双管采油井口装置大四通优化及疲劳分析
- 格式:pdf
- 大小:1.29 MB
- 文档页数:4
井口装置及采油树阀门常见故障的原因分析及排除方法王刚马超张宝发布时间:2021-10-27T02:30:01.369Z 来源:《中国科技人才》2021年第20期作者:王刚马超张宝[导读] 井口装置及采油树是油气钻采设备中最关键的安全设备之一,而阀门又是构成井口装置及采油树的重要部件。
胜利油田胜机石油装备有限公司山东省东营市 257000胜利油田胜机石油装备有限公司山东省东营市 257000胜利油田胜机石油装备有限公司山东省东营市 257000摘要:井口装置及采油树是油气钻采设备中最关键的安全设备之一,而阀门又是构成井口装置及采油树的重要部件。
一般根据地层变化,环境不同,井压各异,油气状态,油气密度及所含有害物质的种类和组份的大小组成不同规格、型号的井口装置及采油树,最简易的由3只阀门组成,压力省14MPa,最复杂的由15只阀门组成,压力由105VLPa。
由于井口装置及采油树是安装在井口位置,用于悬挂油套管,分隔油套管之间的环空,起着密封、截断、接通油气通路,调节流量和压力的重要作用。
因此,通常采用耐高温高压,抗硫化氢的专用工业闸阀,井口装置采油树阀门常见故障是泄露和阀门打不开等,别看阀门的这些故障简单,但是应用在高压,含有硫化氢有害气体的场合,一旦发生泄露将会形成严重后果。
井口装置是能源采集的基础,而在实际工程中,井口装置以及采油树阀门会出现一些故障或者问题,本文通过对采油树阀门的分析,对这一问题进行研究解决。
关键词:采油树;阀门;井口装置;故障分析前言:能源开采工程是我国乃至世界的一项重大项目,对能源的有效利用有着至关重要的地位,能源关系着全球的经济命脉,所以开采技术对于每个国家来说都是一项值得更深入研究的学科。
井口装置则是能源开采必不可少的一个装置。
没有井口装置也就没有办法进行开采,本文则是对井口装置中采油树进行了研究,探讨其在应用中所能发生的故障和排除方法。
1、井口装置和采油树阀门的故障分析1.1井口装置和采油树阀门井口装置是石油、天然气钻井中,安装在井口用于控制气、液(油、水等)流体压力和方向,悬挂套管、油管,并密封油管与套管及各层套管环形空间的装置。
双管热采井口的抗冲蚀磨损性能裴峻峰;王兵;殷舜时;秦志坚;邵金海;徐延海【期刊名称】《中国石油大学学报(自然科学版)》【年(卷),期】2018(042)003【摘要】针对蒸汽辅助重力泄油(SAGD)双管热采井口装置内冲蚀磨损严重问题,研究冲蚀磨损的影响因素.采用正交试验设计对SAGD井口装置进行流体动力学模拟和优化设计,应用ANSYS软件中FSI(fluid-structure interaction)单向流固耦合模块,对正交优化设计试验进行轴向速度、径向速度、全域最大磨损率及壁面剪切应力模拟,判定井口装置中冲蚀破坏的危险区域.结果表明:入口端速度为0.1 m/s,颗粒粒度为0.125 mm,过渡圆角半径为8 mm,管壁壁厚为21.8 mm,管材种类取35CrMo基体与WC-12Co涂层.优化方案使多相流体减轻了对井口管壁的冲蚀磨损作用.【总页数】9页(P122-130)【作者】裴峻峰;王兵;殷舜时;秦志坚;邵金海;徐延海【作者单位】常州大学机械工程学院,江苏常州213016;常州大学机械工程学院,江苏常州213016;江苏金石机械集团有限公司,江苏金湖211600;江苏金石机械集团有限公司,江苏金湖211600;江苏金石机械集团有限公司,江苏金湖211600;江苏金石机械集团有限公司,江苏金湖211600【正文语种】中文【中图分类】TE832【相关文献】1.双管热采井口的有限元应力分析及结构优化 [J], 胡承军;蒙永立;黄晓东;向河;刘清友2.含凹坑缺陷稠油热采井口用四通管的冲蚀数值模拟研究 [J], 邱福寿;王国涛;彭辉;孙亮;傅登伟;刘岑凡3.新疆石油管理局采油工艺研究院双管热采井口销往海外油田 [J], 裘新农4.基于试验和CFD模拟的稠油热采井口四通管冲蚀规律分析 [J], 王国涛;朱丽云;刘岑凡;王振波;李安俊;石景元5.SAGD双管热采井口装置研制与应用 [J], 彭辉因版权原因,仅展示原文概要,查看原文内容请购买。
自喷井井口装置及采油生产安全技术一、井口装置井口装置包括套管头、油管头、采油树三个部分,即有悬挂密封部分、调整控制部分和附件组成,其基本衔接方式有螺纹式、法兰式和卡箍式三种。
1.悬挂密封部分由套管头和油管头两部分组成。
(1)套管头套管头的作用是衔接下井的各层套管、密封各层套管的环行空间。
表层套管与其法兰之间,有的是丝扣联接,有的是焊接(即将表层套管和顶法兰用电焊焊在一起)。
油层套管和法兰大小头,普通用丝扣衔接后座在表层套管顶法兰上,用螺栓把紧,用钢圈密封。
法兰大小头的上法兰与套管四通或三通衔接。
近年来,有的油井已不用法兰大小头了,而是一片法兰代替了法兰大小头,即用电焊将两层套管焊在同一个法兰盘上。
(2)油管头油管头作用是悬挂下人井中的油管,密封油、套管环行空间。
在油田开发中,各项采油工艺不断改革,为了和不压井起下作业相配套,近年来对油管头也举行了相应的改进,经改进定型的油管头结构是顶丝法兰油管挂,它是通过油管短节以丝扣与油管悬挂器(萝卜头)衔接在一起,并坐在顶丝法兰盘上。
顶丝法兰盘置于套管四通上法兰和原油管挂下法兰之间,顶丝法兰的上、下均用钢圈,用多条螺栓固紧并达到密封。
(3)合成一体的井口悬挂密封装置近年来已将单层套管头和油管头合成一个整体。
油管通过油管短节以丝扣和油管悬挂器衔接后,坐在套管法兰内,压紧密封圈,密封油、套环行空间,并用四条螺丝紧平和加压。
2.控制调整部分油井的控制调整部分叫做采油树,其作用是控制和调整井中的流体,实现下井工具仪器的起下等。
采油树由大小闸门、三通和四通等部件组成。
按衔接方式不同,可分为三种类型:(1)以法兰衔接的采油树。
如松Ⅱ型,这种采油树除了压力表、考克之外的各个闸门、三通以及四通之间均用法兰衔接,所以称之为以法兰衔接的采油树。
(2)以丝扣衔接的采油树。
如胜251型等,即大小闸门、四通、三通等之间均用丝扣衔接在一起。
(3)以卡箍衔接的采油树。
如大庆160微型采油树。
完井井口装置
在钻井完井后,地面井口装置是非常重要的采油设备。
井口装置的重要作用是控制井的油、气流,完成测试、试油以及投产后的油、气正常生产。
完井井口装置主要由套管头、套管短节、四通、油管挂、采油树等部件组成。
一、套管短节与套管头
套管短头与套管头是连接安装在完井套管的最顶部,固井完成后,在地面安装套管头,长度为一般300~500mm不等,之上连接专用法兰,合称套管头(见图案1—9所示)。
套管短节规格与完井套一致,法兰有螺纹式与焊接式两重。
套管头的主要作用是下与完井套管连接,上与地面四通、采油树连接,是重要的过渡部件。
图1-9 套管头结构示意图
二、四通与油管挂
四通是井口装置中重要组成部件,上接采油树,下连套管头,完井的采油、试油等工艺管柱连挂坐在四通内的油管挂上,修井等作业时四通又与作业井口连接,因此它是重要的部件。
四通常与油管挂合装,一般通称油管头(与图1—10所示)。
图1-10 四通与油管挂(油管头)示意图
a—CQ—250型(1—密封圈;2—压帽;3—顶丝;4—“O”型圈;5—油管挂;
6—油管短结;7—特殊四通)b—CYb—250型(1—油管锥管挂;2—顶丝;3—垫片;
4—顶丝盘根;5—压帽;6—紫铜圈;7—“O”型圈;8—紫铜圈;9—特殊四通)常用特殊四通基本技术参数见表1—1。
三、完井井身结构及井口装置
完井井身结构及井口装置间图1-11。
图1-11 射孔完成法井身结构及井口示意图。
抽油井平衡状况分析与优化调整对策武继强摘要:油田进入特高含水期以后抽油机井平衡率变化是由上述各项因素综合作用的结果。
要有针对性的对油区内抽油机井的平衡率进行调整,应加强四个方面工作:(1)加强开采管理,制定合理的开采参数,提高开采效果。
制定合理的洗井周期,减少因油稠滞流等因素引起不平衡井数;(2)认真分析每口井平衡变化原因,调整平衡时应针对不同的原因采取不同的措施;(3)对油区设备加强及时有效保养维护,减少设备故障率,并根据条件更换新设备;(4)加强管理及时调整不平衡井,最终达到提高平衡率指标目的。
关键词:油田开发;抽油机;平衡状况;平衡率变化;设备故障率抽油机平衡状况的好坏关系到抽油机减速箱、连杆以及电机等设备的使用寿命和系统效率。
随着油田开发的深入,各单元陆续进入特高含水期,加上“地面、井筒、井网”老化矛盾突出,油井开采不均衡和产液结构的两极分化现象突出,影响了油井的正常生产。
1 抽油机平衡机理抽油机实际运转中理想状态的平衡并不存在。
平衡状况是动态变化的过程,所以生产过程中需要定期检查和调整平衡。
检查方法有两种:一是测量驴头上、下冲程的时间,二是测量上、下冲程中的电流。
抽油机在平衡条件下工作时,上、下冲程的电流峰值应该相近。
即:I上/I下=100%如果上冲程的电流峰值大于下冲程的电流峰值,说明平衡不够,则应增加平衡块重量或增大平衡半径R(平衡块远离曲柄轴中心);反之,则应减小平衡块重量或平衡半径R(平衡块靠近曲柄轴中心)。
抽油机运转不平衡,原因是上、下冲程中悬点载荷的变化,造成电动机在上、下冲程中所作的功不相等。
2 影响平衡率因素分析2.1地层因素主要表现在地层出砂井、地层供液不稳定井较多,易出现结垢、油水井层内窜等问题,还有部分含水低导致交变载荷增大。
2.2井筒因素受井深结构、出液高含水、管柱腐蚀、井筒结构等影响,抽油机井杆、管腐蚀偏磨问题较多,主要表现在抽油杆偏磨问题严重,另有部分存在套管变形致油管变形导致抽油管下不去。
采油井口装置及安全控制系统设计分析发布时间:2021-07-12T16:04:07.197Z 来源:《科学与技术》2021年8期作者:耿炜柏林田怀智[导读] 为高质规避工作人员在石油能源开采作业中的低效、安全性低、耿炜柏林田怀智长庆油田分公司采油十二厂,甘肃庆阳 745401摘要:为高质规避工作人员在石油能源开采作业中的低效、安全性低、人工负荷量过大等不良问题,合规完成日益繁重的能源开采任务,促进我国石油能源开采量的稳步提升。
基于我国社会整体长足进步的新形势下,设计人员应对开采工作中核心性采油井口装置及其安全控释系统进行与时俱进的升级优化。
通过采油树、油管头、套管头这三项重点井口装置的细化设计,充分发挥液压控制系统的众多优势特点,科学规划出液压系统设计方案及易熔塞回路,多方位展示采油井创新、实用等积极性设计效果。
关键词:采油井口装置;安全控制系统;设计因全球经济在近年间的高速增收,使得各国对自然能源资源的需求量日渐增长,导致各类资源供求矛盾冲突层出不穷。
我国因幅员辽阔,石油资源储备总量原本丰富充足。
然而随着我国市场经济的健康发展,我国石油能源危机日趋严峻。
社会大众日常生活、生产对石油、天然气等资源能源的现实性需要量连续提高。
促使石油的开采形式正从传统陆地发展为海洋作业,催化石油开采复杂性、危险性及人工工作负荷逐步提升。
对此,为在保障工作人员开采作业安全这一重要性前提下,科学增大能源资源的开采率,则需设计人员进一步优化油井井口装置及其安全控制系统。
1 采油井口装置的概述及设计1.1 采油井口装置的介绍一般情况下,“采油树”、“油管头”、“套管头”这三项重要构件组成了采油井口[1]。
其核心性应用价值为井口固定,将套管柱完成与井口的衔接,对管间的封闭性环形空间实现控制,悬吊油管、调整油井的压力及流量,以及将油液向进口部位的油管充分导引。
并在指定情况下,能够及时关闭油井。
可广泛引用在注水、酸化压裂等作业中1.2 采油井口装置的设计1.2.1 采油树采油树作为井口装置统一阀门上方的主体构成,由套管、生产、清蜡的阀门以及三通或四通形式的油管、节流阀等构件协同搭建。
井口装置各部件的作用与采油树的维护保养(一)、井口装置各部件的作用1、胶皮阀门胶皮阀门的作用(抽油机井)主要有以下三点:(1)、当刮蜡测试工具上升到防喷管时切断井下的压力。
(2)、当工具是否已升到防喷管情况不明的情况下,关闭闸门,如果工具正在井下也不致关断钢丝使工具掉落井中。
(3)、在抽油井中,关闭此胶皮闸门方可加光杆密封填料。
2、测试闸门测试闸门(250型)主要用以连接胶皮闸门便于测压、试井等。
3、小四通小四通主要以连接测试闸门与总闸门及左右生产闸门。
它是油井出油、水井测试等必经通道。
4、总闸门总闸门的作用是开关井以及在总闸门以外设备的维修时切断井底压力。
5、大四通大四通是油管套管汇集分流的主要部件。
通过它密封油套环空、油套分流。
大四通外部是套管压力,内部是油管压力,下部连接套管短接。
6、套管短接套管短接上部与四通下法兰螺纹连接,下部与套管连接,并可根据井场的高低,作业施工时调整套管短接来达到提高或降低的要求。
7、表层套管与油层套管之间的环形钢板表层套管与油层套管之间的环形钢板主要作用是连接密封生产套管及表层套管,使采油树不振动,并将部分油层套管重量传递给表层套管,经表层套管进一步传递到大地上。
(二)、采油树的维护保养采油树的维护保养内容是:保持设备清洁无渗漏、无油污、无锈、无松动、无缺件、无部件开关灵活好用。
下面仅以250型闸板闸门为例进行讲述。
1、250型闸板闸门的组成采油树闸板闸门的组成主要由阀体、大压盖、闸板、丝杠、推力轴承、手轮、压盖等组成。
250型闸板闸门的作用就是开通和截止流程。
2、250型闸板闸门易发生的故障及维修(1)、更换闸门推力轴承与铜套。
将闸门开大,卸掉手轮压帽、手轮及手轮键,再卸掉轴承压盖,顺着丝杠螺纹退出铜套,取出旧轴承,换上新轴承加上黄油。
将铜套装在丝杠上,顺丝杠螺纹装入到闸门大压盖中,装好轴承压盖、手轮及手轮键和手轮压帽,擦净赃物。
(2)、更换闸门丝杠的“O”型密封圈(闸板)。
井下管柱力学分析及优化设计一、本文概述随着石油工业的发展,井下管柱作为石油开采过程中的关键组成部分,其力学性能及优化设计日益受到业界的广泛关注。
本文旨在全面探讨井下管柱的力学特性,以及针对其在实际工作环境中的受力情况进行详细分析,从而提出有效的优化设计策略。
通过对井下管柱的力学分析,可以深入理解其在石油开采过程中的行为规律,预测潜在的安全风险,并为提高管柱的承载能力和延长使用寿命提供理论支持。
优化设计的提出将有助于降低开采成本,提高石油开采效率,为石油工业的可持续发展做出贡献。
本文的研究不仅具有重要的理论价值,而且具有广泛的应用前景。
二、井下管柱力学基础在石油、天然气等地下资源开采过程中,井下管柱作为重要的设备之一,其力学特性对于确保开采过程的安全和效率具有决定性的影响。
因此,深入理解和掌握井下管柱的力学基础,是优化设计井下管柱结构、提高开采效果的前提。
井下管柱的力学行为主要受到轴向力、弯曲力、剪切力以及压力等多种力的影响。
这些力主要来源于地层应力、流体压力、温度变化、管柱自身的重量以及操作过程中的外力。
其中,轴向力主要由管柱自身的重量和地层应力引起,弯曲力则是由地层弯曲和管柱自身的挠曲造成,剪切力则可能由流体流动、温度变化等因素产生。
在力学分析中,我们通常采用弹性力学、塑性力学以及断裂力学等理论工具,对井下管柱在各种力作用下的行为进行深入的研究。
例如,通过弹性力学,我们可以分析管柱在弹性范围内的应力、应变分布,以及管柱的变形情况;而塑性力学则可以帮助我们理解管柱在塑性变形阶段的力学行为,以及管柱的承载能力;断裂力学则可以揭示管柱在断裂过程中的力学规律,为预防管柱断裂提供理论依据。
井下管柱的力学行为还受到流体压力的影响。
在开采过程中,地层流体(如石油、天然气、水等)的压力会对管柱产生压力作用,从而影响管柱的力学行为。
因此,在力学分析中,我们还需要考虑流体压力对管柱的影响,以及管柱与流体的相互作用。
井口装置及采油树阀门常见故障的原因分析及排除方法摘要:近些年,随着我国石油产业的飞速发展以及生产量的提高,无论是在生产能力上,还是在技术水平上,都有了显著的变化。
但是,由于油田的开发时间越来越长,油井作业条件也就更加复杂,企业为了提高安全生产效率,需要注重井口装置及采油树的安全质量管理。
只有确保生产每一个环节能够更加严格,才能确保企业的经济效益和人员安全。
尤其是在当今节能减排、绿色经济发展以及安全生产要求日益严格,因此,正确设计、制造、使用和维护好井口装置及采油树的阀门显得尤其重要。
基于此,本文首先探讨了井口装置及采油树阀门的重要性,并针对常见的井口装置及采油树阀门故障进行了阐述,此外,还根据相关技术要点,阐述了井口装置及采油树阀门故障的解决对策,来给相关人员提供一些参考价值。
关键词:井口装置及采油树阀门;常见故障;解决对策井口装置及采油树是海底石油和天然气开采的关键装备,其作用是构建石油和天然气的天然屏障,对相关作业有效开采实施保障,从而达到开采的目的。
对于安全作业来说,井口装置及采油树的阀门与油管悬挂器、堵塞器等重要部件一起,构成了当前海底井口装置及采油树体系的安全壁垒。
一般,井口装置及采油树阀门安装在采油树的生产流道和环控流道上,当阀门工作的时候,既要面对外界的海水压力,又要面对内在油气体的高压。
如果出现了故障,不仅会导致管道出现渗漏,严重的情况,将会对整个海域的生态系统造成巨大的、不可逆的损害。
一、井口装置及采油树阀门的重要性在石油和天然气钻井开采设备中,井口装置及采油树是最为核心的系统,而阀门是整个系统的重要组成部分。
通常情况下,按照不同的地质、不同的井压、油气开采要求的状况以及所开采物的有无毒性等特征,会采取不同种类、规格、尺寸的阀门。
最简单井口装置及采油树会选择是3个阀门,压力为14MPa,复杂的系统可多达15个阀门,其压力为105MPa。
因为,井口装置及采油树是被设置在井口的,它们可以被用来悬浮油套管,将油套管与油套管之间的环空进行分割,起着密封、截断油气路径,并对流量和压力进行调整等重要功能。
附件二井口装置和采油树型式试验项目、方法及要求一、概述井口装置和采油树按不同的用途基本上可分为:采油井口装置,采气井口装置,压裂、酸化井口装置,热采井口装置,其它井口装置。
井口装置和采油树主要由闸阀、节流阀、三通、四通、旋塞阀紧急切断阀等压力元件组装而成。
依据TSG D7002-2006《压力管道元件型式试验规则》的规定制订本方案,执行标准是:1)S Y/T 5127-2002 《井口装置和采油树规范》2)S Y/T 5328-1996《热采井口装置》二、典型产品及试验项目必须进行型式试验的井口装置和采油树典型的产品是井口装置和采油树用闸阀、旋塞阀、止回阀、节流阀、紧急切断阀、采油树、采气树、井口装置(油管头、套管头)、热采井口装置。
其型式试验项目见表1所示。
三、样品(试件)的抽样规则用于型式试验的井口装置和采油树样品每一检验与试验项目应在相同的样品(试件)上进行(型式试验机构已确认制造单位的检验与试验合格的项目除外),在覆盖范围内随机抽取任一相同规格的样品2件进行型式试验。
一般情况下,样品(试件)的抽样基数应不少于5件。
额定压力≥69.0MPa的组合装置的抽样基数应不少于3件。
当试验样品(试件)不合格需要复验抽样时,应当加倍抽取复验样品(试件)。
四、井口装置和采油树型式试验的覆盖范围若企业同时生产PR1级、PR2级产品,则PR2级产品的型式试验可以覆盖PR1级,若企业仅生产PR1级产品,则按PR1级作型式试验。
井口装置和采油树型式试验的覆盖范围见表2。
表2 井口装置和采油树型式试验的覆盖范围五、主要试验项目的试验方法与验收要求井口装置和采油树用闸阀、旋塞阀、止回阀试验的方法与验收要求见表 3,节流阀试验的方法与验收要求见表 4,急切断阀试验的方法与验收要求见表 5,井口装置和采油(气)树试验的方法与验收要求见表 6,井口装置(套管头)的试验方法与验收要求见表7,井口装置(油管头)的试验方法与验收要求见表 8,热采井口装置的试验方法与验收要求见表 9,室温下的气体泄漏准则见表10。