飞机飞行性能计算
- 格式:pdf
- 大小:513.91 KB
- 文档页数:37
本科课程设计报告题目飞机气动估算及飞行性能计算学生姓名班级日期目录气动特性估算................................................. 错误!未定义书签。
升力特性估算............................................. 错误!未定义书签。
外露翼升力估算....................................... 错误!未定义书签。
机身升力的估算...................................... 错误!未定义书签。
尾翼的升力估算...................................... 错误!未定义书签。
合升力线斜率的计算................................... 错误!未定义书签。
临界马赫数的计算..................................... 错误!未定义书签。
阻力特性的估算.......................................... 错误!未定义书签。
全机摩擦阻力的估算................................... 错误!未定义书签。
亚音速压差阻力的估算................................. 错误!未定义书签。
亚声速升致阻力特性估算............................... 错误!未定义书签。
超音速零升波阻估算................................... 错误!未定义书签。
超声速升致阻力....................................... 错误!未定义书签。
飞机基本飞行性能计算......................................... 错误!未定义书签。
飞行梯度的计算公式飞行梯度是指飞机在垂直方向上爬升或下降的速率。
在航空领域中,飞行梯度的计算是非常重要的,因为它直接影响着飞机的性能和燃料消耗。
飞行梯度的计算公式可以帮助飞行员和航空工程师更好地理解飞机的性能特点,从而做出更合理的飞行计划和飞机设计。
飞行梯度的计算公式可以表示为:梯度 = (爬升率 / 飞行速度) 100。
其中,梯度是以百分比表示的,爬升率是飞机在垂直方向上的爬升速率(通常以英尺/分钟或米/秒表示),飞行速度是飞机在水平方向上的飞行速度(通常以节或米/秒表示)。
飞行梯度的计算公式可以帮助我们理解飞机在不同飞行状态下的性能特点。
在爬升状态下,飞机的爬升率和飞行速度都会影响到飞行梯度的大小。
一般来说,爬升率越大,飞行速度越小,飞行梯度就会越大,反之亦然。
这就意味着在相同的爬升率下,飞机的飞行速度越小,它的爬升梯度就会越大,这也是为什么飞机在爬升状态下会选择较低的速度来获得更大的爬升梯度。
另外,在下降状态下,飞机的下降率和飞行速度也会影响到飞行梯度的大小。
一般来说,下降率越大,飞行速度越大,飞行梯度就会越小,反之亦然。
这就意味着在相同的下降率下,飞机的飞行速度越大,它的下降梯度就会越小,这也是为什么飞机在下降状态下会选择较高的速度来减小下降梯度。
飞行梯度的计算公式还可以帮助我们理解飞机在不同飞行状态下的燃料消耗。
一般来说,飞机在爬升状态下需要消耗更多的燃料,因为它需要克服重力和空气阻力来实现爬升。
而在下降状态下,飞机的燃料消耗会相对较小,因为它可以利用重力和空气阻力来实现下降。
因此,通过计算飞行梯度,我们可以更好地理解飞机在不同飞行状态下的燃料消耗特点,从而做出更合理的飞行计划。
除了飞机的性能特点,飞行梯度的计算公式还可以帮助我们理解飞机的设计特点。
一般来说,飞机的设计会考虑到不同飞行状态下的性能特点,从而在设计阶段就可以确定飞机的最佳飞行梯度范围。
通过计算飞行梯度,我们可以更好地理解飞机的设计特点,从而为飞机的改进和优化提供参考。
航行速度发射速度计算公式在航空航天工程中,计算航行速度和发射速度是非常重要的。
航行速度是指飞机、导弹等飞行器在空中飞行的速度,而发射速度是指火箭、导弹等飞行器从地面或舰船上发射时的速度。
这两个速度的计算涉及到许多因素,包括空气动力学、推进系统、重量等。
本文将介绍航行速度和发射速度的计算公式及其应用。
首先,我们来看看航行速度的计算公式。
航行速度可以用以下公式来计算:V = sqrt((2 T) / (ρ S CD))。
其中,V表示航行速度,T表示飞机的推力,ρ表示空气密度,S表示飞机的翼展面积,CD表示飞机的阻力系数。
这个公式是根据空气动力学原理和牛顿第二定律推导出来的。
在实际应用中,可以根据飞机的设计参数和飞行条件来计算出具体的航行速度。
接下来,我们来看看发射速度的计算公式。
发射速度可以用以下公式来计算:V = sqrt((2 h g) / (1 cos(α)))。
其中,V表示发射速度,h表示发射高度,g表示重力加速度,α表示发射角度。
这个公式是根据抛体运动的基本公式推导出来的。
在实际应用中,可以根据发射器的设计参数和发射条件来计算出具体的发射速度。
以上是航行速度和发射速度的计算公式及其应用。
这些公式是航空航天工程中非常重要的基础公式,可以帮助工程师们设计和优化飞行器的性能。
在实际应用中,还需要考虑许多其他因素,如空气动力学效应、推进系统性能、飞行器结构强度等。
因此,航行速度和发射速度的计算是一个复杂而又重要的工作,需要工程师们的精密计算和分析。
除了计算公式,还有一些其他方法可以用来计算航行速度和发射速度。
例如,可以利用计算机模拟和数值计算的方法来进行精确的计算。
此外,还可以通过实验和测试来验证计算结果。
总之,航行速度和发射速度的计算是一个综合性的工作,需要多方面的知识和技能。
在航空航天工程中,航行速度和发射速度的计算是非常重要的。
这些速度直接影响飞行器的性能和安全,因此需要工程师们的精密计算和分析。
空中速度地面速度计算公式在航空领域中,空中速度和地面速度是两个重要的概念。
空中速度是指飞机相对于空气的速度,而地面速度是指飞机相对于地面的速度。
这两个速度之间的关系可以通过一个简单的计算公式来表示,这个公式可以帮助飞行员在飞行中进行准确的速度控制和导航。
空中速度和地面速度之间的关系可以用以下的公式来表示:地面速度 = 空中速度× cos(飞行航向与风向的夹角) 风速。
在这个公式中,地面速度是指飞机相对于地面的速度,空中速度是指飞机相对于空气的速度,飞行航向与风向的夹角是指飞机的飞行方向与风向之间的夹角,风速是指风的速度。
这个公式的推导可以通过简单的几何和物理知识来进行。
首先,我们知道飞机相对于空气的速度可以通过空速表来测量。
然而,由于风的存在,飞机的实际速度会受到风的影响。
如果风是顺风,那么飞机的地面速度会比空中速度要快;如果风是逆风,那么飞机的地面速度会比空中速度要慢。
因此,我们需要一个公式来将空中速度和风速结合起来,计算出飞机的地面速度。
这个公式的推导可以通过简单的三角函数来进行。
假设飞机的飞行航向与风向的夹角是θ,风速是V,空中速度是VA,地面速度是VG。
根据三角函数的定义,我们可以得到以下的关系式:VG = VA × cos(θ) V。
这个关系式就是我们要求的空中速度和地面速度之间的计算公式。
通过这个公式,飞行员可以根据飞机的空速和风速来计算出飞机的地面速度,从而进行准确的导航和速度控制。
在实际的飞行中,这个公式是非常有用的。
首先,飞行员可以根据飞机的空速和风速来计算出飞机的地面速度,从而进行准确的导航。
其次,飞行员可以根据飞机的地面速度来进行速度控制,确保飞机在飞行中保持安全和稳定的状态。
因此,掌握空中速度和地面速度之间的计算公式对于飞行员来说是非常重要的。
除了飞行员之外,这个公式也对飞行器的设计和性能评估有着重要的意义。
通过这个公式,工程师可以根据飞机的空速和风速来计算出飞机的地面速度,从而评估飞机在不同风速条件下的性能表现。
飞机飞行性能计算1、飞机动态建模飞机在铅垂面内飞行,是指飞机对称面式中与某个给定的空间铅垂面重合且飞行航迹式中在铅垂面内运动。
这种飞行状态又称为对称飞行,此时有质心运动方程:()cos()sin sin cos sin p p g g dv m P X mg dt d mV P dt dx V dt dy dH V dt dt a j q q a j q q ìïï=+--ïïïïïï=+ïïíïï=ïïïïïï==ïïïî最大平飞速度读,最小平飞速度和升限,估算中一般取飞机质量为平均飞机质量(50%),飞机处于基本构型,发动机处于(加力、最大、额定)工作状态。
2、平飞所需推力计算;平飞:飞机作等速直线水平飞行。
在某一高度,平飞所需推力则需要根据飞机作等速水平直线飞行时的质心运动方程。
飞机平飞时,0q =。
则运动方程为: P X Y G ìï=ïíï=ïî平飞中为使飞行速度保持不变必须使发动机推力等于飞行阻力。
平飞中为克服飞行阻力所需的发动机推力就叫做平飞所需推力,记为r P ,即212r xP X C V S r == 式中0x x xi xh C C C C =++D0x C 为零升阻力系数,一般为飞行马赫数的函数;xi C 为诱导阻力系数。
一般在迎角较小时2xi y C A C =,A 为马赫数的函数;当迎角较大时xi C 除随a M 而变化外,还是迎角的复杂函数,在某些飞机说明书中以诱导阻力曲线的形式给出;xh C D 是考虑到不同高度的雷诺数影响系数。
3、最大/最小平飞速度计算 由所需推力公式:212r xP X C V S r ==计算出所需推力,将不同高度上的发动机推力与所需推力绘制到一幅图上,根据所需推力和发动机所提供的推力曲线的相交情况来确定最大最小速度。
课程设计报告飞机飞行性能计算学生姓名:学号:专业方向:飞行器设计与工程指导教师:(2011年9月22日)摘要用简单推力法计算飞机的基本飞行性能,包括各高度上的航迹倾角γ和上升率Vv,最大航迹倾角γmax 和最快上升率Vvmax,最大最小平飞速度,以及最短上升时间。
计算续航性能和起飞着陆性能。
用C语言编写相关的计算程序,利用所给的有关数据完成计算并结合所学习的飞行动力学对所得的计算结果作出分析,将合理的结果写到报告中。
再分别对影响飞行性能的几个主要参数:升力系数和耗油率作1~1.05的步长为0.01的改变,并与原来的计算结果作比较,定量直观的认识相关参数对飞行性能的影响程度,为以后的设计工作提供一定的参考。
目录1计算目的 (1)2 计算内容 (1)2.1 基本飞行性能计算 (1)2.2 续航性能计算 (2)2.3 起飞着陆性能计算 (2)2.4 参数变化对飞机飞行性能的影响计算 (2)3 计算方法 (3)3.1 发动机可用推力和平飞需用推力 (3)3.2最小平飞速度和最大平飞速度 (3)3.3航迹倾角和上升率v V (4)3.4最短上升时间 (5)3.5航程和航时 (6)3.6离地速度和接地速度 (7)3.7安全高度处飞行速度 (7)3.8起飞地面滑跑段的距离和时间 (7)3.9起飞空中段的距离和时间 (8)3.10着陆空中段的距离和时间 (8)3.11着陆地面滑跑段的距离和时间 (8)4编程原理、方法 (10)4.1程序结构 (10)4.1.1航迹倾角γ和上升率Vv 的计算 (10)4.1.2最大航迹倾角γmax 及对应速度Vγ和最快上升率VVmax 及对应速度Vqc (10)4.1.3最小平飞速度Vmin 和最大平飞速度Vmax 的计算 (11)4.1.4最短上升时间sumtime 的计算 (11)4.1.5航程和航时的计算 (12)4.1.6起落性能的计算 (13)5计算结果及其分析 (14)5.1基本飞行性能计算 (14)5.1.1航迹倾角 (14)5.1.2上升率 (16)5.1.3最大航迹倾角与最快上升率 (17)5.1.4理论升限和实用升限 (19)5.1.5各高度上的最大平飞马赫数和最小平飞马赫数 (20)5.1.6由min M ~H ,m ax M ~H ,M ~H 和qc M ~H 组成的飞行包线 (23)5.1.7最短上升时间 (23)5.2巡航性能计算 (24)5.3起飞着陆性能计算 (25)5.3.1起飞地面滑跑段距离和时间 (25)5.3.2起飞空中段距离和时间 (26)5.3.3着陆空中段距离和时间 (26)5.3.4着陆地面滑跑段距离和时间 (27)6参数变化对飞机飞行性能的影响 (28)6.1改变升力系数Cl (28)6.1.1离地速度和接地速度的变化 (28)6.1.2起飞着陆距离与时间的变化 (29)6.1.3最小平飞速度的变化 (37)6.2改变耗油率Cf (39)7 结论 (41)参考文献 (42)附录一用抛物线求极值的方法 (43)附录二使用抛物线插值的方法 (44)附录三使用抛物线插值求极值子函数 (45)附录四使用抛物线插值子函数 (46)1计算目的巩固用简单推力法计算飞机基本飞行性能、以及续航性能和起飞着陆性能的计算原理、方法和步骤,培养学生独立分析和解决工程实际问题的能力。