(),x y 。
以这种方式可以将一个代数方程(,)0f x y =与平面上一条曲线对应起来,于是几何问题便可归结为代数问题,并反过来通过代数问题的研究发现新的几何结果。
借助坐标来确定点的位置的思想古代曾经出现过,古希腊的阿波罗尼奥斯关于圆锥曲线性质的推导,阿拉伯人通过圆锥曲线交点求解三次方程的研究,都蕴涵着这种思想。
解析几何最重要的前驱是法国数学家奥雷斯姆(N 。
Oresme ,1323—1382),他在《论形态幅度》这部著作中提出的形态幅度原理(或称图线原理),甚至已接触到函数的图象表示,在这里,奥雷斯姆借用了“经度”、“纬度”这两个地理学术语来描述他的图线,相当于横坐标与纵坐标。
不过他的图线概念是模糊的,至多是一种图表,还未形成清晰的坐标与函数图象的概念。
解析几何的真正发明还要归功于法国另外两位数学家笛卡儿(R 。
Descartes ,1596—1650)与费马(P 。
de Fermat ,1601—1665)。
他们工作的出发点不同,但却殊途同归。
费马工作的出发点是竭力恢复失传的阿波罗尼奥斯的著作《论平面轨迹》,他为此而写了一本题为《论平面和立体的轨迹引论》(1629)的书。
书中清晰地阐述了费马的解析几何原理,指出:“只要在最后的方程中出现两个未知量,我们就有一条轨迹,这两个量之一的末端描绘出一条直线或曲线。
直线只有一种,曲线的种类则是无限的,有圆、抛物线、椭圆等等”。
费马在书中还提出并使用了坐标的概念,不仅使用了斜坐标系,也使用直角坐标系,他所称的未知量A 、E 实际就是“变量”,也就是我们今天所称的横坐标与纵坐标。
书中费马解析地定义了以下的曲线:
直线方程:()d a x by -=;
圆:222
b x y -=;
椭圆:222b x ky -=;
抛物线:22,x dy y dx ==;
双曲线:2222;xy k x b ky =+=;
费马后来还定义了新曲线:
,m n n m x y a y ax ==和n r av =。
费马没有说明他的解析几何思想是如何形成的。
我们可以认为,他与笛卡儿的创造都是文艺复兴以来欧洲代数学振兴所带来的必然结果。
解析几何是代数与几何相结合的产物,它将变量引进了数学,使运动与变化的定量表述成为可能,从而为微积分的创立搭起了舞台。
微积分的思想萌芽,特别是积分学,部分可以追溯到古代。
我们已经知道,面积和体积的计算自古以来一直是数学家们感兴趣的课题,在古代希腊、中国和印度数学家们的著述中,不乏用无穷小过程计算特殊形状的面积、体积和曲线长的例子。
如阿基米德、刘徽和祖冲之父子等人的方法,他们的工作,确实是人们建立一般积分学的漫长努力的先驱。
与积分学相比而言,微分学的起源则要晚得多。
刺激微分学发展的主要科学问题是求曲线的切线、求瞬时变化率以及求函数的极大极小值等问题。
古希腊学者曾进行过作曲线切线的尝试,如阿基米德《论螺线》中给出过确定螺线在给定点处的切线的方法;阿波罗尼奥斯《圆锥曲线论》中讨论过圆锥曲线的切线,等等。
但所有这些都是基于静态的观点,把切线看作是与曲线只在一点接触且不穿过曲线的“切触线”而与动态变化无干。
古代与中世纪中国学者在天文历法研究中曾涉及到天体运动的不均匀性及有关的极大、极小值问题,如郭守敬《授时历》中求“月离迟疾”(月亮运行的最快点和最慢点)、求月亮白赤道交点与黄赤道交点距离的极值(郭守敬甚至称之为“极数”)等问题,但东方学者以惯用的数值手段(“招差术”,即有限差分计算)来处理,从而回避了连续变化率。
总之,在17世纪以前,真正意义上的微分学研究的例子可以说是很罕见的。
近代微积分的酝酿,主要是在17世纪上半叶这半个世纪。
为了理解这一酝酿的背景,我们首先来略微回顾一下这一时期自然科学的一般形势和天文、力学等领域发生的重大事件。
首先是1608年,荷兰眼镜制造商里帕席发明了望远镜,不久伽利略将他制成的第一架天文望远镜对准星空而作出了令世人目不暇接、惊奇不已的天文发现。
望远镜的发明不仅引起了天文学的新高涨,而且推动了光学的研究。
1619年,开普勒公布了他的最后一条行星运动定律。
开普勒行星运动三大定律要意是:
(1)行星运动的轨道是椭圆,太阳位于该椭圆的一个焦点;
(2)由太阳到行星的矢径在相等的时间内扫过的面积相等;
(3)行星绕太阳公转周期的平方,与其椭圆轨道的半长轴的立方成正比。
开普勒主要是通过观测归纳出这三条定律。
从数学上推证开普勒的经验定律,成为当时自然科学的中心课题之一。
1638年,伽利略(GALILEO Galilei ,1564—1642)《关于两门新科学的对话》出版。
伽利略建立了自由落体定律、动量定律等,为动力学奠定了基础;他认识到弹道的抛物线性质,并断言炮弹的最大射程应在发射角为45
时达到,等等。
伽利略本人竭力倡导自然科学的数学化,他的著作激起了人们对他所确立的动力学概念与定律作精确的数学表述的巨大热情。
凡此一切,标志着自文艺复兴以来在资本主义生产力刺激下蓬勃发展的自然科学开始迈入综合与突破的阶段,而这种综合与突破所面临的数学困难,使微分学的基本问题空前地成为人们关注的焦点:确定非均匀运动物体的速度与加速度使瞬时变化率问题的研究成为当务
之急;望远镜的光程设计需要确定透镜曲面上任一点的法线,这又使求任意曲线的切线问题变得不可回避;确定炮弹的最大射程及寻求行星轨道的近日点与远日点等涉及的函数极大值、极小值问题也亟待解决。
与此同时,行星沿轨道运动的路程、行星矢径扫过的面积以及物体重心与引力的计算等又使积分学的基本问题—面积、体积、曲线长、重心和引力计算的兴趣被重新激发起来。
在17世纪上半叶,几乎所有的科学大师都致力于寻求解决这些难题的新的数学工具,特别是描述运动与变化的无限小算法,并且在相当短的时期内,取得了迅速的进展。
解析几何的两位创始人笛卡儿和费马,都是将坐标方法引进微分学问题研究的先锋。
笛卡儿在《几何学》中提出了求切线的所谓“圆法”,本质上是一种代数方法。
笛卡儿圆法记载于他1637年发表的《几何学》中。
就在同一年,费马在一份手稿中提出了求极大值与极小值的代数的方法。
按费马的方法,设函数()f x 在点a 处取极值,费马用a e +代替原来的未知量a ,并使()f a e +与()f a “逼近”(adequatio ),即
()()f a e f a + ,
消去公共项后,用e 除两边,再令e 消失,即
()()0e f a e f a e =+-⎡⎤=⎢⎥⎣⎦, 由此方程求得的a 就是()f x 的极值点。
例如。
费马用他的方法来确定怎样把长度为b 的一个线段划分为两个线段x 和b x -,使得它们的乘积()2
x b x bx x -=-最大(也就是作一个周长为2b 的长方形,使其面积最大)。
首先用x e +代替x ,然后写出
()()2
2b x e x e bx x +-+- ,
即2222bx be x xe e bx x +---- ,消去相同项得 220be xe e -- ,
两边除以e ,得
20b x e -- ,
令0e =,得20b x -=,即有
2
b x =。
费马的方法几乎相当于现今微分学中所用的方法,只是以符号e (他写作E )代替了增量x ∆。
记载费马求极大值与极小值方法的这份手稿,实际上是他写给梅森(M 。
Mersenne )的一封信,梅森是当时欧洲科学界领头人物伽利略、费马、笛卡儿、帕斯卡等人之间保持书信交往的中心。
他将费马这封信转给了笛卡儿,从而引起了关于切线问题的热烈争论,因为费马求极大极小值的方法也可以用来求曲线的切线,他在致梅森的信中就收入了怎样用他的方
法来求抛物线2y x 在给定点的切线的例子。
费马在信中指出他求函数极大值、极小值的方法还“可以推广应用于一些优美的问题”,并说他已经获得了求平面与立体图形的重心等一些其他结果,“关于这些结果,如果时间允许,我将在另外的场合来论述。
”。