2016年浙江省温州市瓯海实验学校七年级上学期数学期中试卷带解析答案
- 格式:doc
- 大小:228.50 KB
- 文档页数:14
浙江省温州市七年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共14题;共28分)1. (2分) (2020七上·银川期末) -6的倒数是()A .B . -6C . -D . 6【考点】2. (2分) (2020九下·北碚月考) 下列数字中最小的数为()A . 2B . ﹣1C . 0D .【考点】3. (2分)某种药品的说明书上标明保存温度是(20±2)℃,则该药品在()范围内保存才合适.A . 18℃~20℃B . 20℃~22℃C . 18℃~21℃D . 18℃~22℃【考点】4. (2分) (2016高二下·温州期中) 下列语句正确的是()A . 两条直线相交组成的图形叫角B . 一条直线可以看成一个平角C . 一个平角的两边可以看成一条直线D . 周角就是一条射线【考点】5. (2分) (2020七上·射阳月考) 有理数a、b在数轴上的对应点的位置如图,下列结论中,正确的是A .B .C .D .【考点】6. (2分) (2020七上·海珠期末) 若,则的补角的度数为()A .B .C .D .【考点】7. (2分)如果三个有理数的积是负数,那么这三个有理数中()A . 只有一个负数B . 有两个负数C . 三个都是负数D . 有一个或三个负数【考点】8. (2分)如图所示,下列图形绕着虚线旋转一周得到圆锥体的是()A .B .C .D .【考点】9. (2分) (2020七上·上蔡期末) 若,那么单项式的同类项为()A .B .C .D .【考点】10. (2分)(2016·新疆) ﹣3的相反数是()A . 3B . ﹣3C .D . ﹣【考点】11. (2分) (2018七上·松滋期末) 如图,小刚将一副三角板摆成如图形状,如果∠DOC=120°,则∠AOB=()A .B .C .D .【考点】12. (2分) (2017八上·利川期中) 用直尺和圆规作一个角等于已知角的示意图如右,则说明∠A′O′B′=∠AOB的依据是()A . SSSB . SASC . ASAD . AAS【考点】13. (2分)直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与∠1互余的角有()个A . 2个B . 3个C . 4个D . 6个【考点】14. (2分) (2016九上·苏州期末) 如图,在扇形铁皮AOB中,OA=20,∠AOB=36°,OB在直线上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA第一次落在l上时,停止旋转.则点O所经过的路线长为()A .B .C .D .【考点】二、填空题 (共4题;共6分)15. (1分) (2018七上·兴隆台期末) 修路时,通常把弯曲的公路改直,这样可以缩短路程,其根据的数学道理是________.【考点】16. (1分) (2016七上·揭阳期末) 已知线段AB=3cm,点C在直线AB上,AC= AB,则BC的长为________.【考点】17. (1分) (2018七上·银川期中) 若(a+1)2+|b﹣2|=0,则2a+b﹣1=________.【考点】18. (3分) (2018九下·江阴期中) 如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1 , S2 , S3 ,…,Sn ,则Sn的值为________ (用含n的代数式表示,n为正整数).【考点】三、解答题 (共6题;共69分)19. (20分) (2018七上·老河口期中) 计算(1)(﹣3 )﹣(﹣2 )﹣(﹣2 )﹣(+1.75)﹣(﹣1 )(2)﹣4×(﹣2 )﹣6×(﹣2 )+17×(﹣2 )﹣19 ÷(3)﹣12+ ×[﹣22+(﹣3)2×(﹣2)+(﹣3)]÷(﹣)2【考点】20. (5分) (2019九上·江夏期中) 如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.( 1 )在图1中,画出一个与△ABC成中心对称的格点三角形;( 2 )在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;( 3 )在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形;( 4 )在图4中,画出所有格点△BCD,使△BCD为等腰直角三角形,且S△BCD=4.【考点】21. (10分) (2018七上·易门期中)(1)画出数轴,并用数轴行的点表示下列各数-5,2.5,3,0,-3,- ,3 .(2)用“<”号把各数从小到大连起来:【考点】22. (15分) (2020八下·渠县期末) 如图,AD是△ABC的角平分线,M是BC的中点,FM∥AD交BA的延长线于点F,交AC于点E.求证:(1) CE=BF.(2) AB+AC=2CE.【考点】23. (11分) (2019七上·河源月考) 教师节当天,出租车司机小王在东西向的街道上免费接送教师,规定向东为正,向西为负,当天出租车的行程如下(单位:千米):+5,-4,-8,+10,+3,-6,+7,-11.(1)将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?(2)若汽车耗油量为0.2升/千米,则当天耗油多少升?若汽油价格为6.70元/升,则小王共花费了多少元钱?【考点】24. (8分) (2019八上·陆川期中) 在中,是的平分线(1)如图1, 于点于点 .求证: ;(2)当一点从点向运动时,于 , 于 ,如图2, 是否垂直 ?(请直接写出结论,无需证明)(3)当点沿方向,从点向其延长线运动时,如图3, 其他条件同上,上述结论是否成立?请说明理由.【考点】参考答案一、单选题 (共14题;共28分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:二、填空题 (共4题;共6分)答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共6题;共69分)答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:。
2016-2017学年七年级(上)期中数学试卷一、精心选一选(本大题共10小题,每小题3分,共30分.每题给出四个答案,其中只有一个符合题目的要求,请把选出的答案编号填在答卷上.)1.﹣6的相反数是()A.6 B.﹣6 C.D.2.给出四个数0,,﹣1,其中最小的是()A.0 B.C.D.﹣13.温州某地一天的最高气温是22℃,最低气温是零下2℃,则该地这一天的温差是()A.﹣24℃B.﹣20℃C.20℃ D.24℃4.下列各数中,无理数是()A.B.C.3.14 D.π5.16的算术平方根是()A.4 B.±4 C.8 D.±86.下面各式中,计算正确的是()A.2﹣3=1 B.C.D.﹣32=97.如图,数轴上点A表示的数可能是()A.B.C.D.8.下列运算结果为负数的是()A.﹣(﹣2)B.(﹣2)2C.|﹣2|D.(﹣2)39.在CCTV“开心辞典”栏目中,主持人问这样一道题目:“a是最小的正整数,b是最大的负整数,c是平方根等于本身的数,请问:a,b,c三数之和是”()A.﹣1 B.0 C.1 D.210.若|x|=1,|y|=4,且xy<0,则x﹣y的值等于()A.﹣3或5 B.3或﹣5 C.﹣3或3 D.﹣5或5二、细心填一填(本大题共8小题,每小题3分,共24分)11.如果向东行驶10米,记作+10米,那么向西行驶20米,记作米.12.﹣的倒数是.13.用科学记数法可将19200000表示为.14.(﹣5)6的底数是.15.大于﹣1.5的最小整数是.16.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.17.我国古代的“河图”是由3×3的方格构成,每个方格内均有数目不同的数,每一行、每一列以及每一条对角线上的三个数之和均相等.如图,给出了“河图”的部分数字,请你推算出“*”处所对应的数是 .18.如图,点A 、点B 在数轴上表示的数分别是﹣4和4.若在数轴上存在一点P 到A 的距离是点P 到B 的距离的3倍,则点P 所表示的数是 .三、耐心答一答(本大题共6小题,第19题6分、第20题16分、第21题6分、第22题6分、第23题6分,第24题6分,共46分.要写出必要的文字说明或演算步骤) 19.把下列各数填在相应的表示集合的大括号内:﹣|﹣3|,,0,﹣,﹣1.3,,,整 数{ }负分数{ }无理数{ }.20.计算下列各题(1)5+(﹣6)﹣(﹣2)(2)(3)(4).21.在数轴上表示下列有理数:,|﹣2.5|,﹣22,﹣(+2),并用“<”将它们连接起来比较它们的大小: .22.小明有5张写着不同的数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是 ;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是 ;(3)从中取出4张卡片,用学过的运算方法,使结果为24.写出运算式子(至少写出两种)23.某自行车厂计划平均每天生产200辆,但是由于种种原因,实际每天生产量与计划量相(1)根据记录的数据可知该厂星期三生产自行车多少辆?(2)产量最多的一天比产量最少的一天多生产自行车多少辆?(3)根据记录的数据可知该厂本周实际共生产自行车多少辆?24.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,那么D在数轴上表示的数为.一、精心选一选(本大题共10小题,每小题3分,共30分.每题给出四个答案,其中只有一个符合题目的要求,请把选出的答案编号填在答卷上.)1.﹣6的相反数是()A.6 B.﹣6 C.D.【考点】相反数.【分析】根据相反数的定义,即可解答.【解答】解:﹣6的相反数是6,故选:A.2.给出四个数0,,﹣1,其中最小的是()A.0 B.C.D.﹣1【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<,∴四个数0,,﹣1,其中最小的是﹣1.故选:D.3.温州某地一天的最高气温是22℃,最低气温是零下2℃,则该地这一天的温差是()A.﹣24℃B.﹣20℃C.20℃ D.24℃【考点】有理数的减法.【分析】用最高温度﹣最低温度=温差,列式22﹣(﹣2),计算即可.【解答】解:22﹣(﹣2)=22+2=24(℃),故选:D.4.下列各数中,无理数是()A.B.C.3.14 D.π【考点】无理数.【分析】直接根据无理数的定义分别判断即可.【解答】解:A、因为=3,则是整数,所以A选项错误;B、是无限循环小数,所以B选项错误;C、3.14是有限小数,所以C选项错误;D、π是无理数,所以D选项正确.5.16的算术平方根是()A.4 B.±4 C.8 D.±8【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,直接利用此定义即可解决问题.【解答】解:∵4的平方是16,∴16的算术平方根是4.故选A.6.下面各式中,计算正确的是()A.2﹣3=1 B.C.D.﹣32=9【考点】立方根;有理数的减法;有理数的乘法;有理数的乘方.【分析】根据立方根的定义,有理数的运算法则,各选项依次进行判断即可解答.【解答】解:A、2﹣3=1,错误;B、3×(﹣)=﹣1,错误;C、=﹣1,正确;D、﹣32=﹣9,错误;故选C.7.如图,数轴上点A表示的数可能是()A.B.C.D.【考点】实数与数轴.【分析】设A点表示的数为x,则2<x<3,再根据每个选项中的范围进行判断.【解答】解:如图,设A点表示的数为x,则2<x<3,∵1<<2,1<<2,2<<3,3<<4,∴符合x取值范围的数为.故选C.8.下列运算结果为负数的是()A.﹣(﹣2)B.(﹣2)2C.|﹣2|D.(﹣2)3【考点】有理数的乘方;相反数;绝对值.【分析】各项利用相反数的定义,乘方的意义,以及绝对值的代数意义计算得到结果,即可作出判断.【解答】解:A、原式=2,不合题意;B、原式=4,不合题意;C、原式=2,不合题意;D、原式=﹣8,符合题意.故选D.9.在CCTV“开心辞典”栏目中,主持人问这样一道题目:“a是最小的正整数,b是最大的负整数,c是平方根等于本身的数,请问:a,b,c三数之和是”()A.﹣1 B.0 C.1 D.2【考点】平方根.【分析】根据正整数的定义可以求出a,根据负整数的定义求出b,根据平方根的定义求出c的值,再代入所求代数式计算即可.【解答】解:∵a是最小的正整数,∴a=1;∵b是最大的负整数,∴b=﹣1;∵c是平方根等于本身的数,∴c=0.故a+b+c=0.故选:B.10.若|x|=1,|y|=4,且xy<0,则x﹣y的值等于()A.﹣3或5 B.3或﹣5 C.﹣3或3 D.﹣5或5【考点】代数式求值.【分析】先去绝对值符号,再根据xy<0得出x、y的对应值,进而可得出结论.【解答】解:∵|x|=1,|y|=4,∴x=±1,y=±4.∵xy<0,∴x、y的符号相反,∴当x=1时,y=﹣4,x﹣y=1+4=5;当x=﹣1时,y=4,x﹣y=﹣1﹣4=﹣5.故选D.二、细心填一填(本大题共8小题,每小题3分,共24分)11.如果向东行驶10米,记作+10米,那么向西行驶20米,记作﹣20米.【考点】正数和负数.【分析】根据向东行驶10米,记作+10米,可以得到向西行驶20米,记作什么,本题得以解决.【解答】解:∵向东行驶10米,记作+10米,∴向西行驶20米,记作﹣20米,故答案为:﹣20.12.﹣的倒数是﹣2.【考点】倒数.【分析】根据倒数的定义直接解答即可.【解答】解:∵(﹣)×(﹣2)=1,∴﹣的倒数是﹣2.13.用科学记数法可将19200000表示为 1.92×107.【考点】科学记数法—表示较大的数.【分析】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.【解答】解:19200000=1.92×107.故答案为:1.92×107.14.(﹣5)6的底数是﹣5.【考点】有理数的乘方.【分析】根据有理数乘方的定义进行解答即可.【解答】解:(﹣5)6的底数是﹣5.故答案为:﹣5.15.大于﹣1.5的最小整数是﹣1.【考点】有理数大小比较.【分析】由题目所给的取值范围,结合整数的定义即可得到最小整数解是﹣1【解答】解:不等式x≥﹣1.5的最小整数解是﹣1.故答案为:﹣116.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是﹣3.【考点】数轴.【分析】此题可借助数轴用数形结合的方法求解.【解答】解:设点A表示的数是x.依题意,有x+7﹣4=0,解得x=﹣3.故答案为:﹣317.我国古代的“河图”是由3×3的方格构成,每个方格内均有数目不同的数,每一行、每一列以及每一条对角线上的三个数之和均相等.如图,给出了“河图”的部分数字,请你推算出“*”处所对应的数是0.【考点】有理数的加法.【分析】解决此题的关键是借助“*”处所在横行的另一点(即1),利用等式的性质进行解答.【解答】解:3+(﹣2)﹣1=1﹣1=0.故“*”处所对应的数是0.故答案为:0.18.如图,点A、点B在数轴上表示的数分别是﹣4和4.若在数轴上存在一点P到A的距离是点P到B的距离的3倍,则点P所表示的数是2或8.【考点】数轴.【分析】根据题意,数轴上两个点之间的距离等于这两个点表示的数的差的绝对值,即较大的数减去较小的数,设P表示的数为x,根据点P到A的距离是点P到B的距离的3倍,即可解答.【解答】解:设点P表示的数是x,∵点P到A的距离是点P到B的距离的3倍,∴|x+4|=3|x﹣4|.解得:x=2或8.故答案为:2或8.三、耐心答一答(本大题共6小题,第19题6分、第20题16分、第21题6分、第22题6分、第23题6分,第24题6分,共46分.要写出必要的文字说明或演算步骤)19.把下列各数填在相应的表示集合的大括号内:﹣|﹣3|,,0,﹣,﹣1.3,,,整数{ {﹣|﹣3|,0,}负分数{ ,﹣1.3}无理数{ ,}.【考点】实数.【分析】根据整数的定义:形如﹣2,﹣1,0,1,2…是整数,可得答案;根据小于零的分数是负分数,可得答案;根据无理数是无限不循环小数,可得答案.【解答】整数{﹣|﹣3|,0, };负分数{,﹣1.3};无理数{, }.故答案为:{﹣|﹣3|,0,;,﹣1.3;,.20.计算下列各题(1)5+(﹣6)﹣(﹣2)(2)(3)(4).【考点】实数的运算.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算绝对值及乘法运算,再计算加减运算即可得到结果;(3)原式先计算算术平方根,及乘方运算,再计算除法原式,最后算加减运算即可得到结果;(4)原式利用乘方的意义,以及乘法法则计算,取其近似值即可.【解答】解:(1)原式=5﹣6+2=7﹣6=1;(2)原式=4﹣8+9=5;(3)原式=﹣×=﹣=;(4)原式=﹣1+2﹣2=1﹣2=﹣4.08≈﹣4.1.21.在数轴上表示下列有理数:,|﹣2.5|,﹣22,﹣(+2),并用“<”将它们连接起来比较它们的大小:﹣22<﹣(+2)<<|﹣2.5| .【考点】有理数大小比较.【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:在数轴上表示为:,用“<”将它们连接起来为:﹣22<﹣(+2)<<|﹣2.5|.故答案为:﹣22<﹣(+2)<<|﹣2.5|.22.小明有5张写着不同的数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是15;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是﹣;(3)从中取出4张卡片,用学过的运算方法,使结果为24.写出运算式子(至少写出两种)【考点】有理数的混合运算;有理数的乘法;有理数的除法.【分析】(1)观察这五个数,要找乘积最大的就要找符号相同且数值最大的数,所以选﹣3和﹣5;(2)2张卡片上数字相除的商最小就要找符号不同,且分母越大越好,分子越小越好,所以就要选3和﹣5,且﹣5为分母;(3)从中取出4张卡片,用学过的运算方法,使结果为24,这就不唯一,用加减乘除只要答数是24即可,比如﹣3、﹣5、0、3,四个数,{0﹣[(﹣3)+(﹣5)]}×3=24,再如:抽取﹣3、﹣5、3、4,则﹣[(﹣3)÷3+(﹣5)]×4=24.【解答】解:(1)﹣3×(﹣5)=15;(2)(﹣5)÷(+3)=﹣;(3)方法不唯一,如:抽取﹣3、﹣5、0、3,则{0﹣[(﹣3)+(﹣5)]}×3=24;如:抽取﹣3、﹣5、3、4,则﹣[(﹣3)÷3+(﹣5)]×4=24.故答案为15,﹣.23.某自行车厂计划平均每天生产200辆,但是由于种种原因,实际每天生产量与计划量相(2)产量最多的一天比产量最少的一天多生产自行车多少辆?(3)根据记录的数据可知该厂本周实际共生产自行车多少辆?【考点】正数和负数.【分析】(1)根据题意和表格可以求得该厂星期三生产自行车多少辆;(2)根据题意和表格可以求得该厂产量最多的一天的产量和产量最少一天的产量,从而可以解答本题;(3)根据表格和题意可以求得该厂本周实际共生产自行车多少辆.【解答】解:(1)由题意可得,该厂星期三生产自行车是:200﹣7=193(辆)即该厂星期三生产自行车是193辆;(2)由表格可知,产量最多的一天是周六,最少的一天是周五,16﹣(﹣10)=16+10=26(辆)即产量最多的一天比产量最少的一天多生产自行车多26辆;(3)由题意可得,该厂本周实际共生产自行车的数量是:200×7+(6﹣3﹣7+14﹣10+16﹣4)=1400+12=1412(辆),即该厂本周实际共生产自行车1412辆.24.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,那么D在数轴上表示的数为﹣1﹣2.【考点】实数与数轴;立方根.【分析】(1)根据正方体的体积格式可求这个魔方的棱长.(2)根据魔方的棱长为4,所以小立方体的棱长为2,阴影部分由4个直角三角形组成,算出一个直角三角形的面积乘以4即可得到阴影部分的面积,开平方即可求出边长.(3)根据两点间的距离公式可得D在数轴上表示的数.【解答】解:(1).答:这个魔方的棱长为4.(2)∵魔方的棱长为4,∴小立方体的棱长为2,∴阴影部分面积为:×2×2×4=8,边长为:=2.答:阴影部分的面积是8,边长是2.(3)D在数轴上表示的数为﹣1﹣2.故答案为:﹣1﹣2.2016年10月27日。
浙教版七年级数学上册期中试卷(含答案)(时间:120分钟 满分:100分)一、选择题(每题3分,共30分)1.23的相反数是( ) A .32 B .-32 C .23 D .-232.湿地旅游爱好者小明了解到某市水资源总量为42.43亿m 3,其中42.43亿用科学记数法可表示为( ) A .42.43×109 B .4.243×108 C .4.243×109 D .0.4243×1083.四位同学画数轴如下图所示,你认为正确的是( ) A .B .C .D .4.下列说法正确的是( ) A .27的立方根是±3 B .16的平方根是±4 C .9的算术平方根是3 D .立方根等于平方根的数是15.下列合并同类项正确的是( )A .2x 2+3x 4=5x 6B .5xy 2-3xy 2=2C .7m 2n -7mn 2=0D .4ab 2-5ab 2=-ab 26.如图,数轴上有O ,A ,B ,C ,D 五点,根据图中各点所表示的数,表示数18的点会落在( )第6题图A .点O 和A 之间B .点A 和B 之间C .点B 和C 之间D .点C 和D 之间7.已知长方形的长为(2b -a),宽比长少b ,则这个长方形的周长是( )A .3b -2aB .3b +2aC .6b -4aD .6b +4a8.一个数a 在数轴上表示的点是A ,当点A 在数轴上向左平移了3个单位长度后到点B ,点A 与点B 表示的数恰好互为相反数,则数a 是( )A .-3B .-1.5C .1.5D .39.已知代数式2x 2-3x +9的值为7,则x 2-32x +9的值为( ) A .72 B .92C .8D .10 10.小华用甲、乙两个容积相同的试管做实验,甲管原来装满纯酒精,乙管是空的,第1次实验:把甲管中的酒精倒一半到乙管中,用水把甲管装满;第2次实验:用甲管中的液体把乙管装满;第3次实验:用乙管中的液体把甲管装满;第4次实验:用甲管中的液体把乙管装满.则做完4次实验后,甲管中的纯酒精是原来的( )A .14B .58C .516D .1116二、填空题(每题3分,共30分)11.单项式-xy 24的次数是____________次. 12.近似数5.70万精确到____________位.13.数轴上一个点到2的距离是3,那么这个点表示的数是____________.14.代数式2x x +y的意义是____________. 15.若代数式2a 3b n +1与-3a m -2b 2是同类项,则2m +3n =____________.16.已知一个数的两个平方根分别是3a +1和a +11,则这个数的立方根是____________.17.定义一种新运算:a ⊗b =14a -b ,那么4⊗(-1)=____________. 18.如图所示两个形状、大小相同的长方形的一部分重叠在一起,重叠部分是边长为2的正方形,则阴影部分的面积是____________(用含a 、b 的代数式表示).第18题图19.已知m 与n 互为相反数,c 与d 互为倒数,a 是5的整数部分,则cd +2(m +n)-a 的值是____________.20.仔细观察前三个正方形,填在正方形内的四个数之间都存在着一定的规律.根据这种规律,请你写出最后一个正方形内字母m 的值:____________.第20题图三、解答题(共40分)21.(6分)计算题:(1)(-1)2017-8×⎝ ⎛⎭⎪⎫322+|-5|; (2)81+3-27+(-23)2.22.(6分)把下列各数分别填在相应的括号内.-12,0,0.16,312,3,-235,π3,16,-22,-3.14 有理数:{__________________________________________}; 无理数:{__________________________________________}; 负实数:{__________________________________________}.23.(6分)已知xy<0,x<y ,且|x|=1,|y|=2.(1)求x 和y 的值;(2)求⎪⎪⎪⎪⎪⎪x -13+(xy -1)2的值.24.(6分)化简求值:(1)3n -[5n +(3n -1)],其中n =-2;(2)-3(x 2+y 2)-[-3xy -2(x 2-y 2)],其中x =-1,y =2.25.(7分)出租车司机小张某天上午营运全是在东西走向的政府大道上进行的,规定向东为正,向西为负,他这天上午的行程是(单位:km):+15,-3,+16,-11,+10,-12,+4,-15,+16,-18.(1)将最后一名乘客送达目的地时,小张距上午出发点的距离是多少千米?在出发点的什么方向?(2)已知汽车耗油量为0.6L/km,出车时,油箱有油72.2L,若小张将最后一名乘客送达目的地,再返回出发点.问:小张这天下午是否需要加油?若要加油,至少要加多少油才能返回出发点?若不用加油,请说明理由.26.(9分)我们自从有了用字母表示数,发现表达有关的数和数量关系更加简洁明了,从而更助于我们发现更多有趣的结论,请你按要求试一试:(1)用代数式表示:①a与b的差的平方;②a与b两数平方和与a,b两数积的2倍的差;(2)当a=3,b=-2时,求第(1)题中①②所列的代数式的值;(3)由第(2)题的结果,你发现了什么等式?(4)利用你发现的结论:求20162-4032×2015+20152的值.答 案一、选择题1.D 2.C 3.B4.C 【解析】327=3;16的平方根是±2;立方根等于平方根的数是0,故只有C 选项正确.5.D 6.D 7.C 8.C 9.C 10.C二、填空题11.3 12.百 13.-1或514.x 的2倍与x 与y 的和的商 15.1316.4 【解析】根据题意,得3a +1+a +11=0,解得a =-3.∴3a +1=-8,a +11=8,∴这个数为(±8)2=64,∴这个数的立方根为364=4.17.2 18.2ab -4 19.-120.158 【解析】第一个:2×4=0+8,第二个:4×6=2+22,第三个:6×8=4+44,…,最后一个:12×14=10+m ,∴m =158.三、解答题21.(1)原式=-1-8×94+5=-1-18+5=-14. (2)203. 22.-12,0,0.16,312,16,-3.14 3,-235,π3,-22-12,-235,-22,-3.14 23.(1)∵|x|=1,|y|=2,∴x =±1,y =±2.∵xy<0,∴x 与y 异号.∵x<y,∴x 为负数,y 为正数,∴x =-1,y =2.(2)∵x=-1,y =2,∴⎪⎪⎪⎪⎪⎪x -13+(xy -1)2=⎪⎪⎪⎪⎪⎪-1-13+(-1×2-1)2=⎪⎪⎪⎪⎪⎪-43+(-3)2=43+9=1013. 24.(1)原式=-5n +1=11. (2)原式=-x 2+3xy -5y 2=-27.25.(1)+15-3+16-11+10-12+4-15+16-18=2(km ).答:小张距上午出发点的距离是2km ,在出发点的东面.(2)|+15|+|-3|+|+16|+|-11|+|+10|+|-12|+|+4|+|-15|+|+16|+|-18|=120(km ).120×0.6=72(L ),2×0.6=1.2(L ),72+1.2=73.2(L )>72.2L ,73.2-72.2=1(L ).答:小张需要加油,至少要加1L 油才能返回出发点.26.(1)①(a-b)2; ②a 2+b 2-2ab ;(2)当a =3,b =-2时,(a -b)2=25,a 2+b 2-2ab =25;(3)(a -b)2=a 2+b 2-2ab ;(4)原式=20162+20152-2×2016×2015=(2016-2015)2=1.《有理数的除法》专题训练课堂笔记1.两数相除,同号得____________,异号得____________,并把绝对值____________.2.零除以任何一个不等于零的数都得____________.3.除以一个数(不等于零),等于乘这个数的____________. 分层训练A 组 基础训练1.(衢州中考)-4÷49×(-94)的值为( ) A .4 B .-4 C.814 D .-8142.下列运算:①1÷(-2)=-2;②(-2)÷12=1;③(-12)÷13×3=-12;④(-13)÷(-6)=2.其中正确的有( ) A .0个 B .1个 C .2个 D .3个3.有理数a ,b 在数轴上的对应点如图所示,则下列式子错误的是( )第3题图A .ab>0B .a +b<0 C.a b<1 D .a -b<0 4.下列四个算式中,误用分配律的是( )A .12×⎝⎛⎭⎪⎫2-13+16=12×2-12×13+12×16 B.⎝⎛⎭⎪⎫2-13+16×12=2×12-13×12+16×12 C .12÷⎝⎛⎭⎪⎫2-13+16=12÷2-12÷13+12÷16 D.⎝⎛⎭⎪⎫2-13+16÷12=2÷12-13÷12+16÷12 5.两个因数相乘,其中一个因数是35,积是-1,那么另一个因数是( )A.35B.53 C .-35 D .-536.下列说法不正确的是( )A .一个不为0的数与它的倒数之积是1B .一个不为0的数与它的相反数的商是1C .两个数的商为-1,这两个数互为相反数D .两个数的积为1,这两个数互为倒数7.填空:(1)(-4)×(____________)=-2;(2)(-14)÷(____________)=-2;(3)(____________)÷7=-3;(4)(____________)÷(-88.9)=0.8.计算:(1)(-56)÷(-14)=____________;(2)(-317)÷1112=____________;(3)-12÷78×(-34)=____________. (4)15÷(15-13)=____________. 9.(1)一个数与-34的积为12,则这个数是____________; (2)-214除以一个数的商为-9,则这个数是____________; (3)一个数的25是-165,则这个数是____________; (4)-114的倒数与4的相反数的商是____________. 10.(1)对于有理数a ,b ,定义⊕运算如下:a⊕b =ab a -b-3,则4⊕6=____________.(2)若a ,b 互为相反数且都不为0,则(a +b -2)×⎝ ⎛⎭⎪⎫a b +1=____________;若a ,b 互为相反数,c ,d 互为倒数,则(a +b +d )÷1c=____________.第10题图(3)小海在自学了简单的电脑编程后,设计了如图所示的程序,若他输入的数是-2,那么执行了程序后,输出的数是____________.11.计算:(1)⎝ ⎛⎭⎪⎫16-18+112÷⎝ ⎛⎭⎪⎫-124;(2)18÷⎝ ⎛⎭⎪⎫12-78×⎝ ⎛⎭⎪⎫-13;(3)(-21)÷7×17÷⎝ ⎛⎭⎪⎫-67.12.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)这10名同学中,低于80分所占的百分比是多少?(3)这10名同学的平均成绩是多少?13.某债券市场发行两种债券,A 种债券面值为100元,买入价也为100元,一年到期本利和为113元;B 种债券面值也是100元,但买入价为88元,一年到期本利和为100元.如果收益率=(到期本利和-买入价)÷买入价×100%,试分析,哪种债券收益率大一些?14.(1)用加、减、乘、除号和括号将3,6,-8,5这四个数(每个数都要用且只用一次)进行加减乘除四则运算使结果为24,请你写出两个算式.(2)已知有理数a ,b ,c 满足|a|a +|b|b +|c|c =-1,求|abc|abc的值.答 案【课堂笔记】1.正 负 相除 2.零 3.倒数【分层训练】1.C 2.A 3.C 4.C 5.D 6.B7.(1)12(2)7 (3)-21 (4)0 8.(1)4 (2)-247 (3)37 (4)-22529.(1)-23 (2)14 (3)-8 (4)1510.(1)-15 (2)0 1 (3)-800 【解析】(-2)÷(-4)×(-80)=-40,|-40|<100,(-40)÷(-4)×(-80)=-800,|-800|>100,∴输出的数是-800.11.(1)原式=324×(-24)=-3. (2)原式=18÷⎝ ⎛⎭⎪⎫-38×⎝ ⎛⎭⎪⎫-13=18×83×13=19. (3)原式=(-3)×17×⎝ ⎛⎭⎪⎫-76=12. 12.(1)最高分是80+12=92(分),最低分是80-10=70(分).(2)低于80分的有5个,所占的百分比是5÷10×100%=50%.(3)平均分是80+(8-3+12-7-10-3-8+1+0+10)÷10=80(分).13.A 种债券的收益率为(113-100)÷100×100%=13%,B 种债券的收益率为(100-88)÷88×100%≈13.6%,所以B 种债券收益率大.14.(1)答案不唯一,如(-8)÷(3-5)×6=24,6÷(3-5)×(-8)=24等. (2)∵|a|a 的值为+1或-1,同理|b|b ,|c|c的值为+1或-1,又∵|a|a +|b|b +|c|c=-1,∴其中两数为-1,一数为+1,不妨设|a|a =|b|b =-1,|c|c =1,则a <0,b <0,c >0,∴abc >0,∴|abc|abc =1.。
2015-2016学年浙江省温州市瓯海实验学校七年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)向东行驶3km,记作+3km,向西行驶2km记作()A.+2km B.﹣2km C.+3km D.﹣3km2.(3分)一种面粉包装袋上的质量标识为“25±0.5kg”,则下列四袋面粉中不合格的是()A.24.5kg B.25.5kg C.24.8kg D.26.1kg3.(3分)某年五月2日,南京夫子庙、中山陵、玄武湖、雨花台四大景区共接待游客约510800人,这个数可用科学记数法表示为()A.0.5108×106km B.5.010×105km C.5.108×105km D.5.108×106km 4.(3分)在实数,π,0.52,,0.7070070007…、(每两个“7”之间依次多一个“0”)中,无理数有()A.1个 B.2个 C.3个 D.4个5.(3分)下面各组数,互为相反数的是()A.与﹣0.25 B.3.14与﹣πC.﹣0.5与2 D.3与|﹣3|6.(3分)在数轴原点的右边3个单位处有一点A,向数轴负方向移动了4.5个单位.则点A此时所表示的数为()A.﹣1.5 B.﹣7.5 C.1.5 D.7.57.(3分)下列计算正确的是()A.(﹣1)+(﹣6)=+7 B.(﹣3)﹣(﹣4)=﹣7 C.(﹣4)×(﹣3)=12 D.(﹣3)÷2=﹣18.(3分)下列各组数中,数值相等的是()A.﹣32和(﹣3)2 B.32和23C.﹣2和|﹣2| D.﹣23和(﹣2)39.(3分)绝对值小于3.5的整数共有()A.3个 B.5个 C.7个 D.9个10.(3分)正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2015次后,数轴上数2015所对应的点是()A.点C B.点D C.点A D.点B二、填空题(每小空格题3分,共24分)11.(3分)﹣64的立方根是.12.(3分)计算:(﹣1)2015+2=.13.(3分)据统计,今年上半年诸暨市参加初中毕业学业考试的学生约为13500人,这个数据精确到千位可表示为.14.(3分)的相反数的是,绝对值是,倒数是.15.(3分)在空格内填上一个数,使等式成立:6﹣+10=24.16.(3分)有一个正方体的集装箱,原体积为125m3,现准备将其扩容以盛放更多的货物,若要使其体积达到343m3,则它的棱长需要增加m.17.(3分)7.0精确到位,表示大于等于而小于的数.18.(3分)观察一列数:,,,,,…根据规律,请你写出第8个数是.三、解答题(共46分)19.(6分)画一条数轴,在数轴上表示﹣,2,0,﹣及它们的相反数,并比较所有数的大小,按从小到大的顺序用“<”连接起来.20.(6分)把下列各数填在相应的大括号内.﹣2,﹣,﹣|﹣3|,,﹣,1.7,0,﹣π,﹣1.,﹣,0.9898898889…(每两个“9”之间依次多一个“8”)整数{…}分数{…}负无理数{…}.21.(9分)计算下列各题.(1)﹣(﹣2)+|﹣3|(2)(﹣+)×(﹣63)(3)﹣12﹣(﹣)2+(﹣5)×(﹣2)22.(6分)在一次测量中,小丽与欣欣利用温度差来测量山峰高度,小丽在山顶测得温度﹣5℃,欣欣在山脚测得温度1℃,已知该高度每增加200米,气温大约降低0.8℃,则这个山峰的高度大约多少米?23.(8分)某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下.(单位:km)(1)求收工时距A地多远?(2)在第几次记录时距A地最远?(3)若每km耗油0.3升,问共耗油多少升?24.(11分)如图,A、B分别为数轴上两点,A点对应的数为﹣20,B点对应的数为80.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,你知道D点对应的数是多少吗?2015-2016学年浙江省温州市瓯海实验学校七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)向东行驶3km,记作+3km,向西行驶2km记作()A.+2km B.﹣2km C.+3km D.﹣3km【解答】解:向东行驶3km,记作+3km,向西行驶2km记作﹣2km,故选:B.2.(3分)一种面粉包装袋上的质量标识为“25±0.5kg”,则下列四袋面粉中不合格的是()A.24.5kg B.25.5kg C.24.8kg D.26.1kg【解答】解:25﹣0.5=24.5(kg),25+0.5=25.5(kg),合格范围24.5﹣﹣﹣﹣25.5,∵26.1不在合格范围中,故选:D.3.(3分)某年五月2日,南京夫子庙、中山陵、玄武湖、雨花台四大景区共接待游客约510800人,这个数可用科学记数法表示为()A.0.5108×106km B.5.010×105km C.5.108×105km D.5.108×106km 【解答】解:510800人=5.108×105人.故选:C.4.(3分)在实数,π,0.52,,0.7070070007…、(每两个“7”之间依次多一个“0”)中,无理数有()A.1个 B.2个 C.3个 D.4个【解答】解:无理数有:,π,0.7070070007…(每两个“7”之间依次多一个“0”)共3个.故选:C.5.(3分)下面各组数,互为相反数的是()A.与﹣0.25 B.3.14与﹣πC.﹣0.5与2 D.3与|﹣3|【解答】解:A、与﹣0.25是互为相反数,故本选项正确;B、3.14与﹣π不是互为相反数,故本选项错误;C、﹣0.5与2不是互为相反数,故本选项错误;D、3与|﹣3|不是互为相反数,故本选项错误.故选:A.6.(3分)在数轴原点的右边3个单位处有一点A,向数轴负方向移动了4.5个单位.则点A此时所表示的数为()A.﹣1.5 B.﹣7.5 C.1.5 D.7.5【解答】解:∵点A在数轴的右边,且距离原点3个单位长度,∴点A表示3,∴向数轴负方向移动了4.5个单位,表示的数为:3﹣4.5=﹣1.5.故选:A.7.(3分)下列计算正确的是()A.(﹣1)+(﹣6)=+7 B.(﹣3)﹣(﹣4)=﹣7 C.(﹣4)×(﹣3)=12 D.(﹣3)÷2=﹣1【解答】解:A、(﹣1)+(﹣6)=﹣7,故此选项错误;B、(﹣3)﹣(﹣4)=﹣3+4=1,故此选项错误;C、(﹣4)×(﹣3)=12,故此选项正确;D、(﹣3)÷2=﹣1.5,故此选项错误;故选:C.8.(3分)下列各组数中,数值相等的是()A.﹣32和(﹣3)2 B.32和23C.﹣2和|﹣2| D.﹣23和(﹣2)3【解答】解:﹣32=﹣9,(﹣3)2=9,∵﹣9≠9,∴选项A中的两个数的数值不相等.32=9,23=8,∵9≠8,∴选项B中的两个数的数值不相等.|﹣2|=2,∵﹣2≠2,∴选项C中的两个数的数值不相等.﹣23=﹣8,(﹣2)3=﹣8,∵﹣8≠﹣8,∴选项D中的两个数的数值相等.故选:D.9.(3分)绝对值小于3.5的整数共有()A.3个 B.5个 C.7个 D.9个【解答】解:绝对值小于3.5的整数﹣3,﹣2,﹣1,0,1,2,3,故选:C.10.(3分)正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2015次后,数轴上数2015所对应的点是()A.点C B.点D C.点A D.点B【解答】解:∵由题意可得,每翻转四次为一个循环,对应的是BCDA,∴2015÷4=503 (3)∴翻转2015次时对应的点是D,∵第一次翻转,点B对应的数是2,∴数轴上数2015对应的点是C.故选:A.二、填空题(每小空格题3分,共24分)11.(3分)﹣64的立方根是﹣4.【解答】解:∵(﹣4)3=﹣64,∴﹣64的立方根是﹣4.故选﹣4.12.(3分)计算:(﹣1)2015+2=1.【解答】解:原式=﹣1+2=1,故答案为:113.(3分)据统计,今年上半年诸暨市参加初中毕业学业考试的学生约为13500人,这个数据精确到千位可表示为 1.4×104.【解答】解:将13500精确到千位可表示为1.4×104.故答案为:1.4×104.14.(3分)的相反数的是1,绝对值是1,倒数是﹣.【解答】解:根据相反数、绝对值和倒数的定义得:﹣1的相反数为1;﹣1的绝对值为1;﹣1×(﹣)=1,因此倒数是﹣.故答案为:1;1;﹣.15.(3分)在空格内填上一个数,使等式成立:6﹣﹣8+10=24.【解答】解:∵6﹣()+10=24,∴()=6﹣(24﹣10)=6﹣14=﹣8.故答案为﹣8.16.(3分)有一个正方体的集装箱,原体积为125m3,现准备将其扩容以盛放更多的货物,若要使其体积达到343m3,则它的棱长需要增加2m.【解答】解:设正方体集装箱的棱长为a,∵体积为125m3,∴a==5m;设体积达到343m3的棱长为b,则b==7m,∴b﹣a=7﹣5=2(m).故答案为:2.17.(3分)7.0精确到十分位位,表示大于等于 6.95而小于7.05的数.【解答】解:7.0精确到十分位,表示大于等于6.95而小于7.05的数.故答案为:十分位,6.95,7.05.18.(3分)观察一列数:,,,,,…根据规律,请你写出第8个数是﹣.【解答】解:∵第n个数为(﹣1)n+1,∴第8个数是﹣=﹣.故答案为:﹣.三、解答题(共46分)19.(6分)画一条数轴,在数轴上表示﹣,2,0,﹣及它们的相反数,并比较所有数的大小,按从小到大的顺序用“<”连接起来.【解答】解:如图所示,,故﹣2<﹣<﹣<0<<<2.20.(6分)把下列各数填在相应的大括号内.﹣2,﹣,﹣|﹣3|,,﹣,1.7,0,﹣π,﹣1.,﹣,0.9898898889…(每两个“9”之间依次多一个“8”)整数{…}分数{…}负无理数{…}.【解答】解:整数:{﹣2,﹣|﹣3|,﹣,0,…},分数:{﹣,,1.7,﹣1.,…},负无理数:{﹣π,﹣…}.21.(9分)计算下列各题.(1)﹣(﹣2)+|﹣3|(2)(﹣+)×(﹣63)(3)﹣12﹣(﹣)2+(﹣5)×(﹣2)【解答】解:(1)原式=2+(﹣3)=2﹣3=﹣1;(2)原式=﹣18+35﹣12=﹣30+35=5;(3)原式=﹣1﹣+10=9﹣=8.22.(6分)在一次测量中,小丽与欣欣利用温度差来测量山峰高度,小丽在山顶测得温度﹣5℃,欣欣在山脚测得温度1℃,已知该高度每增加200米,气温大约降低0.8℃,则这个山峰的高度大约多少米?【解答】解:根据题意得:[1﹣(﹣5)]÷0.8=7.5(米).则这个山峰的高度大约是7.5米.23.(8分)某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下.(单位:km)(1)求收工时距A地多远?(2)在第几次记录时距A地最远?(3)若每km耗油0.3升,问共耗油多少升?【解答】解:(1)﹣4+7+(﹣9)+8+6+(﹣5)+(﹣2)=1(千米).答:收工时检修小组在A地东面1千米处.(2)第一次距A地|﹣4|=4千米;第二次:|﹣4+7|=3千米;第三次:|﹣4+7﹣9|=6千米;第四次:|﹣4+7﹣9+8|=2千米;第五次:|﹣4+7﹣9+8+6|=8千米;第六次:|﹣4+7﹣9+8+6﹣5|=3千米;第七次:|﹣4+7﹣9+8+6﹣5﹣2|=1千米.所以距A地最远的是第5次.(3)从出发到收工汽车行驶的总路程:|﹣4|+|+7|+|﹣9|+|+8|+|+6|+|﹣5|+|﹣2|=41;从出发到收工共耗油:41×0.3=12.3(升).答:从出发到收工共耗油12.3升.24.(11分)如图,A、B分别为数轴上两点,A点对应的数为﹣20,B点对应的数为80.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,你知道D点对应的数是多少吗?【解答】解:(1)点M所对应的点为x,依题意得:x﹣(﹣20)=80﹣x,所以x+20=80﹣x,解得x=30.答:与A,B两点距离相等的点M所对应的数是30;(2)∵A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为80,∴AB=80+20=100,设t秒后P、Q相遇,∵电子蚂蚁从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁恰好从A点出发,以4单位/秒的速度向右运动,∴6t+4t=100,解得t=10秒;∴此时走过的路程=6×10=60,∴此时C点表示的数为80﹣60=20.答:C点对应的数是20.(3)∵A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为80,∴AB=80+20=100,设t秒后P、Q相遇,∵电子蚂蚁从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁恰好从A点出发,以4单位/秒的速度向右运动,∴6t﹣4t=100,解得t=50秒;∴此时走过的路程=6×50=300,∴此时C点表示的数为80﹣300=﹣220.答:C点对应的数是﹣220.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
中学 班级 姓名 学号 座位号⊙┄┄┄┄┄┄┄┄┄┄密┄┄┄封┄┄┄装┄┄┄订┄┄┄线┄┄┄内┄┄┄不┄┄┄要┄┄┄答┄┄┄题┄┄┄┄┄┄┄┄┄┄┄⊙温州市直七校协作体第一学期期中考试七年级(上)数学学科(时间:90分钟;满分100分)一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1、2012的相反数是( )A .-2012B .2012C .20121-D .201212、4的平方根是( )A. 2B. ±2C. -2D. 4 3、实数2-,0.3,227,2,π-,64-中,无理数的个数是( ) A .2 B .3 C .4 D .5 4、下列运算正确..的是( ) A .39±= B .33-=- C .39-=- D .932=-5、数轴上,处于原点左侧且距离原点3个单位长度的点所表示的数为( ) A .0 B .3 C .-3D .3或-36、据统计部门报告,温州市2011年国民生产总值为335087000000元.这个数据用科学 记数法表示为( )A .335087×1012 元B .3.35087×1011元 C. 3.35087×1012元 D .335087 ×107元7、某文具店老板以每支a 元的价格购进100支钢笔,然后标价每支8元销售。
一段时 间后,老板发现卖不出去,就按标价打8折出售并全部卖完。
用含a 的代数式表示该老板获得的总利润正确的是( )A .100(8-a)元 B. (640-100a)元 C .64(8-a)元 D .100(8-0.8a)元 8、己知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( ) A .a b < B.0b a -> C .0ab <D. 0a b +<9、下图数值转换机可看作求哪一个代数式的值( )A .142+--xB .()124+-⨯-x C .()142+--x D .124+⨯+x输入x-4×(-2)输出+110、设a 为最小的正整数,b 是最大的负整数,c 是绝对值最小的数,d 是倒数等于自身的有理数,则a +b +c +d 的值为( ) A .1B .3C .1或-1D .2或-1二、填空题(本题有8小题,每小题3分,共24分) 11、绝对值等于3的数是__________.12、81-的立方根是________. 13、比较大小:(1)13-______0;(2)0.05______1--;(3)23-______53- .14、由四舍五入法得到的近似数8.8×103精确到 位.15、数轴上点A 表示的数是-1,以A 点为圆心,2个单位长度为半径的圆交数轴于B 、C 两点(点B 在点C 的左侧),那么B 、C 两点表示的数分别是___________. 16、写出和是负数,商也是负数的两个实数 __________.17、()20112012122⎛⎫-⨯-= ⎪⎝⎭________.18、若11x x ---2()x y =+,则x -y 的值为___________. 三、解答题(本题有6小题,共46分) 19、(6分)将下列各数填到相应的括号内:5, 3-, 0,23, 38 , 3.14-, 2-, 0.3010010001⋅⋅⋅(每两个“1”之间依次多一个“0”)正整数:{ } 分数: { } 无理数:{ } 20、(6分)画一条数轴,把-121,0,3, 2各数和它们的相反数.......在数轴上表示出来,并比较所有这些数的大小..........,用“<”号连接.21、计算(每小题3分,共12分;要有必要的计算过程)(1)()25.05)41(8----+ (2) 1(20.5)(3)2-⨯÷-(3)-2241242)()(-⨯--+(4)(21—95+127)×(—36)22、(6分)出租车在一条东西方向的公路上行驶,连续载客8次。
浙江省温州市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的电力.14 000 000这个数用科学记数法表示为A . 14×106B . 1.4×107C . 1.4×108D . 0.14×1082. (2分)下列各数中:+(﹣5)、|﹣1﹣2|、﹣、﹣(﹣7)、0、(﹣2015)3 ,负数有()A . 2个B . 3个C . 4个D . 5个3. (2分)若m,n互为相反数,则下列各组数中不是互为相反数的是()A . ﹣m和﹣nB . m+1和n+1C . m+1和n﹣1D . 5m和5n4. (2分) (2019七上·宽城期末) 有理数a、b、c在数轴上的对应点的位置如图所示,则下面结论正确的是()A . |a|>4B . a+c>0C . c﹣b>0D . ac>05. (2分) (2019八上·连江期中) 下列计算正确的是()A . a3+a2=a5B . a3•a2=a6C . a6÷a3=a2D . (a2)3=a66. (2分)一个长方形的周长为30cm,若长方形的一边长用字母a(cm)表示,则长方形的面积是()A . a(15-a)cm2B . a(30-a)cm2C . a(30-2a)cm2D . a(15+a)cm27. (2分)小亮从一列火车的第m节车厢数起,一直数到第n节车厢(n>m),他数过的车厢节数是()A . m+nB . n-mC . n-m-1D . n-m+18. (2分)(2018·集美期中) 下列计算正确的是()A . 6b﹣5b=1B . 2m+3m2=5m3C . ﹣2(c﹣d)=﹣2c+2dD . ﹣(a﹣b)=﹣a﹣b9. (2分)已知a﹣b=3,c﹣d=2,则(b+c)﹣(a+d)的值是()A . -1B . 1C . -5D . 1510. (2分)(2013·资阳) 从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征()A .B .C .D .11. (2分)下列等式变形正确的是()A . 若1﹣2x=6,则2x=6﹣1B . 若 x=6,则x=3C . 若x﹣3=y﹣3,则x﹣y=0D . 若mx=my,则x=y12. (2分)根据等式的性质,下列变形正确的是()A . 若x=y,则=B . 若x=y,则x﹣2=2﹣yC . 如果2x=y,那么﹣6x=﹣3yD . 如果x=6,那么x=二、填空题 (共6题;共6分)13. (1分) (2016七上·汉滨期中) 单项式﹣的系数是________.14. (1分)单项式-的系数与次数之积为________15. (1分) (2019七下·姜堰期中) 计算:=________.16. (1分) (2017九上·辽阳期中) 已知,则=________.17. (1分) (2017七下·萧山开学考) 当x=________时,式子x-1与式子的值相等。
浙江省七年级数学上册期中试题(满分120分,时间120分钟)一、选择题(每小题3分,共30分) 1. 数轴上的点表示的数是( ▲ )A. 正数B. 负数C. 有理数D. 实数 2.在11,,0.314,73π-中无理数有( ▲ )个 A. 1 B. 2 C. 3 D. 4 3. 下列计算中错误..的是( ▲ ) A. 34(2)32∙-=-; B. 4(2)16--=- C. 41228-⨯= D. 22(2)(3)36-⨯-= 4. 0.85569精确到千分位的近似值是( ▲ )A. 0.855B. 0.856C. 0.8556D. 0.8557 5. 下列各式正确..的是( ▲ )A.2=-B. 2(9=C. 12=-D. 4=±6.的平方根是( ▲ )A. 9-B. 9±C. 3D. ±37. 如图,图中数轴的单位长度为1.如果点B 、C 表示的数的绝对值相等,那么点A 表示的数分别是…( ▲ )A. -4B. -5C. -6D. -2 8. 123499100-+-++-的值为( ▲ )A. 5050B. 100C. 50D. -509. 若2(2)30a b -++=,则2017()a b +的值是(▲)A. 0B. 1C. 1- D.2017-10. 已知,a b 表示两个非零的实数,则a ba b+的值不可能是( ▲ ) A .2 B . –2 C . 1 D .0第7题图11. 35-的相反数是 ▲ 3-的绝对值是 ▲ 绝对值等于4的数是 ▲ 12. 比较下列各对数的大小(用“>”、“<”或“=”连接): 2 ▲ 10-; 0 ▲ 0.00001-; 34-▲ 23- 13. 计算:234-+-= ▲ ; 2(4)-= ▲ ;38(2)÷-= ▲14. 9的平方根是 ▲ ;0的平方根是 ▲ = ▲15. 1的立方根是 ▲ ; 1-的立方根是 ▲ = ▲ 16. 给出下列关于2的判断:①2是无理数;②2是实数;③2是2的算术平方根;④1<2<2.其中正确的是_____▲_____(请填序号). 17. 有一种“24点”游戏,其游戏规则是:任取1~13之间的4个自然数,将这4个数(每个数且只能用一次)进行加减乘除四则运算,使运算结果为24,例如,对1,2,3,4可作运算:(1+2+3)×4=24。
浙江初一初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.的相反数是().A.3B.C.D.2.数轴上表示的点到原点的距离是()A.3B.C.±3D.63.a与b的平方的和可表示为()A.B.C.D.4.在实数0,,,中,属于无理数是()A.0B.C.D.5.计算的结果是()A.—6B.—9C.6D.9 6.下列说法中,正确的是()一个数的倒数等于它本身的只有1一个数的平方根等于它本身的是1,0一个数的算术平方根等于它本身的只有1,0一个数的立方根等于它本身的只有1,07.实数a在数轴上对应的点如图所示,则a,-a,1的大小关系正确的是()A.B.C.D.8.以下计算结果正确的是()A.B.C.D.9.,则ab的值是()A.B.C.D.10.用18米长的铝合金做成一个长方形的窗框(如图),设长方形窗框的横条长度为米,则长方形窗框的面积为()A.平方米B.平方米C.平方米D.平方米二、填空题1.的倒数是________;相反数是________;算术平方根是:________;2.的平方根是:________.3.2013年7月1日,宁杭甬高铁今天正式开通,温州进入“高铁时代”.中国高铁时速可达每小时350000米,用科学记数法可以表示为每小时________米.4.计算:=_______.5.已知a=3,则代数式的值是________.6.如图,方格纸中的每一个小方格都是边长为1个单位长度的正方形,则图中阴影正方形的边长是________.7.把下列各数分别填在表示它所属的括号里:0,,,, -2,, -(1)正有理数:{ …}(2)整数:{ …}(3)负分数:{ …}8.在数轴上表示下列各数,并用“<”把它们连接起来.0,, 1.5,∴______<______<______<______.三、计算题计算下列各题(1)(2)(3)(4)四、解答题1.小张为自己的新饭卡充了150元,如果他吃饭的次数用m表示,则记录他每次吃饭后的余额n(元)如下表:(1)用吃饭的次数m表示余额n(元);(2)利用上述关系式计算小张吃了13次饭后还剩下多少元?(3)小张最多能吃多少次饭?2.“囧”(jiong)是网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”的面积;(2)当时,求此时“囧”的面积.3.小王玩游戏:一张纸片,第一次将其撕成四小片,以后每次都将其中一片撕成更小的四片,如此进行下去。
2015-2016学年浙江省温州市瓯海实验学校七年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)向东行驶3km,记作+3km,向西行驶2km记作()A.+2km B.﹣2km C.+3km D.﹣3km2.(3分)一种面粉包装袋上的质量标识为“25±0.5kg”,则下列四袋面粉中不合格的是()A.24.5kg B.25.5kg C.24.8kg D.26.1kg3.(3分)某年五月2日,南京夫子庙、中山陵、玄武湖、雨花台四大景区共接待游客约510800人,这个数可用科学记数法表示为()A.0.5108×106km B.5.010×105km C.5.108×105km D.5.108×106km 4.(3分)在实数,π,0.52,,0.7070070007…、(每两个“7”之间依次多一个“0”)中,无理数有()A.1个 B.2个 C.3个 D.4个5.(3分)下面各组数,互为相反数的是()A.与﹣0.25 B.3.14与﹣πC.﹣0.5与2 D.3与|﹣3|6.(3分)在数轴原点的右边3个单位处有一点A,向数轴负方向移动了4.5个单位.则点A此时所表示的数为()A.﹣1.5 B.﹣7.5 C.1.5 D.7.57.(3分)下列计算正确的是()A.(﹣1)+(﹣6)=+7 B.(﹣3)﹣(﹣4)=﹣7 C.(﹣4)×(﹣3)=12 D.(﹣3)÷2=﹣18.(3分)下列各组数中,数值相等的是()A.﹣32和(﹣3)2 B.32和23C.﹣2和|﹣2| D.﹣23和(﹣2)39.(3分)绝对值小于3.5的整数共有()A.3个 B.5个 C.7个 D.9个10.(3分)正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2015次后,数轴上数2015所对应的点是()A.点C B.点D C.点A D.点B二、填空题(每小空格题3分,共24分)11.(3分)﹣64的立方根是.12.(3分)计算:(﹣1)2015+2=.13.(3分)据统计,今年上半年诸暨市参加初中毕业学业考试的学生约为13500人,这个数据精确到千位可表示为.14.(3分)的相反数的是,绝对值是,倒数是.15.(3分)在空格内填上一个数,使等式成立:6﹣+10=24.16.(3分)有一个正方体的集装箱,原体积为125m3,现准备将其扩容以盛放更多的货物,若要使其体积达到343m3,则它的棱长需要增加m.17.(3分)7.0精确到位,表示大于等于而小于的数.18.(3分)观察一列数:,,,,,…根据规律,请你写出第8个数是.三、解答题(共46分)19.(6分)画一条数轴,在数轴上表示﹣,2,0,﹣及它们的相反数,并比较所有数的大小,按从小到大的顺序用“<”连接起来.20.(6分)把下列各数填在相应的大括号内.﹣2,﹣,﹣|﹣3|,,﹣,1.7,0,﹣π,﹣1.,﹣,0.9898898889…(每两个“9”之间依次多一个“8”)整数{…}分数{…}负无理数{…}.21.(9分)计算下列各题.(1)﹣(﹣2)+|﹣3|(2)(﹣+)×(﹣63)(3)﹣12﹣(﹣)2+(﹣5)×(﹣2)22.(6分)在一次测量中,小丽与欣欣利用温度差来测量山峰高度,小丽在山顶测得温度﹣5℃,欣欣在山脚测得温度1℃,已知该高度每增加200米,气温大约降低0.8℃,则这个山峰的高度大约多少米?23.(8分)某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下.(单位:km)(1)求收工时距A地多远?(2)在第几次记录时距A地最远?(3)若每km耗油0.3升,问共耗油多少升?24.(11分)如图,A、B分别为数轴上两点,A点对应的数为﹣20,B点对应的数为80.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,你知道D点对应的数是多少吗?2015-2016学年浙江省温州市瓯海实验学校七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)向东行驶3km,记作+3km,向西行驶2km记作()A.+2km B.﹣2km C.+3km D.﹣3km【解答】解:向东行驶3km,记作+3km,向西行驶2km记作﹣2km,故选:B.2.(3分)一种面粉包装袋上的质量标识为“25±0.5kg”,则下列四袋面粉中不合格的是()A.24.5kg B.25.5kg C.24.8kg D.26.1kg【解答】解:25﹣0.5=24.5(kg),25+0.5=25.5(kg),合格范围24.5﹣﹣﹣﹣25.5,∵26.1不在合格范围中,故选:D.3.(3分)某年五月2日,南京夫子庙、中山陵、玄武湖、雨花台四大景区共接待游客约510800人,这个数可用科学记数法表示为()A.0.5108×106km B.5.010×105km C.5.108×105km D.5.108×106km 【解答】解:510800人=5.108×105人.故选:C.4.(3分)在实数,π,0.52,,0.7070070007…、(每两个“7”之间依次多一个“0”)中,无理数有()A.1个 B.2个 C.3个 D.4个【解答】解:无理数有:,π,0.7070070007…(每两个“7”之间依次多一个“0”)共3个.故选:C.5.(3分)下面各组数,互为相反数的是()A.与﹣0.25 B.3.14与﹣πC.﹣0.5与2 D.3与|﹣3|【解答】解:A、与﹣0.25是互为相反数,故本选项正确;B、3.14与﹣π不是互为相反数,故本选项错误;C、﹣0.5与2不是互为相反数,故本选项错误;D、3与|﹣3|不是互为相反数,故本选项错误.故选:A.6.(3分)在数轴原点的右边3个单位处有一点A,向数轴负方向移动了4.5个单位.则点A此时所表示的数为()A.﹣1.5 B.﹣7.5 C.1.5 D.7.5【解答】解:∵点A在数轴的右边,且距离原点3个单位长度,∴点A表示3,∴向数轴负方向移动了4.5个单位,表示的数为:3﹣4.5=﹣1.5.故选:A.7.(3分)下列计算正确的是()A.(﹣1)+(﹣6)=+7 B.(﹣3)﹣(﹣4)=﹣7 C.(﹣4)×(﹣3)=12 D.(﹣3)÷2=﹣1【解答】解:A、(﹣1)+(﹣6)=﹣7,故此选项错误;B、(﹣3)﹣(﹣4)=﹣3+4=1,故此选项错误;C、(﹣4)×(﹣3)=12,故此选项正确;D、(﹣3)÷2=﹣1.5,故此选项错误;故选:C.8.(3分)下列各组数中,数值相等的是()A.﹣32和(﹣3)2 B.32和23C.﹣2和|﹣2| D.﹣23和(﹣2)3【解答】解:﹣32=﹣9,(﹣3)2=9,∵﹣9≠9,∴选项A中的两个数的数值不相等.32=9,23=8,∵9≠8,∴选项B中的两个数的数值不相等.|﹣2|=2,∵﹣2≠2,∴选项C中的两个数的数值不相等.﹣23=﹣8,(﹣2)3=﹣8,∵﹣8≠﹣8,∴选项D中的两个数的数值相等.故选:D.9.(3分)绝对值小于3.5的整数共有()A.3个 B.5个 C.7个 D.9个【解答】解:绝对值小于3.5的整数﹣3,﹣2,﹣1,0,1,2,3,故选:C.10.(3分)正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2015次后,数轴上数2015所对应的点是()A.点C B.点D C.点A D.点B【解答】解:∵由题意可得,每翻转四次为一个循环,对应的是BCDA,∴2015÷4=503 (3)∴翻转2015次时对应的点是D,∵第一次翻转,点B对应的数是2,∴数轴上数2015对应的点是C.故选:A.二、填空题(每小空格题3分,共24分)11.(3分)﹣64的立方根是﹣4.【解答】解:∵(﹣4)3=﹣64,∴﹣64的立方根是﹣4.故选﹣4.12.(3分)计算:(﹣1)2015+2=1.【解答】解:原式=﹣1+2=1,故答案为:113.(3分)据统计,今年上半年诸暨市参加初中毕业学业考试的学生约为13500人,这个数据精确到千位可表示为 1.4×104.【解答】解:将13500精确到千位可表示为1.4×104.故答案为:1.4×104.14.(3分)的相反数的是1,绝对值是1,倒数是﹣.【解答】解:根据相反数、绝对值和倒数的定义得:﹣1的相反数为1;﹣1的绝对值为1;﹣1×(﹣)=1,因此倒数是﹣.故答案为:1;1;﹣.15.(3分)在空格内填上一个数,使等式成立:6﹣﹣8+10=24.【解答】解:∵6﹣()+10=24,∴()=6﹣(24﹣10)=6﹣14=﹣8.故答案为﹣8.16.(3分)有一个正方体的集装箱,原体积为125m3,现准备将其扩容以盛放更多的货物,若要使其体积达到343m3,则它的棱长需要增加2m.【解答】解:设正方体集装箱的棱长为a,∵体积为125m3,∴a==5m;设体积达到343m3的棱长为b,则b==7m,∴b﹣a=7﹣5=2(m).故答案为:2.17.(3分)7.0精确到十分位位,表示大于等于 6.95而小于7.05的数.【解答】解:7.0精确到十分位,表示大于等于6.95而小于7.05的数.故答案为:十分位,6.95,7.05.18.(3分)观察一列数:,,,,,…根据规律,请你写出第8个数是﹣.【解答】解:∵第n个数为(﹣1)n+1,∴第8个数是﹣=﹣.故答案为:﹣.三、解答题(共46分)19.(6分)画一条数轴,在数轴上表示﹣,2,0,﹣及它们的相反数,并比较所有数的大小,按从小到大的顺序用“<”连接起来.【解答】解:如图所示,,故﹣2<﹣<﹣<0<<<2.20.(6分)把下列各数填在相应的大括号内.﹣2,﹣,﹣|﹣3|,,﹣,1.7,0,﹣π,﹣1.,﹣,0.9898898889…(每两个“9”之间依次多一个“8”)整数{…}分数{…}负无理数{…}.【解答】解:整数:{﹣2,﹣|﹣3|,﹣,0,…},分数:{﹣,,1.7,﹣1.,…},负无理数:{﹣π,﹣…}.21.(9分)计算下列各题.(1)﹣(﹣2)+|﹣3|(2)(﹣+)×(﹣63)(3)﹣12﹣(﹣)2+(﹣5)×(﹣2)【解答】解:(1)原式=2+(﹣3)=2﹣3=﹣1;(2)原式=﹣18+35﹣12=﹣30+35=5;(3)原式=﹣1﹣+10=9﹣=8.22.(6分)在一次测量中,小丽与欣欣利用温度差来测量山峰高度,小丽在山顶测得温度﹣5℃,欣欣在山脚测得温度1℃,已知该高度每增加200米,气温大约降低0.8℃,则这个山峰的高度大约多少米?【解答】解:根据题意得:[1﹣(﹣5)]÷0.8=7.5(米).则这个山峰的高度大约是7.5米.23.(8分)某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下.(单位:km)(1)求收工时距A地多远?(2)在第几次记录时距A地最远?(3)若每km耗油0.3升,问共耗油多少升?【解答】解:(1)﹣4+7+(﹣9)+8+6+(﹣5)+(﹣2)=1(千米).答:收工时检修小组在A地东面1千米处.(2)第一次距A地|﹣4|=4千米;第二次:|﹣4+7|=3千米;第三次:|﹣4+7﹣9|=6千米;第四次:|﹣4+7﹣9+8|=2千米;第五次:|﹣4+7﹣9+8+6|=8千米;第六次:|﹣4+7﹣9+8+6﹣5|=3千米;第七次:|﹣4+7﹣9+8+6﹣5﹣2|=1千米.所以距A地最远的是第5次.(3)从出发到收工汽车行驶的总路程:|﹣4|+|+7|+|﹣9|+|+8|+|+6|+|﹣5|+|﹣2|=41;从出发到收工共耗油:41×0.3=12.3(升).答:从出发到收工共耗油12.3升.24.(11分)如图,A、B分别为数轴上两点,A点对应的数为﹣20,B点对应的数为80.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,你知道D点对应的数是多少吗?【解答】解:(1)点M所对应的点为x,依题意得:x﹣(﹣20)=80﹣x,所以x+20=80﹣x,解得x=30.答:与A,B两点距离相等的点M所对应的数是30;(2)∵A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为80,∴AB=80+20=100,设t秒后P、Q相遇,∵电子蚂蚁从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁恰好从A点出发,以4单位/秒的速度向右运动,∴6t+4t=100,解得t=10秒;∴此时走过的路程=6×10=60,∴此时C点表示的数为80﹣60=20.答:C点对应的数是20.(3)∵A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为80,∴AB=80+20=100,设t秒后P、Q相遇,∵电子蚂蚁从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁恰好从A点出发,以4单位/秒的速度向右运动,∴6t﹣4t=100,解得t=50秒;∴此时走过的路程=6×50=300,∴此时C点表示的数为80﹣300=﹣220.答:C点对应的数是﹣220.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。