多翼离心风机设计
- 格式:pdf
- 大小:3.03 MB
- 文档页数:30
控制速度分布的多翼离心风机优化设计王瑞;王灿星【摘要】对于多翼离心风机,叶轮叶道中的边界层分离、回流等都是影响风机气动性能的主要因素。
为抑制流动分离,本文运用控制平均速度分布规律的方法,通过编制FORTRAN程序对叶轮叶片进行优化设计,并进行了数值模拟计算分析。
结果表明:基于控制平均速度分布设计的多翼离心风机整体性能明显提高,工况点附近效率提高约4%。
通过分析叶轮流道内的速度场分布,可以看到风机叶轮叶道内靠近中间位置附近的边界层分离现象得到有效抑制。
% For multi-blade centrifugal fan, boundary layer separation and inverse flow are the main factors affecting aerodynamic performance. The method of controlled velocity is applied to restrain separation flow, and the impeller blade is optimized by programming FORTRAN and the numerical simulation calculation and analysis is also carried out as well. The results show that the performance of multi-blade centrifugal fan is improved and the efficiency near the operating point is increased about 4%based on the controlled mean velocity law design. Through analyzing the velocity distribution within the impeller flow field, the boundary layer separation phenomenon near intermediate position of impeller is effectively suppressed.【期刊名称】《风机技术》【年(卷),期】2013(000)003【总页数】6页(P47-52)【关键词】多翼离心风机;速度控制;边界层分离【作者】王瑞;王灿星【作者单位】浙江大学流体工程研究所;浙江大学流体工程研究所【正文语种】中文【中图分类】TH4320 引言多翼离心风机具有结构紧凑、压力系数高、流量系数大和噪声低等优点,被广泛应用于许多换气装置、电子设备和空调系统等场合。
空调用多翼离心风机参数的优化设计摘要:通过对空调用多翼离心风机的结构和性能参数进行相应的优化,提高了离心风机的效率,并降低离心风机的噪音,以风机的效率和噪音为优化设计的寻优目标。
风机的全压效率及噪音是叶轮入口平均直径、叶片进口安装角、叶片出口安装角、蜗壳宽度、蜗壳出口长度、叶片数及流量等几何参数的函数。
因此,可以借助于数学优化的手段,通过有限次迭代,就可以求出当综合目标函数达到最大值时有关参数的具体数值。
关键词:多翼离心风机;优化设计;ANSYS多翼离心风机[]因其体积小、噪声低、压力系数高及流量系数大的优点,被广泛使用在抽油烟机、空调等领域。
由于风机的性能直接影响空调系统的品质,于是对空调系统中风机性能优化的要求也越来越高。
在中央空调系统中人们总希望在满足低噪声的同时,空调风机能送出更大的风量。
因此,从节约能源、降低噪音污染的角度考虑,设计出高效率低噪声的风机有十分重要的意义。
用传统设计理论设计多翼离心风机时,风机叶轮进、出口角、叶片数等一些影响风机性能的结构参数在选择时有很大的不确定性[1][2],因此设计出的产品方案不一定是最优方案,造成工程产品常常出现风量、压力达不到性能要求的情况,为此人们对多翼离心风机的结构参数进行了一些试验优化研究。
目前,风机的数学优化方面的工作仅仅局限于一些单目标优化,如加大叶片宽度,减小蜗壳相对宽度,及减小出口安装角来提高离心风机的效率。
且优化同时所选择的设计变量也是有限的几个,这对于风机这一复杂的系统来说是远远不够的。
在本文的优化设计中,主要是通过对离心式通风机结构、性能参数的优化来降低离心风机的噪音和提高离心风机的效率。
风机的效率和噪音可表示成风机的叶轮直径、叶轮入口平均直径、叶片进口安装角、叶片出口安装角、蜗壳宽度B、蜗壳出口长度C、叶片数Z及流量Q的函数[2][3],在离心风机优化设计中选取以上八个参数作为离心风机优化设计的设计变量。
1、空调用多翼离心风机的数学优化方法在进行优化设计时,用公式描述一个实际系统的模型即确定数学模型是整个优化设计中最具有决策性的一步,因为它关系到所要求的解是否具有物理意义且现实可行。
离心式风机的设计与计算离心式风机的选型设计风机的设计方法有两种,一种是用基本理论换算得出设计工况点的近似值,再用模型试验加以验证。
这种方法适合于制造厂及研究单位设计新型风机时采用。
另一种方法是根据模型试验已得出的空气动力学图和无因次特性曲线,应用相似定律进行选型计。
这种方法在现场广泛被采用。
由泵与风机相似定律可知,同型式的风机在相似工况运行,尽管风机的尺寸大小不同,比转数n s 相等。
因此,它们的空气动力学图和无因次特性曲线是相同的。
应用相似定律来设计风机时,只要从制造厂或研究单位提供的各种类型风机资料中,选出与所设计风机比转数n 。
相接近的风机, 比较它们的效率以及能否适于现场制作等因系,就可以确定所设计风机的型式和尺寸。
下面概述用相似定律进行选型设计的方法和步骤: 一、设计参数的选择与计算在风机选型设计时,首先需要确定所需的风量q vv 、风压p 及转速n 。
设计风量、风压的确定可以采用理沦计算的方法,也可以用实际测量的方法。
对于现有风机的改造通常采用实测的方法。
下面分别介绍风量、风压的实测法和计算法。
1、通过实测量确定风机的风量、风压测定风机在锅炉设计负荷时的风压、管道压力损失、风量以及过剩空气系数测试方法见有关资料,这里不再重叙。
当锅炉末达到没计负荷时,需要进行如下换算: 1)、风量的换算:ααee vvp D D q q •= m 3/h 式中: vp q 一换算后风机的设计出力 m 3/h ;v q —锅炉额定负荷下的风机风量 m 3/h ;ααe—分别为锅炉额定负荷与实际负荷下的过剩空气系数之比; DD e—分别为锅炉额定负荷与实际负荷的比。
2)、风压的换算: Kvvp P q q P P )(= m 2/N P P —换算后的风机风压。
m 2/N 。
P 额定负荷下风机风压。
m 2/N 。
K 系数(—般取1.7~2.0)。
2、通过计算确定风量、风压: (1)燃煤量B 的计算:η)()(2321h h D h h Q D B H PHe -+-=km/h式中: D e —锅炉的额定负荷。
在职工程硕士硕士学位论文论文题目:多翼离心风机设计作者姓名胡荣伟指导教师鲁建厦教授学科专业机械工程所在学院机械工程学院提交日期 2015年5月浙江工业大学硕士学位论文多翼离心风机设计作者姓名:胡荣伟指导教师:鲁建厦教授浙江工业大学机械工程学院2015年05月Dissertation Submitted to Zhejiang University of Technologyfor the Degree of MasterDesign Of A Multi-blade Centrifugal FanCandidate: Hu RongweiAdvisor: Professor Lu JianshaCollege of Mechanical Engineering Zhejiang University ofTechnologyMay 2015浙江工业大学学位论文原创性声明本人郑重声明:所提交的学位论文是本人在导师的指导下,独立进行研究工作所取得的研究成果。
除文中已经加以标注引用的内容外,本论文不包含其他个人或集体已经发表或撰写过的研究成果,也不含为获得浙江工业大学或其它教育机构的学位证书而使用过的材料。
对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式标明。
本人承担本声明的法律责任。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权浙江工业大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
本学位论文属于1.保密□,在______年解密后适用本授权书。
2.不保密□。
(请在以上相应方框内打“√”)作者签名:日期:年月日导师签名:日期:年月日多翼离心风机设计摘要随着现代工业的飞速发展,风机产品在各行业中得到了越来越广泛的运用,包括冶金行业的氧气顶吹炼钢、国防工业的航空风洞实验、民用的吸油烟机等。
家用空调器离心风机系统的优化设计前言在家用窗式、柜式空调器中,制冷(热)量、能效比、噪声一直是设计者、消费者关注的三大基本指标。
作为决定以上指标的一个关键部件—离心风机系统,如何对它进行合理优化设计,对空调器的整体性能的提高有着十分重要的意义。
在设计中,我们追求较高的制冷(热)量、能效比和较低的运转噪声。
但是噪声往往和另外两个指标形成矛盾关系,要想提高制冷(热)量和能效比,在一定程度上要提高风量,提高了风量意味着噪声要有所增加。
因此通过对离心风机系统的优化设计,在满足低噪声、大风量的前提下,提高以上指标才能成为可能。
家用空调器离心风机系统一般由多翼离心风扇、蜗壳、进风风道和出风风道组成。
在本文中,我们就多翼离心风扇、蜗壳、进出风风道以及相互之间的优化设计和匹配进行了研究,并成功地应用于我公司某一型号的家用空调器的设计中。
优化设计措施根据以往设计经验,我们首先选择高效的离心风扇,通过对离心风扇参数的优化选择,确认了一款离心风扇A作为优化设计的基本模型,其主要参数如表一所示:一、增加风扇高度和蜗壳宽度根据离心风扇的工作机理,气流在进入叶轮之前,由于负压效应和预旋效应的存在,就家用空调器而言,气流一般存在2~8m/s范围内进入速度。
由于惯性的存在,气流进入叶轮肯定会沿着叶片高度方向继续运行一段距离,才进入叶道,由叶轮做功,获得一定的动能和静压能流出风扇。
因此增加风扇的高度,可以有效加长叶片的作功长度,叶片的负载得到较为均匀的分布,减少气流在叶片和后盘中的冲击和紊流损失。
据此,我们设计了风扇B,与风扇A相比,只是风扇高度增加了22mm,其他参数完全一致。
在相同的负载和输入功率的条件下,比较了相互的作功能力,结果如表二所示:后壁与风扇前后盘之间的泄漏损失,对相互之间的安装间隙作了相应的调整。
试验表明,缩短蜗壳后壁和风扇后盘的间隙,既可以降低风机系统的内泄漏,又可以有效地降低风扇运转时的紊流噪声,如果间隙大,一方面会造成泄漏损失,同时也会使从叶轮出流的气流产生突然的扩流,形成局部的紊流区,在家用空调离心风机系统该间隙通常限定在5~15mm之间。
多翼式低噪声离心风机参数多翼式低噪声离心风机主要包括叶轮、进出风口、风箱、电机等部件。
叶轮是离心风机的核心部件,它的形状、数量和叶片的角度等参数直接影响风机的性能。
本文将分析多翼式低噪声离心风机的主要参数。
一、叶轮叶轮是多翼式低噪声离心风机中最为关键的部件。
其主要参数包括叶轮直径、轮毂直径、叶片数、叶片型式、叶片倾角等。
1. 叶轮直径叶轮直径是指叶轮所在的圆周直径。
叶轮直径越大,风机的静压和流量也就越大。
叶轮直径需要根据实际需求进行选择,过大会使风机的功率增加,过小则会限制风机的性能。
2. 轮毂直径轮毂直径是指叶轮中心部分的直径。
轮毂直径与叶轮直径的比值称为叶轮的伸长比(H/D)。
伸长比越大,流量和压力都会有所下降,但叶轮的稳定性和强度也会有所提高。
3. 叶片数叶片数是指叶轮上叶片的数量。
叶片数越多,离心力越大,但叶片之间的相互作用也会增加,从而影响风机的效率和噪声。
叶片数需要根据叶轮的实际使用情况进行选择。
4. 叶片型式叶片型式是指叶片的形状和截面。
叶片型式不同,对流动的影响也不同。
常见的叶片型式有矩形叶片、圆弧形叶片、前后弯曲叶片等。
5. 叶片倾角叶片倾角是指叶片与叶轮轴线之间的夹角。
叶片倾角越大,对离心力的贡献也就越大。
叶片倾角过大或过小都会影响风机的效率和噪声,因此需要根据实际需求进行选择。
二、进出风口进出风口是多翼式低噪声离心风机中的重要部件,主要有进风道、出风道、扩散器和喇叭口等。
进出风口的设计直接影响风机的流量和压力。
1. 进风道进风道是指风机吸入空气的管道。
进风道的截面形状和长度都会影响进风的流量和速度分布。
为了最大程度地减少进风道对风机流量和压力分布的影响,通常采用圆形截面或近似圆形截面的进风道。
2. 出风道出风道是指风机将空气排出的管道。
出风道的形状和长度也会对风机的性能产生影响。
通常采用扩散器或喇叭口等方式来降低出风的速度和噪声。
3. 扩散器扩散器是一种圆锥形或圆台形的装置,可以将风机出口的高速气流扩散成低速气流。
离心式风机的设计与计算离心式风机是一种常见的流体机械,广泛应用于工业和民用领域。
它通过离心力将空气或其他气体送入或排出系统,实现了空气循环和通风,具有很高的效率和可靠性。
离心式风机的设计与计算是实现其性能优化和系统匹配的关键步骤。
首先,离心式风机的设计要考虑到系统所需的风量、压力、功率等参数。
根据具体应用需求,确定所需的风量和压力值,再根据风机的特性曲线和效率曲线,选择合适的型号和尺寸。
常见的参数包括风机的叶轮直径、转速、功率、排气口位置等。
在设计中,需要进行叶轮的设计与计算。
叶轮是离心式风机的核心部件,起到气体的加速和转化能量的作用。
叶轮的设计需要考虑到叶片的数量、形状、角度、弯曲和厚度等因素,以及叶轮与机壳之间的间隙和封闭。
设计时需要进行流体力学的分析和计算,以确定最佳的叶轮参数,提高风机的效率和性能。
另外,离心式风机的设计还需要考虑到机壳的形状和结构。
机壳是保护和支撑风机的重要部分,具有阻止气体泄漏和降低振动噪音的作用。
机壳的设计需要考虑到气流的通道和分流,避免流动的二次损失和涡流产生。
机壳一般采用金属制造,具有合适的刚度和密封性能。
此外,离心式风机的设计还需要进行传热和动力学的计算。
传热计算可以确定风机的冷却性能和温升;动力学计算可以确定风机的转动惯量和所需的驱动力。
这些计算可以帮助设计者更加准确地估计风机的性能和参数,提高风机的可靠性和效能。
最后,在设计完成后,还需要进行风机的性能测试和调试。
性能测试可以验证设计的准确性和风机的实际性能,包括风量、压力、效率、功率等参数的测量。
调试可以发现和解决风机在运行过程中的问题,如振动、噪音、温升等。
总之,离心式风机的设计与计算是一个综合性的过程,需要考虑到流体力学、传热和动力学等多个方面的因素。
通过合理的设计和计算,可以实现风机的性能优化和系统的匹配,提高风机的可靠性、效率和使用寿命。