1.1正弦定理
- 格式:pdf
- 大小:219.65 KB
- 文档页数:10
1.1正弦定理和余弦定理基本要求:1. 能证明正弦定理、余弦定理.2. 能理解正弦定理、余弦定理在讨论三角形边角关系时的作用.3. 能用正弦定理、余弦定理解斜三角形.4. 理解用正弦定理、余弦定理讨论三角形解的情形. 重点:正弦定理和余弦定理及其推导.难点:用正弦定理解三角形时解的个数的讨论. 考点结构分析:1. 正弦定理1:在一个三角形中各边和它所对角的正弦的比相等,即:CcB b A a sin sin sin ==. 2. 余弦定理2:三角形中任何一边的平方等于其他两边的平方和减去这两边与它们夹角余弦积的两倍,即:A bc c b a cos 2222-+=.B ca a c b cos 2222-+=.C ab b a c cos 2222-+=.3. 余弦定理推论:bc a c b A 2cos 222-+=.ca c a c B 2cos 222-+=.abc b a C 2cos 222-+=.4. 重要结论:(1) 在ABC ∆中,a 、b 、c 分别为A 、B 、C 的对边,C B A c b a C B A sin sin sin >>⇔>>⇔>>. (2) 在ABC ∆中,给定A 、B 的正弦或余弦值,则C 有解(即存在)的充要条件是0cos cos >+B A . 5. 解斜三角形的类型:(1) 已知两角一边,用正弦定理,有解时,只有一解.(2) 已知两边及其一边的对角,用正弦定理,有解的情况可分为以下情况,在ABC ∆中,已知a 、b 和角A 时,解的情况如下:上表中为锐角时,时,无解;为钝角或直角时,,均无解. (3) 已知三边,用余弦定理有解时,只有一解. (4) 已知两边及夹角,用余弦定理,必有一解.6. 三角形面积:(1) ah S 21=(h 为BC 边上的高); (2) C ab S sin 21=;(3) C B A R S sin sin sin 22=(R 为ABC ∆外接圆半径);(4) RabcS 4=(R 为ABC ∆外接圆半径); (5) ))()((c p b p a p p S ---=,)(21c b a p ++=.疑难点清单:判断三角形形状基本思想是:利用正弦定理进行角边统一.即将条件化为只含角的关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.结论一般为特殊的三角形,如等边三角形,等腰三角形,直角三角形,等腰直角三角形等.另外,在变形过程中要注意A 、B 、C 内角的固定范围对三角函数数值的影响. 附:1. 正弦定理的证明: ① 定义法(教科书中给出)如图1,在ABC Rt ∆中,C ∠是最大的角,所对的斜边c 是最大的边,要考虑边长之间的数量关系,就涉及到了锐角三角函数.根据正弦函数的定义,Ac asin =, B cbsin =.所以c BbA a ==sin sin . 又1sin =C ,所以CcB b A a sin sin sin ==. 那么,对于一般的三角形,以上关系式是否仍然成立呢?如图2,当ABC ∆是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,B a CD sin =,A b CD sin =,所以A bB a sin sin =, 得到BbA a sin sin =. 同理,在ABC ∆中, CcB b sin sin =. 所以CcB b A a sin sin sin ==. ② 向量法如图3,ABC ∆为锐角三角形时,过A 作三位向量→j 垂直于→AB ,则→j 与→AB 的夹角为︒90,→j 与→BC 的夹角为B -2π,→j 与→CA 的夹角为A +2π,设c AB =,a BC =,b AC =.因为→→→→=++0CA BC AB ,所以00=⋅=⋅+⋅+⋅→→→→→→→→j CA j BC j AB j . 即0)2cos(||||)2cos(||||2cos||||=++-+→→→→→→A CA jB BC j AB j πππ.所以A b B a sin sin =,即BbA a sin sin =. 同理可得:C cB b sin sin =,即CcB b A a sin sin sin ==.当ABC ∆为钝角三角形或者直角三角形时,利用同样的方法可以证得结论.(可以请学生来给出证明) ③ 几何法如图4,设O 为ABC ∆的外接圆的圆心,连接BO 并延长交 ⊙O 与点A ',连接C A ',则A A ='或A A -='π,∴=A sinR a B A BC A 2sin ='=',即R A a 2sin =,同理可证R B b2sin =, R C c 2sin =,故有CcB b A a sin sin sin ==. 注:在运用时,有时需要对它进行变形,如C B A c b a sin :sin :sin ::=; A R a sin 2=,B R b sin 2=,C R c sin 2=.如图5,当ABC ∆为钝角三角形时,设B 为钝角.过C 作AB 的垂线与AB 的延长线交于D 点,由三角函数的定义得A b CD sin =,B a B a CD sin )180sin(=-︒=,B a A b sin sin =∴,即BbA a sin sin =. 同理可得C c A a sin sin =,CcB b A a sin sin sin ==∴.2. 余弦定理证明:如图6,设→→=a CB ,→→=b CA ,→→=c AB ,那么→→→-=b a c ,→→→→→→→→→→→→→⋅-⋅-⋅=+⋅-=⋅=b a b b a a b a b a c c c 2)()(||2C ab b a cos 222-+=所以C ab b a c cos 2222-+=.同理可以证明:A bc c b a cos 2222-+=.B ca a c b cos 2222-+=.。
解三角形1.1正弦定理一、知识要点1、正弦定理:在一个三角形中,各边和它所对角的的比相等。
即a/sinA==2、解三角形2.1定义:一般的,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的。
已知三角形的几个元素求其他元素的过程叫做。
2.2利用正弦定理可以解决一下两类解三角形的问题:(1)已知两角和任意一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另两角及另一边。
3、正弦定理的变形式3.1定理公式:a/sinA=b/sinB=c/sinC=2R(2R为△ABC外接圆的直径)3.2“角到边”的转换:sinA=a/2R,sinB=b/2R,sinC=c/2R3.3“边到角”的转换:,,3.4“边角”互换:,,,3.5比例性质:4、利用正弦定理解三角形时解的情况二、实操演练题型1:正弦定理的理解1、在△ABC中,一定成立的等式是()A、asinA=bsinBB、acosA=bcosBC、asinB=bsinAD、acosB=bcosA2、以下关于正弦定理或其变形的叙述错误的是()A、在△ABC中,a:b:c=sinA:sinB:sinCB、在△ABC中,若sin2A=sin2B,则a=bC、在△ABC中,若sinA>sinB,则A>B;若A>B,则sinA>sinBD、在△ABC中,a/sinA=(b+c)/(sinB+sinC)3、在△ABC中,下列关系式中一定成立的是()A、a>bsinAB、a=bsinAC、a<bsinAD、a≥bsinA4、已知△ABC的外接圆半径是2cm,∠A=60°,则BC边长为cm。
题型2:已知两角及一边解三角形5、在△ABC中,若∠A=60°,∠B=45°,BC=3√2,则最长边为( )A、4√3B、2√3C、√3D、√3/26、在△ABC中,a、b、c分别是角A、B、C所对应的边。
1.1 正弦定理和余弦定理知识点归纳: 一.正弦定理:R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆的半径) (1)变形公式 :1.化边为角:2sin 2sin 2sin a R A b R B c R C ===,,;2.化角为边:Rc C R b B R a A 2sin ,2sin ,2sin === 3.::sin :sin :sin a b c A B C = 4.三角形的内切圆半径cb a S r ABC++=∆2二.余弦定理:A bc c b a cos 2222-+=;变形:(1)bc a c b A 2cos 222-+=;B ac c a b cos 2222-+=; ac b c a B 2cos 222-+=;C ab b a c cos 2222-+=. abc b a C 2cos 222-+=变形:(2)A C B C B A cos sin sin 2sin sin sin 222-+=B C A C A B cos sin sin 2sin sin sin 222-+= C B A B A C cos sin sin 2sin sin sin 222-+=三.三角形中的边角关系和性质:(1)π=++C B A2222π=++C B A 在Rt △中,222c b a =+,C=A+B=900.(2)-tanC B)+(A tan -cosC, B)+cos(A sinC,=B)+sin(A ==(3)2cos 2sinC B A =+ 2sin 2cos CB A =+ 2c o t 2t a nC B A =+ (4)tanA+tanB+tanC= tanA ·tanB ·tanC(5)b a >⇔B A >⇔B A sin sin >.⇔cosA<cosB (6)21sin 21==C ab S ×底×高Rabc 4=.)(2c b a r ++=(三角形的内切圆半径r ,外接圆半径R )(7)ma+nb=kc ⇔msinA+nsinB=ksinC (8)ma=nb ⇔ msinA=nsinB(9)若A 、B 、C 成等差数列,则B 060=.(10)若三角形中三内角成等差数列,三边成等比数列⇔三角形为正三角形(11)余弦定理是勾股定理的推广:判断C ∠为锐角222c b a >+⇔,C ∠为直角222c b a =+⇔, C ∠为钝角222c b a <+⇔.课堂训练 一、选择题1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于……………………....( ) A .30° B .30°或150° C .60° D .60°或120°2.已知△ABC 中,AB =6,∠A =30°,∠B =120°,则△ABC 的面积为…………..( ) A .9B .18C .93D .1833.已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于………………………..( )A .1∶2∶3B .2∶3∶1C .1∶3∶2D .3∶1∶2 4.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k≠0),则k 的取值范围为…..( ) A .(2,+∞) ] B .(-∞,0) C .(-21,0)D .(21,+∞)5. 在△ABC 中,根据下列条件解三角形,其中有一解的是………………………..( ) A .b =7,c =3,C =30° B .b =5,c =42,B =45° C .a =6,b =63,B =60° D .a =20,b =30,A =30° * 6.在△ABC 中,A =60°,b =1,其面积为3,则sin sin sin a b cA B C++++等于….( )A .33B .3392C .338D .239二、填空题7.在△ABC 中,若∠B =30°,AB =23,AC =2,则△ABC 的面积是________. 8.设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________.9.已知△ABC 的面积为23,且b =2,c =3,则∠A =________.10*.若三角形中有一个角为60°,夹这个角的两边的边长分别是8和5,则它的内切圆半径等于________,外接圆半径等于________. 三、解答题11.在△ABC 中,∠C =60°,BC =a ,AC =b ,a +b =16. (1)试写出△ABC 的面积S 与边长a 的函数关系式.(2)当a 等于多少时,S 有最大值?并求出这个最大值.12.在△ABC 中,已知a 2-a =2(b +c ),a +2b =2c -3,若sin C ∶sin A =4∶13,求a ,b ,c .13.在△ABC 中,求证2tan 2tanBA b a b a -=+-.14*.在一个三角形中,若有一个内角不小于120°,求证:最长边与最短边之比不小于3.同步提升 一、选择题:1、在△ABC 中,已知b =4 ,c =2 ,∠A=120°,则a 等于( )A .2B .6C .2 或6D .272、在△ABC 中,已知三边a 、b 、c 满足(a +b +c)(a +b -c)=3ab ,则∠C 等于 ( ) A .15° B .30° C .45° D .60°3、已知在△ABC 中:,sinA: sinB: sinC =3: 5 :7,那么这个三角形的最大角是 ( )A .135°B .90°C .120°D .150°4、在△ABC 中,若c 4-2(a 2+b 2)c 2+a 4+a 2b 2+b 4=0,则C 等于 ( )A .90°B .120°C .60°D .120°或60° 二、填空题:5、已知△ABC 中,A =60°,最大边和最小边是方程x 2-9x +8=0的两个正实数根,那么BC 边长______.6、△ABC 中,a 、b 分别是角A 和角B 所对的边,a =3,b =1,B 为30°,则角A 的值为______.7、在△ABC 中,cos A =135,sin B =53,则cos C 的值为______. 8、在△ABC 中,若sin A sin B =cos 22C ,则△ABC 为______.9、若三角形中有一个角为60°,夹这个角的两边的边长分别是8和5,外接圆半径等于_______. 三、解答题:10、在ABC ∆中,,15,8,2==+=+ac c a B C A 求b 的值。
1.1.1正弦定理课上讲解:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC==2R其中R 为三角形外接圆半径。
2.正弦定理的基本作用:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。
一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
3.常用变形: ①π=++C B A②C B A C B A sin )cos(,sin )sin(=+=+ ③C ab S abc sin 21=∆题型一:已知两角和一边(唯一确定)例1. 已知在B b a C A c ABC 和求中,,,30,45,1000===∆.变式练习1:1.已知ΔABC ,已知A=600,B=300,a=3;求边b=():A.3B.2C.3D.2 2.已知ΔABC 已知A=450,B=750,b=8;求边a=()A.8B.4C.43-3D.83-8 3.已知a+b=12,B=450,A=600则a=_____,b=_____题型二:已知两边和其中一边所对的角(两种情况,由y=sin x 的性质决定) 例2.在C A a c B b ABC ,,1,60,30和求中,===∆变式练习1:C B b a A c ABC ,,2,45,60和求中,===∆变式练习2:0135,ABC a A b B ∆===中,求变式练习3: 在ABC ∆中,已知角334,2245===b c B ,,则角A 的值是 A.15 B.75 C.105 D.75或15变式练习4:在ABC ∆中,若14,6760===a b B ,,则A= 。
题型三:外接圆问题 例3. 试推导在三角形中A a sin =B b sin =Ccsin =2R 其中R 是外接圆半径变式练习1:在△ABC 中,kCcB b A a ===sin sin sin ,则k 为( A 2R B RC 4RD R 2(R 为△ABC 外接圆半径)变式练习2:在ABC ∆中,5,40,20===c B A oo ,则R 2为 ( )A 、3310 B 、10 C 、25 D 、210变式练习3:在ABC ∆中,=+A Rb B R a cos 2cos 2 ( ) A 、B A sin sin + B 、)sin(B A +C 、)sin(B A -D 、)cos(B A -变式练习4:设△ABC 的外接圆半径为R ,且已知AB =4,∠C =45°,则R =________.题型四:比例问题 例4.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状.变式练习1:已知∆ABC 满足条件cos cos a A b B =,判断∆ABC 的类型。