第一章钢筋的物理力学性能教材
- 格式:ppt
- 大小:12.64 MB
- 文档页数:57
第一篇钢筋混凝土结构第1章钢筋混凝土结构的基本概念及材料的物理力学性能1.1 钢筋混凝土结构的基本概念钢筋混凝土结构是由配置受力的普通钢筋或钢筋骨架的混凝土制成的结构。
混凝土(砼)是一种人造石料,其抗压能力很高,而抗拉能力很弱。
采用素混凝土制成的构件(指无筋或不配置受力钢筋的混凝土构件),例如素混凝土梁,当它承受竖向荷载作用时[图1-1a)],在梁的垂直截面(正截面)上受到弯矩作用,截面中和轴以上受压,以下受拉。
当荷载达到某一数值F c时,梁截面的受拉边缘混凝土的拉应变达到极限拉应变,即出现竖向弯曲裂缝,这时,裂缝处截面的受拉区混凝土退出工作,该截面处受压高度减小,即使荷载不增加,竖向弯曲裂缝也会急速向上发展,导致梁骤然断裂[图1-1b)]。
这种破坏是很突然的。
也就是说,当荷载达到F c的瞬间,梁立即发生破坏。
F c为素混凝土梁受拉区出现裂缝的荷载,一般称为素混凝土梁的抗裂荷载,也是素混凝土梁的破坏荷载。
由此可见,素混凝土梁的承载能力是由混凝土的抗拉强度控制的,而受压混凝土的抗压强度远未被充分利用。
在制造混凝土梁时,倘若在梁的受拉区配置适量的纵向受力钢筋,就构成钢筋混凝土梁。
试验表明,和素混凝土梁有相同截面尺寸的钢筋混凝土梁承受竖向荷载作用时,荷载略大于F c时的受拉区混凝土仍会出现裂缝。
在出现裂缝的截面处,受拉区混凝土虽退出工作,但配置在受拉区的钢筋将可承担几乎全部的拉力。
这时,钢筋混凝土梁不会像素混凝土梁那样立即裂断,而能继续承受荷载作用[图1-1c)],直至受拉钢筋的应力达到屈服强度,继而截面受压区的混凝土也被压碎,梁才破坏。
因此,混凝土的抗压强度和钢筋的抗拉强度都能得到充分的利用,钢筋混凝土梁的承载能力可较素混凝土梁提高很多。
图1-1 素混凝土梁和钢筋混凝土梁a)受竖向力作用的混凝土梁b)素混凝土梁的断裂c)钢筋混凝土梁的开裂混凝土的抗压强度高,常用于受压构件。
若在构件中配置钢筋来构成钢筋混凝土受压构件,试验表明,和素混凝土受压构件截面尺寸及长细比相同的钢筋混凝土受压构件,不仅承载能力大为提高,而且受力性能得到改善(图1-2)。
填空题1、 钢筋混凝土及预应力混凝土中所用的钢筋可分为两类: 有明显屈服点的钢筋和无明显屈服点的钢筋,通常分别称它们为软钢和 硬钢。
2、钢筋按其外形可分为 光面钢筋和变形钢筋两大类。
3、 对没有明显屈服点的钢筋,通常取相应于残余应变为 0.2%时 的应力为名义屈服点,称为条件屈服强度。
4、 我国目前常用的钢筋用碳素结构钢及普通低合金钢制造。
碳素 结构钢可分为 低碳钢、中碳钢和高碳钢。
随着含碳量的增加,钢 筋的强度提高、塑性降低。
在低碳钢中加入少量锰、硅、钛、铬 等合金元素,使之成为合金钢。
5、 钢筋混凝土结构对钢筋性能的要求主要在以下方面: 强度、塑 9、 用边长为100mm 和200mm 混凝土立方体试件所得到的抗压强 度值要分别乘以0.95和1.05才能换算为标准立方体抗压强度。
10、 当混凝土双向受压时其强度 增大,当一拉一压时其强度 减小 性、焊接性、耐火性和粘结性能C6、 对钢筋混凝土轴心受压构件,增大,混凝土的压应力 减小。
7、 对钢筋混凝土轴心受压构件,增大,混凝土的压应力 减小。
8 对钢筋混凝土轴心受拉构件,由于混凝土收缩,钢筋的压应力 由于混凝土徐变,钢筋的压应力 由于混凝土收缩,钢筋的拉应力11、有明显屈服点的钢筋的典型拉伸应力--应变曲线大致可分为弹性阶段、屈服阶段、强化阶段、颈缩阶段四个阶段二、判断题1、混凝土立方体试块的尺寸越大,强度越高。
(X)2、混凝土在三向压力作用下的强度可以提高。
(“)3、钢筋受压时的屈服强度与受拉时基本相同。
(“)4、钢筋经冷拉后,强度和塑性均可提高。
(X)5、冷拉钢筋不宜用作受压钢筋。
(“)6、C20 表示f C u=20N/mm2。
(X)7、混凝土抗拉强度随着混凝土强度等级提高而增大。
(“)8 混凝土受拉时的弹性模量与受压时相同。
(“)9、混凝土强度等级愈高,胶结力也愈大。
(“)10、混凝土收缩、徐变与时间有关,且互相影响。
(“)11、规范中混凝土各种强度指标的基本代表值是轴心抗压强度标准值。
混凝土结构设计原理复习要点第一章钢筋与混凝土材料物理力学性能1 .钢筋的种类、级别及其主要的力学性能记识:(1)钢筋的种类、级别;(2)有明显屈服点钢筋的应力应变曲线;没有明显屈服点钢筋的应力应变曲线;(3)钢筋设计强度的取值依据,没有明显屈服点钢筋的条件屈服强度;(4)冷加工钢筋的性能;(5)混凝土结构对钢筋性能的要求;(6)有明显屈服点钢筋4=G M(I-2.05),没有明显屈服点钢筋九=b∕”"(1-2.()b),保证率为97.73%02 .混凝土的强度及变形记识:(1)混凝土立方体抗压强度的标准试验方法,混凝土强度等级,轴心抗压强度和轴心抗拉强度。
普通混凝土:∕cw-0.76f.Um,∕t7,,-0.88XO.76∕ru,,,=0.67f eum;《混凝土结构设计规范》:心二0.88印2人成,保证率为95虬0∙88是实际构件与实验室条件下试件的差异系数,匕=0.76是轴心抗压强度与立方体抗压强度的系数,的高强混凝土脆性折减系数。
普通混凝土:加=0∙395£鬻,(九二0.26,∕cm=0.88X0.26∕c^=0.23∕c^)o《混凝土结构设计规范》:力广0.88月X0∙395/裁5(「I.645b)0R保证率为95机(2)复合应力状态下混凝土强度产生变化的概念;(3)单轴受压时混凝土的应力应变曲线(右、英.);(4)混凝土弹性模量的定义;(5)混凝土徐变和收缩的定义及其对结构的影响。
领会:(1)从钢筋与混凝土的力学性能来理解钢筋混凝土是一种非弹性、非匀质的结构材料;(2)对单轴受压时混凝土的应力应变关系曲线有一定的认识和理解。
3 .钢筋与混凝土的粘结识记:(1)粘结的定义,光圆钢筋与变形钢筋粘结力的组成;(2)保证可靠粘结的主要构造措施。
第二章混凝土结构设计方法1 .作用效应S与结构抗力R识记:(1)作用效应S与结构抗力A,作用效应与结构抗力的不确定性;(2)直接作用(又称荷载)、间接作用、偶然作用。
绪论钢筋与混凝土能共同工作的原因:(1)钢筋和混凝土之间存在有良好的粘结力,在荷载作用下,可以保证两种材料协调变形,共同受力;(2)钢筋与混凝土具有相近的温度线膨胀系数(钢材为 1.2×10-5,混凝土为(1.0~1.5)×10-5),因此当温度变化时,两种材料不会产生过大的变形差而导致两者间的粘结力破坏;(3)混凝土对钢筋具有一定的保护作用。
第一章钢筋混凝土材料的物理力学性能1.立方体抗压强度fcu,k>轴心抗压强度fck>轴心抗拉强度ftk2.双向应力状态或三向应力状态:(1)双向压应力作用下,一向的抗压强度随另一向压应力的增加而增加;双向拉应力作用下,混凝土一向抗拉强度基本上与另一向拉应力的大小无关。
即双向受拉的混凝土强度与单向受强度基本一样:一向受拉一向受压时,无论是抗拉强度还是抗压强度都要降低。
(2)在三向受压状态中,由于侧向压应力的存在,混凝土受压后的侧向变形受到了约束,延迟和限制了沿轴线方向的内部微裂缝的发生和发展,因而极限抗压强度和极限压缩应变均有显著的提高,并显示了较大的塑性。
2.混凝土在荷载的长期作用下,其变形随时间而不断增长的现象称为徐变。
3.徐变的影响因素(1)内在因素是混凝土的组成和配比。
骨料的刚度(弹性模量)越大,体积比越大,徐变就越小。
水灰比越小,徐变也越小。
构件尺寸越大,徐变越小。
(2)环境影响包括养护和使用条件。
受荷前养护的温湿度越高,水泥水化作用越充分,徐变就越小。
采用蒸汽养护可使徐变减少(20~35)%。
受荷后构件所处的环境温度越高,相对湿度越小,徐变就越大。
4.收缩:混凝土在空气中硬化时体积会缩小,这种现象称为混凝土的收缩。
5.钢筋按力学性能分为:一类是具有明显的物理屈服点的钢筋(软钢)另一种是无明显的物理屈服点的钢筋(硬钢)。
6.混凝土结构对钢筋性能的要求:○1强度:钢筋应具有可靠的屈服强度和极限强度,钢筋的强度越高,钢材的用量越少。
结构设计原理第一章钢筋混凝土结构的基本概念及材料的物理力学性能1、钢筋混凝土结构的概念钢筋混凝土结构是由配置受力的普通钢筋或钢筋骨架的混凝土制成的结构。
2、钢筋混凝土结构的优缺点①较好的耐久性,刚度大,变形小;②既可以整体现浇也可以预制装配,并且可根据需要浇制成各种形状与尺寸;③就地取材,降低建筑成本。
3、混凝土的强度⑴混凝土立方体抗压强度以每边边长为150mm的立方体标准试件,在20℃±2℃的温度和相对湿度在95%以上的潮湿空气中养护28d,依照标准制作方法和试验方法测得的抗压强度值(以MP a为单位)作为混凝土的立方体抗压强度,用符号f cu表示。
⑵混凝土轴心抗压强度(棱柱体抗压强度)以150mm×150mm×300mm的标准试件,在20℃±2℃的温度和相对湿度在95%以上的潮湿空气中养护28d,依照标准制作方法和试验方法测得的棱柱体试件抗压强度值(以MP a为单位)作为混凝土的轴心抗压强度,用符号f c表示。
⑶混凝土抗拉强度通过劈裂试验得到,比抗压强度低得多,用符号f t表示。
4、一次单调加载试验测试的混凝土应力—应变曲线p13三个特征值:最大应力值f c及相应的应变值 co以及D点的应变值5、有明显流幅的钢筋应力—应变曲线p216、粘结机理①光圆钢筋与混凝土之间的粘结力主要由摩擦力和咬合力提供;②带肋钢筋与混凝土之间的粘结力主要由钢筋表面凸起的肋纹与混凝土的机械咬合作用。
第二章结构按极限状态法设计计算的原则1、结构的可靠度与可靠性结构可靠性是指结构在规定的时间内,在规定的条件下,完成预定功能的能力。
(安全性、适用性、耐久性)结构可靠度是结构可靠性的度量,指在规定的时间内,在规定的条件下,完成预期功能要求的概率。
2、设计使用年限设计使用年限是设计规定的结构或结构构件不需要大修即可按预定目的使用的年限。
3、结构的极限状态⑴承载能力极限状态:对应于结构或结构构件达到最大承载能力或不适于继续承载的变形或变位的状态。