焊接变形的产生和防止
- 格式:doc
- 大小:32.50 KB
- 文档页数:5
焊接变形的控制和预防摘要:焊工常常要面对焊接变形问题(焊接电弧产生的热量引起的基板变形)。
产生焊接变形的原因有多种,最关键的因素并不是结构问题。
在此借助于焊接变形定义,提供多种焊接方式引起的焊接变形实例及其控制方式,介绍了焊接变形的各种控制方法。
1 焊接变形的定义在焊接过程中,焊缝金属和基材的冷热循环所引起的膨胀和收缩形成焊接变形。
焊接时,沿同一边持续焊接引起的变形比两边交叉焊接的变形大。
在焊接引起的冷热循环中,很多因素影响金属的收缩并导致变形,如金属在受热时其物理、机械性能发生变化。
当热膨胀增加、热量增大时(见图1),焊接区域温度升高,焊接区域钢板的弯曲强度、弹性、热导性能将降低。
2 产生焊接变形的原因在金属冷热变化过程中,应了解怎样产生变形、为什么产生变形。
图2为一组钢板冷热变化时产生的变形示例。
均匀加热钢板时,向各个方向均匀膨胀,见图2a。
当钢板冷却至室温时,也是均匀收缩并恢复至原始尺寸。
如果钢板在加热时给予刚性约束(见图2b),两个侧边就不会产生变形。
但是,加热时钢板一定会膨胀,所以只能在无约束的垂直方向膨胀(厚度方向),从而使钢板变得更厚。
同样,当钢板温度降至室温时,也将在各方向上收缩(见图2c),这样,工件就发生了永久性弯曲或扭曲变形。
在焊接受热过程中,膨胀和收缩作用于焊接金属和基材上,焊缝和基材因局部被加热而形成很大的温度梯度。
冷却时,焊接金属试图正常收缩至室温时的体积。
但是,熔化的焊接金属因基材而受到约束,焊缝金属和基材之间就会产生应力集中。
焊缝附近区域因此产生应力集中而伸展或弯曲或变薄,这些超过焊缝金属屈服应力的集中释放就形成了永久变形。
当焊接温度接近室温,整个基材受到约束而无法变形,金属的伸缩应力接近屈服应力。
如果约束(夹具固定工件或反收缩力)取消,残余应力释放,基材将发生迁移,焊接工件将产生变形。
金属内部结构因焊接不均匀的加热和冷却产生的内应力叫焊接应力,由焊接应力造成的变形叫焊接变形。
吉林机械制造分公司企业标准Q/JJ112.11401.17-2011 预防焊接缺陷及焊接变形操作规程吉林机械制造分公司2010-12-30发布 2011-01-01实施1 目的为预防和减少焊接缺陷及焊接变形的产生,保证焊接质量,特制订本规程。
2 适用范围本规程适用于机械公司钢制容器的通用焊接管理。
3 引用标准3.1 GB150.1~4-2011《压力容器》3.2 TSG R0004-2009《固定式压力容器安全技术监察规程》3.3NB/T47015-2011《压力容器焊接规程》3.4 GB151-1999《管壳式换热器》4 管理内容和方法4.1 焊接缺陷焊接中的常见缺陷有气孔、夹渣、裂纹、未焊透、未熔合、焊缝外形尺寸和形状不符合要求、咬边、焊瘤、弧坑等。
4.1.1 气孔气孔是指在焊接时,熔池中的气泡在凝固时未能逸出而形成的空穴。
由于气孔的存在,使焊缝的有效截面减小,过大的气孔会降低焊缝的强度,破坏焊缝金属的致密性。
4.1.1.1气孔的产生原因坡口边缘不清洁,有水份、油污和锈迹;焊条或焊剂未按规定进行焙烘,焊芯锈蚀或药皮变质、剥落等。
此外,低氢型焊条焊接时,电弧过长,焊接速度过快;埋弧自动焊电压过高等,都易在焊接过程中产生气孔。
4.1.1.2预防产生气孔的措施选择合理的焊接线能量,认真清理坡口边缘水份、油污和锈迹,严格按规定保管、清理和焙烘焊接材料。
不使用变质焊条,当发现焊条药皮变质、剥落或焊芯锈蚀时,应严格控制使用范围。
电弧焊时,应控制好电弧长度;埋弧焊时,应选用合适的焊接工艺参数,特别是薄板自动焊,焊接速度应尽可能小些。
4.1.2 夹渣夹渣就是残留在焊缝中的熔渣。
夹渣也会降低焊缝的强度和致密性。
4.1.2.1夹渣的产生原因主要是焊缝边缘有气割或碳弧气刨残留的熔渣;坡口角度或焊接电流太小,或焊接速度过快。
在使用酸性焊条时,由于电流太小或运条不当形成“糊渣”;使用碱性焊条时,由于电弧过长或极性不正确也会造成夹渣。
什么是焊接变形?(一)基本类型1. 纵向收缩变形:构件焊后在平行焊缝的方向上尺寸缩短。
2. 横向收缩变形:构件焊后在垂直焊缝的方向上尺寸缩短。
3. 弯曲变形:由于焊缝的布置偏离焊件的形心轴。
4. 角变形:焊后构件的平面围绕焊缝产生的角位移。
5.波浪变形:焊后构件呈波浪形,在焊薄板中出现。
6.错边变形:两焊接热膨胀不一致,所引起的长度或厚度方向上的错边。
(二) 设计措施1. 合理选择焊件尺寸。
焊件的长度、宽度和厚度等尺寸对焊接变形有明显的影响。
例如,板的厚度对于角焊缝的角变形影响较大,当厚度达到某一数值(钢约9mm)时角变形最大。
在制造T形或工形焊接梁时,由于焊件细长,以致于焊接区收缩变形引起焊件弯曲变形是一个突出问题。
解决这一问题的最好办法就是要精心设计结构尺寸参数(如板厚、板宽、板长和肋板间距等)和焊接参数(如单位线能量等)。
2. 合理选择焊缝尺寸和坡口形式。
焊缝尺寸的大小,不仅关系到焊接工作量,而且还对焊接变形产生较大的影响。
焊缝尺寸大,焊接量也大,填充金属消耗量多,造成焊接变形大。
因此在设计焊缝尺寸时,在保证结构承载能力的条件下,应采用较小的焊缝尺寸。
片面加大焊缝尺寸对减小焊接变形极其不利。
所以对并不承受很大工作应力的焊缝,不必采用大尺寸焊角,只要能满足其强度要求就好。
另外,还要合理设计坡口型式。
例如对接接头要采用角变形为零的最佳X 形坡口尺寸。
对于受力较大的T形接头和十字接头,在保证相同强度的条件下,采用开坡口的焊缝比不开坡口焊缝动载强度高,焊缝金属量少,而且对减小焊接变形也是有利的,尤其对厚板而言,更有意义。
3. 尽量减少不必要的焊缝。
在焊接结构设计中,应该力求使焊缝数量减至最少。
一般在设计中常采用加肋板来提高结构的稳定性和刚度,特别是有时为减轻主体结构重量而采用较薄板,势必增加肋板数量,从而大大增加装配和焊接的工作量,其结果是不但不经济,而且焊缝致使焊接变形过大。
所以实践证明合理选择板厚,适当减少肋板,使焊缝减少,即使结构可能稍重,还是比较经济的。
焊接变形和焊接应力产生的原因和措施焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。
焊接过程中,对焊件进行不均匀加热和冷却,是产生焊接应力和变形的根本原因。
减少焊接应力与变形的工艺措施主要有:一、预留收缩变形量根据理论计算和实践经验,在焊件备料及加工时预先考虑收缩余量,以便焊后工件达到所要求的形状、尺寸。
二、反变形法根据理论计算和实践经验,预先估计结构焊接变形的方向和大小,然后在焊接装配时给予一个方向相反、大小相等的预置变形,以抵消焊后产生的变形。
三、刚性固定法焊接时将焊件加以刚性固定,焊后待焊件冷却到室温后再去掉刚性固定,可有效防止角变形和波浪变形。
此方法会增大焊接应力,只适用于塑性较好的低碳钢结构。
四、选择合理的焊接顺序:尽量使焊缝自由收缩。
焊接焊缝较多的结构件时,应先焊错开的短焊缝,再焊直通长焊缝,以防在焊缝交接处产生裂纹。
如果焊缝较长,可采用逐步退焊法和跳焊法,使温度分布较均匀,从而减少了焊接应力和变形合理的装配和焊接顺序。
具体如下:1)先焊收缩量大的焊缝,后焊收缩量较小的焊缝;2)焊缝较长的焊件可以采用分中对称焊法、跳焊法,分段逐步退焊法交替焊法;3)焊件焊接时要先将所以的焊缝都点固后,再统一焊接。
能够提高焊接焊件的刚度,点固后,将增加焊接结构的刚度的部件先焊,使结构具有抵抗变形的足够刚度;4)具有对称焊缝的焊件最好成双的对称焊使各焊道引起的变形相互抵消;5)焊件焊缝不对称时要先焊接焊缝少的一侧。
;6)采用对称与中轴的焊接和由中间向两侧焊接都有利于抵抗焊接变形。
7)在焊接结构中,当钢板拼接时,同时存在着横向的端接焊缝和纵向的边接焊缝。
应该先焊接端接焊缝再焊接边接焊缝。
8)在焊接箱体时,同时存在着对接焊缝和角接焊缝时,要先焊接对接焊缝后焊接角接焊缝。
9)十字接头和丁字接头焊接时,应该正确采取焊接顺序,避免焊接应力集中,以保证焊缝获得良好的焊接质量。
对称与中轴的焊缝,应由内向外进行对称焊接。
焊接变形原因分析及其防止措施摘要:本文重点对常见焊接变形的原因进行分析,并根据原因分别从设计和工艺两个方面论述防止变形的措施。
关键词:焊接变形原因分析防止措施随着新材料、新结构和新焊接工艺的不断发展,有越来越多的焊接应力变形和强度问题需要研究。
焊接变形在焊接结构生产中经常出现,如果构件上出现了变形,不但影响结构尺寸的准确性和外观美观,而且有可能降低结构的承载能力,引起事故。
同时校正焊接变形需要花费许多工时,有的变形很大,甚至无法校正,造成废品,给企业带来损失。
因此掌握焊接变形的规律和控制焊接变形具有十分重要的现实意义。
一、焊接变形种类生产中常见的焊接变形主要有纵向收缩变形、横向收缩变形、挠曲变形、角变形、波浪变形、错边变形、螺旋变形。
这几种变形在焊接结构中往往并不是单独出现,而是同时出现,相互影响。
在这里重点对生产中经常出现的纵向收缩变形、横向收缩变形、角变形、错边变形进行分析。
二、焊接变形原因分析1.纵向收缩变形。
焊接时,焊缝及其附近的金属由于在高温下自由变形受到阻碍,产生的压缩性变形,在平行于焊缝的变形称之为纵向收缩性变形。
焊缝纵向收缩变形量可近似的用塑性变形区面积S来衡量,变形区面积S于焊接线能量有直接关系,焊接线能量越小,S越小,反之S越大。
同样截面的焊缝可以一次焊成,也可以分几层焊成,多层焊每次所用的线能量比单层焊时小得多,因此每层焊缝产生的塑性变形区的面积S比单层焊时小,但多层焊所引起的总变形量并不等于各层焊缝的总和。
因为各层所产生的塑性变形区面积和是相互重叠的。
从上述分析可以看出多层焊所引起的纵向收缩比单层焊小,所以分的层数越多,每层所用的线能量就越小,变形也越小。
2.横向收缩变形。
横向收缩变形是指垂直于焊缝方向的变形,焊缝不但发生纵向收缩变形,同时也发生横向收缩变形,其变形产生的过程比较复杂,下面分几种焊缝情况来分析。
2.1堆焊和角焊缝。
首先研究在平板全长上对焊一条焊缝的情况。
当板很窄,可以把焊缝当作沿全长同时加热,采用分析纵向收缩的方法加以处理。
焊接变形的原因及控制方法焊接变形是指焊接过程中产生的结构形状、尺寸和应力的改变。
变形对于焊接结构的质量和使用寿命都具有重要影响,因此需要采取控制措施来减少焊接变形。
1.熔融区的体积收缩:在焊接中,熔融区的温度升高,熔化的金属液体会发生体积收缩。
当焊接过程中发生多次的局部加热和熔化,熔融区收缩现象将会导致焊接件变形。
2.焊接应力:焊接过程中形成的焊接应力是导致焊缝及周边材料变形的重要原因。
焊接引起的应力主要有热应力和残余应力两种。
3.材料的热物理性质差异:焊接过程中,不同材料的热膨胀系数和热传导系数的差异也会导致焊件变形。
为了控制焊接变形,可以采取以下方法:1.合理设计焊接结构:通过合理设计焊接结构,可以减轻焊接变形产生的程度。
例如,在设计焊接结构时可以采用对称组织,增加长交叉焊缝间的连接来减轻焊接变形。
2.使用焊接工艺参数:调整焊接工艺参数,如焊接速度、焊接电流和电压等,可以减少焊接变形。
例如,在焊接速度控制方面,可以采用逆向焊接、速度波动焊接和脉冲焊接等方法来减少焊接变形。
3.采用预应力:对焊接材料进行预应力处理可以减少焊接变形的产生,常见的方法有热拉伸和压力留置法。
4.使用夹具和支撑物:采用夹具和支撑物对焊接结构进行支撑和固定,可以减少焊接变形的产生。
夹具可以限制材料的收缩和变形,支撑物能够提供必要的支撑力和刚度。
5.控制焊接热输入:通过控制焊接热输入来减少焊接变形。
可以采用分段焊接、小电流多道焊、局部加热等方法来降低焊接区域的温度梯度。
总之,焊接变形是焊接过程中难以避免的问题,但通过合理的设计和控制参数的调整,可以有效减少焊接变形的产生,提高焊接结构的质量和可靠性。
焊接变形原因及控制方法焊接是一种常见的金属连接方法,但在实际应用中,我们常常会遇到焊接件变形的问题。
本文将探讨焊接变形的原因以及控制方法,帮助读者更好地理解和解决这一问题。
一、焊接变形的原因1. 焊接过程中的温度梯度:焊接时,焊缝区域受到高温的加热,而其它部位则保持较低的温度。
这种温度梯度会导致焊接件产生热应力,从而引起变形。
2. 残余应力的存在:焊接后,冷却过程中会产生残余应力。
这些应力会引起焊接件的变形,尤其是在焊接接头附近。
3. 材料的物理性质:不同材料在焊接过程中会由于热影响区域的不同导致不同的变形情况。
例如,具有较高热膨胀系数的材料在焊接后更容易发生变形。
二、焊接变形的控制方法1. 优化焊接工艺:通过合理安排焊接顺序、增加焊缝长度等方式来减小温度梯度,从而降低焊接变形的发生。
2. 使用预应力技术:在焊接过程中引入预应力,可以通过反向应力来抵消残余应力,从而减小焊接件的变形。
3. 控制焊接变形方向:合理预测焊接变形的方向,并采取相应的措施来控制变形。
例如,在设计中合理选择焊接结构和间隙,减小焊接残余应力对结构的影响。
4. 应用补偿技术:通过在焊接过程中进行额外的加工,例如机械加工或热处理等,来消除或减小焊接变形。
5. 使用支撑和夹具:通过设置支撑物或夹具来限制焊接件的变形,保持其形状和位置。
6. 使用适合的焊接方法:不同的焊接方法具有不同的变形控制效果。
在实际应用中,应根据具体情况选择适当的焊接方法,以减小焊接变形。
三、小结焊接变形是焊接过程中常见的问题,其产生原因主要包括温度梯度、残余应力和材料的物理性质。
为了控制焊接变形,我们可以通过优化焊接工艺、使用预应力技术、控制变形方向、应用补偿技术、使用支撑和夹具以及选择适合的焊接方法等方式进行控制。
只有在理解了焊接变形的原因并采取相应的措施后,我们才能更好地解决这一问题,并获得满意的焊接结果。
通过本文的探讨,相信读者对焊接变形的原因及其控制方法有了更深入的了解,这将有助于在实践中更好地应对焊接变形问题。
焊接变形的原因及控制方法在焊接过程中由于急剧的非平衡加热及冷却,结构将不可避免地产生不可忽视的焊接残余变形。
焊接残余变形是影响结构设计完整性、制造工艺合理性和结构使用可靠性的关键因素。
针对钢结构工程焊接技术的重点和难点,根据多年的工程实践经验,本文主要阐述实用焊接变形的影响因素及控制措施和方法。
钢材的焊接通常采用熔化焊方法,是在接头处局部加热,使被焊接材料与添加的焊接材料熔化成液体金属,形成熔池,随后冷却凝固成固态金属,使原来分开的钢材连接成整体。
由于焊接加热,融合线以外的母材产生膨胀,接着冷却,熔池金属和熔合线附近母材产生收缩,因加热、冷却这种热变化在局部范围急速地进行,膨胀和收缩变形均受到拘束而产生塑性变形。
这样,在焊接完成并冷却至常温后该塑性变形残留下来。
一、焊接变形的影响因素焊接变形可以分为在焊接热过程中发生的瞬态热变形和在室温条件下的残余变形。
影响焊接变形的因素很多,但归纳起来主要有材料、结构和工艺3个方面。
1.1材料因素的影响材料对于焊接变形的影响不仅和焊接材料有关,而且和母材也有关系,材料的热物理性能参数和力学性能参数都对焊接变形的产生过程有重要的影响。
其中热物理性能参数的影响主要体现在热传导系数上,一般热传导系数越小,温度梯度越大,焊接变形越显著。
力学性能对焊接变形的影响比较复杂,热膨胀系数的影响最为明显,随着热膨胀系数的增加焊接变形相应增加。
同时材料在高温区的屈服极限和弹性模量及其随温度的变化率也起着十分重要的作用,一般情况下,随着弹性模量的增大,焊接变形随之减少而较高的屈服极限会引起较高的残余应力,焊接结构存储的变形能量也会因此而增大,从而可能促使脆性断裂,此外,由于塑性应变较小且塑性区范围不大,因而焊接变形得以减少。
1.2结构因素的影响焊接结构的设计对焊接变形的影响最关键,也是最复杂的因素。
其总体原则是随拘束度的增加,焊接残余应力增加,而焊接变形则相应减少。
结构在焊接变形过程中,工件本身的拘束度是不断变化着的,因此自身为变拘束结构,同时还受到外加拘束的影响。
预防和减少焊接变形的措施展开全文一、焊接结构的合理设计在保证结构有足够强度的前提下,尽量减小焊缝的数量和尺寸;尽可能对称布置焊缝;必要时预先流留出收缩余量;适当采用冲压结构,减少焊接结构;将焊缝布置在最大工作应力之外;留出装焊模夹具的位置等。
二控制焊接残余变形的工艺措施1.选择合理的装焊顺序采用不同的装配、焊接顺序,焊后会产生不同的变形效果。
如工字梁的焊接,采用两种不同的装焊顺序,产生的变形效果不同。
第一种先装配、焊接成丁字形,然后再装配另一块翼板,最后焊成工字梁。
采用这种装焊顺序时,焊接丁字形结构时,由于焊缝分布在中性轴的下方,焊后将产生较大的上拱弯曲变形,即使另一块翼板焊后会产生的反向弯曲变形,也难以抵消原来产生的变形,最后工字梁将形成上拱弯曲变形。
第二种先整体装配成工字梁,然后再进行焊接,此时梁的刚性增加,再采用对称、分段的焊接顺序,焊后上拱弯曲变形就小得多。
这是一项先总装后焊接的控制结构焊后变形的工艺措施。
2.采取合理的焊接顺序(1)对称焊接如果焊接结构的焊缝是对称布置的,应该采用对称焊接。
这时应注意焊接顺序,采用分段、跳焊的对称焊接,通过先后焊缝的熔敷量来控制变形量,效果很好。
(2)不对称焊缝先焊焊缝少的一侧如果焊接结构的焊缝是不对称布置的,采用先焊焊缝少的一侧,后焊焊缝多的一侧,使后焊的焊缝产生的变形足以抵消先前的变形,以使总的变形减小。
(3)采用不同的焊接顺序结构中若是长焊缝,采用连续的直通焊,将会造成较大的变形,在实践中常采用分段退焊法、分中段退焊法、跳焊法和交替焊法不同的焊接顺序来控制变形。
3.反变形法为了抵消焊接残余变形,焊前预先使焊件向焊接变形相反的方向变形,这种方法叫反变形法。
V 形坡口对接焊中,均采用了反变形法来控制焊后的残余角变形。
例如工字梁焊后产生的角变形,可在焊前预先将翼板制成反变形,然后焊接以抵消焊后变形。
4.刚性固定法焊前对焊件采取外加刚性约束,使焊件在焊接时不能自由变形,这种防止变形的方法叫刚性固定法。
焊接变形及其防止方法焊接是一种常见的金属连接方式,通过熔化金属材料并使其冷却后形成坚固的连接。
然而,焊接过程中常常会出现焊接变形的问题,这给工程项目带来了一系列的挑战。
本文将探讨焊接变形的原因以及防止焊接变形的方法。
焊接变形是指焊接过程中,金属材料由于热膨胀和冷却收缩而发生的形状改变。
焊接变形的主要原因有两个:热应力和残余应力。
首先,热应力是由于焊接过程中金属材料受到高温加热而引起的。
当焊接材料被加热到高温时,它会膨胀,而周围的冷却材料则保持原来的尺寸。
这种温度梯度导致了金属材料的形状改变。
其次,残余应力是指焊接完成后,焊接接头冷却收缩所产生的应力。
由于焊接接头的不均匀收缩,会导致焊接接头的形状发生变化。
为了防止焊接变形,我们可以采取一些措施。
首先,合理的焊接顺序和焊接方法是非常重要的。
焊接顺序应该从内部向外部进行,从低温区向高温区焊接。
这样可以最大程度地减少热应力对焊接接头的影响。
另外,选择合适的焊接方法也可以减少焊接变形。
例如,采用脉冲焊接或者低热输入焊接可以减少热应力的产生。
其次,合理的夹具设计和焊接参数的选择也是防止焊接变形的关键。
夹具设计应该能够固定焊接接头,并且能够承受焊接过程中产生的应力。
夹具的选择和设计应该根据具体的焊接工艺和材料来确定。
此外,选择合适的焊接参数也可以减少焊接变形。
例如,控制焊接电流和焊接速度,以减少焊接过程中的热输入。
另外,焊接前的预热和后续的热处理也是防止焊接变形的重要措施。
预热可以减少焊接接头的温度梯度,从而减少热应力的产生。
预热温度和时间应该根据具体的焊接材料和厚度来确定。
而后续的热处理可以通过退火或者淬火等方法来消除焊接接头中的残余应力,从而减少焊接变形的发生。
除了上述方法,还有一些其他的技术可以用于防止焊接变形。
例如,采用焊接变形补偿技术可以通过在焊接接头上施加适当的应力来抵消焊接变形。
此外,采用焊接变形监测技术可以实时监测焊接过程中的变形情况,从而及时采取措施进行调整。
焊接变形的产生和防止焊接变形的产生和防止手工电弧焊接过程中的变形成因及对策在工业生产中,焊接作业特别是手工电弧焊作业作为制造、修理的一种重要的工艺方法得到越来越广泛的运用。
同时,由于手工电弧焊自身的焊接特点必然引起其焊接变形较大,如不对其变形的原因进行分析并针对其成因提出有效的对策,必将给生产带来极大的危害。
一、手工电弧焊接过程中的变形成因我们知道,手工电弧焊接过程中的焊接电弧由在两个电极之间的气体介质中产生持久的放电现象所产生的。
电弧的产生是先将两电极相互接触而形成短路,由于接触电阻和短路电流产生电流热效应的结果,使两电极间的接触点达到白热状态,然后将两电极拉开,两电极间的空气间隙强烈地受热,空气热作用后形成电离化;与此同时,阴极上有高速度的电子飞出,撞击空气中的分子和原子,将其中的电子撞击出来,产生了离子和自由电子。
在电场的作用下,阳离子向阴极碰撞;阴离子和自由电子向阳极碰撞。
这样碰撞的结果,在两电极间产生了高热,并且放射强光。
电弧是由阴极区(位于阴极)、弧柱(其长度差不多等于电弧长度)和阳极区(位于阳极)三部分所组成。
阴极区和阳极区的温度,主要取决于电极的材料。
一般地,随电极材料而异,阴极区的温度大约为2400K—3500K,而阳极区大约为2600K—4200K,中间弧柱部分的温度最高,约为5000K—8000K。
焊接接头包括焊缝和热影响区两部分金属。
焊缝金属是由熔池中的液态金属迅速冷却、凝固结晶而成,其中心点温度可达2500℃以上。
靠近焊缝的基本金属在电弧的高温作用下,内部组织发生变化,这一区域称为热影响区。
焊缝处的温度很高,而稍稍向外则温度迅速下降,热影响区主要由不完全熔化区、过热区、正火区、不完全正火区、再结晶区和蓝脆区等段组成,热影响区的宽度在8—30 mm范围内,其温度从底到高大约在500 ℃--1500℃之间。
金属结构内部由于焊接时不均匀的加热和冷却产生的内应力叫焊接应力。
由于焊接应力造成的变形叫焊接变形。
焊接件后工件变形分析焊接变形影响因素焊接变形的原因;由于焊接时局部加热膨胀作用和局部冷却时收缩作用造成的,即当局部加热膨胀时受到了未加热部分的压缩作用、和局部冷却收缩时受到了未加热部分牵拉作用。
所以经过焊接后的工件和材料本身就发生了尺寸的改变、形状的改变、和位置的改变。
焊接变形的方式:1、纵向应力变形:是指顺着焊缝方向发生的变形。
2、横向应力变形:是指在焊缝左右横向方面发生的变形。
3、弯曲变形:是指在焊缝垂直上下方向发生的变形。
焊接变形与内应力的关系:在钢板焊接时,当有较大热量输入量的情况下,1.板材越薄越容易产生较大变形,但板材内部的应力较小;2.板材越厚越不易产生变形,但板材内部可能存在较大应力;3.在板厚相同时,坡口尺寸越大,收缩变形越大,应力越多,越容易变形;4.焊缝面积越大,冷却时收缩引起的塑性变形量越大,焊缝面积对纵向、横向及角变形影响趋势是一致,且是主要的影响因素;减少或消除焊接内应力的主要措施从消除内应力原理上看:1.焊接时尽量减少热输入量和尽量减少填充金属。
2.阻焊结构应合理分配各个组单元,并进行合理的组队焊接。
3.位于构件刚性最大的部位最后焊接。
4.由中间向两侧对称进行焊接从设计角度看,防止措施:1.结构设计中尽可能减少不必要的焊缝2.结构设计中在保证结构承载能力条件下,尽量采用较小焊缝尺寸3.安排焊缝尽量对称于结构件截面中性轴从工艺角度看,焊接顺序的基本规则先焊对接焊缝,然后焊角焊缝或环焊缝;先焊短焊缝,后焊长焊缝;先焊对接焊缝,后焊环焊缝;当存在焊接应力时,先焊拉应力区,后焊剪应力和压应力区;操作者焊接前后减少或消除焊接内应力的主要措施1.预热法:构件本体上温差越大,焊接残余应力也越大。
焊前对构件进行预热,能减小温差和减慢冷却速度,两者均能减少焊接残余应力。
2.锤击:焊后用小锤轻敲焊缝及向邻近区域,使金属展开,能有效地减少焊接残余应力。
3.振动法:构件承受载荷应力达到一定数值,经过多次循环加载后,结构中的残余应力逐渐降低,即利用振动的方法可以消除部分焊接残余应力。
焊接变形的产生和防止手工电弧焊接过程中的变形成因及对策在工业生产中,焊接作业特别是手工电弧焊作业作为制造、修理的一种重要的工艺方法得到越来越广泛的运用。
同时,由于手工电弧焊自身的焊接特点必然引起其焊接变形较大,如不对其变形的原因进行分析并针对其成因提出有效的对策,必将给生产带来极大的危害。
一、手工电弧焊接过程中的变形成因我们知道,手工电弧焊接过程中的焊接电弧由在两个电极之间的气体介质中产生持久的放电现象所产生的。
电弧的产生是先将两电极相互接触而形成短路,由于接触电阻和短路电流产生电流热效应的结果,使两电极间的接触点达到白热状态,然后将两电极拉开,两电极间的空气间隙强烈地受热,空气热作用后形成电离化;与此同时,阴极上有高速度的电子飞出,撞击空气中的分子和原子,将其中的电子撞击出来,产生了离子和自由电子。
在电场的作用下,阳离子向阴极碰撞;阴离子和自由电子向阳极碰撞。
这样碰撞的结果,在两电极间产生了高热,并且放射强光。
电弧是由阴极区(位于阴极)、弧柱(其长度差不多等于电弧长度)和阳极区(位于阳极)三部分所组成。
阴极区和阳极区的温度,主要取决于电极的材料。
一般地,随电极材料而异,阴极区的温度大约为2400K—3500K,而阳极区大约为2600K—4200K,中间弧柱部分的温度最高,约为5000K—8000K。
焊接接头包括焊缝和热影响区两部分金属。
焊缝金属是由熔池中的液态金属迅速冷却、凝固结晶而成,其中心点温度可达2500℃以上。
靠近焊缝的基本金属在电弧的高温作用下,内部组织发生变化,这一区域称为热影响区。
焊缝处的温度很高,而稍稍向外则温度迅速下降,热影响区主要由不完全熔化区、过热区、正火区、不完全正火区、再结晶区和蓝脆区等段组成,热影响区的宽度在8—30 mm范围内,其温度从底到高大约在500 ℃--1500℃之间。
金属结构内部由于焊接时不均匀的加热和冷却产生的内应力叫焊接应力。
由于焊接应力造成的变形叫焊接变形。
在焊接过程中,不均匀的加热,使得焊缝及其附近的温度很高,而远处大部分金属不受热,其温度还是室内温度。
这样,不受热的冷金属部分便阻碍了焊缝及近缝区金属的膨胀和收缩;因而,冷却后,焊缝就产生了不同程度的收缩和内应力(纵向和横向),就造成了焊接结构的各种变形。
金属内部发生晶粒组织的转变所引起的体积变化也可能引起焊件的变形。
这是产生焊接应力与变形的根本原因。
二、焊件的残余变形和应力的危害性在焊接过程中焊件将发生变形,随着变形的产生,焊件内的应力状态也发生了变化,而焊完并冷却后所留下的变形和应力不是暂时的而是残余的。
通常焊件的残余变形和应力是同时存在的,但在一般焊接结构中残余变形的危害性比残余应力大得多,它使焊件或部件的尺寸改变而无法组装,使整个构件丧失稳定而不能承受载荷,使产品质量大大下降,而校正却要消耗大量的精力和物力,有时导致产品报废。
同时焊接裂缝的产生往往也和焊接残余变形和应力有着密切的关系。
有的金属由于焊后产生了残余应力而使的使用性能大为下降,从而对这类金属的焊接件生产造成工艺上的大量困难。
因此,在制造焊接结构时,必须充分了解焊接时内应力发生的机理和焊后决定工件变形的基本规律,以控制和减少它的危害性。
三、影响焊接结构变形的主要因素及变形的种类(一)、影响焊接结构变形的主要因素有:1. 焊缝在结构中的位置;2. 结构刚性的大小;3. 装配和焊接顺序;4. 焊接规范的选择。
(二)、焊接变形的种类有:1.纵向收缩和横向收缩;在焊缝长度方向上的收缩称纵向收缩,而在垂直于焊缝纵向的收缩称横向收缩。
由于这种收缩,便使焊件发生了变形。
2.角变形;3.弯曲变形;4.波浪变形;5. 扭曲变形。
(三)、从焊接工艺上分析,影响焊缝收缩量的因素有:用手工电弧焊焊接长焊缝时,一般采用焊前沿焊缝进行点固焊。
这不仅有利于减小焊接变形,也有利于减小焊接内应力。
备料情况和装配质量对焊接变形也会产生影响。
焊接工艺中影响焊缝收缩量的因素有:1. 线膨胀系数大的金属材料,其变形比线膨胀系数小的金属材料大;2. 焊缝的纵向收缩量随着焊缝长度的增加而增加;3. 角焊缝的横向收缩比对接焊缝的横向收缩小;4. 间断焊缝比连续焊缝的收缩量小;5. 多层焊时,第一层引起的收缩量最大,以后各层逐渐减小;6. 在夹具固定条件下的焊接收缩量比没有夹具固定的焊接收缩量小,约减少40%--70%;7. 焊脚等于平板厚度的丁字接头,角变形量较大。
四、防止焊接变形的方法通过以上的分析,我们基本了解焊接变形的原因及变形的种类,针对焊接变形的原因和种类从焊接工艺上进行改进,可以有效防止和减少焊接变形所带来的危害。
下面,我们主要介绍几种常见的防止焊接变形的方法。
1. 反变形法在焊前进行装配时,预置反方向的变形量为抵消(补偿)焊接变形,这种方法叫做反变形法。
图1所示为8—12mm厚的钢板V形坡口单面对接焊时,采用反变形法以后,基本消除了角变形。
2. 利用装配和焊接顺序来控制变形;采用合理的装配和焊接程序来减少变形,这在生产实践中是行之有效的好办法,如图2(a)所示为一箱形梁,由于焊缝不对称,焊后产生下挠弯曲变形。
解决办法是由两人或四人,对称地先焊只有两条焊缝的一侧,如图2(b)中焊缝1和1然后就造成了如图2 ©的上拱变形。
由于这两条焊缝焊后增加了箱形梁的刚性。
当焊接另一侧的两条焊缝时,如先焊图2(d)中焊缝2和2,最后再焊图2(e)中焊缝3和3,就基本上防止了变形。
有许多结构截面形状对称,焊缝布置也对称,但焊后却发生弯曲或扭曲的变形,这主要是装配和焊接顺序不合理引起的,也就是各条焊缝引起的变形,未能相互抵消,于是发生变形。
焊接顺序是影响焊接结构变形的主要因素之一,安排焊接顺序时应注意下列原则:1)尽量采用对称焊接。
对于具有对称焊缝的工作,最好由成对的焊工对称进行焊接。
这样可以使由各焊缝所引起的变形相互抵消一部分。
2)对某些焊缝布置不对称的结构,应先焊焊缝少的一侧。
3)依据不同焊接顺序的特点,以焊接程序控制焊接变形量。
常见的焊接顺序有五种,即:a.分段退焊法这种方法适用于各种空间的位置的焊接,除立焊外,钢材较厚、焊缝较长时都可以设挡弧板,多人同时焊接。
其优点是可以减小热影响区,避免变形。
每段长应为0.5—1m。
见图2(f) b.分中分段退焊法这种方法适用于中板或较薄的钢板的焊接,它的优点是中间散热快,缩小焊缝两端的温度差。
焊缝热影响区的温度不至于急剧增高,减少或避免热膨胀变形。
这种方法特别适用于平焊和仰焊,横焊一般不采用,立焊根本不能用。
见图2(g)c.跳焊法这种方法除立焊外,平焊、横焊、仰焊三种方法都适用,多用在6—12mm厚钢板的长焊缝和铸铁、不锈钢、铜的焊接上,可以分散焊缝热量,避免或减小变形。
钢材每段焊缝长度在200—400mm之间;铸铁焊件按铸铁焊接规范处理;不锈钢和铜由于导热快,每段长不宜超过200mm (薄板应短些)。
见图 2(h)d.交替焊法这种焊法和跳焊法基本相同,只是每段焊接距离拉长,特别适用于薄板和长焊缝。
见图2(i)e.分中对称法这种方法适用于焊缝较短的焊件,为了减小变形,由中心分两端一次焊完。
见图2(j)3.刚性固定法刚性固定法减小变形很有效,且焊接时不必过分考虑焊接顺序。
缺点是有些大件不易固定,且焊后撤除固定后,焊件还有少许变形和较大的残余应力。
这种方法适用于焊接厚度小于6 mm及韧性较好的薄壁材料。
如果与反变形法配合使用则效果更好。
对于形状复杂,尺寸不大,又是成批生产的焊件,可设计一个能够转动的专用焊接胎具,既可以防止变形,又能提高生产率。
当工件较大,数量又不多时,可在容易发生变形的部位临时焊上一些支撑或拉杆,增加工件的刚性,也能有效的减少焊接变形。
3. 散热法散热法又称强迫冷却法,即将焊接处的热量迅速散走,使焊缝附近的金属受热面大大减少,达到减小焊接变形的目的。
图 3(a)为水浸法示意图,常用于表面堆焊和焊补。
图3(b)是散热法示意图,用紫铜作散热垫,有的还钻孔通冷却水,这些垫板越靠近焊缝效果越好。
但散热法比较麻烦,且对于淬火倾向大的钢材不宜采用,否则易裂。
4. 锤击焊缝法锤击焊缝法,即用圆头小锤对焊缝敲击,可减少焊接变形和应力。
因此对焊缝适当锻延,使其伸长来补偿这个缩短,就能减小变形和应力。
锤击时用力要均匀,一般采用0.5Kg—1.0K g的手锤,其端部为圆角(R=3—5mm)。
底层和表面焊道一般不锤击,以免金属表面冷作硬化。
其余各道焊完一道后立刻锤击,直至将焊缝表面打出均匀致密的点为止。
五、常见复杂构件防止变形的方法1. 钢架的焊接钢架焊接的关键问题,是如何保证强度和防止变形。
从工艺上保证强度能适应载荷的变化,其变形量不致影响安装和使用的要求,因此:1)焊缝的高度和长度,要按图施工。
装配误差要小,坡口要清理干净。
2)钢架的焊接一般先焊腹杆与节点板之间的焊缝,然后再焊上、下弦与节点板之间的焊缝,焊接顺序不应集中,而应在节点间间隔跳开焊接(见图4(a))。
3)节点板与杆件之间的横向焊缝不焊(见图4(b)),各种焊缝应尽量采用船形焊。
2. 锅炉集箱管接头的焊接锅炉集箱管接头焊缝集中,又偏于一侧,焊后产生较大的弯曲变形,见图5在圆筒上侧有两排共26个管接头。
采用跳焊的焊接顺序可解决变形问题。
先由一名焊工在第一根集箱上相隔2—3个管接头跳焊一个接头。
跳焊完第一根后接着又到第二根进行同样的跳焊。
依次把6—10根集箱跳焊过一遍后,再反过来从第一根开始跳焊第二遍,这时早已焊好的管接头温度已降低到40℃--5 0℃以下。
这样反复跳焊几遍直到全部管接头焊完。
焊后虽然尚有2—3mm弯曲变形,但已在公差范围内,达到质量要求。
各种钢材计算重量公式1、圆钢每m重量=0.00617×直径×直径2、方钢每m重量=0.00786×边宽×边宽3、六角钢每m重量=0.0068×对边直径×对边直径4、八角钢每m重量=0.0065×直径×直径5、螺纹钢每m重量=0.00617×直径×直径6、等边角钢每m重量=边宽×边厚×0.0157、扁钢每m重量=0.00785×厚度×宽度8、无缝钢管每m重量=0.02466×壁厚×(外径-壁厚)9、电焊钢每m重量=无缝钢管10、钢板每㎡重量=7.85×厚度11、黄铜管:每米重量=0.02670*壁厚*(外径-壁厚)12、紫铜管:每米重量=0.02796*壁厚*(外径-壁厚)13、铝花纹板:每平方米重量=2.96*厚度14、有色金属比重:紫铜板8.9黄铜板8.5锌板7.2铅板11.3715、有色金属板材的计算公式为:每平方米重量=比重*厚度16、方管:每米重量=(边长+边长)×2×厚×0.0078517、不等边角钢每米重量=0.00785×边厚(长边宽+短边宽--边厚)18、工字钢每米重量=0.00785×腰厚[高+f(腿宽-腰厚)]19、槽钢每米重量=0.00785×腰厚[高+e(腿宽-腰厚)]。