变压器后备保护原理与应用
- 格式:ppt
- 大小:788.50 KB
- 文档页数:20
变压器后备保护分析与动作跳闸处理原则一、后备保护分析1.差动保护:差动保护是变压器后备保护中最重要的一部分。
其主要原理是通过监测变压器的输入和输出电流之间的差异,来判断变压器内部是否发生故障。
当差动电流大于设定阈值时,差动保护动作,切断变压器电路,以保护变压器。
2.过流保护:过流保护是指变压器输入端或输出端电流超过额定值时,保护装置会发出信号使断路器或刀闸跳闸,以切断电路。
过流保护是保护变压器的重要手段之一,用于防止变压器过负荷运行和短路故障。
3.过温保护:变压器内部温度的急剧升高会导致变压器绝缘材料老化和失效,进而引发火灾事故。
因此,过温保护是必要的。
过温保护通常采用温度传感器监测变压器内部温度,一旦温度超过设定值,保护装置会发出信号,切断电源,停止变压器的运行。
当变压器后备保护装置动作跳闸时,需要及时采取相应的措施进行处理,以保证变压器的安全和设备的正常运行。
1.检查故障原因:首先应该对动作跳闸的原因进行全面、系统的分析,判断是否属于故障动作,并找出故障原因。
可能的故障原因包括变压器内部短路、过载、绕组接地等。
通过检查,可以排除虚警动作,保证变压器的正常运行。
2.故障修复:一旦确定故障原因,需要及时进行故障修复。
对于短路故障,应排除短路点,修复绕组;对于过载故障,应调整负载,使变压器运行在正常负荷范围内;对于绕组接地故障,应检修绝缘层,排除接地点。
3.冷却处理:当变压器发生过温时,需要采取相应的冷却处理措施。
可以通过增加散热器的风量、使用冷却风扇等方式进行冷却,降低变压器内部温度。
4.环境监测:为了预防类似故障的再次发生,需要对变压器周围的环境进行监测。
如监测变压器输入电流和输出电流的差值,监测变压器运行时的温度等参数,及时发现异常情况并采取相应措施。
5.设备保养:定期对变压器进行保养和检修,检查差动保护、过流保护、过温保护等保护装置的运行情况,保证其可靠性和正常功能。
总之,变压器后备保护分析和动作跳闸处理是保证变压器设备安全运行的重要环节。
变压器后备保护分析与动作跳闸处理原则1. 引言变压器是电力系统中的重要设备,为保障电力系统的运行稳定性和安全性,需要对变压器进行全面的保护和管理。
其中,后备保护是保障变压器安全运行的重要手段之一,本文将对变压器后备保护进行分析,并对动作跳闸处理原则进行探讨。
2. 变压器后备保护概述变压器后备保护是指在主保护失灵或运行异常时,为防止变压器继续运行而采取的保护措施。
其目的是保障变压器运行安全,防止事故的发生。
变压器后备保护通常包括以下几种类型:2.1 奇数次谐波保护奇数次谐波保护是通过测量变压器两侧电压的奇数次谐波电压,来判断是否发生故障。
当变压器内部发生故障时,会产生奇数次谐波电流,从而导致两侧电压的奇数次谐波电压不等。
此时,保护装置会发出动作信号,切断变压器的电源,以防止事故的进一步扩大。
2.2 过电压保护过电压保护是指在变压器出现过电压时,通过切断电源,以保护变压器安全运行。
过电压保护通常分为瞬变过电压保护和持续过电压保护两种,其中瞬变过电压保护是指对高压侧电压瞬间剧烈波动所采取的保护措施,而持续过电压保护则是指对发生长时间过电压的情况所采取的保护措施。
2.3 欠电压保护欠电压保护是指在变压器出现欠电压时,通过切断电源,以保护变压器安全运行。
欠电压保护可以有效避免变压器在电网电压异常下继续工作,从而导致事故。
2.4 瞬时过流保护瞬时过流保护是指通过测量变压器两侧电流的波形和幅值来判断变压器是否出现故障。
当变压器内部出现短路等故障时,会产生高幅值的电流,从而导致保护装置动作,切断电源,以保护变压器安全运行。
3. 变压器后备保护动作跳闸处理原则变压器后备保护动作跳闸时,需要对保护装置和变压器进行检查和处理,以确定动作原因和故障位置,全面保障变压器安全运行。
变压器后备保护动作跳闸处理原则主要包括以下几点:3.1 处理动作跳闸信号当变压器后备保护装置发出动作跳闸信号时,需要及时处理,以确定动作原因和故障位置。
变压器后备保护整定计算方法数据降维随着电力系统发展和电网规模的不断扩大,变压器在电力系统中的重要性日益凸显。
为了确保变压器的安全运行,后备保护的整定成为必要的工作。
本文将介绍变压器后备保护整定的计算方法,并探讨数据降维在此过程中的应用。
一、变压器后备保护整定计算方法1. 整定背景变压器是电力系统中的重要设备,主要用于电能的传输和变压变流。
为了保证变压器的安全运行,需要设置后备保护。
后备保护的整定涉及到多个参数,包括电压、电流、温度等。
2. 整定原则变压器后备保护的整定原则是根据变压器的额定容量、短路容量以及运行条件等因素进行综合考虑,确保其灵敏度和可靠性。
3. 整定步骤(1)收集和分析数据整定前需要收集变压器运行过程中的相关数据,包括电流、电压、温度等参数。
通过对数据的分析,可以了解变压器的负载情况和可能出现的故障。
(2)确定整定参数根据数据分析的结果,确定后备保护的整定参数。
例如,根据变压器的额定容量和运行条件,确定巡检超过额定电流值的保护参数。
(3)计算整定值根据确定的整定参数,进行计算以得到具体的整定值。
例如,根据变压器短路容量和负载情况,计算巡检超过短路电流的保护整定值。
(4)验证整定结果将计算得到的整定值配置到变压器保护设备中,进行实际验证。
通过实际验证,可以判断整定结果是否符合要求,并进行必要的调整。
二、数据降维在变压器后备保护整定中的应用1. 数据降维的概念数据降维是指通过一系列方法将原始数据映射到低维度的空间中,从而减少数据维度的过程。
数据降维不仅可以简化数据处理过程,还可以提高数据分析的效率和准确性。
2. 数据降维在整定计算中的应用(1)降低计算复杂性变压器的运行数据通常包含大量的参数,降维可以将这些参数转化为更少的维度,从而降低整定计算的复杂性。
(2)提高计算效率通过降维可以减少计算的量,从而提高整定计算的效率。
例如,使用主成分分析等方法可以将大量的数据特征降低到较少的维度,并保留原始数据的主要信息。
变压器是连续运行的静止设备,运行比较可靠,故障机会较少。
但由于绝大部分变压器安装在户外,并且受到运行时承受负荷的影响以及电力系统短路故障的影响,在运行过程中不可避免的出现各类故障和异常情况。
1、变压器的常见故障和异常变压器的故障可分为内部故障和外部故障。
内部故障指的是箱壳内部发生的故障,有绕组的相间短路故障、一相绕组的匝间短路故障、绕组与铁芯间的短路故障、绕组的断线故障等。
外部故障指的是变压器外部引出线间的各种相间短路故障、引出线绝缘套管闪络通过箱壳发生的单相接地故障。
变压器发生故障危害很大。
特别是发生内部故障时,短路电流所产生的高温电弧不仅会烧坏变压器绕组的绝缘和铁芯,而且会使变压器油受热分解产生大量气体,引起变压器外壳变形甚至爆炸。
因此变压器故障时必须将其切除。
变压器的异常情况主要有过负荷、油面降低、外部短路引起的过电流,运行中的变压器油温过高、绕组温度过高、变压器压力过高、以及冷却系统故障等。
当变压器处于异常运行状态时,应给出告警信号。
2、变压器保护的配置短路故障的主保护:主要有纵差保护、重瓦斯保护等。
短路故障的后备保护:主要有复合电压闭锁过流保护、零序(方向)过流保护、低阻抗保护等。
异常运行保护:主要有过负荷保护、过励磁保护、轻瓦斯保护、中性点间隙保护、温度油位及冷却系统故障保护等。
3、非电量保护利用变压器的油、气、温度等非电气量构成的变压器保护称为非电量保护。
主要有瓦斯保护、压力保护、温度保护、油位保护及冷却器全停保护。
非电量保护根据现场需要动作于跳闸或发信。
(1)瓦斯保护当变压器内部发生故障时,由于短路电流和短路点电弧的作用,变压器内部会产生大量气体,同时变压器油流速度加快,利用气体和油流来实现的保护称为瓦斯保护。
轻瓦斯保护:当变压器内部发生轻微故障或异常时,故障点局部过热,引起部分油膨胀,油内气体形成气泡进入气体继电器,轻瓦斯保护动作,发出轻瓦斯信号。
重瓦斯保护:当变压器油箱内发生严重故障时,故障电流较大,电弧使变压器油大量分解,产生大量气体和油流,冲击档板使重瓦斯继保护动作,发出重瓦斯信号并出口跳闸,切除变压器。
变压器后备保护的保护范围1. 引言大家好,今天咱们聊聊变压器后备保护的那些事儿。
听起来有点高大上,但别担心,我会把它讲得简单明了。
变压器就像电力系统里的“中坚力量”,没有它,我们的生活可就没法运转了。
所以,保护它,尤其是后备保护,绝对是个大事。
那什么是后备保护呢?简单来说,就是给变压器穿上一层“防护服”,确保它能在遇到问题时有个“后盾”,不至于受伤。
2. 后备保护的作用2.1. 保护范围后备保护的保护范围可大了去了,不仅仅是变压器本身,还包括它所连带的设备,比如开关、线路等等。
这就好比一个保镖,不仅要保护老板,还得保护周围的环境,确保万无一失。
你想啊,如果变压器出问题了,其他设备也可能受到影响,这可就麻烦了。
所以,后备保护的“手臂”得伸得够长,才能把整个电力系统都罩住。
2.2. 保护原理说到保护原理,后备保护其实是通过一些特定的装置,实时监测变压器的运行状态。
当它发现某些异常,比如过载、短路或者温度过高的时候,就会立马启动,像一位勇敢的骑士,迅速切断故障电流,避免更大的损失。
这就像你在厨房做饭,突然油烟机出故障,烟雾弥漫,这时候你得立刻关掉火源,不然整个人都得受影响。
3. 后备保护的特点3.1. 可靠性后备保护最大的特点就是“可靠”。
在电力系统中,设备故障是常有的事,但只要有了后备保护,就能让系统更加稳健。
它就像一个精明的守门员,总是时刻准备着,保证安全。
想想,如果没有后备保护,那变压器可能随时就面临风险,整个系统就像是没有了防线,随时会崩溃。
3.2. 效率当然,后备保护还得讲究“效率”。
在故障发生的瞬间,保护装置必须迅速反应,及时切断电流。
否则,故障就会像脱缰的野马,肆意破坏,损失可就大了去。
就拿足球比赛来说,守门员如果反应不够快,轻则丢球,重则满盘皆输。
后备保护就得像一个超快速的闪电,瞬间判断并行动,才能保证整个电力系统的安全稳定。
4. 总结总之,变压器后备保护的重要性不言而喻。
它就像是电力系统的“安全卫士”,为我们每天的用电生活保驾护航。
变压器后备保护整定计算方法故障诊断变压器是电力系统中常见且重要的设备之一,它在输电、配电过程中扮演着关键的角色。
为了确保变压器的安全可靠运行,需要合理设置后备保护和进行故障诊断。
本文将介绍变压器后备保护整定计算方法和故障诊断的基本原理与步骤。
一、变压器后备保护整定计算方法1. 选型和安装:根据变压器的额定电压、容量和使用环境,选择合适的保护装置。
保护装置的安装位置应考虑到便于操作和维护,并与变压器的绝缘水平相匹配。
2. 整定参数的计算:后备保护装置的整定参数包括动作时间、定时电流、短路电流等。
根据变压器的特性和保护要求,使用以下公式进行计算:动作时间 = Kt × t定时电流 = Kc × Ib短路电流 = Ks × Isc其中,Kt、Kc、Ks为系数,t为时间常数,Ib为变压器的额定电流,Isc为变压器的短路电流。
系数的选择根据不同的保护要求进行,通常可以参考国家标准和相关规范。
3. 精确计算:在实际计算中,应考虑变压器短路阻抗、变压器连续和短时额定容量、线路电流等因素,进行精确的整定计算。
还应根据变压器的负载率、温度等实际情况进行校正,确保保护装置的可靠性和合理性。
二、故障诊断1. 原理:变压器的故障诊断是通过对变压器的电气参数和振动、声音等物理量进行检测分析,判断变压器是否发生故障、故障的类型和位置等。
常见的故障类型包括短路、断线、绕组接地、绝缘老化等。
2. 步骤:(1)监测检测:通过安装传感器和在线监测装置,对变压器的电流、电压、温度、振动等进行实时监测和检测。
监测数据的获取和存储应做好相应的记录和管理工作。
(2)数据分析:对监测数据进行分析,比较实际测量值和正常工作状态下的参考值,判断是否存在异常。
可以使用数据处理软件和专业的算法进行分析和判断。
(3)故障诊断:根据分析结果,结合变压器的工作情况和设备特点,对故障类型和位置进行诊断。
可以运用故障诊断专家系统和人工智能技术进行辅助诊断。
变压器后备保护及过负荷保护一、变压器相间短路的后备保护变压器相间短路的后备保护,反应变压器区外故障引起的变压器过电流,并作为变压器差动保护或电流速断保护和气体保护的后备保护。
作为后备保护,其动作时限与相邻元件后备保护配合,按阶梯原则整定;其灵敏度按近后备和远后备两种情况校验。
根据变压器容量及短路电流水平,常用的变压器相间短路的后备保护有过电流保护、低电压起动的过电流保护、复合电压起动的过电流保护、负序过电流保护、阻抗保护等。
1、过电流保护变压器过电流保护与线路定时限过电流保护原理相同,装设在变压器电源侧,由电流元件和时间元件构成,保护动作后切除变压器。
电流元件的动作电流按躲过变压器可能出现的最大负荷电流整定。
2.低电压起动的过电流保护低电压起动的过电流保护由电流元件、电压元件、时间元件等构成,变压器低电压起动的过电流保护原理框图如图4-9所示。
电流元件接在变压器电源侧电流互感器TA二次侧,分别反应三相电流增大时动作;电压元件接在降压变压器低压侧母线电压互感器TV二次侧线电压,分别反应三相线电压降低时动作。
当同时有电流元件和电压元件动作时,经过与门Y起动时间电路T1,延日跳开变压器两侧断路器1QP和2QF。
图4-9低电压起动的过电流保护峰理桩图U)挂线示意图;原理框I割低电压起动的过电流保护,是在定时限过电流保护的基础上增加了低电压起动条件。
由于采用了低电压元件,可以保证最大负荷时保护不动作,电流元件动作电流整定可以按照躲过变压器额定电流,显然数值比定时限过电流保护的动作电流小,因此提高了保护的灵敏度。
低电压元件动作电压整定,按照躲过正常运行母线可能出现的最低工作电压,并在外部故障切除后电动机自起动过程中必须返回。
需要指出的是,如果一次主接线采用母线分段接线,作为变压器相间短路的后备保护,应该带有两段时限,以较短时限跳开分段断路器,缩小故障影响范围;以较长时限跳开变压器各侧断路器。
3.复合电压起动的过电流保护如果将图4-9所示保护的三个低电压元件,改为负序电压元件和单个低电压元件,可构成复合电压起动的过电流保护。