量子力学习题课
- 格式:ppt
- 大小:680.00 KB
- 文档页数:51
习 题 课例:求下列各粒子相关的de Broglie 波的波长: (1) 能量为100ev 的自由电子; (2) 能量为0.1ev 的自由中子; (3) 能量为0.1ev,m=1g 的质点;(4) T =1K 时,具有动能E=KT3/2(K Bolzman 常数)的氮原子。
解:在V «C 的情况下,mE h p h mE P 2//,2===λ (1) E=100ev=1.6×10-10erg,因为m=9×10-28g h=6.6×10-27erg.s 所以 2.1102.1106.11092106.68102827=⨯=⨯⨯⨯⨯⨯=----cm λÅ(2) E=0.1ev = 1.6×10-13erg, m=1.675×10-24g9.0109.0106.11068.12106.68132427=⨯=⨯⨯⨯⨯⨯=----cm λÅ(3) E=0.1ev = 1.610-13erg, m=1g121327107.1106.12106.6---⨯=⨯⨯⨯=λ Å(4) E =1.5×1.38×10-16erg, m=4×1.67×10-24=6.68×10-24g6.121038.15.11068.62106.6162427=⨯⨯⨯⨯⨯⨯=---λ Å星体光谱的成分与绝对黑体光谱十分相近。
估计黑体表面温度的方法之一,在于确定黑体光谱中辐射强度λU 的最大值所对应的波长。
太阳的这2个波长等于0.5μm,北极星的波长等于0.35μm,天狼星的等于0.29μm 。
试计算这些星体的温度。
解:根据黑体辐射的Plank 公式,物体在温度为T 的热平衡态下,辐射的能谱密度λU 与热辐射频率ν之间的关系为)1(1)/exp(833-=kT h C h U ννπλ将(1)式中的辐射频率ν换成辐射波长λ表示,)2(1)/exp(181,52-=-==kT hc hCU d Cd Cλλπλλνλνλ)改写成将(由d λU /d λ=0,可得λU (max )所应的波长λ:)3(]1)/[exp()/exp(50)1)/exp(18(5-==-=kT hc kT kT hc hc kT hc hc d d d dU λλλλλπλλλ得若令x=hc/λkT, 则(3)改写成 15-=x xe xeXe x =5e x -5, e -x +(x/5)-1=0, e -x =1-(x/5) (4) (4)式是一个超越方程,做图法求解,⎪⎩⎪⎨⎧=-=)6()5(51xe y x y 曲线(5)和(6)的交点的横坐标便是所求的解,如图: 求得 x=4.97, (7) 既hc/kT (8) 或T λmax=hc/4.97k=b (9)次式为Wien 位移公式(wien formula ),其b=hc/4.97k=2.9×10-3m.℃ 由(9)式可估计星体表面温度如下: (a ) 太 阳:λmax=0.55μm=0.55×10-6m, T max =b/λmax=5.27×103℃(b ) 北极星:λmax=0.35μm=0.35×10-6m, T max =b/λmax=8.27×103℃ (c ) 天狼星:λmax =0.29μm=0.29×10-6m, T max =b/λmax=10×103℃例:如果我们观测一个大小为2.5Å的物体,可用的光子的最小能量是多少?若把光子改成电子呢?解:为了发生散射,光波的波长必须与所观测物体的大小同数量级或更小。
第一章量子力学基础第八组:070601337刘婷婷 070601339黄丽英 070601340李丽芳 070601341林丽云070601350陈辉辉 070601351唐枋北【1.1】经典物理学在研究黑体辐射、光电效应与氢光谱时遇到了哪些困难?什么叫旧量子论?如何评价旧量子论?[解]:困难:(1)黑体辐射问题。
黑体就是理论上不反射任何电磁波的物体,黑体辐射是指这类物体的电磁波辐射,由于这类物体不反射,所以由它释放出来的电磁波都来自辐射,实验中在不同的能量区间对黑体辐射规律给出了不同的函数,然而这两个函数无法兼容,是完全不同的,而事实上黑体辐射本该遵循某个唯一的规律。
况且经典理论还无法说明这两个函数中的任意一个.这个问题研究的是辐射与周围物体处于平衡状态时的能量按波长(或频率)的分布。
实验得出的结论是:热平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状及组成的物质无关。
这一结果用经典理论无法解释。
(2)光电效应。
光照射到金属上时,有电子从金属中逸出。
实验得出的光电效应的有关规律同样用经典理论无法解释。
(3)按照经典电动力学,由于核外电子作加速运动,原子必然坍缩。
经典物理学不能解释原子的稳定性问题。
原子光谱是线状结构的,而按照经典电动力学,作加速运动的电子所辐射的电磁波的频率是连续分布的,这与原子光谱的线状分布不符。
定义:从1900年普朗克提出振子能量量子化开始,人们力图以某些物理量必须量子化的假定来修正经典力学,用于解释某些宏观现象,并且给出其微观机制。
这种在量子力学建立以前形成的量子理论称为旧量子论。
评价:旧量子论冲破了经典物理学能量连续变化的框框。
对于黑体辐射、光电效应与氢光谱等现象的解释取得了成功。
但是,旧量子论是一个以连续为特征的经典力学加上以分立为特征的量子化条件的自相矛盾的体系,本质上还是属于经典力学的范畴。
由于把微观粒子当作经典粒子,并把经典力学的运动规律应用于微观粒子,因而必然遭到严重的困难。
第64讲:习题课10——量子力学习题课与结束语内容:习题课(50分钟)总结和启示(50分钟)要求:掌握量子力学的基本原理重点与难点:波尔理论不确定关系薛定额方程因此,不能盲目地相信物理定律或理论的普遍适用性、要从理论和实验结果的差异当中去探索新的天地。
(3)目前的实验技术水平:单个微观粒子的最大能量转移 约1TeV最高的能量分辨率ΔE /E 约10-16能直接测量的最短时间 约10-16s最小的空间分辨 约3.9×10-17cm很多物理规律、结论就是在这种实验技术水平下(或者比这差得多的水平下)得到的。
例如,认为电子无内部结构,可以看成是点粒子,实际上只是在 3.9×10-17cm 的空间分辨能力下,没有发现电子具有内部结构。
空间分辨能力进一步提高后,很可能会发现电子有结构。
因此,必须重视物理规律的近似性,注意它的适用范围。
不能把现在得到的物理定律、结论看成是永恒不变、绝对正确的。
要注意存在的矛盾,敢于突破,进行创新。
4.继承和创新:有继承才有创新,有创新才有发展。
(1)继承重大理论的创立,都是在继承和总结前人成果的基础上,加以发展才完成的,没有继承就不会有发展和创新。
以下列举几个典型事例。
1)牛顿完成了经典力学体系的建立,他继承了很多前人的工作,例如: 惯性原理(地球水平面)一→牛顿推广总结出第一定律对自由落体规律的研究 加速度的概念笛卡儿、惠更斯关于碰撞问题的研究 笛卡儿关于动量守恒的思想第谷的天文观测一→开普勒的行星运动三定律一→胡克、惠更斯、雷恩、哈雷关于重力、引力的研究一→牛顿提出万有引力定律2)麦克斯韦完成了电磁理论的创立 库仑定律一→高斯定律 奥斯特发现电流的磁效应 一→安培提出环路定理 法拉第提出电磁感应、力线的概念、场的概念 3)爱因斯坦创立了狭义相对论 伽利略的相对性原理 迈克尔逊—莫雷实验 一→洛伦兹提出尺度收缩假说 彭加勒提出以太可能不存在,绝对运动在原则上观察不到正如牛顿所说:“如果说我比笛卡儿看得更远,那是因为我是站在巨人们的肩膀上”。
第一章量子力学基础第八组:070601337刘婷婷 070601339黄丽英 070601340李丽芳070601341林丽云 070601350陈辉辉 070601351唐枋北【1.1】经典物理学在研究黑体辐射、光电效应与氢光谱时遇到了哪些困难?什么叫旧量子论?如何评价旧量子论?[解]:困难:(1)黑体辐射问题。
黑体就是理论上不反射任何电磁波的物体,黑体辐射是指这类物体的电磁波辐射,由于这类物体不反射,所以由它释放出来的电磁波都来自辐射,实验中在不同的能量区间对黑体辐射规律给出了不同的函数,然而这两个函数无法兼容,是完全不同的,而事实上黑体辐射本该遵循某个唯一的规律。
况且经典理论还无法说明这两个函数中的任意一个.这个问题研究的是辐射与周围物体处于平衡状态时的能量按波长(或频率)的分布。
实验得出的结论是:热平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状及组成的物质无关。
这一结果用经典理论无法解释。
(2)光电效应。
光照射到金属上时,有电子从金属中逸出。
实验得出的光电效应的有关规律同样用经典理论无法解释。
(3)按照经典电动力学,由于核外电子作加速运动,原子必然坍缩。
经典物理学不能解释原子的稳定性问题。
原子光谱是线状结构的,而按照经典电动力学,作加速运动的电子所辐射的电磁波的频率是连续分布的,这与原子光谱的线状分布不符。
定义:从1900年普朗克提出振子能量量子化开始,人们力图以某些物理量必须量子化的假定来修正经典力学,用于解释某些宏观现象,并且给出其微观机制。
这种在量子力学建立以前形成的量子理论称为旧量子论。
评价:旧量子论冲破了经典物理学能量连续变化的框框。
对于黑体辐射、光电效应与氢光谱等现象的解释取得了成功。
但是,旧量子论是一个以连续为特征的经典力学加上以分立为特征的量子化条件的自相矛盾的体系,本质上还是属于经典力学的范畴。
由于把微观粒子当作经典粒子,并把经典力学的运动规律应用于微观粒子,因而必然遭到严重的困难。
01.量子力学基础知识本章主要知识点一、微观粒子的运动特征 1. 波粒二象性:,hE h p νλ==2. 测不准原理:,,,x y z x p h y p h z p h t E h ∆∆≥∆∆≥∆∆≥∆∆≥3. 能量量子化; 二、量子力学基本假设1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数(,,,)x y z t ψ来描述,它包括体系的全部信息。
这一函数称为波函数或态函数,简称态。
不含时间的波函数(,,)x y z ψ称为定态波函数。
在本课程中主要讨论定态波函数。
由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于*ψψ,所以通常将用波函数ψ描述的波称为几率波。
在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将*ψψ称为几率密度,它就是通常所说的电子云;*d ψψτ为空间某点附近体积元d τ中电子出现的几率。
对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born )统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。
波函数ψ可以是复函数,ψψψ⋅=*2合格(品优)波函数:单值、连续、平方可积。
2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。
算符:作用对象是函数,作用后函数变为新的函数。
线性算符:作用到线性组合的函数等于对每个函数作用后的线性组合的算符。
11221122ˆˆˆ()A c c c A c A ψψψψ+=+ 自厄算符:满足**2121ˆˆ()d ()d A A ψψτψψτ=∫∫的算符。
自厄算符的性质:(1)本证值都是实数;(2)不同本证值的本证函数相互正交。
3. 假设3:若某一物理量A 的算符ˆA作用于某一状态函数ψ,等于某一常数a 乘以ψ,即:ˆAa ψψ=,那么对ψ所描述的这个微观体系的状态,物理量A 具有确定的数字a 。