江苏省张家港市第二中学2015届九年级数学上学期期中试题 苏科版
- 格式:doc
- 大小:274.50 KB
- 文档页数:8
苏科版九年级上册数学期中考试试题一、单选题1.下列方程为一元二次方程的是()A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x 2+8x +7=0变形为(x +h)2=k 的形式应为()A .(x +4)2=-7B .(x -4)2=-7C .(x +4)2=9D .(x -4)2=93.⊙O 的半径为1,同一平面内,若点P 与圆心O 的距离为1,则点P 与⊙O 的位置关系是()A .点P 在⊙O 外B .点P 在⊙O 上C .点P 在⊙O 内D .无法确定4.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的A .方差B .众数C .平均数D .中位数5.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x ,则下面所列方程正确的是()A .()2501182=+x B .()250501182=++x C .()()505015012182=++++x x D .()()250501501182=++++x x 6.如图,AB 为⊙O 的直径,C 为⊙O 上一点,其中AB =4,∠AOC =120°,P 为⊙O 上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为()A .3B .C .D .7.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若38P ∠=︒,则B Ð的度数为()A .22°B .24°C .26°D .28°8.如图,若干相同正五边形排成环状.图中已经排好前3个五边形,还需()个五边形完成这一圆环.A .6B .7C .8D .99.若关于x 的一元二次方程()2200ax bx a ++=≠有一根为2019x =,则一元二次方程()()2112a x b x -+-=-必有一根为()A .2018B .2019C .2020D .202110.如图,点A 、B 、C 在⊙O 上,且∠ACB=100o ,则∠α度数为()A .160oB .120oC .100oD .80o二、填空题11.将方程x 2-2=7x 化成x 2+bx +c =0的形式,则b =___.12.一组数据:﹣1,﹣2,0,1,2,则这组数据的极差是______.13.数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、100分、90分,则小红一学期的数学平均成绩是____分.14.关于x 的方程x 2+px +q =0的两个根分别为-1、4,则p +q 的值为_____.15.已知三角形三边长为6,8,10,则它的内切圆半径是________.16.若圆锥的底面半径为3cm ,母线长是5cm ,则它的侧面展开图的面积为_______cm 2.17.若关于x 的一元二次方程2840ax x -+=有两个不相等的实数根,则a 的取值范围是_____.18.如图,AB ,AC 分别为⊙O 的内接正六边形,内接正方形的一边,BC 是圆内接n 边形的一边,则n 等于_____.三、解答题19.解下列方程:(1)x 2﹣2x ﹣3=0;(2)x ﹣5=(x ﹣5)2.20.已知关于x 的方程x 2-(m +2)x +(2m -1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根21.八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.22.如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A 、B 、C ,请在网格图中进行下列操作(以下结果保留根号):(1)利用网格确定该圆弧所在圆的圆心D 点的位置,并写出D 点的坐标为;(2)连接AD 、CD ,⊙D 的半径为,∠ADC 的度数为;(3)若扇形DAC 是一个圆锥的侧面展开图,求该圆锥底面半径.23.如图,AB 为O 的直径,点C D ,在O 上,AC 与OD 交于点E ,AE EC OE ED ==,,连接BC CD ,.求证:(1)AOE CDE ∆≅∆;(2)四边形OBCD 是菱形.24.如图,四边形ABCD 与AEGF 均为矩形,点E 、F 分别在线段AB 、AD 上.若BE =FD =2cm ,矩形AEGF 的周长为20cm .(1)图中阴影部分的面积为cm 2.(2)若空白部分面积与阴影部分面积一样大,求矩形ABCD 边长.25.如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =60BCD ∠=︒,求图中阴影部分的面积.26.甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数;②月利润=月租车费﹣月维护费;③两公司月利润差=月利润较高公司的利润﹣月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是元;当每个公司租出的汽车为辆时,两公司的月利润相等;(2)求租出汽车多少辆时,两公司月利润差恰为18400元?参考答案1.C2.C3.B4.D5.D6.D7.C8.B9.C10.A11.-7【详解】将方程x2-2=7x化成x2-7x-2=0∴b=-7,故填:-7.【点睛】此题主要考查一元二次方程的一般式,解题的关键是熟知等式的性质.12.4【分析】用这组数据的最大值减去最小值即得结果.【详解】解:这组数据的级差是:2(2)4--=.故答案为4.【点睛】本题考查了极差的定义,属于基础概念题,掌握极差的定义是关键.13.93分【分析】按3:3:4的比例算出本学期数学学期平均成绩即可.【详解】小红一学期的数学平均成绩是9031003343490⨯⨯⨯++++=93(分),故填:93.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.14.-7【分析】根据根与系数的关系得到-1+4=−p ,-1×4=q ,然后解方程即可得到p 和q 的值,即可得到结论.【详解】根据题意得-1+4=−p ,-1×4=q ,所以p =−3,q =-4.故p +q =−7,故填:-7.15.2【分析】先根据勾股定理的逆定理判断出△ABC 的形状,设△ABC 内切圆的半径为R ,切点分别为D 、E 、F ,再根据题意画出图形,先根据正方形的判定定理判断出四边形ODCE 是正方形,再根据切线长定理即可得到关于R 的一元一次方程,求出R 的值即可.【详解】如图所示:ABC ∆中,68AB 10AC BC ===,,,2226810+= ,即222AC BC AB +=,ABC ∴∆是直角三角形,设ABC ∆的内切圆半径为R ,切点分别为D ,E ,F ,CD CE = ,BE BF =,AF AD =,OE BC OD AC ⊥⊥ ,,∴四边形ODCE 是正方形,即CD CE R ==AC CD AB BF ∴-=-,即610R BF -=-BC CE BE BF -==,即8R BF-=联立解得:R=2.故答案为2.16.15π【详解】解:底面半径为3cm ,则底面周长=6πcm ,侧面面积=12×6π×5=15πcm 2.故答案为:15π.17.4a <且0a ≠【分析】根据根的判别式即可求出答案,当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.【详解】解:由题意可知:64160a ∆=->,4a ∴<,0a ≠ ,4a ∴<且0a ≠,故答案为4a <且0a ≠18.12【详解】连接AO ,BO ,CO ,如图所示:∵AB 、AC 分别为⊙O 的内接正六边形、内接正方形的一边,∴∠AOB=3606︒=60°,∠AOC=3604︒=90°,∴∠BOC=30°,∴n=36030︒︒=12,故答案为:12.19.(1)x 1=3,x 2=﹣1;(2)x 1=5,x 2=6.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:(1)x 2﹣2x ﹣3=0,(x ﹣3)(x+1)=0,∴x ﹣3=0或x+1=0,∴x 1=3,x 2=﹣1;(2)x ﹣5=(x ﹣5)2,(x ﹣5)﹣(x ﹣5)2=0,(x ﹣5)[1﹣(x ﹣5)]=0,∴x ﹣5=0,1﹣(x ﹣5)=0,∴x 1=5,x 2=6.20.(1)证明见解析;(2)3【分析】(1)利用方程的判别式求解即可;(2)将x=2代入方程求出m=2,得到方程为2430x x -+=,求出方程的解121,3x x ==,由此得到答案.【详解】解:(1)∵[]22(2)4(21)(2)40m m m ∆=-+--=-+>,∴方程恒有两个不相等的实数根;(2)将x=1代入方程,得12210m m --+-=,∴20m -=,解得m=2,∴方程为2430x x -+=,解得121,3x x ==,∴方程的另一个根3.【点睛】此题考查一元二次方程根的判别式,方程的解,解一元二次方程,熟记一元二次方程根的判别式的三种情况、正确解一元二次方程是解题的关键.21.(1)9.5,10;(2)平均成绩9分,方差1;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:110×(10×4+8×2+7+9×3)=9,则方差是:110×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…xn的平均数为x,则方差S2=1n[(x1−x)2+(x2−x)2+…+(xn−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22.(1)圆心D点的位置见解析,(2,0);(2)90°;(3.【分析】(1)利用垂径定理可作AB和BC的垂直平分线,两线的交点即为D点,可得出D 点坐标;(2)在△AOD中AO和OD可由坐标得出,利用勾股定理可求得AD和CD,过C作CE⊥x 轴于点E,则可证得△OAD≌△EDC,可得∠ADO=∠DCE,可得∠ADO+∠CDE=90°,可得到∠ADC的度数;(3)先求得扇形DAC的面积,设圆锥底面半径为r,利用圆锥侧面展开图的面积=πr•AD,可求得r .【详解】解:(1)如图1,分别作AB 、BC 的垂直平分线,两线交于点D,∴D 点的坐标为(2,0),故答案为:(2,0);(2)如图2,连接AD 、CD ,过点C 作CE ⊥x 轴于点E,则OA =4,OD =2,在Rt △AOD 中,可求得AD=即⊙D的半径为且CE =2,DE =4,∴AO =DE ,OD =CE ,在△AOD 和△DEC 中,AOD CED OD AO D CE E ∠∠=⎧⎪⎨⎪⎩==,∴△AOD ≌△DEC (SAS ),∴∠OAD =∠CDE ,∴∠CDE+∠ADO =90°,∴∠ADC =90°,故答案为90°;(3)弧AC 的长=90180π×,设圆锥底面半径为r 则有2πr,解得:r,.【点睛】本题考查了垂径定理,弧长公式,勾股定理以及全等三角形的判定与性质等知识,要能够根据垂径定理作出圆的圆心,根据全等三角形的性质确定角之间的关系,掌握圆锥的底面半径的计算方法.23.(1)见解析;(2)见解析【分析】(1)由已知条件根据全的三角形的判定即可证明;(2)首先根据平行四边形的判定证明四边形OBCD 是平行四边形,然后根据一组邻边相等的平行四边形是菱形即可证明.【详解】解:(1)在AOE 和CDE 中,∵AE CE AEO CED OE DE =⎧⎪∠=∠⎨⎪=⎩,∴()AOE CDE SAS ≅ ;(2)∵AB 为O 的直径,∴AO BO =,∵AOE CDE ≅ ,∴OAC DCA ∠=∠,AO CD =,∴BO ∥CD ,BO CD =,∴四边形OBCD 是平行四边形.∵BO DO =,∴四边形OBCD 是菱形.【点睛】本题考查了全等三角形的判定及性质、菱形的判定、圆的基础知识,掌握全等三角形的判定和特殊平行四边形的判定是解题的关键.24.(1)24;(2)6cm 和8cm .【分析】(1)由面积关系列出关系式可求解;(2)设矩形的AEGF 一边长为xcm ,由矩形的面积公式列出方程并解答.【详解】解:(1)∵矩形AEGF 的周长为20cm ,∴AF+AE=10cm,∵AB=AE+BE,AD=AF+DF,BE=FD=2cm,∴阴影部分的面积=AB×AD﹣AE×AF=(AE+2)(AF+2)﹣AE×AF=24(cm2),故答案为:24;(2)设矩形的AEGF一边长为xcm,得x(10﹣x)=24.解之得x1=4,x2=6.4+2=6或6+2=8.答:矩形的ABCD边长为6cm和8cm.【点睛】本题考查了矩形的性质、一元二次方程的应用,利用面积和差关系列出关系式是解题的关键.25.(1)相切,理由见解析;(2)π【分析】(1)过点B作BF⊥CD,证明△ABD≌△FBD,得到BF=BA,即可证明CD与圆B相切;(2)先证明△BCD是等边三角形,根据三线合一得到∠ABD=30°,求出AD,再利用S△ABD-S扇形ABE求出阴影部分面积.【详解】解:(1)过点B作BF⊥CD,∵AD∥BC,∴∠ADB=∠CBD,∵CB=CD,∴∠CBD=∠CDB,∴∠ADB=∠CDB,又BD=BD,∠BAD=∠BFD=90°,∴△ABD≌△FBD(AAS),∴BF=BA,则点F在圆B上,∴CD与圆B相切;(2)∵∠BCD=60°,CB=CD ,∴△BCD 是等边三角形,∴∠CBD=60°∵BF ⊥CD ,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=23∴AD=DF=tan 30AB ⋅︒=2,∴阴影部分的面积=S △ABD-S 扇形ABE =(2302312322360π⨯⨯⨯-=23π.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.26.(1)48000;37;(2)当每个公司租出的汽车为45辆时,两公司月利润差恰为18400元.【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金,再乘以10,减去维护费用可得甲公司的月利润;设每个公司租出的汽车为x 辆,根据月利润相等得到方程,解之即可得到结果;(2)设两公司的月利润分别为y 甲,y 乙,月利润差为y ,由(1)可得y 甲和y 乙的表达式,再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况,列出y 关于x 的表达式,根据题意列出方程,并解答.【详解】解:(1)[(50﹣10)×50+3000]×10﹣200×10=48000元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;设每个公司租出的汽车为x 辆,由题意可得:[(50﹣x )×50+3000]x ﹣200x =3500x ﹣1850,解得:x =37或x =﹣1(舍),∴当每个公司租出的汽车为37辆时,两公司的月利润相等.故答案是:48000;37;(2)设每个公司租出的汽车为x 辆,两公司的月利润分别为y 甲,y 乙,则y 甲=[(50﹣x )×50+3000]x ﹣200x ,y 乙=3500x ﹣1850.当甲公司的利润大于乙公司时,0<x <37,y 甲﹣y 乙=18400,即[(50﹣x )×50+3000]x ﹣200x ﹣(3500x ﹣1850)=﹣50x 2+1800x+1850=18400,整理,得x 2﹣36x+331=0此方程无解.故此情况不存在;当乙公司的利润大于甲公司时,37<x≤50,y 乙﹣y 甲=18400,即3500x ﹣1850﹣[(50﹣x )×50+3000]x+200x =50x 2﹣1800x ﹣1850=18400,整理,得(x ﹣45)(x+9)=0,解得x 1=45,x 2=﹣9(舍去)所以当每个公司租出的汽车为45辆时,两公司月利润差恰为18400元.。
一、 选择题(本题共10小题,每小题3分,共30分,每小题只有一个答案正确,请把正确答案填在下面的表格上) 题号 1 2 3 4 5 6 7 8 9 10 答案1.方程x 2=2x 的解是( ▲ )A .x=2B .x=0C .x 1=0,x 2=2D .x 1=0,x 2=-22.若方程x 2+(m 2-1)x+m=0的两根互为相反数,则m 的值为( ▲ )A .1或-1B .1C .0D .-13.若关于x 的方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是 ( ▲ ) A .k>-1 B .k<-1 C .k ≥-1且k ≠0 D .k>-1且k ≠0 4.下列说法正确的是( ▲ )A 、平分弦的直径垂直于弦B 、三角形的外心到这个三角形的三边距离相等C 、相等的圆心角所对的弧相等D 、等弧所对的圆心角相等5.已知两圆的半径分别为R 、r 圆心距为d 且(R+r-d)(R-r-d)=0,则两圆的位置关是( ▲ )。
A 、相交 B 、外切 C 、内切 D 、相切6.如图,AB 是O ⊙的直径,点C 、D 在O ⊙上,110BOC ∠=°,AD OC ∥,则AOD ∠=( ▲ )A .70°B .60°C .50°D .40° 7.已知圆锥的底面半径为3㎝,母线长为5㎝,则其全面积为( ▲ )。
A 、9π㎝2B 、24π㎝2C 、15π㎝2D 、30π㎝28.如图,以半圆的一条弦BC(非直径)为对称轴将BC 折叠后与直径AB 交于点D ,若23AD DB =,且AB=10,则CB 的长为( ▲ ) A .45 B .43C .42D .49.如右图,AB 是⊙O 的直径,⊙O 交BC 的中点于D,DE ⊥AC 于E,连接AD,则下列结论正确的个数是( ▲ )①AD ⊥BC ②∠EDA=∠B ③OA=12AC ④DE 是⊙O 的切线A .1 个B .2个C .3 个D .4个10. 将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器圆弧(AB )对应的中心角(∠AOB )为120º,AO 的长为4cm ,则图中阴影部分的面积为( ▲ ) A .16(2)3π+cm 2B .8(2)3π+cm 2C .16(23)3π+cm 2D .8(23)3π+cm 2二、填空题(本题共10小题,每小题3分,共30分)11.已知x =-1是方程x ²-ax +6=0的一个根,则a = 。
第一学期期中教学质量调研测试初三数学(试卷满分1 30分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分,请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.方程x2=x的解是A.1 B.0 C.±1 D.0或12.在二次函数y=(x-1)2-1中,常数项是A.1 B.-1 C.0 D.-23.下列方程没有实数根的是A.x2-x-1=0 B.x2-x+1=0 C.x2-2x+1=0 D.(x-1)2-1=0 4.用20 cm长的绳子围成一个矩形,如果这个矩形的一边长为x cm,面积是S cm2,则S 与x的函数关系式为A.S=x(20-x) B.S=x(20-2x) C.S=10x-x2D.S=2x(10-x)5.已知点A(-2,y1)、B(1,y2)、C(4,y3)都在函数y=x2-4x-5的图象上,则比较y1、y2、y3的大小正确的是A.y2<y3< y1B.y3< y1<y2C.y1<y3<y2D.y2< y1<y36.若方程(a-b)x2+(b-c)x+(c-a)=0是关于x的一元二次方程,则必有A.a=b=c B.一个根为0 C.一个根为-1 D.一个根为17.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,则这个三角形的周长是A.8 B.10 C.8或10 D.以上都不对8.在平面直角坐标系中,如果二次函数y=2x2的图象保持不动,把x轴、y轴分别向上、向右各平移2个单位,那么在新的坐标系内,该抛物线的解析式是A.y=2(x-2)2+2 B.y=2(x+2)2-2C.y=2(x-2)2-2 D.y=2(x+2)2+29.教材第25页有这样一段话:“一般地,如果二次函数y=ax2+bx+c的图象与x轴(注:x轴即直线y=0)有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”反之,利用函数的图象判断方程x2-x-6=1x实数根的情况是A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根10.如图,抛物线与x轴相交于A、B两点,在保持抛物线的形状与大小不变的前提下,顶点P在线段CD上移动,点C、D的坐标分别为(-1,1)和(3,4).当顶点P移动到点C时,点B恰好与原点重合.在整个移动过程中,点A 移动的距离为A .1B .2C .3D .4二、填空题(本大题共8小题,每小题3分,共24分)11.二次函数y =x 2-2x +2的顶点坐标是 ▲ .12.若方程x 2-ax -2=0的一个根是-1,那么a = ▲ .13.若二次函数y =(m +1)x 2+m 2-2m -3的图象经过原点,则m 的值为 ▲ .14.若b 是方程x 2+ax +b =0的一个根,且b ≠0,则a +b = ▲ .15.在一定条件下,物体运动的路程s (米)与时间t (秒)的关系式为:s =5t 2+2t .则从2秒到4秒这段时间内,该物体所经过的路程为 ▲ 米.16.如图,某学校的校门是一抛物线形状的建筑物,地面宽度为8m ,两侧距地面6m 高处各有一个挂校名横匾用的铁环,两铁环的水平距离为4m ,则校门的高度为 ▲ m .17.如图,己知AB =8,以AB 为斜边作Rt △ABC ,∠ACB =90°,过点C 作AB 的平行线,再过点A 作AB 的垂线,使两线相交于点D ,设AC =x ,DC =y ;则(x -y)的最大值是 ▲ .18.如图,已知点A(6,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 、AC 相交于点D .当OD =AD =5时,这两个二次函数的最大值之和等于 ▲ .三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(本题共2小题,每小题4分,满分8分)计算:(1)2214+--; (2)()1021201322-⎛⎫-+- ⎪ ⎪⎝⎭20.(本题共4小题,每小题4分,满分16分)解下列方程:(1)x 2-4=0(2)(x +2)2=3(x +2)(3)2x 2-x -3=0(4)x 3-x 2-2x =021.(本题满分6分)从一元到二元的变化:(1)当k 为何值时,关于x 的方程x 2-2x -k =0只有一个实数根?并求出这个根. (2)当k 为何值时,关于x 、y 的方程组20210x y k x y --=⎧⎨--=⎩只有一组实数解?22.(本题满分6分)已知二次函数y =x 2+bx +3,根据下列条件分别求b 的值:(1)二次函数的图象经过点(1,0);(2)该抛物线的对称轴为直线x =2;(3)该抛物线与两坐标轴有且只有两个交点.23.(本题满分5分)五个连续整数-2,-1,0,1,2满足下面关系:()()2221-+-+02=12+22,即前三个连续整数的平方和等于后两个连续整数的平方和.试利用方程的思想,再找到另外五个连续整数,使它们也具有上面的性质.24.(本题满分6分)在画二次函数的图象时列出了下表:观察表格,可以得到许多信息:(1)抛物线的对称轴是直线▲;当x=-2时,对应的y值是▲;(2)我们还发现,在对称轴右侧,当x每增加1个单位时,对应y值除了趋势逐渐变小外,在数量上还存在某种规律,试利用这一规律,直接写出当x=5时,对应的y值是▲;(3)函数y=ax2+bx+c(a、b、c为常数,a≠0)图象上有三点:A(m,y1)、B(m+1,y2)、C(m+2,y3).通过计算说明:(y3-y2)与(y2-y1)的差为定值.25.(本题满分6分)从方程到函数的变化:(1)若一元二次方程x2-(m+1)x+m=0的两个根为x1、x2.当x1+x2=3时,求m的值;(2)若二次函数y=x2-(m+1)x+m的图象与x轴交于A、B两点,O为坐标原点,当OA +OB=3时,求m的值.26.(本题满分6分)如图①,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm.点P从点A开始沿AB以1cm/s的速度向点B运动,同时点Q从B点开始沿BC以2cm/s的速度向点C运动,当点Q到达点C时运动结束.设移动的时间为t(S).(1)如果P、Q分别从A、B同时出发,若△PBQ的面积等于5cm2,求此时t的值;(2)如图②,若点Q到达点C后继续沿CA运动,当点P到达点B时运动结束,求当△PBQ的面积等于5cm2时t的值.27.(本题满分8分)教材第6页有一道题目:如图,矩形花圃一面靠墙(墙足够长),另外三面所围的栅栏的总长度是19 m.(1)若花圃的面积是24 m2,求AB边的长度是多少?(2)若要围成的花圃面积最大,求这个最大值;(3)若只利用这些栅栏将上题中这个矩形花圃分隔成两个有一边相邻的矩形花圃,且围成的总面积最大,求两个矩形花圃公共边的长.28.(本题满分9分)如图,已知开口向上的抛物线与x轴分别交于点A(m,0)和B(-3m,0)(其中m<0),与y轴交于点C(0,-3),点D在该抛物线上,CD∥AB.(1)当m=-1时,求该抛物线所表示的函数关系式;(2)在线段AB上是否存在点E,使得线段ED,BC互相垂直平分?若存在,求出点E 的坐标,若不存在,请说明理由;(3)设抛物线的顶点为F,作直线CF交x轴于点G,求证:FC CD CG GB.。
2015年初三数学第一学期期中试卷(附答案)(满分:130分 时间:120分钟)1.下列方程不是..一元二次方程的是( ★ ) A .x x 792= B .832=y C .)13()1(3+=-y y y y D .10)1(22=+x 2.已知1x =是一元二次方程2210x mx -+=的一个根,则m 的值是( ★ )A .1B .0C .0或1D .0或1-3.关于x 的一元二次方程2310kx x +-=有实数根....,则k 的取值范围是( ★ ) A .49-≤k B .49-≥k 且0≠k C .49-≥k D .49->k 且0≠k 4.如果0<a ,0b >,0c >,那么二次函数2y ax bx c =++的图象大致是( ★ )A B C D5.若抛物线22y x x a =++的顶点在x 轴的下方..,则a 的取值范围是( ★ ) A .1a > B .1a < C .1≥a D .1≤a6.若圆的半径是5,圆心的坐标是(0,0),点P 的坐标是(4,3),则点P 与⊙O 的位置关系是( ★ )A .点P 在⊙O 外B .点P 在⊙O 内C .点P 在⊙O 上D .点P 在⊙O 外或⊙O 上 7.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( ★ )A .2cmBC .D .(第7题图) (第8题图)………… 密 …………… 封 …………… 线 …………… 内 …………… 不 …………… 要 …………… 答 …………… 题 ………………班级:________________ 姓名:________________ 考试号:_________________8.如图,在梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB=2cm ,CD=4cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD=90°,则圆心O 到弦AD 的距离是( ★ )Acm BC. D. 9.小明在二次函数2245y x x =++的图象上,依横坐标找到三点(1-,1y ),(12,2y ), (132-,3y ),则你认为1y ,2y ,3y 的大小关系应为( ★ ) A .123y y y >> B .231y y y >> C .312y y y >> D .321y y y >>二、填空题:(每题3分,共24分)10.等腰△ABC 两边长分别是一元二次方程2560x x -+=的两个解,则这个等腰三角形的周长是___________________________.11.张家港市2009年农村居民人均纯收入为12969元,计划到2011年,农村居民人均纯收入达到15000元.设人均纯收入的平均增长率为x ,则可列方程_______________________. 12.函数243y x x =-+化成2()y a x h k =-+的形式为___________________________. 13.把函数21y x =-的图象沿y 轴向上平移一个单位长度,可以得到函数___________的图象. 14.初三数学课本上,用“描点法”画二次函数2y ax bx c =++的图象时,列了如下表格:根据表格上的信息回答问题:该二次函数2y ax bx c =++在3x =时,y =_________.15.已知抛物线24y x x =-与x 轴交于点A 、B ,顶点为C ,则△ABC 的面积为___________. 16.如图,AB 、CD 是⊙O 的两条弦,如果∠AOB=∠COD ,那么______=______.(任填一组)(第16题图) (第17题图)17.如图,点A 、B 是⊙O 上两点,AB=10,点P 是⊙O 上的动点(P 与A 、B 不重合...),连结AP 、PB ,过点O 分别作OE ⊥AP 于E ,OF ⊥PB 于F ,则EF=_____________.三、解答题:(共79分)18.解下列方程:(共10分)⑴ 2(2)40x --= (5分) ⑵ x xx x =---3632 (5分)19.(7分)有一个运算装置,当输入值为x 时,其输出值为y ,且y 是x 的二次函数,已知输入值为2-,0,1时,相应的输出值分别为5,3-,4-. ⑴求此二次函数的解析式;⑵如图,在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y 为正数时输入值x 的取值范围.20.(5分)已知:如图,在△ABC中,∠ACB=90°,∠B=25°,以点C为圆心、AC为半径作⊙C,交AB于点D,求AD的度数.21.(7分)张家港永安旅行社为吸引市民组团去普陀山风景区旅游,推出了如下收费标准:⑴现有一个35人的团队准备去旅游,人均旅游费为_________元.⑵某单位组织员工去普陀山风景区旅游,共支付给永安旅行社旅游费用27000元,请问:该单位这次共有多少员工去普陀山风景区旅游?……………密……………封……………线……………内……………不……………要……………答……………题………………如果人数不超过25人,人均旅游费用为1000元如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元(22.(6分) “圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺,间径几何?”用数学语言可表述为:“如图,CD 为⊙O 的直径,弦AB ⊥CD 于E ,CE =1寸,AB =10寸,求直径CD 的长.”23.(6分)如图①是抛物线形拱桥,当水面在n 时,拱顶离水面2米,水面宽4米.⑴求出拱桥的抛物线解析式;⑵若水面下降2.5米,则水面宽度将增加多少米?(图②是备用图)………… 密 …………… 封 …………… 线 …………… 内 …………… 不 …………… 要 …………… 答 …………… 题 ………………班级:________________ 姓名:________________ 考试号:_________________24.(8分)已知关于x 的一元二次方程02)2(2=-++-m x m x .⑴求证:无论m 取何值时,方程总有两个不相等的实数根. ⑵若方程的两实数根之积等于1192-+m m ,求6+m 的值.25.(8分)如图,AB 为⊙O 的直径,CD 为弦,过A 、B 分别作AE ⊥CD 、BF ⊥CD ,分别交直线CD 于E 、F . ⑴求证:CE=DF ;⑵若AB=20cm ,CD=10cm ,求AE +BF 的值.26.(10分)某校九年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该种水果的进价为8元/千克,下面是他们在活动结束后的对话. 小丽:如果以10元/千克的价格销售,那么每天可售出300千克. 小强:如果以13元/千克的价格销售,那么每天可获取利润750元.小红:通过调查验证,我发现每天的销售量y (千克)与销售单价x (元)之间存在一次函数关系.⑴当销售价格为13元/千克时,共售出_____________千克水果; ⑵求y (千克)与x (元)(0 x )的函数关系式;⑶设该超市销售这种水果每天获取的利润为W 元,那么当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?[利润=销售量×(销售单价-进价)]27.(12分)已知抛物线经过原点O 和x 轴上另一点A ,它的对称轴x =2 与x 轴交于点C ,直线y =-2x -1经过抛物线上一点B (-2,m ),且与y 轴、直线x =2分别交于点D 、E . (1)求m 的值及该抛物线对应的函数关系式; (2)求证:① CB =CE ;② D 是BE 的中点;(3)若P (x ,y )是该抛物线上的一个动点,是否存在这样的点P ,使得PB =PE ,若存在,试求试卷答案一、选择题:(每题3分,共27分)二、填空题:(每题3分,共24分)10.7或8 11.15000)1(129692=+x 12.1)2(2--=x y13.2x y = 14.4- 15.8 16.AB=CD 等(答案不唯一) 17.5三、解答题:(共79分)18.⑴解:4)2(2=-x ………… 1’ ⑵解:x x x 3622-=+ ………… 2’…………… 密 …………… 封 …………… 线 …………… 内 …………… 不 …………… 要 …………… 答 …………… 题 ………………22±=-x ………… 2’ 0652=--x x ………… 3’22+±=x ………… 3’ 0)1)(6(=+-x x ………… 4’0421==x x , ………… 5’ 1621-=-=x x , ………… 5’19.解:⑴设二次函数解析式为)0(2≠++=a c bx ax y由题意得:⎪⎩⎪⎨⎧-=++-==+-43524c b a c c b a ………………………………………… 1’ 解之得:⎪⎩⎪⎨⎧-=-==321c b a ………………………………………… 2’∴ 二次函数解析式为322--=x x y ……………………………… 3’ ⑵……………………… 4’(图象略) ……………………… 5’ 当0>y 时,1-<x 或3>x ……………………… 7’20.解:连结CD ,由题意得:∠A=65°, ………………………………… 2’∵CA=CD∴∠CDA =∠A=65° ………………………………… 3’ ∴∠DCA=180°-∠CDA -∠A=50° ………………………………… 4’∴AD =50° ………………………………… 5’ 21.解:⑴800 ……………………………………………………………………… 2’⑵设该单位这次共有x 名员工去普陀山风景区旅游, ∵ 27000>25×1000∴ 25>x …………………………………………………………… 3’∴ 27000)]25(201000[=--x x ………………………………… 5’ 解得: 304521==x x , ………………………………………… 6’∵700)25(201000≥--x∴30)(4521==x ,x ,舍去不符合题意答:该单位这次共有30名员工去普陀山风景区旅游.……………… 7’22.解:连结AO ,∵CD 为⊙O 的直径,AB ⊥CD ,AB=10,∴AE=21AB=5, ………………………………………………………… 2’ 设半径长为x ,则OA=x ,OE=1-x ………………………………… 3’∴5)1(22+-=x x ……………………………………………………… 4’13=x …………………………………………………………… 5’ ∴直径CD=2x =26. ……………………………………………………… 6’答:直径CD 的长为26寸.23.解:⑴建立如图的直角坐标系,设拱桥的抛物线解析式为)0(2≠=a ax y ……… 1’ 由题意得:24-=a ,解得:21-=a , ………………………………… 2’ ∴拱桥的抛物线解析式为221x y -= ………………………………………… 3’ ⑵由题意得:当5.4-=y 时,5.4212-=-x ……………………………………………… 4’ 解得:3±=x ……………………………………………… 5’ ∴此时水面宽度为6米,∴水面宽度将增加2米. ……………………………………………… 6’24.解:⑴由题意得:12)2(4)]2([22+=--+-=∆m m m ………………… 2’∵无论m 取何值时,02≥m ,∴012122>≥+m ………………… 3’ 即0>∆∴无论m 取何值时,方程总有两个不相等的实数根. ………………… 4’⑵设方程两根为1x ,2x ,由韦达定理得:221-=⋅m x x ……………………… 5’x y O由题意得:11922-+=-m m m ,解得:91-=m ,12=m ………………… 7’ ∴76=+m …………………………………………………………………… 8’25.⑴证明:过点O 作OG ⊥CD 于G ,∵AE ⊥EF ,OG ⊥EF ,BF ⊥EF ,∴AE ∥OG ∥BF , ………………………………………………………… 1’ 又∵OA=OB∴GE=GF …………………………………………………………………… 2’ ∵OG 过圆心O ,OG ⊥CD∴CG=GD …………………………………………………………………… 3’ ∴EG -CG=GF -GD即CE=DF …………………………………………………………………… 4’ ⑵解:连结OC ,则OC=21AB=10, …………………………………………… 5’ ∵OG 过圆心O ,OG ⊥CD ,∴CG=21CD=5, …………………………………………………………… 6’ ∴OG=35 …………………………………………………………………… 7’ ∵梯形ABCD 中,EG=GF ,AO=OB ,∴OG=21(AE+BF ) ∴AE+EF=2OG=310 ………………………………………………………… 8’26.解:⑴150 ……………………………………………………………………… 2’⑵设函数关系式为)0(≠+=k b kx y ,由题意得:⎩⎨⎧+=+=bk b k 1315010300 …………………………………………………………… 4’ 解之得:⎩⎨⎧=-=80050b k …………………………………………………………… 5’ ∴函数关系式为)0(80050>+-=x x y …………………………………… 6’ ⑶由题意得:6400120050)80050)(8(2-+-=+--=x x x x W ………… 8’ 800)12(502+--=x …………………………………… 9’(另解:当122=-=ab x 时,=最大W 800) ∴当销售单价为12元时,每天可获得的利润最大.最大利润是800元. … 10’27.解:⑴∵点B (2-,m )在直线12--=x y 上,∴31)2()2(=--⨯-=m …………………………………………… 1’∴点B (2-,3)又∵点A (4,0)点O (0,0)∴设抛物线对应的函数关系式为)0()4(≠-=a x ax y …………… 2’∴3)42(2=---a ∴41=a ……………………………………………………………… 3’ ∴函数关系式为x x x x y -=--=241)4(41 ………………………… 4’ ⑵①由题意可得:点E (2,-5),又点C (2,0),∴CE=5, …………………… 5’又点B (-2,3)∴BC=2234+=5,∴CB=CE …………………………………………………………………… 6’ ②又题意可得:点D (0,-1), ………………………………………………… 7’ ∴BD=2242+=25,DE=2242+=25,∴BD=DE ,即D 是BE 的中点. ……………………………………………… 8’⑶作直线CD ,∵PB=PE∴点P 在线段BE 的垂直平分线上,∵CB=CE ,D 是BE 的中点,∴CD ⊥BE ,∴直线CD 是线段BE 的垂直平分线, …………………………………………… 9’设直线CD 解析式为)0(≠+=k b kx y ,由题意可得:⎪⎩⎪⎨⎧-==121b k , ∴121-=x y ………………………………………………………………… 10’ ∴⎪⎩⎪⎨⎧-=-=x x y x y 241121 ………………………………………………………………… 11’解得:⎪⎩⎪⎨⎧+=+=2515311y x ,⎪⎩⎪⎨⎧-=-=2515322y x ∴存在点P (53+,251+)和(53-,251-),使得PB =PE .…… 12’。
2024-2025学年九年级数学上学期期中模拟卷(江苏通用)(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版九年级上册第1章-第2章。
5.难度系数:0.75。
第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若关于x 的一元二次方程23510x x a +++= 有一个根为0,则a 的值为( )A .1±B .1C .1-D .02.直线 l 与半径为 r 的 O e 相交,且点 O 到直线 l 的距离为 6,则 r 的取值范围是( )A .6r <B .6r =C .6r >D .6r ³【答案】C【详解】解:∵直线 l 与半径为 r 的 O e 相交,且点 O 到直线 l 的距离为 6,∴6r >.故选:C .3.关于x 的一元二次方程22310x kx +-=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .只有一个实数根【答案】A【详解】解:在关于x 的一元二次方程22310x kx +-=中,2a =,3b k =,1c =-,22Δ498b ac k =-=+,因为20k >,所以22Δ4980b ac k =-=+>,所以关于x 的一元二次方程22310x kx +-=根的情况是有两个不相等的实数根.故选A .4.如图,在 O e 中,A ,B ,D 为 O e 上的点,52AOB Ð=°,则ADB Ð的度数是 ( )A .104°B .52°C .38°D .26°5.若12x x ,是一元二次方程20x x +-=的两个实数根,则12124x x x x +-的值为( )A .4B .3-C .0D .7【答案】D【详解】解:∵12x x ,是一元二次方程220x x +-=的两个实数根,∴121x x +=-,122x x =-,∴()121241427x x x x +-=--´-=,故选:D .6.如图,等边三角形ABC 和正方形DEFG 均内接于O e ,若2EF =,则BC 的长为( )A.B.C D7.把一根长50cm的铁丝围成一个等腰三角形,使其中一边的长比另一边的2倍少5cm,则该三角形的边长不可能为()A .12cmB .19cmC .22.5cmD .13cm8.如图,AB 是O e 的直径,4AB =,点C 是上半圆AB 的中点,点D 是下半圆AB 上一点,点E 是BD的中点,连接AE CD 、交于点F .当点D 从点A 运动到点B 的过程中,点F 运动的路径长是( )A 2BC .πD .【答案】B【详解】解:连接,,,AC BC BD OE ,∵AB 是O e 的直径,点C 是上半圆 AB 的中点,∴ AC BC=,90ACB Ð=°,∴点F 的轨迹为 AB 的长90=故选B .第Ⅱ卷二、填空题:本题共10小题,每小题2分,共20分。
2015—2016学年第一学期期终模拟测试一九年级数学试卷(范围:苏科版 2013年九年级上下两册; 分值:130分;时间:120分钟)2016年1月 -、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个 是符合题意的•请将正确选项前的字母填在表格中相应的位置题号12345678910答案1.一元二次方程2x 2 -x - 3 =0的二次项系数、一次项系数、常数项分别是( )A • 2,1,3B • 2,1, -3C .2 1,3 2.下列图形是中心对称图形的是( )2 2 2 2A . y =x 2B . y =x -2C . y 二 x 2D . y 二 x-26 .已知扇形的半径为 6,圆心角为60,则这个扇形的面积为( )A . 9 二B . 6 二C . 3 二D . ■:7.用配方法解方程 x 2 4x =3,下列配方正确的是()2 2 2 2A . (x —2)=1B . (X —2) =7C . (x + 2)=7D. (x + 2)=1&已知二次函数 y =ax 2 • bx • c 的图象如图所示,则下列选 项中不正确的是()A . a :: 0b 彳D . 2,-1,-33.二次函数y =-(x+1)2 -2的最大值是()A . -2B . -1C . 1D . 24.已知O O 的半径是4, OP 的长为3,则点P 与O O 的位置关系是(A .点P 在圆内B .点P 在圆上C .点P 在圆外 )D .不能确定 5.将抛物线y = x 2沿y 轴向下平移2个单位,得到的抛物线的解析式为(A .B .C .D .C . 0 < 1B . c 0D . a b c ::02a9.如图,△ ABC 内接于O O,BD 是O O 的直径.若.DBC =33 •,则.匕A 等于()A . 33B . 57C . 67D . 66A . 7 分B . 6.5 分C . 6 分D . 5.5 分二、填空题(本题共18分,每小题3分) 11.方程x 2 -4 =0的解为 ____________________ .12•请写出一个开口向上且经过 (0, 1)的抛物线的解析式 __________ . 13 .若二次函数y=2x 2-5的图象上有两个点 A (2,a )、B (3,b ),则 a —b (填“ <”或“=”或“ >”).14 .如图,A 、B 、C 三点在O O 上,/ AOC=100 ° ,则/ ABC= _______15 .用一块直径为4米的圆桌布平铺在对角线长为 4米的正方形桌面上(如 示意图),若四周下垂的最大长度相等,则这个最大长度 x 为 _________ 米(.2 取 1.4).16 .如图,O 是边长为1的等边△ ABC 的中心,将 AB 、BC 、CA 分别 绕点A 、点B 、点C 顺时针旋转:-(0 ::: :- < 180 ),得到AB'、BC'、 CA',连接 A'B'、B'C'、A'C'、OA'、OB'.(1) X A'OB'= ______ ?;(2)当:•二 ______ ?时,△ A'B'C'的周长最大.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29 题8 分)17 .解方程:x 2 =3x 「2 .18 .若抛物线y = x 2 • 3x • a 与x 轴只有一个交点,求实数 a 的值.10•小明乘坐摩天轮转一圈,他离地面的高度y (米)与旋转时间x (分) x/分2.663.23 3.46y/米69.1669.6268.46之间的关系可以近似地用二次函数来刻画 •经测试得出部分数据如下表: F 列选项中,最接近摩天轮转一圈的时间的是( )19.已知点(3, 0)在抛物线y = -3x2 - (k - 3)x -k上,求此抛物线的对称轴.20.如图,AC是O O的直径, 的度数.PA, PB是O O的切线,A, B为切点,BAC =25〔求/ P21.已知x=1是方程x2 -5ax • a2 =0的一个根,求代数式3a2 -15a -7的值.22.一圆柱形排水管的截面如图所示,已知排水管的半径为1m,水面宽AB为1.6m .由于天气干燥,水管水面下降,此时排水管水面宽变为1.2m,求水面下降的高度.23. 已知关于x 的方程3x2-(a - 3)x - a 二0(a - 0).(1)求证:方程总有两个不相等的实数根;(2)若方程有一个根大于2,求a的取值范围.24. 在设计人体雕像时,若使雕像的上部(腰以上)与下部(腰以下)的高度的比等于下部与全部(全身)的高度比,则可以增加视觉美感•按此比例,如果雕像的高为2m,那么它的下部应设计为多高(.5取2.2 ).(1)函数y =£x —1)(x — 2)的自变量x 的取值范围是表描点画出了函数-2)图象的一部分,请补全函数图象;25. 已知 AB 是O O 直径,AC 、AD 是O O 的弦,AB=2, AC=-、2 , AD=1,求/ CAD 度数.226.抛物线y^x bx c 与直线y 2 =-2x • m 相交于A (-2,n)、B (2,-3)两点. (1) 求这条抛物线的解析式; (2) 若一 4兰X 兰1,则y 2_ y 1的最小值为 _______ .27•如图,AB 为O O 的直径,C 为O O 上一点,CD 丄AB 于点 D. P 为AB 延长线上一点,.PCD =2. BAC . (1) 求证:CP 为O O 的切线; (2) BP=1 , CP f j 5. ①求O O 的半径;②若M 为AC 上一动点,贝y OM + DM 的最小值为 ______________28•探究活动:利用函数y =(x -1)(x -2)的图象(如图1)和性质,探究函数 与性质•下面是小东的探究过程,请补充完整:y = , (x-1)(x-2)的图象图1(2)如图2,他列 7图y (x-1)解决问题:1设方程•(x _1)(x -2) -一x -b =0 的两根为x,、x2,且x, :::x2,方程42 1 —x -3x 2 x b 的两根为x3、x4,且x3:::x4.若1 :::b :::、. 2,则x,、x2、x3、x4的4大小关系为____________________________ (用“ <”连接).29.在平面直角坐标系xOy中,半径为1的O O与x轴负半轴交于点A,点M在O O上,将点M绕点A顺时针旋转60待到点Q.点N为x轴上一动点(N不与A重合),将点M 绕点N顺时针旋转60得到点P. PQ与x轴所夹锐角为:-.1(1)如图1,若点M的横坐标为—,点N与点O重合,则a = ______________ °;2(2)若点M、点Q的位置如图2所示,请在x轴上任取一点N,画出直线PQ,并求的度数;(3)当直线PQ与O O相切时,点M的坐标为____________ .图1 图2 备用图数学试卷参考答案、选择题(本题共 30分,每小题3 分) 题号1 2 3 4 5 6 7 8 9 10 答案D A A A B B C D B C、填空题(本题共 18分,每小题3 分) 题号 111213 14 1516答案X 1 =2, x 2 = -22y = x 2 +1(答案不唯一)<1300.6 120, 150三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8 分)217•解:X -3x 2=0. (X-1)(x-2)=0 -••• x — 1 = 0或 x —2 = 0 ••••捲=1,x 2 = 2.218. 解:•••抛物线 y =x 3x a 与x 轴只有一个交点,9 .•..:: = 0 ,即卩 9 —'4a = 0 . • a =.419. 解:•••点(3, 0)在抛物线 y = -3x 2 (k - 3)x-k 上,• 0 = —3 32 3(k 3) -k . • k =9. ...................... 3 分 •抛物线的解析式为 y = -3x 212x-9 .•••对称轴为 x=2 . (5)分• PA=PB. (1)分• • PAB = • PBA . ........................................................ 2 •/ AC 为O O 的直径,• CA 丄 PA . • PAC =90o . T BAC =25o , •乙PAB =65o . • . P =180 -2 PAB =50o .2221 .解:I x = 1是方程x -5ax a = 0的一个根,• 1 -5a a 2 = 0 . • a 2 - 5a - T . •原式=3(a 2 - 5a) - 7 = T0 .20 .解:T PA,PB 是O O 的切线,分22.解:如图,下降后的水面宽CD为1.2m,连接OA, OC ,过点O作ON丄CD于N,交AB于M . ONC = 90 o•••AB// CD ,••• . OMA 二/ONC =90o.•/ AB =1.6, CD -1.2 ,1 1• AM AB =0.8, CN CD =0.6 .2 2在Rt△ OAM 中,• OA =1 ,•- OM = ,OA2 - AM2 =0.6 .同理可得ON =0.8 . /. MN =ON —OM =0.2.答:水面下降了0.2米.2 223.( 1)证明:厶=(a - 3) -4 3 (-a) =(a 3).• a . 0 , • (a 3)20 . 即,0 .•方程总有两个不相等的实数根. ............................... 分 (2)a(2)解方程,得咅=-1, x2. ••方程有一个根大于2,23• — 2 . • a 6 . ........................................................... 5分3224.解:如图,雕像上部高度AC与下部高度BC应有AC : BC = BC : 2 ,即BC - 2AC .设BC为x m.依题意,得X = 2(2 —■ x) . ............................ 3分解得X1 =-1「5, x2- -1 - 5 (不符合题意,舍去). - V 1.2 .答:雕像的下部应设计为 1.2m . ..................................... 5 分25. 解:如图1,当点D、C在AB的异侧时,连接OD、BC. ................... 1分•/ AB 是O O 的直径,•••乙ACB =90o .在Rt△ ACB 中,•AB =2, AC = .2 ,• BC =、2 .•一BAC = 45o. • OA = OD = AD = 1,•. BAD =60o. .......................... 3分•CAD = BAD BAC =105o. .................................... 4 分当点D、C在AB的同侧时,如图2,同理可得• BAC =45 ,BAD =60 . • CAD "BAD - BAC =15o.•CAD 为15o或105o. ........................ 5分26. 解:(1)T直线y2二-2x m经过点B (2, -3),•一3 - -2 2 m . • m = 1 .图1•••直线 y 2 - _2x - m 经过点 A (-2, n ),2••• n =5 . T 抛物线y 1 -x bx c 过点A 和点B ,‘5 = 4-2b+c, • 'b = -2,-3=4 + 2b+c. c = —3.!U (2) -12.27. (1)证明:连接 OC. •••/ PCD=2/ BAC , / POC=2/ BAC ,•••/ POC=Z PCD. •/ CD 丄 AB 于点 D,•••/ ODC=90 . POC+Z OCD =90o .•••/ PCD+Z OCD =90o . OCF=90o .•半径OC 丄CP. • CP 为O O 的切线.(2)解:①设O O 的半径为r.在 Rt A OCP 中,OC 2 CP 2 =OP 2 .••• BP =1,CP =』5,• r 2 (、5)2 =(r 1)2 . 28.解:(1) x 二1 或 x 亠 2 ;捲:x 3 : x 4 : x 2.29•解:(1) 60. (2) 解得r = 2 . /.O O 的半径为(2)如图所示: /接MQ, MP .记MQ, PQ 分别交x 轴于巳F .• QFE "AMQ =60 .•••将点M 绕点A 顺时针旋转60得到点Q ,将点 • △ MAQ 和厶MNP 均为等边三角形. ..... • MA =MQ , MN =MP , . AMQ "NMP • AMN —QMP . • △ MAN ◎△ MQP . • MAN 二 MQP .••• • AEM 二■ QEF , M 绕点 -60 . N 顺时针旋转60得到点P, , -/P 二 yr = x 2 _2x _ 3 .2 14初中数学(九下)个性化辅导第13页共8页。
第一学期初三数学期中考试试卷注意事项:1.本试卷共6页,全卷满分130分,考试时间为120分钟. 2.考生答题全部答在答题卷上,答在本试卷上无效.一、选择题(本大题共10小题,每小题3分,共30分.四个选项中,只有一项是正确的)1.若等腰三角形的两边长为3、6,则它的周长为 ( ) A .12 B .15 C .12或15 D .以上都不对 2.下列说法正确的是 ( ) A .形状相同的两个三角形是全等三角形 B .面积相等的两个三角形是全等三角形 C .三个角对应相等的两个三角形是全等三角形 D .三条边对应相等的两个三角形是全等三角形3.下列四种说法:① 矩形的两条对角线相等且互相垂直;② 菱形的对角线相等且互相平分; ③ 有两边相等的平行四边形是菱形; ④ 有一组邻边相等的菱形是正方形.其中正确的有 ( ) A. 0个 B. 1个 C. 2个 D. 3个 4. 已知一组数据:15,13,16,17,14,则这组数据的极差与方差分别是 ( ) A .4,3 B .3,3C .3,2D .4,25.若1-x 有意义,则x 的取值范围是( )A .x >1B .x ≥1C .x ≤1D .1≠x6. 下列方程是一元二次方程的是 ( )A .2)1(x x x =- B .02=++c bx ax C .01122=++xx D .012=+x 7.下列一元二次方程中,有实数根的是 ( )A .x 2-x +1=0B .x 2-2x+3= 0C .x 2+x -1=0D . x 2+4=0 8.在一幅长为80cm 、宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩 形挂图.如右图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是 ( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --= D .2653500x x --=9.如图,在正方形ABCD 中,AB=3,点P 在BC 上,点Q 在CD 上,若∠PAQ=450,那么△PCQ 的周长为 ( ) A .8 B .7C .6D .510.如图,平行四边形ABCD 中,AB ∶BC =3∶2,∠DAB =60°,E 在AB 上,且AE ∶EB =1∶2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP ∶DQ 等于 ( )二、填空题(本大题共8小题,每小题2分共16分)11.若等腰三角形的一个角为1000,则其余两个角为_____________.12.如图,AD =AC ,BD =BC ,O 为AB 上一点,那么图中共有 对全等三角形.13.在平行四边形ABCD 中,对角线AC 和BD 相交于O .如果090=∠+∠ADO ABO ,那么平行四边形ABCD 一定是_____形.14.如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8, E 是CD 的中点,则OE 的长等于 .15.如图,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC = °. 16.若一等腰梯形的对角线互相垂直,且它的高为5,则该梯形的面积为________. 17.若关于x 的方程042=+-mx x 有两个相等的实数根,则m =________.18.已知A 、B 、C 三点的坐标分别是(0,0),(5,0),(5,3),且这3点是一个平行四边形的顶点,请写出第四点D 的坐标为 .三、解答题(本大题共10小题,共84分)19.(本题满分8分)计算:(1)21)1(320-++-π (2) 22523352-33)()(+20. (本题满分8分) 解方程:(1)0232=-+x x (用公式法) (2) 01432=-+x x (用配方法)21.(本题满分10分)如图,四边形ABCD 中,对角线AC 与BD 相交于O ,在①AB ∥CD ;②AO =CO ;③AD=BC 中任意选取两个作为条件,“四边形ABCD 是平行四边形”为结论构成命题.(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例; (2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)OD BA22.(本题满分9分)甲、乙两支仪仗队队员的身高(单位:厘米)如下: 甲队:178,177,179,178,177,178,177,179,178,179; 乙队:178,179,176,178,180,178,176,178,177,180; (1)将下表填完整:(2)甲队队员身高的平均数为______厘米,乙队队员身高的平均数为______厘米;(3)你认为哪支仪仗队更为整齐?简要说明理由.23.(本题满分8分)如果一元二次方程ax 2+bx+c=0(a≠0)的两根是x 1、x 2,那么利用公式法写出两个根x 1、x 2,通过计算可以得出:x 1+x 2=ab -,x 1x 2=a c.由此可见,一元二次方程两个根的和与积是由方程的系数决定的.这就是一元二次方程根与系数的关系.请利用上述知识解决下列问题: (1)若方程2x 2-4x-1=0的两根是x 1、x 2,则x 1+x 2=_____,x 1x 2=______.(2)已知方程x 2-4x+c=0的一个根是32+,请求出该方程的另一个根和c 的值.24.(本题满分8分)如图,将矩形ABCD 沿着对角线BD 折叠,使点C 落在C ’,BC 交AD 于E , (1)试判断△BDE 的形状,并说明理由; (2)若AB=3,BC=5,试求△BDE 的面积.25.(本题满分6分)已知关于x 的方程0)21(4)12(2=-++-k x k x 。
苏教版九年级数学上册期中试卷及完整答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1 ) A .32 B .32- C .32± D .81162.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .23.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 5.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 6.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( )A .k >﹣1B .k <1且k ≠0C .k ≥﹣1且k ≠0D .k >﹣1且k ≠07.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .9.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A .B .C .D .10.往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm =,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm二、填空题(本大题共6小题,每小题3分,共18分)1.计算:205-=__________.2.因式分解:x 2y ﹣9y =________.3.正五边形的内角和等于__________度.4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为__________.6.如图抛物线y=x 2+2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE+DF 的最小值为__________.三、解答题(本大题共6小题,共72分)1.解方程:214111x x x ++=--2.已知关于x 的一元二次方程x 2+(2m+3)x+m 2=0有两根α,β.(1)求m 的取值范围;(2)若111αβ+=-,则m 的值为多少?3.如图,一次函数1y k x b =+的图象与反比例函数2k y x =的图象相交于A 、B 两点,其中点A 的坐标为()1,4-,点B 的坐标为()4,n .(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式; (3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.4.如图,▱ABCD 的对角线AC ,BD 相交于点O .E ,F 是AC 上的两点,并且AE=CF ,连接DE ,BF .(1)求证:△DOE ≌△BOF ;(2)若BD=EF ,连接DE ,BF .判断四边形EBFD 的形状,并说明理由.5.八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有多少名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.6.去年在我县创建“国家文明县城”行动中,某社区计划将面积为23600m的一块空地进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍,如果两队各自独立完成面积为2450m区域的绿化时,甲队比乙队少用4天.甲队每天绿化费用是1.05万元,乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位:2m)的绿化;(2)由于场地原因,两个工程队不能同时进场绿化施工,现在先由甲工程队绿化若干天,剩下的绿化工程由乙工程队完成,要求总工期不超过48天,问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少,最少费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、C5、B6、D7、D8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)12、y (x+3)(x ﹣3)3、5404、85、12.6、2三、解答题(本大题共6小题,共72分)1、x=﹣3.2、(1)34m ≥-;(2)m 的值为3.3、(1)1x <-或04x <<;(2)4y x =-,3y x =-+;(3)27,33P ⎛⎫ ⎪⎝⎭4、(2)略;(2)四边形EBFD 是矩形.理由略.5、(1)参与问卷调查的学生人数为100人;(2)补全图形见解析;(3)估计该校学生一个月阅读2本课外书的人数约为570人.6、(1)甲、乙两工程队每天各完成绿化的面积分别是90m 2、50m 2;(2)甲队先做30天,乙队再做18天,总绿化费用最少,最少费用是40.5万元.。
苏科版九年级上册数学期中考试试卷一、单选题1.关于x 的方程2360ax x --=是一元二次方程,则( )A .0a >B .0a ≥C .1a =D .0a ≠ 2.用配方法解一元二次方程2410x x -+=时,下列变形正确的是( ) A .()221x -= B .()225x -= C .()223x += D .()223x -= 3.当m 取下列哪个值时,关于x 的一元二次方程x 2﹣2x+m =0没有实数根( ) A .2 B .0 C .1 D .﹣24.下列四个命题中不正确的是( )A .直径是弦B .三角形的内心到三角形三边的距离都相等C .经过三点一定可以作圆D .半径相等的两个半圆是等弧5.如图,A 、B 、C 是⊙O 上的点,且⊙ACB =140°.在这个图中,画出下列度数的圆周角:40°,50°,90°,140°,仅用无刻度的直尺能画出的有( )A .1个B .2个C .3个D .4个 6.如图,点A 、B 、C 、D 都在边长为1的网格格点上,以A 为圆心,AE 为半径画弧,弧EF 经过格点D ,则扇形AEF 的面积是( )A .54πB .98πC .πD .2π 7.在数轴上,点A 所表示的实数为5,点B 所表示的实数为a ,⊙A 的半径为3,要使点B 在⊙A 内时,实数a 的取值范围是( )A .a >2B .a >8C .2<a <8D .a <2或a >88.如图,由等边三角形、正方形、圆组成的轴对称图案中,等边三角形与三个正方形的面积和的比值为()A B.1 C D9.如图所示,小范从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小范第五次走到场地边缘时处于弧AB上,此时⊙AOE=48°,则α的度数是()A.60° B.51° C.48° D.76°10.如图,圆O是Rt⊙ABC的外接圆,⊙ACB=90°,⊙A=25°,过点C作圆O的切线,交AB的延长线于点D,则⊙D的度数是()A.25° B.40° C.50° D.65°二、填空题11.已知x=1是一元二次方程(m-2)x2+4x-m2=0的一个根,则m的值是_____.12.在Rt ABC中,⊙C=90°,AB=5,周长为12,那么ABC内切圆半径为_____.13.如图,⊙O与正五边形ABCDE的两边AE、CD分别相切于A、C两点,则⊙AOC的度数为___度.14.已知实数x 、y 满足x 2+x ﹣y+2=0,则x+y 的最小值为_____.15.某机械厂一月份生产零件50万个,三月份生产零件72万个,则该机械厂二、三月份生产零件数量的月平均增长率是______.16.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为_______厘米.17.如图,Rt⊙ABC 中,⊙C=90°,F 是线段AC 上一点,过点A 的⊙F 交AB 于点D ,E 是线段BC 上一点,且ED=EB ,则EF 的最小值为_______________.18.加图,扇形OAB 中,90AOB ∠=︒,P 为弧AB 上的一点,过点P 作PC OA ⊥,垂足为C ,PC 与AB 交于点D .若2PD CD ==.则该扇形的半径长为______.三、解答题19.已知(a 2+b 2+1)(a 2+b 2﹣3)=0,则a 2+b 2的值等于______.20.解下列方程:(1)2x2﹣18=0;(2)2x2﹣5x+1=0;(3)4x2﹣8x+1=0(用配方法);(4)x2+4x=5(x+4)(用因式分解法).21.如图,在ABC中,AB=AC=BC=4,点D是AB的中点,若以点D为圆心,r为半径作⊙D,使点B在⊙D内,点C在⊙D外,试求r的取值范围.22.已知□ABCD边AB、AD的长是关于x的方程212-+=0的两个实数根.x mx(1)当m为何值时,四边形ABCD是菱形?(2)当AB=3时,求□ABCD的周长.23.如图,在ABC中,⊙ACB=90°,以BC为直径的⊙O交AB于点D,E是AC中点,连接DE.(1)判断DE与⊙O的位置关系并说明理由;(2)若AB=12,⊙A=30°,求阴影部分图形的面积.⊥于H,过A点的切线与OC的延长线交于点D,24.如图,ABC内接于⊙O,OH AC30B∠=︒,OH=(1)AOC∠的度数;(2)线段AD的长;(结果保留根号)(3)图中阴影部分的面积.25.已知:如图,⊙ABC内接于⊙O,AB为直径,⊙CBA的平分线交AC于点F,交⊙O 于点D,DE⊙AB于点E,且交AC于点P,连结AD.(1)求证:⊙DAC=⊙DBA;(2)求证:P是线段AF的中点;(3)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.26.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:⊙E=⊙C;(2)若⊙E=55°,求⊙BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=23,E是弧AB的中点,求EG•ED的值.27.如图,在Rt ABC ∆中,90ABC ∠=︒,以AB 为直径作O ,点D 为O 上一点,且CD CB =,连接DO 并延长交CB 的延长线于点E .(1)判断直线CD 与O 的位置关系,并说明理由;(2)若2BE =,4DE =,求圆的半径及AC 的长.参考答案1.D2.D3.A4.C5.D6.A7.C8.A9.B10.B11.-1【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把x=1代入方程求解可得m 的值.【详解】把x=1代入方程(m-2)x 2+4x-m 2=0得到(m-2)+4-m 2=0,整理得:220m m --=,因式分解得:()()120m m +-=,解得:m=-1或m=2,⊙m-2≠0⊙m=-1,故答案为:-1.【点睛】本题考查了一元二次方程的解的定义以及因式分解法解一元二次方程,解题的关键是正确的代入求解.注意:二次项系数不为0的条件.12.1【分析】设切点分别为D 、F 、E ,连结OD ,OF ,OE ,利用三角形周长可求BC+AC=12-AB=12-5=7,,根据AC,BC AB 为圆的切线,可得AF=AE ,BD=BE ,CD=CF ,OD⊙BC ,OF⊙AC ,可求CD=1,证明四边形CDOF 为正方形,可得ABC 内切圆半径r=CD=1即可.【详解】解:设切点分别为D 、F 、E ,连结OD ,OF ,OE在Rt⊙ABC 中,⊙C =90°,AB =5,AB+BC+AC=12,⊙BC+AC=12-AB=12-5=7,⊙AC,BC AB 为圆的切线,⊙AF=AE ,BD=BE ,CD=CF ,OD⊙BC ,OF⊙AC ,⊙CD+CF=BC+AC-AB=7-5=2,⊙CD=1,⊙⊙C=90°,⊙ODC=⊙OFC=90°,⊙四边形CDOF 为矩形,⊙CD=CF ,⊙四边形CDOF 为正方形, ⊙ABC 内切圆半径r=CD=1.故答案为1.【点睛】本题考查三角形内切圆与内心,正方形判定与性质,切线长性质,三角形周长,解题的关键是根据切线长的性质,与三角形周长,得出r=()12BC AC AB +-,属于中考常考题型.13.144【分析】连接OA 、OC ,根据切线的性质得到⊙OAE =90°,⊙OCD =90°,根据正多边形的内角和公式求出正五边形的内角的度数,继而求出⊙AOC 的度数.【详解】解:正五边形每个内角:180°-360°÷5=108°,⊙⊙O 与正五边形ABCDE 的两边AE 、CD 分别相切,⊙⊙OAE =⊙OCD =90°,⊙⊙AOC =(5-2)×180°-90°×2-108°×2=144°.【点睛】本题主要考查了五边形的内角和的计算,切线的性质,解决此题的关键是正确的计算.14.1【分析】由x 2+x ﹣y+2=0,可得y =x 2+x+2,即有x+y =x 2+2x+2:然后运用配方法求二次函数的最小值即可.【详解】解:⊙实数x 、y 满足x 2+x ﹣y+2=0,⊙y =x 2+x+2,⊙x+y =x 2+2x+2=(x+1)2+1,⊙x+y 的最小值为1.【点睛】本题考查了运用二次函数求最值,解题的关键是创造出关于函数值x+y 的函数并求最值.15.20%【分析】设该机械厂二、三月份生产零件数量的月平均增长率为x ,利用三月份的产量=一月份的产量×(1+月平均增长率)2,即可得出关于x 的一元二次方程,解之取其正值即可得出该机械厂二、三月份生产零件数量的月平均增长率.【详解】设该机械厂二、三月份生产零件数量的月平均增长率为x ,依题意得:50(1+x )2=72,解得:x 1=0.2 =20%,x 2 = -2.2(不合题意,舍去).故答案为:20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16.10【详解】如图,过球心O 作IG⊙BC ,分别交BC 、AD 、劣弧EF 于点G 、H 、I ,连接OF .设OH=x ,HI=y ,依题意,得:()2228{216x x y x y +=++=,解得6{4x y ==.⊙球的半径为x +y=10(厘米).故答案为:1017.【分析】先取EF 得中点O ,连接DE 、DE 、DC ,所以OC=12EF ,由AF=DF ,BE=DE ,得到⊙A=⊙ADF ,⊙B=⊙BDE ,从而⊙ADF+⊙BDE=⊙A+⊙B=90°,所以⊙EDF=90°,因此OD=12EF ,得到EF=OC+OD ,因此当C 、O 、D 三点在同一直线上,且CD⊙AB 时,OC+OD 最短,由OE=OF ,OC=OD ,⊙C=90°得到四边形CEDF 为矩形,于是过点C 作CH⊙AB ,此时点D 与H 重合,EF=OC+OD=CD=CH 最短,由⊙AFD=⊙BED=90°,可知⊙A=⊙B=45°,从而CH 为12AB=12⨯EF 的最小值为【详解】取EF 得中点O ,连接DE 、DE 、DC ,⊙⊙C=90°, ⊙OC=12EF,⊙A+⊙B=90°,⊙AF=DF ,BE=DE ,⊙⊙A=⊙ADF ,⊙B=⊙BDE ,⊙⊙ADF+⊙BDE=⊙A+⊙B=90°,⊙⊙EDF=90°, ⊙OD=12EF ,⊙EF=OC+OD ,当C. O 、D 三点在同一直线上,且CD⊙AB 时,OC+OD 最短,⊙OE=OF ,OC=OD ,⊙四边形CEDF 为平行四边形,⊙⊙C=90°,⊙四边形CEDF 为矩形,于是过点C 作CH⊙AB ,此时点D 与H 重合,EF=OC+OD=CD=CH 最短,⊙⊙AFD=⊙BED=90°,⊙⊙A=⊙B=45°,CH=12AB=12⨯⊙EF 的最小值为【点睛】此题考查圆周角定理及其推论,解题关键在于作辅助线.18.5【分析】连接OP ,设OP=R ,由题意知⊙ACD 为等腰直角三角形,AC=CD=2,所以OC=R-2,CP=4,由勾股定理列方程求出R 的值即可.【详解】解:连接OP ,如图,⊙90AOB ∠=︒,OA OB =⊙45OAB ∠=︒⊙PC OA ⊥⊙45ADC ∠=︒⊙2AC CD ==设OP=R ,则OC=R-2,CP=CD+DP=4,在Rt POC ∆中,222OP OC PC =+⊙222(2)4R R =-+解得,R=5故答案为:5【点睛】本题考查勾股定理、等腰直角三角形,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.19.3【分析】把a 2+b 2看成整体m ,方程变形后利用因式分解法求解,再根据a 2+b 2≥0,可知m≥0,可以得到答案.【详解】解:设a 2+b 2=m ,原方程化为:(m +1)(m -3)=0,解得m 1=-1,m 2=3,⊙a 2+b 2≥0,⊙a 2+b 2=3.故答案为:3.【点睛】本题考查了换元法解一元二次方程,掌握如何换元是解题关键.20.(1)12=33x x =-,;(2)12x x ==(3)1211x x ==(4)124,5x x =-=【分析】(1)利用直接开平方法即可解方程;(2)利用公式法即可解方程;(1)利用配方法即可解方程;(1)利用先提公因式,再利用因式分解法即可解方程;【详解】(1)2x 2﹣18=0;228=1x2=9x=3x ±12=33x x =-,(2)2x 2﹣5x+1=0;2,5,1==-=a b c22Δ=4(5)421170b ac -=--⨯⨯=>⊙方程有两不等实数根⊙1,2(5)222b x a ---==⨯⊙12x x ==(3)4x 2﹣8x+1=0;2481x x -=-2124x x --=212114x x --+=+23(1)4x -=1x -=1x =±1211x x ==(4)x 2+4x =5(x+4)(4)5(4)x x x ++=(4)(5)0x x +-=124,5x x =-=.【点睛】本题考查一元二次方程的解法,熟练选择合适的解法是解题的关键.21r <<【分析】连接CD ,过点A 作AE BC ⊥于点E .过点D 作DF BC ⊥于点F ,显然//DF AE ,解直角三角形求出CD ,BD 即可判断.【详解】解:连接CD ,过点A 作AE BC ⊥于点E .过点D 作DF BC ⊥于点F ,⊙//DF AE ,AB AC ==4BC =,122BE BC ∴==,4AE ∴==,点D 是AB 中点,即DF 是中位线122DF AE ∴==,112BF BE ==,3CF ∴=,CD ∴=又⊙12DB AB =⊙r r <<【点睛】本题考查等腰三角形的性质,点与圆的位置关系,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(1)(2)14【分析】(1)由菱形的四边相等知方程有两个相等的实数根,据此利用根的判别式求解可得,注意验根;(2)由AB=3知方程的一个解为3,代入方程求出m 的值,从而还原方程,再利用根与系数的关系得出AB+AD 的值,从而得出答案.【详解】解:(1)若四边形ABCD 是菱形,则AB=AD,所以方程有两个相等的实数根,则⊙=(-m )2-4×1×12=0,解得m=±检验:当m=,x=符合题意;当m=,x=-不符合题意,故舍去.综上所述,当m 为,四边形ABCD 是菱形.(2)⊙AB=3,⊙9-3m+12=0,解得m=7,⊙方程为x 2-7x+12=0,则AB+AD=7,⊙平行四边形ABCD 的周长为2(AB+AD )=14.【点睛】本题主要考查根与系数的关系,解题的关键是掌握根的判别式、根与系数的关系,菱形和平行四边形的性质.23.(1)DE 为⊙O 的切线,证明见详解;(2)S 阴影=3π-.【分析】(1)连结OD ,OE ,根据中位线性质OE⊙AB ,可得⊙COE=⊙OBD ,⊙EOD=⊙ODB ,根据等腰三角形性质⊙OBD =⊙ODB ,再证⊙COE⊙⊙DOE (SAS )得出⊙OCE=⊙ODE=90°即可;(2)连结CD ,在Rt⊙ABC 中,利用三角函数求出AC=S ⊙OCE=S⊙ODE=11322CE OC ⋅=⨯S 四边形OCED=2 S⊙OCE=再求出S 扇形OCD=212033360ππ⨯⨯=,两者作差即可.【详解】解:(1)连结OD ,OE ,⊙O 为BC 中点,E 为AC 中点,⊙OE⊙AB ,⊙⊙COE=⊙OBD ,⊙EOD=⊙ODB ,⊙OB=OD ,⊙⊙OBD =⊙ODB ,⊙⊙COE=⊙EOD ,在⊙COE 和⊙DOE 中,OC ODCOE DOE OE OE=⎧⎪∠=∠⎨⎪=⎩,⊙⊙COE⊙⊙DOE (SAS ),⊙⊙OCE=⊙ODE=90°,⊙⊙ODE=90°,OE 为半径,⊙DE 为⊙O 的切线;(2)连结CD ,⊙⊙COE⊙⊙DOE ,⊙CE=DE ,⊙AB =12,⊙A =30°,⊙ACB =90°, ⊙CB=1112622AB =⨯=,⊙CBA=90°-⊙A=60°, ⊙OC=116322BC =⨯=,在Rt⊙ABC 中,AC=ABcos30°=12=, ⊙E 为AC 中点,⊙CE=1122AC =⨯⊙S⊙OCE=S⊙ODE=11322CE OC ⋅=⨯=,⊙S 四边形OCED=2 S⊙OCE=⊙OE⊙BA ,⊙⊙COE=⊙CBD=60°,⊙⊙COD=2⊙COE=2×60°=120°,⊙S 扇形OCD=212033360ππ⨯⨯=,⊙S 阴影= S 四边形OCED- S 扇形OCD=3π-.24.(1)60°;(2)(3)83π 【分析】(1)⊙AOC 与⊙B 是同弧所对的圆心角与圆周角,因而⊙AOC =2⊙B ,进而即可求解;(2)在Rt⊙OAD 中,根据含30°角的直角三角形的三边长关系,即可求解;(3)阴影部分的面积是⊙OAD 与扇形OAC 的面积差,可据此来求阴影部分的面积.【详解】解:(1)⊙⊙B =30°,⊙⊙AOC =2⊙B =60°;(2)⊙⊙AOC =60°,AO =CO ,⊙⊙AOC 是等边三角形;⊙OH =⊙AO =4;⊙AD 与⊙O 相切,⊙AD =(3)⊙S扇形OAC =2460360π⨯⨯ =83π,S ⊙AOD =12⊙S阴影=83π.25.(1)证明见试题解析;(2)证明见试题解析;(3)2.5,2.4.【分析】(1)利用角平分线的性质得出⊙CBD=⊙DBA ,进而得出⊙DAC=⊙DBA ; (2)利用圆周角定理得出⊙ADB=90°,进而求出⊙1=⊙5=⊙2,⊙3=⊙4,则PD=PF ,PD=PA ,即可得出答案;(3)利用勾股定理得出AB 的长,再利用三角形面积求出DE 即可.【详解】(1)⊙BD 平分⊙CBA ,⊙⊙CBD=⊙DBA ,⊙⊙DAC 与⊙CBD 都是弧CD 所对的圆周角,⊙⊙DAC=⊙CBD ,⊙⊙DAC=⊙DBA ;(2)⊙AB 为直径,⊙⊙ADB=90°,⊙DE⊙AB 于E ,⊙⊙DEB=90°,⊙⊙1+⊙3=⊙5+⊙3=90°,⊙⊙1=⊙5=⊙2,⊙PD=PA ,⊙⊙4+⊙2=⊙1+⊙3=90°,⊙⊙3=⊙4,⊙PD=PF ,⊙PA=PF ,即P 是线段AF 的中点;(3)连接CD ,⊙⊙CBD=⊙DBA ,⊙CD=AD ,⊙CD ﹦3,⊙AD=3,⊙⊙ADB=90°,⊙AB=5,故⊙O的半径为2.5,⊙DE×AB=AD×BD,⊙5DE=3×4,⊙DE=2.4.即DE的长为2.4.26.(1)见解析;(2)⊙BDF=110°;(3)18【分析】(1)直接利用圆周角定理得出AD⊙BC,进而利用线段垂直平分线的性质得出AB=AC,即可得出⊙E=⊙C;(2)利用圆内接四边形的性质得出⊙AFD=180°﹣⊙E,进而得出⊙BDF=⊙C+⊙CFD,即可得出答案;(3)根据cosB=23,得出AB的长,再求出AE的长,进而得出⊙AEG⊙⊙DEA,求出答案即可.【详解】解:(1)证明:连接AD,⊙AB是⊙O的直径,⊙⊙ADB=90°,即AD⊙BC,⊙CD=BD,⊙AD垂直平分BC,⊙AB=AC,⊙⊙B=⊙C,又⊙⊙B=⊙E,⊙⊙E=⊙C;(2)解:⊙四边形AEDF是⊙O的内接四边形,⊙⊙AFD=180°﹣⊙E,又⊙⊙CFD=180°﹣⊙AFD,⊙⊙CFD=⊙E=55°,又⊙⊙E=⊙C=55°,⊙⊙BDF=⊙C+⊙CFD=110°;(3)解:连接OE,⊙⊙CFD=⊙E=⊙C,⊙FD=CD=BD=4,在Rt⊙ABD中,cosB=23,BD=4,⊙AB=6,⊙E是AB的中点,AB是⊙O的直径,⊙⊙AOE=90°,且AO=OE=3,⊙AE=⊙E是AB的中点,⊙⊙ADE=⊙EAB,⊙⊙AEG⊙⊙DEA,⊙AE DE EG AE,即EG•ED=2AE=18.【点睛】此题主要考查了圆的综合题、圆周角定理以及相似三角形的判定与性质以及圆内接四边形的性质等知识,根据题意得出AE,AB的长是解题关键.27.(1)DC是O的切线;理由见解析;(2)圆的半径为1.5,AC的长为【分析】(1)欲证明CD是切线,只要证明OD⊙CD,利用全等三角形的性质即可证明;(2)设⊙O 的半径为 r .在 Rt⊙OBE 中,根据222OE EB OB =+,可得222(4)2r x -=+, 推出 r =1.5,由tan OB CD E EB DE ∠== ,推出1.524CD =,可得 CD =BC =3,再利用勾股定理即可解决问题;【详解】(1)证明:连接OC .CB CD =,CO CO =,OB OD =,()OCB OCD SSS ≌∴∆∆,90ODC OBC ∴∠=∠=︒,OD DC ∴⊥,DC ∴是O 的切线;(2)解:设O 的半径为r .在Rt OBE ∆中,222OE EB OB =+,222(4)2r x ∴-=+,1.5r ∴=,tan OBCDE EB DE ∠==,1.524CD∴=,3CD BC ∴==,在Rt ABC ∆中,AC =∴圆的半径为1.5,AC 的长为。
江苏省张家港市第二中学2015届九年级数学上学期期中试题一、选择题:本大题共有10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合要求的,请将正确选项前的字母代号填在答题卡表格相应位置上........... 1、方程22x x =的解是 ( ▲ )A .2x =B . 1x =2 0x =C .1220x x ==,D . 0x = 2、用配方法解一元二次方程542=-x x 时,此方程可变形为【 ▲ 】A.12x 2=+)( B. 12-x 2=)( C. 92x 2=+)( D. 92-x 2=)( 3、二次函数的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是【 ▲ 】 A .直线x =4 B .直线x =3 C .直线x =-5 D .直线x =-1. 4、关于抛物线y =(x -1)2-2,下列说法正确的是【 ▲ 】 A .顶点坐标(-1,-2)B .对称轴是直线x =1C .x>1时y 随x 的增大而减小D .开口向下5、若二次函数y =x 2-2x +k 的图象经过点(-1,y 1),(3,y 2),则y 1与y 2的大小关系为【 ▲ 】A .y 1=y 2B . y 1> y 2C .y 1< y 2D .不能确定6、下列说法:①有一个角为50°的两个等腰三角形相似;②有一个角为100°的两个等腰三角形相似;③有一个锐角相等的两个直角三角形相似;④两个等边三角形相似.其中正确的有 【 ▲ 】A .1个B .2个C .3个D .4个7、某厂一月份生产某机器100台,计划二、三月份共生产280台,设二三月份每月的平均增长率为x ,根据题意列出的方程是【 ▲ 】 A .100(1+x)2=280 B .100(1+x)+100(1+x)2=280 C .100(1-x)2=280D .100+100(1+x)+100(1+x)2=2808、对于任意实数k ,关于x 的方程x 2-2(k +l)x -k 2+2k -1=0的根的情况为【 ▲ 】 A .有两个相等的实数根B .没有实数根 C .有两个不相等的实数根D .无法确定9、把抛物线c bx x y ++=2的图象向右平移3个单位,再向下平移2个单位,所得的图象的解析式是5)3(2--=x y ,则有【 ▲ 】A .3=b ,0=cB .0=b ,3-=cC .0=b ,3=cD .3=b ,3-=c10、已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,则下列结论: ①ac>0; ②方程ax 2+bx +c =0的两根之和大于0; ③2a +b<0④a -b +c<0,其中正确的个数【 ▲ 】A .4个B .3个C .2个D .1个二、填空题:本大题共8小题,每小题3分共24分.把答案直接填在答题卡对应位置上.........11、若将抛物线y =3x 2+1向下平移1个单位后,则所得新抛物线的解析式是 ▲ . 12、已知一元二次方程x 2+px +3=0的一个根为-3,则p =___ ▲____.13、已知抛物线y=2x -4x 与x 轴交于点A 、B ,顶点为C ,则△ABC 的面积为___▲____. 14、若三角形三边的长度之比为4:4:7,与它相似的三角形的最长边为14 cm ,则最短边为 ▲ cm .15、二次函数n x x y +-=62的部分图像如图所示,若关于x 的一元二次方程062=+-n x x 的一个解为11=x ,则另一个解2x = ▲第17题图16、 若二次函数9)1(22-++=m x m y 有最小值,且图象经过原点,则m = ▲17、如图,在△ABC 中,CD ⊥AB ,垂足为D .下列条件:①∠A +∠B =90°;②AB 2=AC 2+BC 2;③AC CD AB BD=;④CD 2=AD ·BD ,其中能证明△ABC 是直角三角形的有____ ▲___. 18、记方程x 2-(12-k)x +12=0的两实数根为x 1、x 2,在平面直角坐标系中有三点A 、B 、C ,它们的坐标分别为A (x 1,0),B(x 2,0),C(0,12),若以此三点为顶点构成的三角形面积为6,则实数k 的值为 ▲ .三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相应的位置上.........,解答时应写出必要的计算过程、推演步骤或文字说明. 19、(本题满分5分)解方程:2x 2-8=0 ;20、(本题满分5分)解方程:0142=--x x ;21、(本题满分5分)解方程:(3)(4)8x x -+=;22、(本题满分5分)解方程:2(1)5(1)60x x -+--=.23、(本题满分6分)已知关于x 的方程x 2-2(k -1)x+ k 2=0有两个实数根x 1,x 2. (1)求k 的取值范围;(2)若12121x x x x +=-,求k 的值.24、(本题满分6分)如图,在△ABC 中,AD ⊥BC ,垂足为D ,EC ⊥AB ,垂足为E ,连接DE .试说明△BDE ∽△BAC .25、(本题满分6分)已知抛物线y=ax 2+bx+c 与y 轴交于点(0,3a ),对称轴为x=1. (1)试用含a 的代数式表示b 、c .(2)当抛物线与直线y=x ﹣1交于点(2,1)时,求此抛物线的解析式.27、(本题满分9分)2011年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系.(1)分别求1y 和2y(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.28、(本题满分10分)如图,已知抛物线2144y x bx =-++与x 轴相交于A 、B 、两点,与y 轴相交于点C ,若已知A 点的坐标为( 2 , 0)A -。
(1)求抛物线的解析式及它的对称轴方程;(2)求点C 的坐标,连接AC 、BC 并求线段BC 所在直线的解析式; (3)试判断AOC ∆与COB ∆是否相似?并说明理由;(4)在X 轴上是否存在点Q ,使A C Q ∆为等腰三角形,若存在,请求出符合条件的Q 点坐标;若不存在,请说明理由。
29、(本题满分11分)在平面直角坐标系中,抛物线y 1=ax 2+3x +c 经过原点及点A (1,2),与x 轴相交于另一点B . (1)求抛物线y 1的解析式及B 点坐标;(2)若将抛物线y 1以x =3为对称轴向右翻折后,得到一条新的抛物线y 2,已知抛物线y 2与x 轴交于两点,其中右边的交点为C 点.动点P 从O 点出发,沿线段OC 向C 点运动,过P 点作x 轴的垂线,交直线OA 于D 点,以PD 为边在PD 的右侧作正方形PDEF . ①当点E 落在抛物线y 1上时,求OP 的长; ②若点P 的运动速度为每秒1个单位长度,同时线段OC 上另一点Q 从C 点出发向O 点运动,速度为每秒2个单位长度,当Q 点到达O 点时P 、Q 两点停止运动.过Q 点作x 轴的垂线,与直线AC 交于G 点,以QG 为边在QG 的左侧作正方形QGMN .当这两个正方形分别有一条边恰好落在同一条直线上时,求t 的值.(正方形在x 轴上的边除外)一 选择题(每题3分)1C 2D 3D 4B 5A 6C 7B 8C 9B 10B 二 填空题(每题3分)11. 23x y 12 4 13 8 14 8 15 5 16 3 17 ①②④ 18 5或19 三 解答题19 (5分) x=-2或x=2 20 (5分) x=2+5或x=2-5 21(5分)x=-5或x=4 22 (5分) x=7或x=023:解:(1)由方程有两个实数根,可得 △=b²-4ac=4(k-1)²-4k²≥0, 解得,k≤1/2 ;(2)依据题意可得,x1+x2=2(k-1), 由(1)可知k≤1/2 , ∴2(k-1)<0, ∴-2(k-1)=k²-1, 解得k1=1(舍去),k2=-3, ∴k 的值是-3.24:∵AD⊥BC ∴∠ADB=90° ∵EC⊥AB ∴∠CEB=90° ∵∠ABD=∠CBE ∴△ABD∽△CBE ∴BD:AB =BE :BC ∵∠DBE=∠ABC ∴△BDE∽△BAC25:解:(1)∵抛物线与y 轴交于点(0,3a ),∴c=3a∵对称轴为=1,∴x=﹣=1 ∴b=﹣2a ;(2)∵抛物线与直线y=x ﹣1交于点(2,1),∴(2,1)在抛物线上, ∴1=a×22+2(﹣2a )+3a ∴a= ∴b=﹣2a=﹣ c=3a=1 ∴抛物线为y=x 2﹣x+1;26.(1)原来一天可获利润是:(200-160)×100=4000元;(2)①,依题意,得(200-160-x)(100+5x)=4320解得:x=4或x=16则每件商品应降价4元或16元;②y=(200-160-x)(100+5x)=-5(x-10)²+4500∴当x=10时,y有最大值,最大值是4500元,28:解:(1)∵抛物线y=﹣x2+bx+4的图象经过点A(﹣2,0),∴﹣×(﹣2)2+b×(﹣2)+4=0,解得:b=,∴抛物线解析式为 y=﹣x2+x+4,又∵y=﹣x2+x+4=﹣(x﹣3)2+,∴对称轴方程为:x=3.(2)在y=﹣x2+x+4中,令x=0,得y=4,∴C(0,4);令y=0,即﹣x2+x+4=0,整理得x2﹣6x﹣16=0,解得:x=8或x=﹣2,∴A(﹣2,0),B(8,0).设直线BC的解析式为y=kx+b,把B(8,0),C(0,4)的坐标分别代入解析式,得:,解得k=,b=4,∴直线BC的解析式为:y=x+4.(3)可判定△AOC∽△COB 成立. 理由如下:在△AOC 与△COB 中, ∵OA=2,OC=4,OB=8, ∴,又∵∠AOC=∠BOC=90°, ∴△AOC∽△COB. (4) i)当AQ=CQ 时,∴Q 1(3,0); ii)当AC=AQ 时,∴Q 2(-25-2,0);Q 3(25-2,0) iii)当AC=CQ 时,∴点Q 坐标为:Q 4(2,0)综上所述,存在点Q ,使△ACQ 为等腰三角形,点Q 的坐标为:Q 1(3,0),Q 2(-25-2,0),Q 3(25-2,0),Q 4(2,0)。