拉氏变换及其反变换
- 格式:ppt
- 大小:863.00 KB
- 文档页数:24
拉氏变换与反变换机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。
按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。
拉普拉斯变换的定义如果有一个以时间 t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,那么 ()t f 的拉普拉斯变换定义为()()()0e d st F s L f t f t t ∞-=∆⎡⎤⎣⎦⎰式中, s 是复变数, ωσj +=s (σ、ω均为实数), ⎰∞-0e st称为拉普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。
式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数)(s F 。
几种典型函数的拉氏变换1.单位阶跃函数 )(1t 的拉氏变换单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为⎩⎨⎧≥<∆)0(1)0(0)(1t t t单位阶跃函数如图所示,它表示在 0=t 时刻突然作用于系统一个幅值为1的不变量。
单位阶跃函数的拉氏变换式为0e 1d e )(1)](1[)(0∞-===-∞-⎰stst st t t L s F 当 0)Re(>s ,则 0e lim →-∞→st t 。
所以[]s s s t L st 1)1(00e 1)(1=⎥⎦⎤⎢⎣⎡--=∞-=-()图 单位阶跃函数 2.指数函数的拉氏变换指数函数也是控制理论中经常用到的函数,其中 是常数。
令则与求单位阶跃函数同理,就可求得()3.正弦函数与余弦函数的拉氏变换 设,,则由欧拉公式,有所以⎥⎦⎤⎢⎣⎡-=-∞--∞⎰⎰t t s F st t stt d e e d e e j 21)(0j 0j 1ωω ⎥⎦⎤⎢⎣⎡-=-∞+-∞--⎰⎰t t stt s t s d e e d e j 210)j (0)j (ωω⎥⎥⎦⎤⎢⎢⎣⎡∞+-∞--=+---0e j 10e j 1j21)j ()j (t s t s s s ωωωω22j 1j 1j 21ωωωω+=⎪⎪⎭⎫ ⎝⎛+--=s s s) 同理)4.单位脉冲函数 δ(t ) 的拉氏变换单位脉冲函数是在持续时间期间幅值为的矩形波。
2.5 拉氏变换与反变换机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。
按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。
2.5.1 拉普拉斯变换的定义如果有一个以时间 为自变量的实变函数 ,它的定义域是 ,那么 的拉普拉斯变换定义为(2.10)式中, 是复变数, (σ、ω均为实数), 称为拉普拉斯积分;是函数的拉普拉斯变换,它是一个复变函数,通常也称 为 的象函数,而称为 的原函数;L 是表示进行拉普拉斯变换的符号。
式(2.10)表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域与之等价的复变函数。
2.5.2 几种典型函数的拉氏变换1.单位阶跃函数的拉氏变换单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能的标准输入,这一函数定义为单位阶跃函数如图2.7所示,它表示在 时刻突然作用于系统一个幅值为1的不变量。
单位阶跃函数的拉氏变换式为t ()t f 0≥t ()t f ()()()0e d stF s L f t f t t ∞-=∆⎡⎤⎣⎦⎰s ωσj +=s ⎰∞-0e st )(s F )(t f )(s F )(t f )(t f )(s F )(s F )(1t ⎩⎨⎧≥<∆)0(1)0(0)(1t t t 0=t当 ,则 。
所以(2.11)图2.7 单位阶跃函数2.指数函数的拉氏变换指数函数也是控制理论中经常用到的函数,其中 是常数。
令则与求单位阶跃函数同理,就可求得(2.12)3.正弦函数与余弦函数的拉氏变换设,,则0e 1d e )(1)](1[)(0∞-===-∞-⎰stst st t t L s F 0)Re(>s 0e lim →-∞→st t []s s s t L st 1)1(00e 1)(1=⎥⎦⎤⎢⎣⎡--=∞-=-由欧拉公式,有所以(2.13)同理(2.14)4.单位脉冲函数 δ(t ) 的拉氏变换单位脉冲函数是在持续时间期间幅值为的矩形波。
拉氏变换和反变换公式拉氏变换和反变换公式,这可真是数学领域里相当重要且有点“烧脑”的一部分内容。
咱先来说说拉氏变换,它就像是一个神奇的魔法工具,能把在时域里看起来复杂得让人头疼的函数,给变到复频域里,让咱们能更方便地分析和处理。
比如说,一个随时间变化得乱七八糟的信号,经过拉氏变换之后,可能就会变得有规律、好理解多啦。
我记得有一次给学生们讲拉氏变换的时候,有个学生瞪着大眼睛问我:“老师,这拉氏变换到底有啥用啊?感觉好难啊!”我笑着跟他说:“你就想象你要跑一段很长很乱的路,这路一会儿上坡一会儿下坡,一会儿还有石头挡着。
拉氏变换就像是给你变出一双翅膀,让你能从空中看这段路,一下子就清楚路的走向和特点啦!”这孩子似懂非懂地点点头。
那拉氏变换的公式呢,一般是对于一个函数 f(t) ,它的拉氏变换 F(s) 等于从 0 到正无穷对 e 的 -st 次方乘以 f(t) 进行积分。
这里的 s 是个复数,这公式看起来可能有点复杂,但其实只要多做几道题,多练习练习,也就慢慢熟悉了。
再来说说反变换,它就是把在复频域里的函数变回时域里的原来的样子。
就像是你把东西变到了另一个世界,现在又要把它给变回来。
反变换的公式也有不少方法可以求解,像部分分式展开法、留数法等等。
给大家举个例子啊,比如说有一个函数 F(s) = (s + 1) / (s^2 + 2s + 2) ,咱们要把它通过反变换变回时域里的函数 f(t) 。
首先,把 F(s) 进行部分分式展开,得到 F(s) = 1 / (s + 1 + i) + 1 / (s + 1 - i) ,然后根据反变换的公式和一些常见函数的拉氏变换对,就能求出 f(t) = e^(-t) cos(t) 。
在学习拉氏变换和反变换公式的过程中,大家可别着急,一步一个脚印,多做练习,多思考,慢慢地就能掌握这个神奇的工具啦!相信大家都能在数学的世界里越走越远,越学越厉害!。
拉氏变换常用公式拉氏变换是一种重要的数学工具,广泛应用于信号处理、控制系统分析和电路设计等领域。
本文将介绍拉氏变换常用的公式,包括重要的拉氏变换和反变换公式,以及一些常见的拉氏变换性质。
1. 拉氏变换公式拉氏变换公式是将一个时间域函数变换成复频域的函数。
以下是一些常用的拉氏变换公式:(1)常数信号的拉氏变换:如果输入信号为常数,即f(t)=A,其拉氏变换为F(s) = A/s,其中A 为常数。
(2)指数信号的拉氏变换:指数信号的拉氏变换公式为:f(t) = e^(at) -> F(s) = 1/(s-a),其中a为常数。
(3)单位冲激信号的拉氏变换:单位冲激信号的拉氏变换公式为:f(t) = δ(t) -> F(s) = 1,其中δ(t)表示单位冲激函数。
(4)正弦信号的拉氏变换:正弦信号的拉氏变换公式为:f(t) = sin(ωt) -> F(s) = ω/(s^2 + ω^2)。
其中ω为正弦信号的频率。
2. 拉氏反变换公式拉氏反变换是将复频域函数转换回时间域函数的过程,以下是一些常用的拉氏反变换公式:(1)常数信号的拉氏反变换:对于F(s) = A/s,其拉氏反变换为f(t) = A。
(2)指数信号的拉氏反变换:对于F(s) = 1/(s - a),其拉氏反变换为f(t) = e^(at),其中a为常数。
(3)单位冲激信号的拉氏反变换:对于F(s) = 1,其拉氏反变换为f(t) = δ(t)。
(4)正弦信号的拉氏反变换:对于F(s) = ω/(s^2 + ω^2),其拉氏反变换为f(t) = sin(ωt)。
3. 拉氏变换的性质拉氏变换具有一些重要的性质,其中包括线性性质、时间平移性质、频率平移性质、频率缩放性质、卷积定理等,这些性质对于信号处理和系统分析非常有用。
(1)线性性质:拉氏变换具有线性性质,即对于输入信号f1(t)和f2(t),以及相应的拉氏变换F1(s)和F2(s),有以下性质成立:a1*f1(t) + a2*f2(t) -> a1*F1(s) + a2*F2(s)。
拉氏变换和反变换拉氏变换的作用: 用拉氏变换求解线性微分方程可将微分运算转化为代数运算;可将系统的微分运动方程转化为传递函数,并由此发展出用传递函数的零点分布、频率特性等间接地分析和设计控制系统的工程方法。
一、 拉氏变换的定义⎰∞-==0)()]([)(dt e t f t f L s F st (0≥t )其中 ωσj s += 是一复变函数,F(s)称为象函数,f(t)称为原函数。
意义: 在一定条件下把一实数域中的实变函数f(t)转换为一个在复数域内与之等价的复变函数F(s)。
二、几种典型函数的拉氏变换1、单位阶跃函数1(t)定义:⎩⎨⎧≥<=)0(1)0(0)(1t t tss e s dt e t t L s F stst 1)1(01)(1)](1[)(0=--=-===∞-∞-⎰2、指数函数at e t f -=)((a 为常数)as e as dt e dt e e e L s F ta s t a s st at at +=+-====∞+-∞+-∞---⎰⎰11][)(0)(0)(03、正、余弦函数t t f ωsin )(1=,t t f ωcos )(2=⎰∞-⋅==01sin ][sin )(dt e t t L s F st ωω由欧拉公式: je e t tj t j 2sin ωωω--=220)(0)(0)(0)(001)11(21)11(21)(21)(21)(ωωωωωωωωωωωω+=+--=++--=-=-=∞+-∞--∞+-∞--∞--∞-⎰⎰⎰⎰s j s j s j e j s e j s j dt e dt e j dt e e dt e e j s F tj s t j s t j s t j s st t j st t j同理: 222][cos )(ωω+==s st L s F4、单位脉冲函数)(t δ的拉氏变换定义: ⎪⎩⎪⎨⎧≤≤><=→)0(1lim ),0(0)(0εεεδεt t t t1)!2(1lim )]!21(1[1lim )1(1lim 1lim 1lim1lim)]([)(2202200000=+-=-+--=-=-⋅====∆→→-→-→-→-∞→⎰⎰ s s s s s s e ss e dt e dt et L s s st st stεεεεεεεεεεδεεεεεεεεε5、单位速度函数的拉氏变换定义: ⎩⎨⎧<≥=)0(0)0()(t t t t ff(t)ε1200001101][)(s dt e s dt e s e s tde s t dt te t L s F st st stst st =+=+-=-===⎰⎰⎰⎰∞-∞∞-∞--∞-6、单位加速度函数的拉氏变换定义:⎪⎩⎪⎨⎧≥<=)(21)0(0)(2t t t t f321]21[)(st L s F ==通常用查表法求解象函数和原函数三、拉氏变换的主要定理对于标准函数可用拉氏变换定义或查表法进行拉氏变换和反变换;而对于一般的函数可以利用以下定理使运算简化。