环境流体力学第8章
- 格式:pptx
- 大小:29.64 MB
- 文档页数:67
第六章 6-1解:层流状态下雷诺数Re 2000< 60.1Re 6.710vdv υ-⨯==⨯ ⇒60.120006.710v -⨯<⨯⇒62000 6.710/0.10.134(/)v m s -<⨯⨯= 即max 0.134/v m s =223max max max 0.13.140.1340.00105/ 1.05/44d Q Av v ms L sπ===⨯⨯≈=6-2解:层流状态下雷诺数Re 2000<3Re 20000.910120000.0450.1()vd d m d ρυ-=<⨯⨯⨯⇒<⇒<6-3解:3221.66100.21(/)0.13.1444Q v m s d π-⨯==≈⨯临界状态时Re 2000=52533Re Re0.210.1 1.0510(/)20001.05100.88109.2410()vd vd m s Pa s υυυμυρ---=⇒=⨯⇒==⨯⇒==⨯⨯⨯=⨯⋅ 6-4解:当输送的介质为水时:32210101270131444.(/)..Q v m s d π-⨯===⨯ 612701838632000151910..Re .vd υ-⨯===>⨯水 3015100001501...d -∆⨯== 根据雷诺数和相对粗糙度查莫迪图可知流态为水力粗糙。
当输送的介质为石油时:质量流量与水相等3310101010(/)Q kg s -=⨯⨯=31000118850.(/)Q m s == 2200118150********..(/)..Q v m s d π===⨯ 415030113184200011410..Re .vd υ-⨯===>⨯水3015100001501...d -∆⨯== 根据雷诺数和相对粗糙度查莫迪图可知流态为水力光滑。
6-5解:判断流态需先求出雷诺数()2900036009000088023144./..Re Q v m s Avd υ÷===⨯=冬季:421101./m s υ-⨯=40088021608820001110..Re ..vd υ-⨯===<⨯ ⇒ 流态为层流。
第八章 边界层理论§8-1 边界层的基本概念实际流体和理想流体的本质区别就是前者具有粘性。
对层流而言,单位面积摩擦力的大小yud d μτ=,可以看出,对于确定的流体的等温流场,摩擦力的大小与速度梯度有关,其比例函数即动力粘度。
速度梯度yud d 大,粘性力也大,此时的流场称为粘性流场。
若速度梯度yud d 很小,则粘性力可以忽略,称为非粘性流场。
对于非粘性流场,则可按理想流体来处理。
则N-S 方程可由欧拉方程代替,从而使问题大为简化。
Vlv l lV v A y u V l tVl t u mρρμρρ======2223d d d d 粘性力惯性力当空气、蒸汽,水等小粘度的流体与其它物体作高速相对运动时,一般雷诺数很大。
由vVl==粘性力惯性力Re ,则在这些流动中,惯性力>>粘性力,所以可略去粘性力。
但在紧靠物体壁面存在一流体薄层,粘性力却与惯性力为同一数量级。
所以,在这一薄层中,两者均不能略去。
这一薄层就叫边界层,或叫速度边界层,由普朗特在1904年发现。
a .流体流过固体壁面,紧贴壁面处速度从零迅速增至主流速度,这一流体薄层,就叫边界层或速度边界层。
b .整个流场分为两部分 层外,0=∂∂yu,粘性忽略,无旋流动。
层内,粘性流,主要速度降在此,有旋流动。
c .由边界层外边界上∞=V u %99,来定义δ,δ为边界层厚度。
d .按流动状态,边界层又分为层流边界层和紊流边界层。
由于在边界层内,流体在物体表面法线方向(即yu∂∂)速度梯度很大,所以,边界层内的流体具有相当大的旋涡强度;而在层外,由于速度梯度很小。
所以,即使对于粘度很大的流体,粘性力也很小,故可忽略不计,所以可认为,图8-2空气沿平板边界层速度分布外部区域边界层边界层外的流动是无旋的势流。
边界层的基本特征有: (1)1<<Lδ⇒薄层性质,其中L 为物体的长度;沿流方向↑↑→δx 。
(2) 层内yu∂∂很大, 边界层内存在层流和紊流两种流态。
第八章 边界层理论基础一、主要内容(一)边界层的基本概念与特征1、基本概念:绕物体流动时物体壁面附近存在一个薄层,其内部存在着很大的速度梯度和漩涡,粘性影响不能忽略,我们把这一薄层称为边界层。
2、基本特征:(1)与物体的长度相比,边界层的厚度很小;(2)边界层内沿边界层厚度方向的速度变化非常急剧,即速度梯度很大; (3)边界层沿着流体流动的方向逐渐增厚;(4)由于边界层很薄,因而可以近似地认为边界层中各截面上压强等于同一截面上边界层外边界上的压强;(5)在边界层内粘性力和惯性力是同一数量级;(6)边界层内流体的流动与管内流动一样,也可以有层流和紊流2种状态。
(二)层流边界层的微分方程(普朗特边界层方程)22100y x x xy y x v pv v v v xy x y py v v x y νρ⎧∂∂∂∂+=-+⎪∂∂∂∂⎪⎪∂⎪=⎨∂⎪⎪∂∂⎪+=∂∂⎪⎩其边界条件为:在0y =处,0x y v v == 在δ=y 处,()x v v x =(三)边界层的厚度从平板表面沿外法线到流速为主流99%的距离,称为边界层的厚度,以δ表示。
边界层的厚度δ顺流逐渐加厚,因为边界的影响是随着边界的长度逐渐向流区内延伸的。
图8-1 平板边界层的厚度1、位移厚度或排挤厚度1δδδδ=-=-⎰⎰1001()(1)x x v v v dy dy v v2、动量损失厚度2δδρρ∞∞=-=-⎰⎰221()(1)x x x x v vv v v dy dy v v v(四)边界层的动量积分关系式δδρρδτ∂∂∂-=--∂∂∂⎰⎰200x x w Pv dy v v dy dx x x x对于平板上的层流边界层,在整个边界层内每一点的压强都是相同的,即P =常数。
这样,边界层的动量积分关系式变为δδτρ∞-=-⎰⎰200w x x d d v dy v v dy dx dx 二、本章难点(一)平板层流边界层的近似计算 根据三个关系式:(1)平板层流边界层的动量积分关系式;(2)层流边界层内的速度分布关系式;(3)切向应力关系式。
流体力学第八章答案【篇一:流体力学第8、10、11章课后习题】>一、主要内容(一)边界层的基本概念与特征1、基本概念:绕物体流动时物体壁面附近存在一个薄层,其内部存在着很大的速度梯度和漩涡,粘性影响不能忽略,我们把这一薄层称为边界层。
2、基本特征:(1)与物体的长度相比,边界层的厚度很小;(2)边界层内沿边界层厚度方向的速度变化非常急剧,即速度梯度很大;(3)边界层沿着流体流动的方向逐渐增厚;(4)由于边界层很薄,因而可以近似地认为边界层中各截面上压强等于同一截面上边界层外边界上的压强;(5)在边界层内粘性力和惯性力是同一数量级;(6)边界层内流体的流动与管内流动一样,也可以有层流和紊流2种状态。
(二)层流边界层的微分方程(普朗特边界层方程)??v?vy?2v1?p?vy?????vx?x?y??x?y2????p??0?y???v?vy???0?x?y??其边界条件为:在y?0处,vx?vy?0 在y??处,vx?v(x)(三)边界层的厚度从平板表面沿外法线到流速为主流99%的距离,称为边界层的厚度,以?表示。
边界层的厚度?顺流逐渐加厚,因为边界的影响是随着边界的长度逐渐向流区内延伸的。
图8-1 平板边界层的厚度1、位移厚度或排挤厚度?1?1?2、动量损失厚度?2?vx1?(v?v)dy?(1?)dy x??00vv?2?1?v2???vx(v?vx)dy???vxv(1?x)dy vv(四)边界层的动量积分关系式??2???p?vdy?v?vdy?????wdx xx??00?x?x?x对于平板上的层流边界层,在整个边界层内每一点的压强都是相同的,即p?常数。
这样,边界层的动量积分关系式变为?wd?2d?vdy?vvdy?? x?x??00dxdx?二、本章难点(一)平板层流边界层的近似计算根据三个关系式:(1)平板层流边界层的动量积分关系式;(2)层流边界层内的速度分布关系式;(3)切向应力关系式。