高中数学复习提升-集合与函数综合专题复习
- 格式:doc
- 大小:1.13 MB
- 文档页数:6
§1.3.3 集合与函数的概念(复习)1. 理解集合有关概念和性质,掌握集合的交、并、补等三种运算的,会利用几何直观性研究问题,如数轴分析、Venn 图;2. 深刻理解函数的有关概念,理解对应法则、图象等有关性质,掌握函数的单调性和奇偶性的判定方法和步骤,并会运用解决实际问题.245复习1:集合部分.① 概念:一组对象的全体形成一个集合② 特征:确定性、互异性、无序性③ 表示:列举法{1,2,3,…}、描述法{x |P } ④ 关系:∈、∉、⊆、、=⑤ 运算:A ∩B 、A ∪B 、U C A⑥ 性质:A ⊆A ; ∅⊆A ,….⑦ 方法:数轴分析、Venn 图示.复习2:函数部分.① 三要素:定义域、值域、对应法则;② 单调性:()f x 定义域内某区间D ,12,x x D ∈,12x x <时,12()()f x f x <,则()f x 的D 上递增;12x x <时,12()()f x f x >,则()f x 的D 上递减.③ 最大(小)值求法:配方法、图象法、单调法.④ 奇偶性:对()f x 定义域内任意x ,()()f x f x -=- ⇔ 奇函数;()()f x f x -= ⇔ 偶函数.特点:定义域关于原点对称,图象关于y 轴对称.二、新课导学※ 典型例题例1设集合22{|190}A x x ax a =-+-=,2{|560}B x x x =-+=,2{|280}C x x x =+-=.(1)若A B =A B ,求a 的值;(2)若φA B ,且A C =∅,求a 的值;(3)若A B =A C ≠∅,求a 的值.例2 已知函数()f x 是偶函数,且0x ≤时,1()1xf x x +=-.(1)求(5)f 的值; (2)求()0f x =时x 的值;(3)当x >0时,求()f x 的解析式.例3 设函数221()1x f x x +=-.(1)求它的定义域; (2)判断它的奇偶性;(3)求证:1()()f f x x =-;(4)求证:()f x 在[1,)+∞上递增.※动手试试练1. 判断下列函数的奇偶性:(1)222()1x xf xx+=+;(2)3()2f x x x=-;(3)()f x a=(x∈R);(4)(1)()(1)x xf xx x-⎧=⎨+⎩0,0.xx≥<练2. 将长度为20 cm的铁丝分成两段,分别围成一个正方形和一个圆,要使正方形与圆的面积之和最小,正方形的周长应为多少?三、总结提升※学习小结1. 集合的三种运算:交、并、补;2. 集合的两种研究方法:数轴分析、Venn图示;3. 函数的三要素:定义域、解析式、值域;4. 函数的单调性、最大(小)值、奇偶性的研究.※ 知识拓展要作函数()y f x a =+的图象,只需将函数()y f x =的图象向左(0)a >或向右(0)a <平移||a 个单位即可. 称之为函数图象的左、右平移变换.要作函数()y f x h =+的图象,只需将函数()y f x =的图象向上(0)h >或向下(0)h <平移||h 个单位即可. 称之为函数图象的上、下平移变换.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 若{}2|0A x x =≤,则下列结论中正确的是( ). A. 0A = B. 0AC. A =∅D. ∅A2. 函数||y x x px =+,x R ∈是( ).A .偶函数B .奇函数C .不具有奇偶函数D .与p 有关3. 在区间(,0)-∞上为增函数的是( ).A .1y =B .21x y x=+- C .221y x x =--- D .21y x =+4. 某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有 人.5. 函数()f x 在R 上为奇函数,且0x >时,()1f x =,则当0x <,()f x = .1. 数集A 满足条件:若,1a A a ∈≠,则11A a∈+. (1)若2A ∈,则在A 中还有两个元素是什么;(2)若A 为单元集,求出A 和a .2. 已知()f x 是定义在R 上的函数,设()()()2f x f x g x +-=,()()()2f x f x h x --=. (1)试判断()()g xh x 与的奇偶性;(2)试判断(),()()g x h x f x 与的关系;(3)由此你猜想得出什么样的结论,并说明理由?。
集合与函数简要复习一、 集合的表示1.下列条件能形成集合的是 ( )A .充分小的负数全体B .爱好飞机的一些人C .某班本学期视力较差的同学D .某校某班某一天所有课程2. 有以下四个命题:①“所有相当小的正数”组成一个集合;②由1,2,3,1,9组成的集合用列举法表示{}1,2,3,1,9; ③{}1,3,5,7与{}7,5,3,1表示同一个集合;④{}y x =-表示函数y x =-图像上所有点的集合。
其中正确的是( ) A 、①③ B 、①②③ C 、③ D 、③④ 3.下列各组两个集合A 和B,表示同一集合的是 ( )A .A={}π,B={}14159.3B .A={}3,2,B={})32(,C .A={}π,3,1,B={}3,1,-πD .A={}N x x x ∈≤<-,11,B={}1 4.下列集合中,结果是空集的为( )A .B .C .D .5.下列集合中,表示方程组的解集的是( )A .B .C .D .6.已知集合,则等于( )A .B .C .D .二、 子集1.设集合P={立方后等于自身的数},那么集合P 的子集个数是 ( )A .3B .4C .7D .8 2.设集合{|M x x =是小于5的质数},则M 的真子集的个数为 .3.设,,若,则实数的取值范围是 ( )A .B .C .D .ABC 4、下列关系正确的是( )A 、2Q ∈B 、{}{}22|2xx x == C 、{}{},,ab ba = D 、{}2009φ∈ 三、 集合的运算1.下列表示图形中的阴影部分的是 ( )A .()()A CBC B .()()A B A CC .()()A B B CD .()A B C2.如果集合{}8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(C A U )B 等于( )A .{}5B .{}8,7,6,5,4,3,1C .{}8,2D .{}7,3,13.已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N 为( )A .3,1x y ==-B .{3,1}-C .{(3,1)}-D .(3,1)-4.已知集合{}2|10,A x x m x A R φ=++==若,则实数m 的取值范围是 ( )A .4<mB .4>mC .40<≤m D .40≤≤m5.已知集合{|37}Ax x =≤<,{|210}Bx x =<<,则A B ⋃= 6.设U 是全集,M 、P 、S 是U 的三个子集,则阴 影部分所表示的集合为 ( ) A .(M ∩P )∩S B .(M ∩P )∪(C U S ) C .(M ∩P )∪SD .(M ∩P )∩(C U S ) 7.设全集,,,则a 的值为8.若集合{|34}Ax x =-≤≤ 和{|211}B x m x m =-≤≤+ (1)当3m =-时,求集合A B (2)当B A ⊆时,求实数m 取值范围9. 已知集合{}{}{}|37,|210,|5A x x B x x C x a x a =≤<=<<=-<<。
高中数学必修一集合与函数概念知识点总结1.元素与集合(1)元素与集合的定义:一般地,把统称为元素,把一些元素组成的叫做集合(简称为集).(2)集合中元素的性质:①确定性:即给定的集合,它的元素是.②互异性:即给定集合的元素是.③无序性.(3)集合相等:只要构成两个集合的元素是,就称这两个集合是相等的.(4)元素与集合的关系:a是集合A的元素,记作,a不是集合A的元素,记作2.集合的表示方法除了用自然语言表示集合外,还可以用和表示集合.(1)列举法:把集合中的元素,并用花括号“{}”括起来表示集合的方法.(2)描述法:用集合所含元素的表示集合的方法.3.常用数集及其记法集合自然数集正整数集整数集有理数集实数集记法4.子集的概念文字语言符号语言图形语言集合A中任意一个元素都是集合B中的元素,就说这两个集合有包含关系,则称集合A是集合B的子集5.集合相等与真子集的概念定义符号表示图形表示集合相等如果A⊆B,且B⊆A,就说集合A与B相等真子集如果集合A⊆B,但存在元素x∈B,且x∉A,则称集合A是B的真子集6.空集(1)定义:的集合叫做空集.(2)用符号表示为:(3)规定:空集是任何集合的. 是任何非空集合的7.子集的有关性质(1)任何一个集合是它本身的,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么8.集合的并集与交集的定义并集交集自然语言由所有属于集合A或属于集合B的元素组成的集合由属于集合A且属于集合B的所有元素组成的集合符号语言图形语言9.并集与交集的运算性质并集的运算性质交集的运算性质A∪B B∪A A∩B B∩AA∪A=A∩A=A∪∅=A∩∅=A⊆B⇔A∪B=A⊆B⇔A∩B=A∪B⊇A,A∪B B A∩B⊆B,A∩B A10.全集(1)定义:如果一个集合含有我们所研究问题中涉及的,那么称这个集合为全集.(2)符号表示:通常记作第1 页共4 页。
必修1 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算名称记号意义性质示意图交集A B I{|,x x A ∈且}x B ∈ (1)A A A =I (2)A ∅=∅I (3)A B A ⊆I A B B ⊆I BA并集A B U{|,x x A ∈或}x B ∈(1)A A A =U (2)A A ∅=U (3)A B A ⊇U A B B ⊇U BA补集U A ð{|,}x x U x A ∈∉且(1)()U A A =∅I ð(2)()U A A U =U ð(3)()()()U U U A B A B =I U 痧? (4)()()()U U U A B A B =U I 痧?【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应关系.③只有定义域相同,且对应关系也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:(求函数的定义域之前,尽量不要对函数的解析式进行变形,以免引起定义域的变化)①()f x 是整式型或奇次方根式型函数,定义域为全体实数。
2019年高考数学复习集合与函数易错知识点总结集合(简称集)是数学中一个基本概念, 下面是集合与函数易错知识点总结, 请考生学习掌握。
1.进行集合的交、并、补运算时, 不要忘了全集和空集的特殊情况, 不要忘记了借助数轴和文氏图进行求解。
2.在应用条件时, 易A忽略是空集的情况3.你会用补集的思想解决有关问题吗4.简单命题与复合命题有什么区别四种命题之间的相互关系是什么如何判断充分与必要条件5.你知道否命题与命题的否定形式的区别。
6.求解与函数有关的问题易忽略定义域优先的原则。
7.判断函数奇偶性时, 易忽略检验函数定义域是否关于原点对称。
8.求一个函数的解析式和一个函数的反函数时, 易忽略标注该函数的定义域。
9.原函数在区间[-a, a]上单调递增, 则一定存在反函数, 且反函数也单调递增;但一个函数存在反函数, 此函数不一定单调。
例如: 。
10.你熟练地掌握了函数单调性的证明方法吗定义法(取值, 作差, 判正负)和导数法11.求函数单调性时, 易错误地在多个单调区间之间添加符号和或单调区间不能用集合或不等式表示。
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)。
这几种基本应用你掌握了吗14.解对数函数问题时, 你注意到真数与底数的限制条件了吗(真数大于零, 底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次)的关系及应用掌握了吗如何利用二次函数求最值16.用换元法解题时易忽略换元前后的等价性, 易忽略参数的范围。
17.实系数一元二次方程有实数解转化时, 你是否注意到:当时, 方程有解不能转化为。
若原题中没有指出是二次方程, 二次函数或二次不等式, 你是否考虑到二次项系数可能为的零的情形。
高考数学总复习考点知识讲解与提升练习专题6 函数的概念及其表示考点知识1.了解函数的含义.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理1.函数的概念一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A 到集合B的一个函数,记作y=f(x),x∈A.2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为同一个函数.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.常用结论1.直线x =a 与函数y =f (x )的图象至多有1个交点.2.在函数的定义中,非空数集A ,B ,A 即为函数的定义域,值域为B 的子集.3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.(×)(2)函数y =f (x )的图象可以是一条封闭曲线.(×)(3)y =x 0与y =1是同一个函数.(×)(4)函数f (x )=⎩⎨⎧ x -1,x ≥0,x 2,x <0的定义域为R .(√) 教材改编题1.(多选)下列所给图象是函数图象的是()答案CD解析A 中,当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;B 中,当x =x 0时,y 的值有两个,因此不是函数图象;CD 中,每一个x 的值对应唯一的y 值,因此是函数图象.2.下列各组函数表示同一个函数的是()A .y =x -1与y =x 2-1x +1B .y =x -1与y =-1xC .y =2x 2与y =2xD .y =2x -1与v =2t -1答案D解析y =x -1的定义域为R ,y =x 2-1x +1的定义域为{x |x ≠-1},定义域不同,不是同一个函数,故选项A 不正确;y =x -1=1x 与y =-1x的对应关系不同,不是同一个函数,故选项B 不正确; y =2x 2=2|x |与y =2x 的对应关系不同,不是同一个函数,故选项C 不正确;y =2x -1与v =2t -1的定义域都是(-∞,1)∪(1,+∞),对应关系也相同,所以是同一个函数,故选项D 正确.3.已知函数f (x )=⎩⎨⎧ ln x ,x >0,e x ,x ≤0,则函数f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13等于() A .3B .-3C.13D .-13答案C解析由题意可知,f ⎝ ⎛⎭⎪⎫13=ln 13=-ln3,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13=f (-ln3)=e -ln3=13.题型一函数的定义域例1(1)函数y =ln (x +1)-x 2-3x +4的定义域为()A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]答案C解析由题意得⎩⎨⎧ x +1>0,-x 2-3x +4>0,解得-1<x <1,故定义域为(-1,1).(2)已知函数f (x )的定义域为(-4,-2),则函数g (x )=f (x -1)+x +2的定义域为________.答案[-2,-1)解析∵f (x )的定义域为(-4,-2),要使g (x )=f (x -1)+x +2有意义,则⎩⎨⎧ -4<x -1<-2,x +2≥0,解得-2≤x <-1,∴函数g (x )的定义域为[-2,-1).思维升华(1)无论抽象函数的形式如何,已知定义域还是求定义域,均是指其中的x 的取值集合;(2)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(3)若复合函数f (g (x ))的定义域为[a ,b ],则函数f (x )的定义域为g (x )在[a ,b ]上的值域.跟踪训练1(1)函数f (x )=1ln (x -1)+3-x 的定义域为() A .(1,3] B .(1,2)∪(2,3]C .(1,3)∪(3,+∞) D.(-∞,3)答案B解析由题意知⎩⎨⎧ x -1>0,x -1≠1,3-x ≥0,所以1<x <2或2<x ≤3, 所以函数的定义域为(1,2)∪(2,3].(2)(2023·南阳检测)已知函数f (x )=lg1-x 1+x ,则函数g (x )=f (x -1)+2x -1的定义域是()A .{x |x >2或x <0}B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 12≤x <2 C .{x |x >2}D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x ≥12答案B解析要使f (x )=lg1-x 1+x 有意义, 则1-x 1+x >0, 即(1-x )(1+x )>0,解得-1<x <1,所以函数f (x )的定义域为(-1,1).要使g (x )=f (x -1)+2x -1有意义,则⎩⎨⎧ -1<x -1<1,2x -1≥0,解得12≤x <2, 所以函数g (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 12≤x <2.题型二函数的解析式例2(1)已知f (1-sin x )=cos 2x ,求f (x )的解析式;(2)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x 2,求f (x )的解析式; (3)已知f (x )是一次函数且3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.(4)已知f (x )满足2f (x )+f (-x )=3x ,求f (x )的解析式.解(1)(换元法)设1-sin x =t ,t ∈[0,2],则sin x =1-t ,∵f (1-sin x )=cos 2x =1-sin 2x ,∴f (t )=1-(1-t )2=2t -t 2,t ∈[0,2].即f (x )=2x -x 2,x ∈[0,2].(2)(配凑法)∵f ⎝⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2, ∴f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(3)(待定系数法)∵f (x )是一次函数,可设f (x )=ax +b (a ≠0),∴3[a (x +1)+b ]-2[a (x -1)+b ]=2x +17.即ax +(5a +b )=2x +17,∴⎩⎨⎧ a =2,5a +b =17,解得⎩⎨⎧ a =2,b =7.∴f (x )的解析式是f (x )=2x +7.(4)(解方程组法)∵2f (x )+f (-x )=3x ,①∴将x 用-x 替换,得2f (-x )+f (x )=-3x ,②由①②解得f (x )=3x .思维升华函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法.跟踪训练2(1)已知f (x -1)=x 2+4x -5,则f (x )的解析式是()A .f (x )=x 2+6xB .f (x )=x 2+8x +7C .f (x )=x 2+2x -3D .f (x )=x 2+6x -10答案A解析f (x -1)=x 2+4x -5,设x -1=t ,x =t +1,则f (t )=(t +1)2+4(t +1)-5=t 2+6t ,故f (x )=x 2+6x . (2)若f ⎝ ⎛⎭⎪⎫1x =x 1-x,则f (x )=________. 答案1x -1(x ≠0且x ≠1) 解析f (x )=1x 1-1x=1x -1(x ≠0且x ≠1). (3)已知函数f (x )满足f (x )+2f ⎝ ⎛⎭⎪⎫-1x =3x ,则f (2)等于() A .-3B .3C .-1D .1答案A解析f (x )+2f ⎝ ⎛⎭⎪⎫-1x =3x ,① 则f ⎝ ⎛⎭⎪⎫-1x +2f (x )=-3x ,② 联立①②解得f (x )=-2x -x ,则f (2)=-22-2=-3. 题型三分段函数例3(1)已知函数f (x )=⎩⎨⎧ f (x -1),x >0,-ln (x +e )+2,x ≤0,则f (2024)的值为() A .-1B .0C .1D .2答案C解析因为f (x )=⎩⎨⎧ f (x -1),x >0,-ln (x +e )+2,x ≤0,所以f (2024)=f (2023)=f (2022)=…=f (1),又f (1)=f (1-1)=f (0)=-ln(0+e)+2=-1+2=1,所以f (2024)=1.(2)已知函数f (x )=⎩⎨⎧ -x 2-3x +2,x <-1,2x -3,x ≥-1,若f (a )=4,则实数a 的值是________;若f (a )≥2,则实数a 的取值范围是________.答案-2或5[-3,-1)∪[4,+∞)解析若f (a )=4,则⎩⎨⎧a <-1,-a 2-3a +2=4或⎩⎨⎧ a ≥-1,2a -3=4, 解得a =-2或a =5. 若f (a )≥2,则⎩⎨⎧ a <-1,-a 2-3a +2≥2或⎩⎨⎧ a ≥-1,2a -3≥2,解得-3≤a <-1或a ≥4,∴a 的取值范围是[-3,-1)∪[4,+∞).思维升华分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.跟踪训练3(1)已知函数f (x )=⎩⎨⎧ x +2,x ≤0,x +1x ,x >0,若f (f (a ))=2,则a 等于() A .0或1B .-1或1C .0或-2D .-2或-1答案D解析令f (a )=t ,则f (t )=2,可得t =0或t =1,当t =0时,即f (a )=0,显然a ≤0,因此a +2=0⇒a =-2,当t =1时,即f (a )=1,显然a ≤0,因此a +2=1⇒a =-1,综上所述,a =-2或-1.(2)(2023·重庆质检)已知函数f (x )=⎩⎨⎧log 2x ,x >1,x 2-1,x ≤1,则f (x )<f (x +1)的解集为________.答案⎝ ⎛⎭⎪⎫-12,+∞解析当x ≤0时,x +1≤1,f (x )<f (x +1)等价于x 2-1<(x +1)2-1,解得-12<x ≤0;当0<x ≤1时,x +1>1,此时f (x )=x 2-1≤0,f (x +1)=log 2(x +1)>0,∴当0<x ≤1时,恒有f (x )<f (x +1);当x >1时,x +1>2,f (x )<f (x +1)等价于log 2x <log 2(x +1),此时也恒成立.综上,不等式f (x )<f (x +1)的解集为⎝ ⎛⎭⎪⎫-12,+∞. 课时精练1.函数f (x )=lg(x -2)+1x -3的定义域是() A .(2,+∞) B.(2,3)C .(3,+∞) D.(2,3)∪(3,+∞)答案D解析∵f (x )=lg(x -2)+1x -3, ∴⎩⎨⎧ x -2>0,x -3≠0,解得x >2,且x ≠3,∴函数f (x )的定义域为(2,3)∪(3,+∞).2.(2023·三明模拟)已知集合A ={x |-2<x ≤1},B ={x |0<x ≤4},则下列对应关系中是从集合A 到集合B 的函数是()A .f :x →y =x +1B .f :x →y =e xC .f :x →y =x 2D .f :x →y =|x |答案B解析对于A ,当x =-1时,由f :x →y =x +1得y =0,但0∉B ,故A 错误;对于B,因为从A={x|-2<x≤1}中任取一个元素,通过f:x→y=e x在B={x|0<x≤4}中都有唯一的元素与之对应,故B正确;对于C,当x=0时,由f:x→y=x2得y=0,但0∉B,故C错误;对于D,当x=0时,由f:x→y=|x|得y=0,但0∉B,故D错误.3.已知f(x3)=lg x,则f(10)的值为()A.1B.310C.13D.1310答案C解析令x3=10,则x=13 10,∴f(10)=lg1310=13.4.图中的文物叫做“垂鳞纹圆壶”,是甘肃礼县出土的先秦时期的青铜器皿,其身流线自若、纹理分明,展现了古代中国精湛的制造技术.科研人员为了测量其容积,以恒定的流速向其内注水,恰好用时30秒注满,设注水过程中,壶中水面高度为h,注水时间为t,则下面选项中最符合h关于t的函数图象的是()答案A解析水壶的结构:底端与上端细、中间粗,所以在注水恒定的情况下,开始水的高度增加的快,中间增加的慢,最后又变快, 由图可知选项A 符合.5.函数y =1+x -1-2x 的值域为()A.⎝ ⎛⎭⎪⎫-∞,32B.⎝ ⎛⎦⎥⎤-∞,32 C.⎝ ⎛⎭⎪⎫32,+∞D.⎣⎢⎡⎭⎪⎫32,+∞ 答案B 解析设1-2x =t ,则t ≥0,x =1-t 22,所以y =1+1-t 22-t =12(-t 2-2t +3)=-12(t +1)2+2,因为t ≥0,所以y ≤32.所以函数y =1+x -1-2x 的值域为⎝ ⎛⎦⎥⎤-∞,32. 6.已知函数f (x )=⎩⎨⎧ -x 2+2x +3,x ≤2,6+log a x ,x >2(a >0且a ≠1),若函数f (x )的值域是(-∞,4],则实数a 的取值范围是()A.⎝ ⎛⎭⎪⎫22,1B.⎣⎢⎡⎭⎪⎫22,1 C .(1,2] D .(1,2)答案B解析当x ≤2时,f (x )=-x 2+2x +3=-(x -1)2+4,当x =1时,f (x )=-x 2+2x +3取得最大值4,所以当x ≤2时,函数f (x )的值域是(-∞,4],所以当x >2时,函数f (x )=6+log a x 的值域为(-∞,4]的子集,当a >1时,f (x )=6+log a x 在(2,+∞)上单调递增,此时f (x )>f (2)=6+log a 2>6,不符合题意,当0<a <1时,f (x )=6+log a x 在(2,+∞)上单调递减,此时f (x )<f (2)=6+log a 2≤4,即log a 2≤-2,所以a 2≥12,可得22≤a <1,所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫22,1.7.(多选)下列四个函数,定义域和值域相同的是() A .y =-x +1B .133,0,1,0x x y x x ⎧≤⎪=⎨⎪>⎩C .y =ln|x |D .y =2x -1x -2答案ABD解析对A ,函数的定义域和值域都是R ;对B ,根据分段函数和幂函数的性质,可知函数的定义域和值域都是R ;对C ,函数的定义域为(-∞,0)∪(0,+∞),值域为R ;对D ,因为函数y =2x -1x -2=2+3x -2,所以函数的定义域为(-∞,2)∪(2,+∞),值域为(-∞,2)∪(2,+∞).所以ABD 是定义域和值域相同的函数.8.(多选)函数概念最早是在17世纪由德国数学家莱布尼茨提出的,后又经历了贝努利、欧拉等人的改译.1821年法国数学家柯西给出了这样的定义:在某些变数存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着确定时,则称最初的变数叫自变量,其他的变数叫做函数.德国数学家康托尔创立的集合论使得函数的概念更严谨.后人在此基础上构建了高中教材中的函数定义:“一般地,设A ,B 是两个非空的数集,如果按某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个函数”,则下列对应法则f 满足函数定义的有()A .f (x 2)=|x |B .f (x 2)=xC .f (cos x )=xD .f (e x )=x答案AD解析令t =x 2(t ≥0),f (t )=|±t |=t ,故A 符合函数定义;令t =x 2(t ≥0),f (t )=±t ,设t =4,f (t )=±2,一个自变量对应两个函数值,故B 不符合函数定义;设t =cos x ,当t =12时,x 可以取±π3等无数多个值,故C 不符合函数定义; 令t =e x (t >0),f (t )=ln t ,故D 符合函数定义.9.已知函数f (x )=⎩⎨⎧ cos x ,x <0,f (x -π),x >0,则f ⎝ ⎛⎭⎪⎫11π3=________. 答案12解析由已知得f ⎝ ⎛⎭⎪⎫11π3=f ⎝ ⎛⎭⎪⎫8π3=f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫2π3=f ⎝ ⎛⎭⎪⎫-π3=cos ⎝ ⎛⎭⎪⎫-π3=12.10.已知f (x )=x -1,则f (x )=________.答案x 2-1(x ≥0)解析令t =x ,则t ≥0,x =t 2,所以f (t )=t 2-1(t ≥0),即f (x )=x 2-1(x ≥0).11.已知函数f (x )的定义域为[-2,2],则函数g (x )=f (2x )+1-2x 的定义域为__________.答案[-1,0]解析由条件可知,函数的定义域需满足⎩⎨⎧ -2≤2x ≤2,1-2x ≥0,解得-1≤x ≤0,所以函数g (x )的定义域是[-1,0].12.已知f (x )=⎩⎨⎧ 2x +3,x >0,x 2-4,x ≤0,若f (a )=5,则实数a 的值是__________;若f (f (a ))≤5,则实数a 的取值范围是__________.答案1或-3[-5,-1]解析①当a >0时,2a +3=5,解得a =1;当a ≤0时,a 2-4=5,解得a =-3或a =3(舍).综上,a =1或-3.②设t =f (a ),由f (t )≤5得-3≤t ≤1.由-3≤f (a )≤1,解得-5≤a ≤-1.13.(2022·广州模拟)已知定义在R 上的函数f (x )满足,f (1-x )+2f (x )=x 2+1,则f (1)等于()A .-1B .1C .-13D.13答案B解析∵定义在R 上的函数f (x )满足,f (1-x )+2f (x )=x 2+1,∴当x =0时,f (1)+2f (0)=1,①当x =1时,f (0)+2f (1)=2,②②×2-①,得3f (1)=3,解得f (1)=1.14.(2023·南昌模拟)已知函数f (x )=⎩⎨⎧x +3,x ≤0,x ,x >0,若f (a -3)=f (a +2),则f (a )等于()A .2B.2C .1D .0答案B解析作出函数f (x )的图象,如图所示.因为f (a -3)=f (a +2),且a -3<a +2,所以⎩⎨⎧ a -3≤0,a +2>0,即-2<a ≤3,此时f (a -3)=a -3+3=a ,f (a +2)=a +2,所以a =a +2,即a 2=a +2,解得a =2或a =-1(不满足a =a +2,舍去),则f (a )= 2.15.∀x ∈R ,用M (x )表示f (x ),g (x )中最大者,M (x )={|x |-1,1-x 2},若M (n )<1,则实数n 的取值范围是()A .(-2,2)B .(-2,0)∪(0,2)C .[-2,2]D .(-2,2)答案B解析当x ≥0时,若x -1≥1-x 2,则x ≥1,当x <0时,若-x -1≥1-x 2,则x ≤-1,所以M (x )=⎩⎨⎧ |x |-1,x ≥1或x ≤-1,1-x 2,-1<x <1,若M (n )<1,则当-1<n <1时,1-n 2<1⇒-n 2<0⇒n ≠0,即-1<n <0或0<n <1, 当n ≥1或n ≤-1时,|n |-1<1,解得-2<n ≤-1或1≤n <2,综上,-2<n <0或0<n <2.16.(多选)德国数学家狄利克雷在数学领域成就显著,以其名字命名的函数F (x )=⎩⎨⎧ 1,x 为有理数,0,x 为无理数被称为狄利克雷函数.关于狄利克雷函数,下列说法正确的是()A .F (F (x ))=0B .对任意x ∈R ,恒有F (x )=F (-x )成立C .任取一个不为0的实数T ,F (x +T )=F (x )对任意实数x 均成立D .存在三个点A (x 1,F (x 1)),B (x 2,F (x 2)),C (x 3,F (x 3)),使得△ABC 为等边三角形答案BD解析∵当x为有理数时,F(x)=1,当x为无理数时,F(x)=0,当x为有理数时,F(F(x))=F(1)=1,当x为无理数时,F(F(x))=F(0)=1,所以F(F(x))=1恒成立,故A错误;因为有理数的相反数是有理数,无理数的相反数是无理数,所以对任意x∈R,恒有F(x)=F(-x)成立,故B正确;若x是有理数,T是有理数,则x+T是有理数;若x是有理数,T是无理数,则x+T是无理数;若x是无理数,则x+T是无理数或有理数,所以任取一个不为0的实数T,F(x+T)=F(x)不恒成立,故C错误;取x1=-33,x2=0,x 3=33,可得F(x1)=0,F(x2)=1,F(x3)=0,所以A⎝⎛⎭⎪⎫-33,0,B(0,1),C⎝⎛⎭⎪⎫33,0,恰好△ABC为等边三角形,故D正确.。
高中数学集合与函数的概念知识点归纳与常考题型专题练习(附解析)知识点:第一章集合与函数概念1.1 集合1.1.1集合的含义与表示【知识要点】1、集合的含义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
2、集合的中元素的三个特性(1)元素的确定性;(2)元素的互异性;(3)元素的无序性2、“属于”的概念我们通常用大写的拉丁字母A,B,C, ……表示集合,用小写拉丁字母a,b,c, ……表示元素如:如果a是集合A的元素,就说a属于集合A 记作a∈A,如果a不属于集合A 记作a∉A 3、常用数集及其记法非负整数集(即自然数集)记作:N;正整数集记作:N*或N+ ;整数集记作:Z;有理数集记作:Q;实数集记作:R4、集合的表示法(1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
(2)描述法:用集合所含元素的公共特征表示集合的方法称为描述法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2}(3)图示法(Venn图)1.1.2 集合间的基本关系【知识要点】1、“包含”关系——子集一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B2、“相等”关系如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B A B B A且⇔⊆⊆3、真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A⊂B(或B⊃A)4、空集不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集.1.1.3 集合的基本运算【知识要点】1、交集的定义一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作“A 交B”),即A∩B={x| x∈A,且x∈B}.2、并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。
高中数学总复习题总结第一章 集合与函数概念一、选择题1.设全集U ={(x ,y )| x ∈R ,y ∈R },集合M =⎭⎬⎫⎩⎨⎧1=2-3-|),(x y y x , P ={(x ,y )| y ≠x +1},那么C U (M ∪P )等于( ).A .∅B .{(2,3)}C .(2,3)D .{(x ,y )| y =x +1}2.若A ={a ,b },B ⊆A ,则集合B 中元素的个数是( ). A .0B .1C .2D .0或1或23.函数y =f (x )的图象与直线x =1的公共点数目是( ). A .1B .0C .0或1D .1或24.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是( ). A .2x +1B .2x -1C .2x -3D .2x +75. 已知函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则( ).A .b ∈(-∞,0)B .b ∈(0,1)C .b ∈(1,2)D .b ∈(2,+∞)6.设函数f (x )=⎩⎨⎧00++2 x c x c bx x ,,≤, 若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( ).A .1B .2C .3D .47.设集合A ={x | 0≤x ≤6},B ={y | 0≤y ≤2},下列从A 到B 的对应法则f 不是映(第5题)>射的是( ).A .f :x →y =21x B .f :x →y =31xC .f :x →y =41x D .f :x →y =61x 8.有下面四个命题:①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称;④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R ). 其中正确命题的个数是( ). A .1B .2C .3D .49.函数y =x 2-6x +10在区间(2,4)上是( ). A .递减函数B .递增函数C .先递减再递增D .先递增再递减10.二次函数y =x 2+bx +c 的图象的对称轴是x =2,则有( ). A .f (1)<f (2)<f (4) B .f (2)<f (1)<f (4) C .f (2)<f (4)<f (1)D .f (4)<f (2)<f (1)二、填空题11.集合{3,x ,x 2-2x }中,x 应满足的条件是 .12.若集合A ={x | x 2+(a -1)x +b =0}中,仅有一个元素a ,则a =___,b =___. 13.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为 元.14.已知f (x +1)=x 2-2x ,则f (x )= ;f (x -2)= . 15.y =(2a -1)x +5是减函数,求a 的取值范围 .16.设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(1+x3),那么当x∈(-∞,0]时,f(x)=.三、解答题17.已知集合A={x∈R| ax2-3x+2=0},其中a为常数,且a∈R.①若A是空集,求a的范围;②若A中只有一个元素,求a的值;③若A中至多只有一个元素,求a的范围.18.已知M ={2,a ,b },N ={2a ,2,b 2},且M =N ,求a ,b 的值.19.证明f (x )=x 3在R 上是增函数.20.判断下列函数的奇偶性: (1)f (x )=3x 4+21x ;(2)f (x )=(x -1)xx-+11; (3)f (x )=1-x +x -1;(4)f (x )=12-x +21x -.高一数学必修1第二章单元测试题(A 卷)班级 姓名 分数一、选择题:(每小题5分,共30分)。
丰城九中高一30班集合与函数专题复习
刘庆龙
一、集合问题
分类讨论思想、韦恩图法、数轴
1.已知集合,,则的子集个数为()
A.B.C.D.
2.集合,,若,则的取值范围是()
A.B.C.D.
3.满足{}M
b
a⊆
,{}
e
d
c
b
a,
,
,
,的集合M的个数为().
A. 6 B. 7 C. 8 D. 9
4.若A
x∈,则A
x
∈
1
,就称A是伙伴关系集合,集合
⎭
⎬
⎫
⎩
⎨
⎧
-
=3,2,
2
1
,0,1
M的所有非空
子集中具有伙伴关系的集合的个数是( )
A. 1 B. 3 C. 7 D. 31
5.设全集,集合,集合,则图中阴影部分所表示的集
合是________.
6.已知集合,若,则的取值范围为________.
7. 集合U=R,集合A={x|x2+mx+2=0},B={x|x2-5x+n=0},A∩B≠∅,且(∁U A)∩B={2},
求集合A.
8.已知集合{}1
1
|
,
,1
1
1
2
|+
≤
≤
-
=
⎭
⎬
⎫
⎩
⎨
⎧
∈
≤
+
-
=a
x
a
x
B
R
x
x
x
x
A.
(1)求集合A;
(2)若()B
A
C
B
R
=
,求实数a的取值范围.
9.集合{}()
{}{}N
k
k
x
x
M
a
x
a
x
x
B
x
x
x
A∈
-
=
=
=
-
+
+
+
=
=
+
=,
4
|
,0
1
1
2
|
,0
4
|2
2
2.
(1)若7
=
a,求()B
C
A
M
;
(2)如果A
B
A=
,求实数a的取值范围.
第1页/(共12页)第2页/(共12页)
二、求函数的定义域与值域
值域(最值)的求法:
1、图像法
2、配方法
3、单调性法
4、不等式变形法
5、分离常数法
6、反解法(有界性法)
7、换元法
1.设
(1)若的定义域为,求的范围;
(2)若的值域为,求的范围.
2.求函数y=
1
4
⎛⎫
⎪
⎝⎭
x-
1
2
⎛⎫
⎪
⎝⎭
x+1在[-3,2]上的值域.
3.求下列函数的值域:
(1);
(2);
(3);
(4).
三、求函数的解析式
(1)代入法(2)待定系数法(3)换元法(4)构造方程组法(5)赋值法
1.若函数(常数,)是偶函数,且它的值域为,则该函数的解析式__________.
2.求下列函数的解析式:
(1)已知二次函数满足,求的解析式;
(2)已知,求的解析式;
(3)若对于任意x,满足,求的解析式;
(4)设是R上的函数,且满足,并且对任意的实数x,y都有,求的解析式.
3.已知二次函数, 若, 且函数的值域为.
(1) 求函数的解析式;
(2) 若函数, 当时, 记的值域分别为,, 求实数的值.四、二次函数
1、求二次函数解析式(一般式、顶点式、交点式)
2、三个“二次”的关系
3、含参二次函数的最值问题
(1)动轴定区间(2)定轴动区间上
思路:数形结合、利用对称轴与区间关系分类讨论
1.已知a,b,c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则( ) A.a>0,4a+b=0B.a<0,4a+b=0
C.a>0,2a+b=0D.a<0,2a+b=0
2.已知函数,的解集为.
(1)求的值;
(2)若关于的不等式恒成立,求实数的取值范围.
3. 二次函数f(x)满足f(x+1)–f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)当x∈[–1,1]时,不等式f(x)>2x+m恒成立,求实数m的取值范围.
第5页/(共12页)第6页/(共12页)
4. 已知函数()y f x =是二次函数,且满足(0)3f =,(1)(3)0f f -== (1)求()y f x =的解析式;
(2)若[,2]x t t ∈+,试将()y f x =的最大值表示成关于t 的函数()g t .
5. 已知二次函数()f x 满足(1)()2f x f x x +-=且(0)1f =. (1)求()f x 的解析式;
(2)设[]()(2),1,1g t f t a t =+∈-,求()g t 的最大值.
6. 已知二次函数()f x 满足(1)()2f x f x x +-=且(0)1f =. (1)求()f x 的解析式;
(2)设[]()(2),1,1g t f t a t =+∈-,求()g t 的最大值.
五、单调性与奇偶性综合
1. 单调区间的求法
(1)图像法
(2)性质法(增+增=增;增-减=增;减-增=减;减+减=减) (3)复合函数
))((x g f 同增异减法
2. 奇偶性的判断方法
(1)定义法(计算)(x f -与)(x f 关系)
(2)性质法(奇*奇=偶,奇*偶=奇,偶*奇=奇)) (3)图像法
3. 抽象函数不等式的解法: 将问题转化为()()f f >,利用单调性去f
1. 定义在[–2,2]上的偶函数g (x )满足:当x ≥0时,g (x )单调递减.若g (1–m )<g (m ),求m 的取值范围__________.
2. 设函数()4
53a f x x a x
+=
-+为定义在(–∞,0)∪(0,+∞)上的奇函数. (1)求实数a 的值;
(2)判断函数f (x )的单调性,并用定义法证明f (x )在(0,+∞)上的单调性.
3.已知函数f(x)=21
1
x
x
-
+
,则f(x)
A.在(–∞,0)上单调递增B.在(0,+∞)上单调递增C.在(–∞,0)上单调递减D.在(0,+∞)上单调递减4.下列判断正确的是
A.函数f(x)=
22
2
x x
x
-
-
是奇函数 B.函数f(x)=|x +1|+|x–1|是偶函数
C .函数f(x)=21
x+是非奇非偶函数 D.函数f(x)=1既是奇函数又是偶函数
5.若f(x)= 是R上的单调递增函数,则实数a
的取值范围为()
A.(1,+∞)
B.(4,8)C.[4,8)
D.(1,8)
6.函数的单调增区间是().
A.B.C .D .
7.设函数则满足的的取值范围是()
A.B.C.D.
8.已知,若时,,则的取值范围是()
9.设函数满足,且是上的增函数,则,,
的大小关系是()
A.B.C.D.
10.已知函数f(x)=为定义是区间[-2a,3a-1]上的奇函数,则a+b=________.
11.已知f(x)是定义在(-∞,+∞)内的减函数,其图象经过A(-4,1),B(0,-1)两点,不等式|f(x-2)|<1
的解集是_____.
12.函数的单调递增区间是________.
11.设a =20.3,b=30.2,c=70.1,则a,b,c的大小关系为( )
A.a<c<b B.c<a<b
C.a<b<c D.c<b<a
13.已知实数a,b满足等式 2 016a=2 017b,下列五个关系式:
①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的关系式有________个.
14.已知,函数.
()当时,求函数在区间上的最小值.
()设,函数在上既有最大值又有最小值,分别求出,的取值范围(用表示).
第9页/(共12页)第10页/(共12页)
15.已知定义域为R 的函数()1222
x x b
f x +-+=+是奇函数.
(1)求b 的值;
(2)判断函数()f x 的单调性,并用定义证明;
(3)当1,32x ⎡⎤∈⎢⎥⎣⎦
时, ()
()2210f kx f x +->恒成立,求实数k 的取值范围.
16.已知函数
(1)当时,求满足
的的取值:
(2)若函数
是定义在上的奇函数 ①存在
,不等式
有解,求的取值范围;
②若函数满足,若对任意,不等式恒成立,
求实数的最大值。