《数学史》习题
- 格式:doc
- 大小:22.50 KB
- 文档页数:4
数学史习题数学史思考题6一、选择题1.最早使用“函数”这一术语的数学家是( A )。
A.莱布尼茨B.约翰·贝努利C.雅各布·贝努利D.欧拉 2.首先引进函数符号f(x)的数学家是( A )A.欧拉B.韦达C.柯西D.莱布尼茨3.“变量的函数是一个该变量与一些常数以任何方式组成的解析表达式。
”这个函数定义在18世纪后期占据了统治地位,给出这个函数定义的数学家是( C )A.莱布尼茨 B.约翰·贝努利C.欧拉 D.狄利克雷4.首先引进如下一批符号:f(x)-函数符号;∑-求和号;e-自然对数底;i-虚数单位的数学家是( B ) A.泰勒B.欧拉C.麦克劳林D.莱布尼茨 6.“纯数学的对象是现实世界的空间形式与数量关系。
”给出这个关于数学本质的论述的人是( B )A.笛卡尔B.恩格斯C.康托D.罗素 7.微积分创立于A.15世纪B.16世纪C. 17世纪 8.就微分学与积分学的起源而言( A )A.积分学早于微分学;B.微分学早于积分学;C.积分学与微分学同期;D.不确定 9.以下哪一个问题与微分学发展无关?( D )A.求曲线的切线;B.求瞬时变换率;C.求函数的极大极小值D.用无穷小过程计算特殊形状的面积10.牛顿和莱布尼茨几乎同时进入微积分的大门,他们的工作也是相互独立的,但在发表的时间上A.牛顿先于莱布尼茨;B.莱布尼茨先于牛顿;C.牛顿和莱布尼茨同时;D.谁先谁后尚未定论 11.牛顿最早公开其微积分学说的名著是( D )A.《曲线求积术》;B.《流数术》;C.《现代微积分学》; 12.最早公开发表微积分论文的是。
A.牛顿B.莱布尼茨C.柯西D.欧拉D.《自然哲学的数学原理》D.18世纪13.费马对微积分诞生的贡献主要在于其发明的( C )。
A.求瞬时速度的方法;B.求切线的方法;C.求极值的方法;D.求体积的方法 14.于对分析严格化的贡献而获得了“现代分析之父”称号的德国数学家是( A )A.魏尔斯特拉斯B.莱布尼茨C.欧拉D.柯西 15.最先将导数定义为差商yxf(xh)f(x)h,xh当h无限趋于零时的极限的数学家是( D )。
《数学史论约》试题一、填空1、数学史的研究对象是();2、数学史分期的依据主要有两大类,其一是根据()来分期,其一是根据()来分期;3、17世纪产生了影响深远的数学分支学科,它们分别是()、()、()、()、();4、18世纪数学的发展以()为主线;5、整数458 用古埃及记数法可以表示为()。
6、研究巴比伦数学的主要历史资料是(),而莱因特纸草书和莫斯科纸草书是研究古代()的主要历史资料;7、古希腊数学发展历经1200多年,可以分为()时期和()时期;8、17世纪创立的几门影响深远的数学分支学科,分别是笛卡儿和()创立了解析几何,牛顿和()创立了微积分,()和帕斯卡创立了射影几何,()和费马创立了概率论,费马创立了数论;9、19世纪数学发展的特征是()精神和()精神都高度发扬;10、整数458 用巴比伦的记数法可以表示为()。
11、数学史的研究内容,从宏观上可以分为两部分,其一是内史,即(),其一是外史,即();12、19世纪数学发展的特征,可以用以下三方面的典型成就加以说明:(1)分析基础严密化和(),(2)()和射影几何的完善,(3)群论和();13、20世纪数学发展“日新月异,突飞猛进”,其显著趋势是:数学基础公理化,数学发展整体化,()的挑战,应用数学异军突起,数学传播与()的社会化协作,()的导向;14、《九章算术》的内容分九章,全书共()问,魏晋时期的数学家()曾为它作注;15、整数458 用玛雅记数法可以表示为()。
16、数学史的研究对象是数学这门学科产生、发展的历史,既要研究其(历史进程),还要研究其();17、古希腊数学学派有泰勒斯学派、(毕达哥拉斯学派)、(厄利亚学派)、巧辩学派、柏拉图学派、欧多克索学派和();18、阿拉伯数学家()在他的著作()中,系统地研究了当时对一元一次和一元二次方程的求解方法;19、19世纪数学发展的特点,可以用以下三方面的典型成就加以说明:(1)()和复变函数论的创立;(2)非欧几里得几何学问世和();(3)在代数学领域()与非交换代数的诞生。
数学史试卷70题一、选择题(共70题)1 第二十四国际数学大会于2002年在( )召开A、巴黎 B 、莫斯科 C 、北京2 交换群这一概念的引入者是_______A、阿贝尔 B 、伽罗瓦 C 、卡尔希3 解析几何的奠基人、同时提出物质和运动不灭原理,发现光的折射定律的是_______A 、欧几里得B 、费马C 、笛卡儿4 _______改进了韦达的符号记法,用a 、b 、c ……等表示已知数,用x 、y 、z ……等表知数,创造了“=”,“”等符号。
A、高斯 B 、笛卡儿 C 、柯西5 最早把解析函数论的成果应用于数论领域的是____________A、傅立叶 B 、拉普拉斯 C 、狄利克雷 6 对数的创始人是__________A、耐普尔 B 、布里格斯 C 、冯 诺伊曼7 提出圆锥曲线的方程都是含有两个未知数且最高次幂为二次方程的结论的是___________A、欧拉 B 、费马 C 、海仑8 现代整数论的奠基人是( )A、费马 B 、牛顿 C 、高斯9 负数的概念,最早出现于我国古代数学名著( )A、《周髀算经 》 B 、《海岛算经》 C 、《九章算术》 10 ( )的问世,标志着现代数论的开始。
A、《算术研究》 B 、《算法之书》 C 、《数理精蕴》 11 推动概率论的形成和发展、建立光的波动学说的是( )A、帕斯卡 B 、惠更斯 C 、阿基米德12 首先使用“矩阵”这一术语的是( )A、西尔维斯特 B 、哈密顿 C 、凯来13 提出平行线在无穷远处相交的观点的是( )A、克莱因 B 、康托尔 C 、开普勒14 在代数学上,第一次使用“行列式”这术语的是( )A、高斯 B 、柯西 C 、欧拉15 《解析函数论》的作者是( )A、拉格朗日 B 、拉普拉斯 C 、莱布尼茨16 用极限思想证明四面体体积公式61abh 和指教四棱锥的体积公式31abh 的是我国伟大数学家( )A、贾宪 B 、杨辉 C 、刘徽17 “假如我比别人看得远一点,那是我站在巨人的肩膀上的缘故”这句话是( )的经典名言A、爱因斯坦B、牛顿C、富兰克林18 用∑表示求和,有i表示1-,用e表示自然数对数的底等都源于()A、欧拉B、黎曼C、柯西19 给出“虚数”这一名称的是法国数学家()A、笛卡儿B、拉普拉斯C、柯西20 先引入“集合”这一概念的是()A、雅各B、康托尔C、高斯21 具有“数学诺贝尔奖”之誉的奖项是()A、沃尔夫奖B、菲尔兹奖C、格莫诺夫奖22 公元263年刘徽注()用割圆术求π,包含极限的思想。
《数学史论约》复习题参考及答案本科一、填空(22分)1、数学史的研究对象是(数学这门学科产生、发展的历史),既要研究其历史进程,还要研究其(一般规律);2、数学史分期的依据主要有两大类,其一是根据(数学学科自身的研究对象、内容结构、知识领域的演进)来分期,其一是根据(数学学科所处的社会、政治、经济、文化环境的变迁)来分期;3、17世纪产生了影响深远的数学分支学科,它们分别是(解析几何)、(微积分)、(射影几何)、(概率论)、(数论);4、18世纪数学的发展以(微积分的深入发展)为主线;5、整数458 用古埃及记数法可以表示为()。
6、研究巴比伦数学的主要历史资料是(契形文字泥板),而莱因特纸草书和莫斯科纸草书是研究古代(埃及数学)的主要历史资料;7、古希腊数学发展历经1200多年,可以分为(古典)时期和(亚历山大里亚)时期;8、17世纪创立的几门影响深远的数学分支学科,分别是笛卡儿和(费马)创立了解析几何,牛顿和(莱布尼茨)创立了微积分,(笛沙格)和帕斯卡创立了射影几何,(帕斯卡)和费马创立了概率论,费马创立了数论;9、19世纪数学发展的特征是(创造)精神和(严格)精神都高度发扬;10、整数458 用巴比伦的记数法可以表示为()。
11、数学史的研究内容,从宏观上可以分为两部分,其一是内史,即(数学内在学科因素促使其发展),其一是外史,即(数学外在的似乎因素影响其发展);12、19世纪数学发展的特征,可以用以下三方面的典型成就加以说明:(1)分析基础严密化和(复变函数论创立),(2)(非欧几里得几何学问世)和射影几何的完善,(3)群论和(非交换代数诞生);13、20世纪数学发展“日新月异,突飞猛进”,其显著趋势是:数学基础公理化,数学发展整体化,(电子计算机)的挑战,应用数学异军突起,数学传播与(研究)的社会化协作,(新理论)的导向;14、《九章算术》的内容分九章,全书共(246)问,魏晋时期的数学家(刘徽)曾为它作注;15、整数458 用玛雅记数法可以表示为()。
基本概念:1、数学是研究现实的空间形式与数量关系的科学。
2、古希腊三大著名几何问题是:⑴化圆为方;⑵倍立方体;⑶三等分角。
3、《九章算术》是中国古典数学中最重要的著作。
4、刘徽的数学成就中国最突出的是“割圆术”和“体积理论”。
5、祖冲之的圆周率上下界为1415927<π。
.3.3<14159266、变量数学的第一个里程碑是解析几何的发明。
7、欧拉是数学史上最多产的数学家。
8、高斯在他的一生中至少给出二次互反律的8个不同的证明。
9、高斯在1801年发表了《算术研究》后,数论得到了重要的系统的发展。
10、宋元数学最突出的成就之一是高次方程的数值求解。
11、《九章算术》的作者是秦九韶。
12、《数书九章》系统地叙述求解一次同余式组的一般方法“大衍总算术”。
13、朱世杰的代表著作是“算学启蒙”和“四元玉鉴”。
14、罗巴切夫斯基是最早系统地发表非欧几何的研究成果。
15、黎曼1854年创立了最广泛的几何是黎曼几何。
16、统一几何理论是法国数学家克莱恩首次提出的。
17、康托尔Cantor系统地发展了一点点集理论(集合论)。
18、1900年法国数学家希尔伯特()Hilbert在巴黎世界数学家大会上发表《数学问题》的著名讲注。
19、我国数学家陈景润在哥德巴赫猜想中取得世界领先的成果。
基本理论:1、试述数学史分期及写出年代。
答:目前学术界通常将数学发展划分为以下五个时期:①数学萌芽期(公元前600年以前)②初等数学时期(公元前600年至17世纪中叶)③变量数学时期(17世纪中叶至19世纪20年代)④近代数学时期(19世纪20年代至第二次世界大战)⑤现代数学时期(20世纪40年代以来)2、欧几里德《几何原本》是数学史上第一座理论丰碑。
答:欧氏几何全称欧几里德几何学。
古希腊数学家欧几里德(Euclid,约公元前330-275)按照逻辑体系把几何命题整理起来,用公理法建立起演绎体系,使几何成为一门独立的、演绎的科学。
数学史习题第一、二讲同步练习一、填空题1.古埃及的数学知识常常记载在( A )。
A.纸草书上B.竹片上C.木板上D.泥板上2.关于古埃及数学的知识,主要来源于( B )。
A.埃及纸草书和苏格兰纸草书B.莱茵德纸草书和莫斯科纸草书C.莫斯科纸草书和希腊纸草书D.莱茵德纸草书和尼罗河纸草书3.对古代埃及数学成就的了解主要来源于( A )A.纸草书B.羊皮书C.泥版D.金字塔内的石刻4.最早采用六十进制位值记数法的国家或民族是( A )A.美索不达米亚B.埃及C.印度D.中国5.古代美索不达米亚的数学成就主要体现在( A )A.代数学领域B.几何学领域C.三角学领域D.解方程领域6.最早采用位值制记数的国家或民族是( D )。
A.美索不达米亚B.埃及C.阿拉伯D.印度7.在现存的中国古代数学著作中,最早的一部是( D )A.《孙子算经》B.《墨经》C.《算数书》D.《周髀算经》8.古代将数学知识记载于泥版上的国家或民族是( C )A.中国B.埃及C.美索不达米亚D.印度二、选择题1.最早采用位值制记数的国家或民族是____印度____,最早采用十进位值制记数的国家或民族是____中国____。
2.在代数和几何这两大传统的数学领域,古代美索不达米亚的数学成就主要在代数方面,他们能够卓有成效地处理相当一般的解三次二项方程。
3.古代美索不达米亚的数学常常记载在__泥版文书__上,在代数与几何这两个传统领域,他们成就比较高的是___代数___领域。
4.古代埃及的数学知识常常记载在__ 纸草书 _上,在代数和几何这两大传统的数学领域,古代埃及的数学成就主要在_ 几何 _方面。
5.在代数和几何这两大传统的数学领域,古代埃及的数学成就主要是几何方面,现存的____纸草___书中可以找到一些图形面积或体积的正确计算公式。
6.在代数和几何这两大传统的数学领域,古代埃及的数学成就主要在__几何__方面,美索不达米亚的数学成就主要在___代数____方面。
大学数学史题库及答案一、单选题1、以下哪个数学家不是古希腊人?A.毕达哥拉斯B.阿基米德C.欧几里得D.希波克拉底答案:D.希波克拉底2、以下哪个数学符号不是由阿拉伯人发明的?A.零符号B.代数符号C.函数符号D.等号答案:D.等号3、以下哪个数学定理不是由法国数学家费马提出的?A.费马大定理B.费马小定理C.费马多边形定理D.费马圆周率公式答案:C.费马多边形定理二、多选题1、以下哪些数学家是文艺复兴时期的代表人物?A.达芬奇B.伽利略C.开普勒D.牛顿答案:A,B,C2、以下哪些数学符号是印度人发明的?A.十进位记数法B.三角函数表C.圆周率近似值D.虚数单位“i”答案:A,C3、以下哪些数学定理是欧几里得提出的?A.欧几里得定理B.勾股定理C.平行公理D.微积分基本定理答案:A,B,C三、判断题1、阿基米德发现了微积分。
()答案:错误。
微积分是由牛顿和莱布尼茨发现的。
2、π是由印度数学家阿叶彼海特发明的。
()答案:错误。
π是由古希腊数学家海伦发明的。
大学数学史题库附答案数学,作为一门历史悠久且广泛应用的基础学科,以其独特的魅力在大学教育中占据了重要的地位。
今天,我将为大家分享一份精选的大学数学史题库及其答案,希望能够帮助大家更好地理解数学的历史和发展。
一、选择题1、以下哪个选项不是数学史上的重要人物?A.毕达哥拉斯B.阿基米德C.牛顿D.莎士比亚答案:D.莎士比亚解释:莎士比亚是文学巨匠,而非数学家。
2、以下哪个发明与数学无关?A.钟表B.算盘C.电脑D.日晷答案:C.电脑解释:电脑虽然与计算有关,但其主要功能是信息处理和存储,而非数学计算工具。
3、在中世纪,哪个国家对数学的发展做出了重要贡献?A.罗马帝国B.中国C.阿拉伯帝国D.古希腊答案:C.阿拉伯帝国解释:阿拉伯帝国在数学领域有着显著的成就,如代数学的发展以及阿拉伯数字的传播等。
二、简答题1、请简述数学在文艺复兴时期的发展以及主要成就。
数学史高中试题及答案一、选择题1. 被誉为“数学之父”的古希腊数学家是:A. 毕达哥拉斯B. 欧几里得C. 阿基米德D. 阿波罗尼奥斯答案:A2. 中国古代数学著作《九章算术》的成书时间大约是:A. 春秋时期B. 战国时期C. 秦汉时期D. 唐宋时期答案:C3. 微积分的发明者之一,同时也是物理学家的是:A. 牛顿B. 莱布尼茨C. 笛卡尔D. 高斯答案:A4. 以下哪位数学家对概率论的发展做出了重要贡献?A. 欧拉B. 拉普拉斯C. 费马D. 帕斯卡答案:D5. “无理数”的发现者是:A. 毕达哥拉斯B. 希波克拉底C. 欧多克索斯D. 柏拉图答案:B二、填空题6. 公元前300年左右,古希腊数学家_________提出了圆锥曲线的概念。
答案:阿波罗尼奥斯7. 中国古代数学家_________在《周髀算经》中最早提出了“勾股定理”。
答案:赵爽8. 17世纪,法国数学家_________发明了解析几何。
答案:笛卡尔9. 微积分的基本定理,也被称为_________定理。
答案:牛顿-莱布尼茨10. 19世纪,德国数学家_________被誉为“数学王子”。
答案:高斯三、简答题11. 简述欧几里得《几何原本》对数学史的影响。
答案:《几何原本》是欧几里得的代表作,它系统地总结了古希腊几何学的知识,采用了公理化方法,对后世数学的发展产生了深远的影响。
它不仅奠定了几何学的基础,而且对逻辑推理和证明方法有着重要的启示作用。
12. 描述一下牛顿和莱布尼茨对微积分的贡献。
答案:牛顿和莱布尼茨是微积分的共同发明者。
牛顿发展了流数法,而莱布尼茨则提出了微积分符号系统。
两人的工作虽然独立进行,但都极大地推动了微积分理论的发展和应用,为现代数学和物理学的进步奠定了基础。
四、论述题13. 论述中国古代数学的特点及其对世界数学的贡献。
答案:中国古代数学以其实用性和系统性著称。
《九章算术》等著作体现了中国古代数学的实用性,强调解决实际问题。
一、单项选择题(在每题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内)1、最早采用位值制记数的国家或民族是( )。
A、美索不达米亚B、埃及C、阿拉伯D、印度2、在?几何原本?所建立的几何体系中,“整体大于局部〞是( )。
A、定义B、定理C、公设D、公理3、在中算史上,刘徽首先建立了可靠的理论来推算圆周率,他所算得的“徽率〞是( )。
A、3、1B、3、14C、3、142D、3、14159264、以下数学著作中不属于“算经十书〞的是( )。
A、?数书九章?B、?五经算术?C、?缀术?D、?缉古算经?5、印度数学家婆什迦罗在其数学著作中完整论述了零的运算法那么,并对零作除数的问题给出了有意义的解释,认为分母为零的分数表示一个无限大量、该数学著作是( )。
A、?肯德卡迪亚格?B、?计算方法纲要?C、?算法根源?D、?莉拉沃蒂?6、首先获得四次方程一般解法的数学家是( )。
A、塔塔利亚B、卡尔丹C、费罗D、费拉里7、费马对微积分诞生的奉献主要在于其创造的( )。
A、求瞬时速度的方法B、求切线的方法C、求极值的方法D、求体积的方法8、最先建立“非欧几何〞理论的数学家是( )。
A、高斯B、罗巴契夫斯基C、波约D、黎曼9、1861年有位数学家举出了一个处处连续但处处不可微的函数例子,这位数学家是( )。
A、高斯B、欧拉C、魏尔斯特拉斯D、柯西10、提出“集合论悖论〞的数学家是( )、A、康托尔B、罗素C、庞加莱D、希尔伯特11、关于古埃及数学的知识,主要来源于( )、A、埃及纸草书和苏格兰纸草书B、莱茵德纸草书和莫斯科纸草书C、莫斯科纸草书和希腊纸草书D、莱茵德纸草书和尼罗河纸草书12、以“万物皆数〞为信条的古希腊数学学派是( )、A、爱奥尼亚学派B、伊利亚学派C、狡辩学派D、毕达哥拉斯学派13、最早记载勾股定理的我国古代名著是( )、A、?九章算术? B、?孙子算经? C、?周髀算经? D、?缀术?14、首先使用符号“0〞来表示零的国家或民族是( )、A、中国B、印度C、阿拉伯D、古希腊15、欧洲中世纪漫长的黑暗时期过后,第一位有影响的数学家是( )、A、斐波那契B、卡尔丹C、塔塔利亚D、费罗16、对微积分的诞生具有重要意义的“行星运行三大定律〞,其发现者是( )、A、伽利略B、哥白尼C、开普勒D、牛顿17、符号“f(x)—函数,Σ—求和,e—自然对数底,i—虚数号〞的引进者是( )、A、牛顿B、莱布尼茨C、柯西D、欧拉18、给出“非欧几何〞这一名称的数学家是( )、A、高斯B、罗巴契夫斯基C、波约D、黎曼19、最先给出连续函数定义的数学家是( )、A、高斯B、欧拉C、魏尔斯特拉斯D、柯西20、1900年,德国数学家希尔伯特在巴黎国际数学家大会上提出的著名数学问题共有( )、A、18个B、23个C、32个D、40个21、发现著名公式eiθ=cosθ+isinθ的是( )、A、笛卡尔B、牛顿C、莱布尼茨D、欧拉22、我国最古的一部算书——?算数书?是( )、A、传世本B、甲骨文算书C、钟鼎文算书D、竹简算书23、把行列式理论与线性方程组求解相别离,而使行列式理论成为独立的数学对象的奠基人是( )、A、关孝和B、凯莱C、范德蒙德D、朱世杰24、中国古典数学开展的顶峰时期是( )、A、两汉时期B、隋唐时期C、魏晋南北朝时期D、宋元时期25、最早使用“函数〞(function)这一术语的数学家是( )、A、莱布尼茨B、约翰•伯努利C、雅各布•伯努利D、欧拉26、?九章算术?的作者是( )、A、刘徽B、张苍、耿寿昌C、秦九韶D、作者不详27、提出用以发现球体积公式的“平衡法〞的数学家是( )、A、阿基米德B、刘徽C、莱布尼茨D、牛顿28、用圆圈符号“O〞表示零,其创造源于( )、A、中国B、印度C、阿拉伯D、欧洲29、?数学汇编?是一部荟萃总结前人成果的典型著作,它被认为是古希腊数学的安魂曲,其作者为( )、A、托勒玫`B、帕波斯C、阿波罗尼奥斯D、丢番图30、数学的第一次危机,推动了数学的开展,导致产生了( )A、欧几里得几何B、非欧几里得几何C、微积分D、集合论31、世界上第一个把π计算到3、1415926<π<3、1415927的数学家是( )A、刘徽B、祖冲之C、阿基米德D、卡瓦列利32、我国元代数学著作?四元玉鉴?的作者是( )A、秦九韶B、杨辉C、朱世杰D、贾宪33、“变量的函数是一个由该变量与一些常数以任何方式组成的解析表达式、〞这个函数定义在18世纪后期占据了统治地位,给出这个函数定义的数学家是( )A、莱布尼茨B、约翰·贝努利C、欧拉D、狄利克雷34、几何?原本?的作者是( )A、欧几里得B、阿基米德C、阿波罗尼奥斯D、托勒玫35、世界上讲述方程最早的著作是( )A、中国的?九章算术?B、阿拉伯花拉子米的?代数学?C、卡尔丹的?大法?D、牛顿的?普遍算术?36、就微分学与积分学的起源而言( )A、积分学早于微分学B、微分学早于积分学C、积分学与微分学同期D、不确定37、在现存的中国古代数学著作中,最早的一部是( )A、?孙子算经?B、?墨经?C、?算数书?D、?周髀算经?38、中国数学史上最先完成勾股定理证明的数学家是( )A、周公后人荣方与陈子B、三国时期的赵爽C、西汉的张苍、耿寿昌D、魏晋南北朝时期的刘徽39、数学的第一次危机的产生是由于( )A、负数的发现B、无理数的发现C、虚数的发现D、超越数的发现40、我国古代著作?周髀算经?中的“髀〞是指( )A、太阳影子B、竖立的表或杆子C、直角尺D、算筹41、古希腊开论证几何学先河的是( )A、柏拉图学派B、欧几里得学派C、爱奥尼亚学派D、毕达哥拉斯学派42、中国最古的算书?算数书?出土于( )A、20年代B、40年代C、60年代D、80年代43、首先引进如下一批符号:f(x)-函数符号;∑-求和号;e-自然对数底;i-虚数单位的数学家是( )A、泰勒B、欧拉C、麦克劳林D、莱布尼茨44、“纯数学的对象是现实世界的空间形式与数量关系、〞给出这个关于数学本质的论述的人是( )A、笛卡尔B、恩格斯C、康托D、罗素45、以下哪一个问题与微分学开展无关?( )A、求曲线的切线B、求瞬时变换率C、求函数的极大极小值D、用无穷小过程计算特殊形状的面积46、我国古代十部算经中年代最晚的一部( )A、?孙子算经?B、?张邱建算经?C、?缉古算经?D、?周髀算经?47、由于对分析严格化的奉献而获得了“现代分析之父〞称号的德国数学家是( )A、魏尔斯特拉斯B、莱布尼茨C、欧拉D、柯西48、最早采用六十进制位值记数法的国家或民族是( )A、美索不达米亚B、埃及C、印度D、中国49、古希腊数学家泰勒斯创立的学派是( )A、伊利亚学派B、爱奥尼亚学派C、狡辩学派D、吕园学派50、在中算史上,刘徽首先建立了可靠的理论来推算圆周率,他所算得的“徽率〞是( )A、3、1B、3、14C、3、141D、3、141592651、印度一位数学家在其著作?肯德卡迪亚格?中,利用二次插值法构造了间隔为15度的正弦函数表,这位数学家是( )A、阿耶波多B、婆什迦罗C、马哈维拉D、婆罗摩笈多52、首先解决了一元四次方程一般解法的是意大利数学家( )A、塔塔利亚B、卡尔丹C、费拉里D、费罗53、牛顿最早公开其微积分学说的名著是( )A、?曲线求积术?B、?流数术?C、?现代微积分学?D、?自然哲学的数学原理?54、首先引进函数符号f(x)的数学家是( )A、欧拉B、韦达C、柯西D、莱布尼茨55、最早建立非欧几何理论的数学家是( )A、罗巴契夫斯基B、高斯C、波约D、黎曼56、集合论的创立者是( )A、希尔伯特B、戴德金C、庞加莱D、康托尔60、控制论的创始人是( )A、库恩B、卡玛卡C、维纳D、卡尔曼二、填空题1、古代埃及的数学知识常常记载在____________上,在代数和几何这两大传统的数学领域,古代埃及的数学成就主要在____________方面。
浙江师范大学成教 2006学年第 2 学期《数学史》考试卷( A )(式样一)、单项选择题 (每小题 2分,共 26 分)1.世界上第一个把 π 计算到 3.1415926<π< 3.1415927 的数学家是 ( B )瓦列利2.我国元代数学著作《四元玉鉴》的作者是 ( C )3.就微分学与积分学的起源而言 ( A )4.在现存的中国古代数学著作中,最早的一部是 ( D )A. 《孙子算经》B. 《墨经》C. 《算数书》 θ 5.发现著名公式 e i =cos θ+isin θ的是(D )。
A. 笛卡尔 B. 牛顿 C.莱布尼茨 D.欧拉6.中国古典数学发展的顶峰时期是 ( D )。
A. 两汉时期B.隋唐时期C.魏晋南北朝时期D.宋元时期7.最早使用“函数” (function) 这一术语的数学家是 ( A)。
A. 莱布尼茨 B. 约翰·伯努利 C.雅各布·伯努利 D.欧拉8.1834 年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学 家是 ( B )。
A. 高斯B.波尔查诺C.魏尔斯特拉斯D.柯西 9.古埃及的数学知识常常记载在( A )A. 纸草书上B.竹片上C.木板上D.泥板上A. 刘徽B. 祖冲之C. 阿基米德D. 卡A. 秦九韶B. 杨辉C. 朱世杰D.贾宪A.积分学早于微分学B.微分学早于积分学C. 积分学与微分学同期D.不确定D. 《周髀算经》10.大数学家欧拉出生于(A )A. 瑞士B.奥地利C.德国D.法国11.首先获得四次方程一般解法的数学家是( D )。
A. 塔塔利亚B.卡当C.费罗D.费拉利12.《九章算术》的“少广”章主要讨论(D )。
A. 比例术B.面积术C.体积术D.开方术13.最早采用位值制记数的国家或民族是( A )。
A. 美索不达米亚B.埃及C.阿拉伯D.印度、填空题(每空1 分,共28分)14.希尔伯特在历史上第一次明确地提出了选择和组织公理系统的原则,即:相容性、 __________ 完备性_______ 、____ 独立性 ________。
《数学史》习题
总体要求
每一讲写一600字左右的读书笔记,30% 记录学期总成绩。
第一讲数学的起源与早期发展
1、您对《数学史》课程的期望。
2、谈谈您的理解:数学是什么?
3、数学崇拜与数学忌讳。
4、从数学的起源简述人类活动对文化发展的贡献。
5、数的概念的发展给我们的启示。
6、探讨古代埃及和古代巴比伦的数学知识在现实生活中的意义。
第二讲古代希腊数学
1、试分析芝诺悖论:飞矢不动。
2、欧几里得《原本》对数学以及整个科学的发展有什么意义?
3、简述欧几里得《原本》的现代意义?
4、以“化圆为方”问题为例,说明未解决问题在数学中的重要性。
5、体验阿基米德方法:通过计算半径为1的圆内接和外切正96边形的周长,计算圆周率的近似值,计算到小数点后3位数。
6、毕达哥拉斯学派是怎样引起第一次数学危机的?他们为什么要对这次数学危机采取回避的态度?
第三讲:中世纪的东西方数学I
1、简述刘徽的数学贡献。
2、用数列极限证明:圆内椄正6•2^{n}边形的周长的极限是圆周长。
3、《九章算术》在中国数学发展史上的地位和意义如何?
4、试比较阿基米德证明体积计算公式的方法与中国古代数学家的球体积计算公式的推导方法的异同。
5、更精确地计算圆周率是否有意义?谈谈您的理由。
6、分析宋元时期中国传统数学兴盛的社会条件。
第四讲:中世纪的东西方数学II
1、印度数学对世界数学发展最重要的贡献是什么?他们的数学发展有何重要贡献?
2、有关零号“0”的历史。
3、简述阿尔·花拉子米的数学贡献。
4、论述阿拉伯数学对保存希腊数学、传播东方数学的作用。
5、试说明:古代东方数学的特点之一是以计算为中心的实用化数学。
6、求斐波那契数列的通项公式。
第五讲:文艺复兴时期的数学
1、阐述天文学革命对近代数学兴起的影响。
2、简述符号“+”、“-”的历史。
3、通过具体例子说明16世纪的意大利数学家是如何求解三、四方程的。
4、学习珠算有现实作用吗?
5、简述欧几里得《原本》在中国出版的历史意义。
6、试分析中国传统数学自元末以后逐渐衰微的原因。
第六讲:牛顿时代:解析几何与微积分的创立
1、析几何产生的时代背景是什么?
2、平面解析几何的产生与形数结合的思想。
3、阐述天文学革命对近代数学兴起的影响。
4、17世纪对哪些问题的研究导致了微积分的诞生?
5、关于牛顿“站在巨人们肩膀上”的启示。
6、简述莱布尼茨关于微积分的工作。
第七讲:18世纪的数学:分析时代
1、谈谈您对于“读读欧拉,他是我们大家的老师”(拉普拉斯语)的看法。
2、牛顿和莱布尼茨有关微积分理论优先权的争论对18世纪英国与欧陆国家的数学发展产生了什么影响?
3、微积分的理论基础对于微积分的进一步发展有什么样的作用?试举例予以说明。
4、为何在“康乾盛世”中国数学明显落后于西方?
5、试分析18世纪末数学家的主导意见:数学的资源已经枯竭。
第八讲:19世纪的代数
1、谈谈数e的历史与作用。
2、虚数的历史地位是如何逐步确立的?
3、简述高斯的数学贡献。
4、对素数判定意义的分析。
第九讲:19世纪的几何与分析I
1、从非欧几何学的建立谈谈您对几何真实性的认识。
2、非欧几何的诞生有何意义?
3、魏尔斯特拉斯对于分析的严格化有哪些重要贡献?
4、试比较魏尔斯特拉斯、戴德金和康托尔的实数构造方法。
第十讲:19世纪的几何与分析II
1、19世纪末中日数学之比较。
第十一讲:20世纪数学概观I
1、以抽象代数为例谈谈数学的抽象性。
2、代数学的发展经历了哪几个不同的阶段?在这些不同的阶段中,代数学的中心问题是什么?
3、在数学国际化中看“孤独的数学家”。
第十二讲:20世纪数学概观II
1、再谈您的理解:数学是什么?
2、“数学问题是推动数学发展的动力”,谈谈您的理解。
3、试论数学问题及其解决对数学发展的作用。
第十三讲:20世纪数学概观III
1、您对《数学史》课程的建议。
2、谈结构主义思想对现代数学发展的影响。
3、分析中国20世纪70-80年代的“陈景润”现象。
4、从中国数学的变化,谈谈一位数学工作者的责任。