2023年武威市中考数学试卷及答案
- 格式:docx
- 大小:2.04 MB
- 文档页数:19
白银市2022年普通高中招生考试数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.二、填空题:本大题共8小题,每小题4分,共32分.11. 2(2)(2)x x +- 12. 5240a b 13. 92 14. 1315. 12617. 6 18. 2(1)n +或n 2+2n +1三、解答题(一):本大题共5小题,共38分.解答应写出必要的文字说明,证明过程或演算步骤. 19.(6分)解:原式=22-31)+231 3分 =4313 1 5分 =6 6分 20.(6分)解:(1)△A 1B 1C 1为所作; 3分 (2)A 2(-3,-1),B 2(0,-2),C 2(-2,-4). 6分21.(8分)(1)解:把x =1代入方程 220x mx m ++-=得 120m m ++-=, 2分解得 m =12. 3分 (2)证明:△=24(2)m m -- 5分题号 1 2 3 4 5 6 7 8 9 10 答案ACCBADDABByxO ABCB 1C 1A 12(2)4m =-+ 6分∵ 2(2)m -≥0,∴ 2(2)4m -+>0, 即 △>0, 7分 ∴ 此方程有两个不相等的实数根. 8分 22.(8分)解:(1) 过点B 作BF ⊥AC 于点F . 1分 ∴ AF =AC -BD =0.4(米), 2分 ∴ AB =AF ÷sin20°≈1.17(米); 4分 (2)∵ ∠MON =90°+20°=110°, 6分 ∴ 1100.82218045MN ⨯π==π(米). 8分23.(10分) 解:(1)画树状图:方法一: 方法二:3分所以点M (x ,y )共有9种可能:(0,-1),(0,-2),(0,0),(1,-1),(1,-2),(1,0),(2,-1),(2,-2),(2,0); 6分(2)∵ 只有点(1,-2),(2,-1)在函数2y x=-的图象上, 8分 ∴ 点M (x ,y )在函数2y x=-的图象上的概率为29. 10分四、解答题(二):本大题共5小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤.(注:解法合理,答案正确均可得分)24.(8分)(0, 0) (0, -1) (0, -2) (1, -1) (1, -2) (1, 0) (2, -2)(2, -1)1 0 2-1 -2 0 乙袋甲袋 结果 (2, 0)解:(1)105÷35%=300(人).答:共调查了300名学生; 2分 (2)n =300×30%=90(人),m =300-105-90-45=60(人).故答案为:60, 90;(每空2分) 6分 (3)60300×360°=72°. 答:B 所在扇形的圆心角是72°. 8分 25.(10分)解:(1)把点A (m ,1)代入 14y x =-+,得m =3, 2分 则 A (3,1), ∴ k =3×1=3; 4分 把点B (1,n )代入2ky x=,得出n =3; 6分 (2)如图,由图象可知:① 当1<x <3时,1y >2y ; 7分 ② 当x =1或x =3时,1y =2y ; 9分 (注:x 的两个值各占1分)③ 当x >3时,1y <2y . 10分26.(10分)(1)证明:∵ EC ∥AB ,∴ ∠C =∠ABF . 1分 又 ∵ ∠EDA =∠ABF ,∴ ∠C =∠EDA . 2分 ∴ AD ∥BC , 3分 ∴ 四边形ABCD 是平行四边形. 4分 (2)证明:∵ EC ∥AB , ∴OA OB OEOD=. 6分又 ∵ AD ∥BC ,∴OF OBOA OD=, 8分∴OA OFOE OA=, 9分∴2OA OE OF=⋅. 10分27.(10分)(1)证明:如图①,连接AD,∵在△ABC中,AB=AC,BD=DC,∴AD⊥BC∴∠ADB=90°, 2分∴AB是⊙O的直径; 3分(2)DE与⊙O的相切. 4分证明:如图②,连接OD,∵AO=BO,BD=DC,∴OD是△BAC的中位线,∴OD∥AC, 5分又∵DE⊥AC∴DE⊥OD, 6分∴DE为⊙O的切线; 7分(3)解:如图③,∵AO=3,∴AB=6,又∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AD=33 8分∵AC∙DE=CD∙AD,∴ 6∙DE=3×33 9分解得DE 33. 10分28.(12分)解:(1)设直线AB的解析式为y kx m=+,把A(3,0),B(0,3)代入得330mk m=⎧⎨+=⎩, 解得13km=-⎧⎨=⎩图②ABCDEOABCDEO图③图①ABCDEO∴ 直线AB 的解析式为 3y x =-+ 2分 把A (3,0),B (0,3) 代入 2y x bx c =-++中,得 9303b c c -++=⎧⎨=⎩, 解得 23b c =⎧⎨=⎩∴ 抛物线的解析式为 223y x x =-++. 4分 (2)∵ OA =OB =3,∠BOA =90°,∴ ∠EAF =45°. 设运动时间为t 秒,则AF =2t ,AE =3-t . (i )当∠EFA =90°时,如图①所示: 在Rt△EAF 中,cos45°22AF AE ==,即2232t t =-. 解得 t =1. 6分(ii) 当∠FEA =90°时,如图②所示:在Rt△AEF 中,cos45°22AE AF ==, 即3222t t -=. 解得 t =32. 综上所述,当t =1或t =32时,△AEF 是直角三角形. 8分 (3)存在. 如图③,过点P 作PN ∥y 轴,交直线AB 于点N ,交x 轴于点D. 过点B 作BC ⊥PN 交PN 于点C .设点P (x ,223x x -++),则点N (x ,3x -+)∴ PN =2223(3)3x x x x x -++--+=-+. 9分 ∴ ABP BPN APN S S S ∆∆∆=+ =1122PN BC PN AD ⋅+⋅=2211(3)(3)(3)22x x x x x x -+⋅+-+-=23327228x ⎛⎫--+ ⎪⎝⎭ 10分图①OyAxBEF图②yOA xBE FyOABP图③N C D当32x 时,△ABP的面积最大,最大面积为278. 11分此时点P(32,154). 12分。
2−12−
A.132°
.(3分)如果a n=3,b
A.3 4
..
..
y=x2
分)抛物线3个单位,得到新的抛物线解析式是( )
y=(x−3)2+2y=(x−2)2−3
A.26
.(3分)如图,在平面直角坐标系中,菱形
两点纵坐标分别为6,4,反比例函数
25k
积为,则值为( )
.(3分)在平面直角坐标系中,若点值是 .
.(3分)如图,在Rt△ABC
的角平分线.FG是边AB的垂直平分线,
BF
△ABC .(3分)如图,将绕点∠B'AC
的度数为 .
(1)(2分)在平面直角坐标系中画出△(1)(3分)求证:△ADC≌△CEB
y=−x+4
28.(10分)如图,直线与x轴交于点C,与y轴交于点B,抛物线
y=ax2+x+c
经过B,C两点.
(1)(3分)求抛物线的解析式;
(2)(3分)点E是线BC上方抛物线上的一动点,当其到直线BC的距离最大时,求点E的坐标;
(3)(4分)点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以
P,Q,B,C为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.
)解:;
BC=1.5×40=60(m),∠ABD=90°-60°=30°∠ACD=90°-45°=45°.
∴AD=CD.
①当BC 为边时,点B 到点C 的水平距离是4,∴点Q 到点P 的水平距离也是4.
∴点P 的横坐标是5或-3,∴点P 的坐标为或;(5,−72)(−3,−72)。
武威市2023年初中毕业、高中招生考试数学试卷考生注意:本试卷满分为120分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.9的算术平方根是()A.3± B.9± C.3 D.3-2.若32a b =,则ab =()A.6 B.32C.1D.233.计算:()22a a a +-=()A.2 B.2a C.22a a + D.22a a-4.若直线y kx =(k 是常数,0k ≠)经过第一、第三象限,则k 的值可为()A.2-B.1-C.12- D.25.如图,BD 是等边ABC 的边AC 上的高,以点D 为圆心,DB 长为半径作弧交BC 的延长线于点E ,则DEC ∠=()A.20︒B.25︒C.30︒D.35︒6.方程211x x =+的解为()A.2x =-B.2x = C.4x =- D.4x =7.如图,将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH .若2AB =,4BC =,则四边形EFGH 的面积为()A.2B.4C.5D.68.据统计,数学家群体是一个长寿群体,某研究小组随机抽取了收录约2200位数学家的《数学家传略辞典》中部分90岁及以上的长寿数学家的年龄为样本,对数据进行整理与分析,统计图表(部分数据)如下,下列结论错误的是()年龄范围(岁)人数(人)-259091-9293-9495-1196979899-10-m100101A.该小组共统计了100名数学家的年龄B.统计表中m的值为5-岁的人数最多C.长寿数学家年龄在9293-岁的人数估计有110人D.《数学家传略辞典》中收录的数学家年龄在96979.如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于人射角”.为了探清一口深井的底部情况,运用此原理,如图在井口放置一面平面镜可改变光路,当太阳光线AB 与地面CD 所成夹角50ABC ∠=︒时,要使太阳光线经反射后刚好垂直于地面射入深井底部,则需要调整平面镜EF 与地面的夹角EBC ∠=()A.60︒B.70︒C.80︒D.85︒10.如图1,正方形ABCD 的边长为4,E 为CD 边的中点.动点P 从点A 出发沿AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x ,线段PE 的长为y ,y 与x 的函数图象如图2所示,则点M 的坐标为()A .(4, B.()4,4 C.(4, D.()4,5二、填空题:本大题共6小题,每小题3分,共18分.11.因式分解:22ax ax a -+=________.12.关于x 的一元二次方程2240x x c ++=有两个不相等的实数根,则c =________(写出一个满足条件的值).13.近年来,我国科技工作者践行“科技强国”使命,不断取得世界级的科技成果,如由我国研制的中国首台作业型全海深自主遥控潜水器“海斗一号”,最大下潜深度10907米,填补了中国水下万米作业型无人潜水器的空白;由我国自主研发的极目一号Ⅲ型浮空艇“大白鲸”,升空高度至海拔9050米,创造了浮空艇原位大气科学观测海拔最高的世界记录.如果把海平面以上9050米记作“9050+米”,那么海平面以下10907米记作“________米”.14.如图,ABC 内接于O ,AB 是O 的直径,点D 是O 上一点,55CDB ∠=︒,则ABC ∠=________︒.15.如图,菱形ABCD 中,60DAB ∠=︒,BE AB ⊥,DF CD ⊥,垂足分别为B ,D ,若6cm AB =,则EF =________cm .16.如图1,我国是世界上最早制造使用水车的国家.1556年兰州人段续的第一架水车创制成功后,黄河两岸人民纷纷仿制,车水灌田,水渠纵横,沃土繁丰.而今,兰州水车博览园是百里黄河风情线上的标志性景观,是兰州“水车之都”的象征.如图2是水车舀水灌溉示意图,水车轮的辐条(圆的半径)OA 长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次舀满河水在点A 处离开水面,逆时针旋转150︒上升至轮子上方B 处,斗口开始翻转向下,将水倾入木槽,由木槽导入水渠,进而灌溉,那么水斗从A 处(舀水)转动到B 处(倒水)所经过的路程是________米.(结果保留π)三、解答题:本大题共6小题,共32分.解答时,应写出必要的文字说明、证明过程或演算步骤.17.2÷⨯.18.解不等式组:6234x x x x >--⎧⎪⎨+≤⎪⎩19.化简:22222244a b a b a b a b a b a ab b+---÷+--+.20.1672年,丹麦数学家莫尔在他的著作《欧几里得作图》中指出:只用圆规可以完成一切尺规作图.1797年,意大利数学家马斯凯罗尼又独立发现此结论,并写在他的著作《圆规的几何学》中.请你利用数学家们发现的结论,完成下面的作图题:如图,已知O ,A 是O 上一点,只用圆规将O 的圆周四等分.(按如下步骤完成,保留作图痕迹)①以点A 为圆心,OA 长为半径,自点A 起,在O 上逆时针方向顺次截取 AB BCCD ==;②分别以点A ,点D 为圆心,AC 长为半径作弧,两弧交于O 上方点E ;③以点A 为圆心,OE 长为半径作弧交O 于G ,H 两点.即点A ,G ,D ,H 将O 的圆周四等分.21.为传承红色文化,激发革命精神,增强爱国主义情感,某校组织七年级学生开展“讲好红色故事,传承红色基因”为主题的研学之旅,策划了三条红色线路让学生选择:A .南梁精神红色记忆之旅(华池县);B .长征会师胜利之旅(会宁县);C .西路军红色征程之旅(高台县),且每人只能选择一条线路.小亮和小刚两人用抽卡片的方式确定一条自己要去的线路.他们准备了3张不透明的卡片,正面分别写上字母A ,B ,C ,卡片除正面字母不同外其余均相同,将3张卡片正面向下洗匀,小亮先从中随机抽取一张卡片,记下字母后正面向下放回,洗匀后小刚再从中随机抽取一张卡片.(1)求小亮从中随机抽到卡片A 的概率;(2)请用画树状图或列表的方法,求两人都抽到卡片C 的概率.22.如图1,某人的一器官后面A 处长了一个新生物,现需检测到皮肤的距离(图1).为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离.方案如下:课题检测新生物到皮肤的距离工具医疗仪器等示意图说明如图2,新生物在A 处,先在皮肤上选择最大限度地避开器官的B 处照射新生物,检测射线与皮肤MN 的夹角为DBN ∠;再在皮肤上选择距离B 处9cm的C 处照射新生物,检测射线与皮肤MN 的夹角为ECN ∠.测量数据35DBN ∠=︒,22ECN ∠=︒,9cmBC =请你根据上表中的测量数据,计算新生物A 处到皮肤的距离.(结果精确到0.1cm )(参考数据:sin 350.57︒≈,cos350.82︒≈,tan 350.70︒≈,sin 220.37︒≈,cos 220.93︒≈,tan 220.40︒≈)四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用x 表示,分成6个等级:A .10x <;B .10 1.5x ≤<;C .1520x ≤<;D .2025x ≤<;E .2530x ≤<;F .3035x ≤≤).下面给出了部分信息:a .八年级学生上、下两个学期期末地理成绩的统计图如下:b .八年级学生上学期期末地理成绩在C .1520x ≤<这一组的成绩是:15,15,15,15,15,16,16,16,18,18c .八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:学期平均数众数中位数八年级上学期17.715m八年级下学期18.21918.5根据以上信息,回答下列问题:(1)填空:m =________;(2)若25x ≥为优秀,则这200名学生八年级下学期期末地理成绩达到优秀的约有________人;(3)你认为该校八年级学生的期末地理成绩下学期比上学期有没有提高?请说明理由.24.如图,一次函数y mx n =+的图象与y 轴交于点A ,与反比例函数()60y x x=>的图象交于点()3,B a .(1)求点B 的坐标;(2)用m 的代数式表示n ;(3)当OAB 的面积为9时,求一次函数y mx n =+的表达式.25.如图,ABC 内接于O ,AB 是O 的直径,D 是O 上的一点,CO 平分BCD ∠,CE AD ⊥,垂足为E ,AB 与CD 相交于点F .(1)求证:CE 是O 的切线;(2)当O 的半径为5,3sin 5B =时,求CE 的长.26.【模型建立】(1)如图1,ABC 和BDE 都是等边三角形,点C 关于AD 的对称点F 在BD 边上.①求证:AE CD =;②用等式写出线段AD ,BD ,DF 的数量关系,并说明理由.【模型应用】(2)如图2,ABC 是直角三角形,AB AC =,CD BD ⊥,垂足为D ,点C 关于AD 的对称点F 在BD 边上.用等式写出线段AD ,BD ,DF 的数量关系,并说明理由.【模型迁移】(3)在(2)的条件下,若AD =3BD CD =,求cos AFB ∠的值.27.如图1,抛物线2y x bx =-+与x 轴交于点A ,与直线y x =-交于点()4,4B -,点()0,4C -在y 轴上.点P 从点B 出发,沿线段BO 方向匀速运动,运动到点O 时停止.(1)求抛物线2y x bx =-+的表达式;(2)当BP =时,请在图1中过点P 作PD OA ⊥交抛物线于点D ,连接PC ,OD ,判断四边形OCPD 的形状,并说明理由.(3)如图2,点P 从点B 开始运动时,点Q 从点O 同时出发,以与点P 相同的速度沿x 轴正方向匀速运动,点P 停止运动时点Q 也停止运动.连接BQ ,PC ,求CP BQ +的最小值.武威市2023年初中毕业、高中招生考试数学试卷考生注意:本试卷满分为120分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.9的算术平方根是()A.3±B.9±C.3D.3-【答案】C【解析】【分析】由239=,可得9的算术平方根.【详解】解:9的算术平方根是3,故选C【点睛】本题考查的是算术平方根的含义,熟练的求解一个数的算术平方根是解本题的关键.2.若32ab =,则ab =()A.6B.32C.1D.23【答案】A【解析】【分析】根据等式的性质即可得出结果.【详解】解:等式两边乘以2b ,得6ab =,故选:A .【点睛】本题考查了等式的性质,熟练掌握等式的性质是本题的关键.3.计算:()22a a a +-=()A.2B.2aC.22a a +D.22a a-【答案】B【解析】【分析】先计算单项式乘以多项式,再合并同类项即可.【详解】解:()222222a a a a a a a +-=+-=,故选:B【点睛】此题考查了整式的四则混合运算,熟练掌握单项式乘以多项式的运算法则是解题的关键.4.若直线y kx =(k 是常数,0k ≠)经过第一、第三象限,则k 的值可为()A.2- B.1- C.12- D.2【答案】D【解析】【分析】通过经过的象限判断比例系数k 的取值范围,进而得出答案.【详解】∵直线y kx =(k 是常数,0k ≠)经过第一、第三象限,∴0k >,∴k 的值可为2,故选:D .【点睛】本题考查正比例函数的图象与性质,熟记比例系数与图象经过的象限之间的关系是解题的关键.5.如图,BD 是等边ABC 的边AC 上的高,以点D 为圆心,DB 长为半径作弧交BC 的延长线于点E ,则DEC ∠=()A.20︒B.25︒C.30︒D.35︒【答案】C【解析】【分析】由等边三角形的性质求解1302DBC ABC ∠=∠=︒,再利用等腰三角形的性质可得30DBE DEB ∠=∠=︒,从而可得答案.【详解】解:∵BD 是等边ABC 的边AC 上的高,∴1302DBC ABC ∠=∠=︒,∵DB DE =,∴30DBE DEB ∠=∠=︒,故选C【点睛】本题考查的是等边三角形的性质,等腰三角形的性质,熟记等边三角形与等腰三角形的性质是解本题的关键.6.方程211x x =+的解为()A.2x =- B.2x = C.4x =- D.4x =【答案】A【解析】【分析】把分式方程转化为整式方程求解,然后解出的解要进行检验,看是否为增根.【详解】去分母得()21x x +=,解方程得2x =-,检验:2x =-是原方程的解,故选A .【点睛】本题考查了解分式方程的一般步骤,解题关键是熟记解分式方程的基本思想是“转化思想”,即把分式方程转化为整式方程求解,注意分式方程需要验根.7.如图,将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH .若2AB =,4BC =,则四边形EFGH 的面积为()A.2B.4C.5D.6【答案】B【解析】【分析】由题意可得四边形EFGH 是菱形,2FH AB ==,4GE BC ==,由菱形的面积等于对角线乘积的一半即可得到答案.【详解】解:∵将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH ,∴EF GH ⊥,EF 与GH 互相平分,∴四边形EFGH 是菱形,∵2FH AB ==,4GE BC ==,∴菱形EFGH 的面积为1124422FH GE ⋅=⨯⨯=.故选:B【点睛】此题考查了矩形的折叠、菱形的判定和性质等知识,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.8.据统计,数学家群体是一个长寿群体,某研究小组随机抽取了收录约2200位数学家的《数学家传略辞典》中部分90岁及以上的长寿数学家的年龄为样本,对数据进行整理与分析,统计图表(部分数据)如下,下列结论错误的是()年龄范围(岁)人数(人)9091-259293-9495-9697-119899-10100101-mA.该小组共统计了100名数学家的年龄B.统计表中m 的值为5C.长寿数学家年龄在9293-岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在9697-岁的人数估计有110人【答案】D【解析】【分析】利用年龄范围为9899-的人数为10人,对应的百分比为10%,即可判断A 选项;由A 选项可知该小组共统计了100名数学家的年龄,根据1005%5m =⨯=即可判断B 选项;由扇形统计图可知,长寿数学家年龄在9293-岁的占的百分比最大,即可判断C 选项;用2200乘以小组共统计了100名数学家的年龄中在9697-岁的百分比,即可判断D 选项.【详解】解:A .年龄范围为9899-的人数为10人,对应的百分比为10%,则可得1010%100÷=(人),即该小组共统计了100名数学家的年龄,故选项正确,不符合题意;B .由A 选项可知该小组共统计了100名数学家的年龄,则1005%5m =⨯=,故选项正确,不符合题意;C .由扇形统计图可知,长寿数学家年龄在9293-岁的占的百分比最大,即长寿数学家年龄在9293-岁的人数最多,故选项正确,不符合题意;D .《数学家传略辞典》中收录的数学家年龄在9697-岁的人数估计有112200242100⨯=人,故选项错误,符合题意.故选:D .【点睛】此题考查了扇形统计图和统计表,从扇形统计图和统计表中获取正确信息,进行正确计算是解题的关键.9.如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于人射角”.为了探清一口深井的底部情况,运用此原理,如图在井口放置一面平面镜可改变光路,当太阳光线AB 与地面CD 所成夹角50ABC ∠=︒时,要使太阳光线经反射后刚好垂直于地面射入深井底部,则需要调整平面镜EF 与地面的夹角EBC ∠=()A.60︒B.70︒C.80︒D.85︒【答案】B【解析】【分析】如图,过B 作BQ ⊥平面镜EF ,可得90QBE QBF ∠=∠=︒,ABC CBQ ABQ MBQ ∠+∠=∠=∠,而90CBQ QBM CBM ∠+∠=∠=︒,再建立方程5090CBQ CBQ ︒+∠=︒-∠,可得20CBQ ∠=︒,从而可得答案.【详解】解:如图,过B 作BQ ⊥平面镜EF ,∴90QBE QBF ∠=∠=︒,ABC CBQ ABQ MBQ ∠+∠=∠=∠,而90CBQ QBM CBM ∠+∠=∠=︒,∴5090CBQ CBQ ︒+∠=︒-∠,∴20CBQ ∠=︒,∴902070EBC ∠=︒-︒=︒,故选B .【点睛】本题考查的是垂直的定义,角的和差运算,角平分线的含义,属于跨学科题,熟记基础概念是解本题的关键.10.如图1,正方形ABCD 的边长为4,E 为CD 边的中点.动点P 从点A 出发沿AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x ,线段PE 的长为y ,y 与x 的函数图象如图2所示,则点M 的坐标为()A.(4,3B.()4,4C.(4,5D.()4,5【答案】C【解析】【分析】证明4AB BC CD AD ====,90C D ∠=∠=︒,2CE DE ==,则当P 与A ,B 重合时,PE 最长,此时222425PE =+=0或4,从而可得答案.【详解】解:∵正方形ABCD 的边长为4,E 为CD 边的中点,∴4AB BC CD AD ====,90C D ∠=∠=︒,2CE DE ==,当P 与A ,B 重合时,PE 最长,此时PE ==,运动路程为0或4,结合函数图象可得(4,M ,故选C【点睛】本题考查的是从函数图象中获取信息,正方形的性质,勾股定理的应用,理解题意,确定函数图象上横纵坐标的含义是解本题的关键.二、填空题:本大题共6小题,每小题3分,共18分.11.因式分解:22ax ax a -+=________.【答案】()21a x -【解析】【分析】先提取公因式,再利用平方差公式分解因式即可.【详解】解:()()2222211ax ax a a x x a x -+=-+=-,故答案为:()21a x -【点睛】本题考查的是综合提公因式与公式法分解因式,掌握因式分解的方法与步骤是解本题的关键.12.关于x 的一元二次方程2240x x c ++=有两个不相等的实数根,则c =________(写出一个满足条件的值).【答案】2-(答案不唯一,合理即可)【解析】【分析】先根据关于x 的一元二次方程2240x x c ++=有两个不相等的实数根得到4160c ∆=->,解得14c <,根据c 的取值范围,选取合适的值即可.【详解】解:∵关于x 的一元二次方程2240x x c ++=有两个不相等的实数根,∴224144160c c ∆=-⨯⨯=->,解得14c <,当2c =-时,满足题意,故答案为:2-(答案不唯一,合理即可)【点睛】此题考查了一元二次方程根的判别式,熟练掌握当240b ac ∆=->时,一元二次方程()200ax bx c a ++=≠有两个不相等的实数根是解题的关键.13.近年来,我国科技工作者践行“科技强国”使命,不断取得世界级的科技成果,如由我国研制的中国首台作业型全海深自主遥控潜水器“海斗一号”,最大下潜深度10907米,填补了中国水下万米作业型无人潜水器的空白;由我国自主研发的极目一号Ⅲ型浮空艇“大白鲸”,升空高度至海拔9050米,创造了浮空艇原位大气科学观测海拔最高的世界记录.如果把海平面以上9050米记作“9050+米”,那么海平面以下10907米记作“________米”.【答案】10907-【解析】【分析】根据正负数表示相反的意义解答即可.【详解】解:把海平面以上9050米记作“9050+米”,则海平面以下10907米记作10907-米,故答案为:10907-.【点睛】此题考查了正负数的理解:在一个事件中,规定一个量为正,则表示相反意义的量为负,正确理解正负数表示一对相反的意义的量是解题的关键.14.如图,ABC 内接于O ,AB 是O 的直径,点D 是O 上一点,55CDB ∠=︒,则ABC ∠=________︒.【答案】35【解析】【分析】由同弧所对的圆周角相等,得55,A CDB ∠=∠=︒再根据直径所对的圆周角为直角,得90ACB ∠=︒,然后由直角三角形的性质即可得出结果.【详解】解:,A CDB ∠∠Q 是 BC所对的圆周角,55,A CDB ∴∠=∠=︒AB 是O 的直径,90ACB ∠=︒ ,在Rt ACB △中,90905535ABC A ∠=︒-∠=︒-︒=︒,故答案为:35.【点睛】本题考查了圆周角定理,以及直角三角形的性质,利用了转化的思想,熟练掌握圆周角定理是解本题的关键.15.如图,菱形ABCD 中,60DAB ∠=︒,BE AB ⊥,DF CD ⊥,垂足分别为B ,D ,若6cm AB =,则EF =________cm .【答案】【解析】【分析】根据菱形的性质,含30︒直角三角形的性质,及三角函数即可得出结果.【详解】解:在菱形ABCD 中,60DAB ∠=︒,160,302DAB DCB BAC DAC DCF DAB ∴∠=∠=︒∠=∠=∠=∠=︒,DF CD ⊥Q ,90DFC ∴∠=︒,9060DFC DCF ∴∠=︒-∠=︒,在Rt CDF △中,12DF CF =,603030,ADF DFC DAF ∠=∠-∠=︒-︒=︒Q ,FAD ADF ∴∠=∠11,23AF DF CF AC ∴===同理,13CE AC =,13EF AC AF CE AC ∴=--=,12EF AE ∴=,在Rt ABE △中,cos3032AB AE ===︒12EF AE ∴==.故答案为:【点睛】本题考查了菱形的性质,含30︒直角三角形的性质,及三角函数等知识,熟练掌握菱形的性质是解题的关键.16.如图1,我国是世界上最早制造使用水车的国家.1556年兰州人段续的第一架水车创制成功后,黄河两岸人民纷纷仿制,车水灌田,水渠纵横,沃土繁丰.而今,兰州水车博览园是百里黄河风情线上的标志性景观,是兰州“水车之都”的象征.如图2是水车舀水灌溉示意图,水车轮的辐条(圆的半径)OA 长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次舀满河水在点A 处离开水面,逆时针旋转150︒上升至轮子上方B 处,斗口开始翻转向下,将水倾入木槽,由木槽导入水渠,进而灌溉,那么水斗从A 处(舀水)转动到B 处(倒水)所经过的路程是________米.(结果保留π)【答案】5π【解析】【分析】把半径和圆心角代入弧长公式即可;【详解】150********n r l πππ⨯⨯===故填:5π.【点睛】本题考查弧长公式的应用,准确记忆公式,并正确代入公式是解题的关键.三、解答题:本大题共6小题,共32分.解答时,应写出必要的文字说明、证明过程或演算步骤.17.32÷⨯.【答案】【解析】【分析】利用二次根式的混合运算法则计算即可.32⨯-===【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算法则是解答本题的关键.18.解不等式组:6234x x x x >--⎧⎪⎨+≤⎪⎩【答案】21x -<≤【解析】【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.【详解】解:解不等式组:6234x x x x >--⎧⎪⎨+≤⎪⎩①②,解不等式①,得2x >-.解不等式②,得1x ≤.因此,原不等式组的解集为21x -<≤.【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.19.化简:22222244a b a b a b a b a b a ab b +---÷+--+.【答案】4b a b+【解析】【分析】先将除法转化为乘法进行计算,再根据分式的加减计算,即可求解.【详解】解:原式22(2)2()()a b a b a b a b a b a b a b +--=-⋅+-+-22a b a b a b a b+-=-++4b a b =+.【点睛】本题考查了分式的混合运算,解题关键是熟练运用分式运算法则进行求解.20.1672年,丹麦数学家莫尔在他的著作《欧几里得作图》中指出:只用圆规可以完成一切尺规作图.1797年,意大利数学家马斯凯罗尼又独立发现此结论,并写在他的著作《圆规的几何学》中.请你利用数学家们发现的结论,完成下面的作图题:如图,已知O ,A 是O 上一点,只用圆规将O 的圆周四等分.(按如下步骤完成,保留作图痕迹)①以点A 为圆心,OA 长为半径,自点A 起,在O 上逆时针方向顺次截取 AB BCCD ==;②分别以点A ,点D 为圆心,AC 长为半径作弧,两弧交于O 上方点E ;③以点A 为圆心,OE 长为半径作弧交O 于G ,H 两点.即点A ,G ,D ,H 将O 的圆周四等分.【答案】见解析【解析】【分析】根据作图提示逐步完成作图即可.再根据图形基本性质进行证明即可.【详解】解:如图,即点A ,G ,D ,H 把O 的圆周四等分.理由如下:如图,连接,,,,,,,AE DE AC DC OE OH OG AH ,由作图可得: AB BCCD ==,且OA OB AB ==,∴AOB 为等边三角形,60AOB ∠=︒,同理可得:60BOC COD ∠=∠=︒,∴180AOB BOC COD ∠+∠+∠=︒,∴A ,O ,D 三点共线,AD 为直径,∴=90ACD ∠︒,设CD x =,而30DAC ∠=︒,∴2AD x =,3AC x =,由作图可得:3DE AE AC ===,而OA OD x ==,∴⊥EO AD ,222OE DE OD x =-=,∴由作图可得2AG AH x ==,而OA OH x ==,∴22222OA OH x AH +==,∴90AOH =︒∠,同理90AOG DOG DOH ∠=︒=∠=∠,∴点A ,G ,D ,H 把O 的圆周四等分.【点睛】本题考查的是等腰三角形的性质,圆弧与圆心角之间的关系,等边三角形的判定与性质,勾股定理与勾股定理的逆定理的应用,圆周角定理的应用,熟练掌握图形的基本性质并灵活应用于作图是解本题的关键.21.为传承红色文化,激发革命精神,增强爱国主义情感,某校组织七年级学生开展“讲好红色故事,传承红色基因”为主题的研学之旅,策划了三条红色线路让学生选择:A .南梁精神红色记忆之旅(华池县);B .长征会师胜利之旅(会宁县);C .西路军红色征程之旅(高台县),且每人只能选择一条线路.小亮和小刚两人用抽卡片的方式确定一条自己要去的线路.他们准备了3张不透明的卡片,正面分别写上字母A,B,C,卡片除正面字母不同外其余均相同,将3张卡片正面向下洗匀,小亮先从中随机抽取一张卡片,记下字母后正面向下放回,洗匀后小刚再从中随机抽取一张卡片.(1)求小亮从中随机抽到卡片A的概率;(2)请用画树状图或列表的方法,求两人都抽到卡片C的概率.【答案】(1)1 3(2)1 9【解析】【分析】(1)本题考查了等可能时间的概率,带入公式即可求解;(2)先用列表法或树状图法列举出所有可能的情况,再带入公式计算即可.【小问1详解】P(小亮抽到卡片A)1 3 =.【小问2详解】列表如下:小刚小亮A B CA(),A A(),A B(),A CB(),B A(),B B(),B CC(),C A(),C B(),C C或画树状图如下:共有9种等可能的结果,两人都抽到卡片C的结果有1种,所以,P(两人都抽到卡片C)1 9=.【点睛】本题考查列举法求概率,正确用树状图或者列表法列举出所有情况,并找到符合条件的事件数量,正确带入公式计算是解题的关键.22.如图1,某人的一器官后面A 处长了一个新生物,现需检测到皮肤的距离(图1).为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离.方案如下:课题检测新生物到皮肤的距离工具医疗仪器等示意图说明如图2,新生物在A 处,先在皮肤上选择最大限度地避开器官的B 处照射新生物,检测射线与皮肤MN 的夹角为DBN ∠;再在皮肤上选择距离B 处9cm的C 处照射新生物,检测射线与皮肤MN 的夹角为ECN ∠.测量数据35DBN ∠=︒,22ECN ∠=︒,9cmBC =请你根据上表中的测量数据,计算新生物A 处到皮肤的距离.(结果精确到0.1cm )(参考数据:sin 350.57︒≈,cos350.82︒≈,tan 350.70︒≈,sin 220.37︒≈,cos 220.93︒≈,tan 220.40︒≈)【答案】新生物A 处到皮肤的距离约为8.4cm【解析】【分析】过点A 作AH MN ⊥,垂足为H ,在Rt AHC ,用AH 与ACH ∠的正切值表示出CH ,在Rt AHB △中,用AH 和ABH ∠的正切值表示出BH ,由9CH BH BC -==,联立求解AH 即可.【详解】解:过点A 作AH MN ⊥,垂足为H .由题意得,35ABH DBN ∠=∠= ,22ACH ECN ∠=∠= ,在Rt AHB △中,tan tan 350.70AH AH AH BH ABH ==≈∠︒.在Rt AHC 中,tan tan 220.40AH AH AH CH ACH ==≈∠︒.∵CH BH BC -=,∴90.400.70AH AH -=,∴()8.4cm AH =.答:新生物A 处到皮肤的距离约为8.4cm .【点睛】本题主要考查了解直角三角形的应用,构造直角三角形,通过三角函数求解线段是求解本题的关键.四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用x 表示,分成6个等级:A .10x <;B .10 1.5x ≤<;C .1520x ≤<;D .2025x ≤<;E .2530x ≤<;F .3035x ≤≤).下面给出了部分信息:a .八年级学生上、下两个学期期末地理成绩的统计图如下:b .八年级学生上学期期末地理成绩在C .1520x ≤<这一组的成绩是:15,15,15,15,15,16,16,16,18,18c .八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:学期平均数众数中位数八年级上学期17.715m。
2023年甘肃省武威市中考数学模拟试卷(四)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.4的倒数是()A. B.4 C. D.2.的发现使人类了解到一个全新的碳世界.如图是的分子结构图,包括20个正六边形和12个正五边形,其中正五边形的一个内角的大小是()A.B.C.D.3.乌鞘岭是陇中高原和河西走廊的天然分界,主峰海拔超过3500米.若用米表示乌鞘岭主峰的海拔高度,则x满足的关系为()A. B. C. D.4.关于x的一元二次方程有实数根,则k的取值范围是()A. B. C. D.5.如图,和是以点O为位似中心的位似图形.若,则下列结论正确的是()A.B.C.D.6.5月31日是世界无烟日,小林为了了解所住小区成年人吸烟的人数,随机调查了100个成年人,结果有16个成年人吸烟.关于此次调查,下列说法错误的是()A.调查的方式是抽样调查B.样本容量是100C.小林还需要知道小区里成年人的人数D.小林所住小区共有16个成年人吸烟7.利用圆的等分,在半径为3的圆中作出如图的图案,则相邻两等分点之间的距离为()A.3B.C.4D.68.古代劳动人民在实际生活中有这样一个问题:“耠子耧六十三,百根腿地里钻,两者各几何?”其大意为:耠子和耧共有63个,共有100条腿,问有多少个耠子,多少个耧?耠子有一条腿,耧有两条腿设耠子有x个,耧有y个,则下列方程组正确的是()A. B. C. D.9.如图是一个几何体的三视图,主视图和左视图均是面积为12的等腰三角形,俯视图是直径为6的圆,则这个几何体的全面积是()A.B.C.D.10.如图①,动点P从正六边形的A点出发,沿以的速度匀速运动到点C,图②是点P运动时,的面积随着时间的变化的关系图象,则正六边形的边长为()A. B.2cm C.1cm D.3cm二、填空题:本题共8小题,每小题3分,共24分。
11.计算______.12.分解因式:______.13.若a是方程的一个解,则代数式的值是______.14.如图,平行四边形ABCD中,对角线AC、BD相交于点O,过点O的直线分别交AD、BC于点E、F,若,,,则图中阴影部分的面积是______.15.如图,在平面直角坐标系中,已知点,以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为______.16.如图,任意将图中的某一白色方块涂黑后,能使所有黑色方块构成的图形是中心对称图形的概率是______.17.掷实心球是滨州市中考体育测试中的一个项目,如图所示,一名男生掷实心球,实心球行进的路线是一段抛物线,已知实心球出手时离地面2米,当实心球行进的水平距离为4米时达到最高点,此时离地面米,这名男生此次抛掷实心球的成绩是______米.18.如图,四边形ABCD是平行四边形,以点B为圆心,BC的长为半径作弧交AD于点E,分别以点C、E为圆心,大于的长为半径作弧,两弧交于点P,作射线BP交AD的延长线于点F,,,则BF的长为______.三、计算题:本大题共1小题,共4分。
武威市2022年初中毕业、高中招生考试数学试卷考生注意:本试卷满分为120分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1. 2-的相反数为( )A. 2-B. 2C. 2±D. 122. 若40A ∠=︒,则A ∠的余角的大小是( )A 50° B. 60° C. 140° D. 160° 3. 不等式324x ->的解集是( )A. 2x >-B. 2x <-C. 2x >D. 2x < 4. 用配方法解方程x 2-2x =2时,配方后正确的是( )A. ()213x +=B. ()216x +=C. ()213x -=D. ()216x -= 5 若ABC DEF :△△,6BC =,4EF =,则AC DF =( ) A. 49 B. 94 C. 23 D. 326. 2022年4月16日,神州十三号载人飞船返回舱在东风着陆场成功着陆,飞行任务取得圆满成功.“出差”太空半年的神州十三号航天员乘组顺利完成既定全部任务,并解锁了多个“首次”.其中,航天员们在轨驻留期间共完成37项空间科学实验,如图是完成各领域科学实验项数的扇形统计图,下列说法错误的是( )A. 完成航天医学领域实验项数最多B. 完成空间应用领域实验有5项C. 完成人因工程技术实验项数比空间应用领域实验项数多..D. 完成人因工程技术实验项数占空间科学实验总项数的24.3%7. 大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF ,若对角线AD 的长约为8mm ,则正六边形ABCDEF 的边长为( )A. 2mmB.C.D. 4mm 8. 《九章算术》是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7天到北海;大雁从北海起飞,9天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x 天相遇,根据题意可列方程为( ) A. 11179x ⎛⎫+= ⎪⎝⎭ B. 11179x ⎛⎫-= ⎪⎝⎭ C. ()971x -= D. ()971x +=9. 如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧( AB ),点O 是这段弧所在圆的圆心,半径90m OA =,圆心角80AOB ∠=︒,则这段弯路( AB )的长度为( )A. 20m πB. 30m πC. 40m πD. 50m π 10. 如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( )A. B. C. D. 二、填空题:本大题共8小题,每小题3分,共24分.11. 计算:323a a ⋅=_____________.12. 因式分解:34m m -=_________________.13. 若一次函数y =kx −2的函数值y 随着自变量x 值的增大而增大,则k =_________(写出一个满足条件的值).14. 如图,菱形ABCD 中,对角线AC 与BD 相交于点O ,若AB =,4cm AC =,则BD 的长为_________cm .15. 如图,在⊙O 内接四边形ABCD 中,若100ABC ∠=︒,则ADC ∠=________︒.16. 如图,在四边形ABCD 中,AB DC ,AD BC ∥,在不添加任何辅助线的前提下,要想四边形ABCD 成为一个矩形,只需添加的一个条件是_______________.17. 如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系:2520h t t =-+,则当小球飞行高度达到最高时,飞行时间t =_________s .18. 如图,在矩形ABCD 中,AB =6cm ,BC =9cm ,点E ,F 分别在边AB ,BC 上,AE =2cm ,BD ,EF 交于点G ,若G 是EF 的中点,则BG 的长为____________cm .三、解答题:本大题共5小题,共26分.解答时,应写出必要的文字说明、证明过程或演算步骤.19..20. 化简:()2233322x x x x x x ++÷-++. 21. 中国清朝末期的几何作图教科书《最新中学教科书用器画》由国人自编(图1),书中记载了大量几何作图题,所有内容均用浅近的文言文表述,第一编记载了这样一道几何作图题:原文释义 甲乙丙为定直角.以乙为圆心,以任何半径作丁戊弧;以丁为圆心,以乙丁为半径画弧得交点己;再以戊为圆心,仍以原半径画弧得交点庚;乙与己及庚相连作线. 如图2,ABC ∠为直角. 以点B 为圆心,以任意长为半径画弧,交射线BA ,BC 分别于点D ,E ; 以点D 为圆心,以BD 长为半径画弧与 DE 交于点F ; 再以点E 为圆心,仍以BD 长为半径画弧与 DE 交于点G ; 作射线BF ,BG .(1)根据以上信息,请你用不带刻度的直尺和圆规,在图2中完成这道作图题(保留作图痕迹,不写作法);(2)根据(1)完成的图,直接写出DBG ∠,GBF ∠,FBE ∠的大小关系. 22. 灞陵桥位于甘肃省渭源县城南清源河(渭河上游)上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥(图1),该桥为全国独一无二的纯木质叠梁拱桥.某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:方案设计:如图2,点C 为桥拱梁顶部(最高点),在地面上选取A ,B 两处分别测得∠CAF 和∠CBF 的度数(A ,B ,D ,F 在同一条直线上),河边D 处测得地面AD 到水面EG 的距离DE (C ,F ,G 在同一条直线上,DF ∥EG ,CG ⊥AF ,FG =DE ).数据收集:实地测量地面上A ,B 两点的距离为8.8m ,地面到水面的距离DE =1.5m ,∠CAF =26.6°,∠CBF =35°.问题解决:求灞陵桥拱梁顶部C 到水面的距离CG (结果保留一位小数).参考数据:sin266°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.根据上述方案及数据,请你完成求解过程.23. 第24届冬季奥林匹克运动会于2022年2月4至20日在我国北京-张家口成功举办,其中张家口赛区设有四个冬奥会竞赛场馆,分别为:A .云顶滑雪公园、B .国家跳台滑雪中心、C .国家越野滑雪中心、D .国家冬季两项中心.小明和小颖都是志愿者,他们被随机分配到这四个竞赛场馆中的任意一个场馆的可能性相同..(1)小明被分配到D .国家冬季两项中心场馆做志愿者的概率是多少?(2)利用画树状图或列表的方法,求小明和小颖被分配到同一场馆做志愿者的概率.四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.24. 受疫情影响,某初中学校进行在线教学的同时,要求学生积极参与“增强免疫力、丰富学习生活”为主题的居家体育锻炼活动,并实施锻炼时间目标管理.为确定一个合理的学生居家锻炼时间的完成目标,学校随机抽取了30名学生周累计居家锻炼时间(单位:h )的数据作为一个样本,并对这些数据进行了收集、整理和分析,过程如下:【数据收集】7 8 6 5 9 10 4 6 7 5 11 12 8 7 6 4 6 3 6 8 9 10 10 13 6 7 8 3 5 10【数据整理】将收集的30个数据按A ,B ,C ,D ,E 五组进行整理统计,并绘制了如图所示的不完整的频数分布直方图(说明:A .35t ≤<,B .57t ≤<,C .79t ≤<,D .911t <≤,E .1113t ≤≤,其中t 表示锻炼时间);【数据分析】 统计量 平均数 众数 中位数锻炼时间(h ) 7.3 m 7根据以上信息解答下列问题:(1)填空:m =___________;(2)补全频数分布直方图;(3)如果学校将管理目标确定为每周不少于7h ,该校有600名学生,那么估计有多少名学生能完成目标?你认为这个目标合理吗?说明理由.25. 如图,B ,C 是反比例函数y =k x(k ≠0)在第一象限图象上的点,过点B 的直线y =x -1与x 轴交于点A ,CD ⊥x 轴,垂足为D ,CD 与AB 交于点E ,OA =AD ,CD =3.(1)求此反比例函数的表达式;(2)求△BCE 面积.26. 如图,ABC 内接于O ,AB ,CD 是O 的直径,E 是DB 延长线上一点,且DEC ABC ∠=∠.(1)求证:CE 是O 的切线;(2)若DE =2AC BC =,求线段CE 长.27. 已知正方形ABCD ,E 为对角线AC 上一点.(1)【建立模型】如图1,连接BE ,DE .求证:BE DE =;(2)【模型应用】如图2,F 是DE 延长线上一点,FB BE ⊥,EF 交AB 于点G . ①判断FBG △的形状并说明理由;②若G 为AB 的中点,且4AB =,求AF 的长.(3)【模型迁移】如图3,F 是DE 延长线上一点,FB BE ⊥,EF 交AB 于点G ,BE BF =.求证:)1GE DE =-.的的28. 如图1,在平面直角坐标系中,抛物线()()134y x x a =+-与x 轴交于A ,()4,0B 两点,点C 在y 轴上,且OC OB =,D ,E 分别是线段AC ,AB 上的动点(点D ,E 不与点A ,B ,C 重合).(1)求此抛物线的表达式;(2)连接DE 并延长交抛物线于点P ,当DE x ⊥轴,且1AE =时,求DP 的长;(3)连接BD .①如图2,将BCD △沿x 轴翻折得到BFG ,当点G 在抛物线上时,求点G 的坐标; ②如图3,连接CE ,当CD AE =时,求BD CE +的最小值。
武威市2024年初中毕业升学暨高中阶段学校招生考试数学试卷考生注意:本试卷满分为150分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1. 下列各数中,比2-小的数是( )A. 1-B. 4-C. 4D. 12. 如图所示,该几何体的主视图是( )A. B. C. D.3. 若55A∠=︒,则A∠的补角为( )A. 35︒B. 45︒C. 115︒D. 125︒4. 计算:4222a ba b a b-=--( )A. 2B. 2a b- C.22a b-D.2a ba b--5. 如图,在矩形ABCD中,对角线AC,BD相交于点O,60ABD∠=︒,2AB=,则AC的长为( )A. 6B. 5C. 4D. 36. 如图,点A,B,C在O上,AC OB⊥,垂足为D,若35A∠=︒,则C∠的度数是( )A. 20︒B. 25︒C. 30︒D. 35︒7. 如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x 尺,长桌的长为y 尺,则y 与x 的关系可以表示为( )A. 3y x =B. 4y x =C. 31y x =+D. 41y x =+8. 近年来,我国重视农村电子商务的发展.下面的统计图反映了2016—2023年中国农村网络零售额情况.根据统计图提供的信息,下列结论错误的是( )A. 2023年中国农村网络零售额最高B. 2016年中国农村网络零售额最低C. 2016—2023年,中国农村网络零售额持续增加D 从2020年开始,中国农村网络零售额突破20000亿元9. 敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A 区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为()15,16,那么有序数对记为()12,17对应的田地面积为( ).A. 一亩八十步B. 一亩二十步C. 半亩七十八步D. 半亩八十四步10. 如图1,动点P 从菱形ABCD 的点A 出发,沿边AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为( )A. 2B. 3C.D. 二、填空题:本大题共6小题,每小题4分,共24分.11. 因式分解:228x -=________.12. 已知一次函数24y x =-+,当自变量2x >时,函数y 的值可以是________(写出一个合理的值即可).13. 定义一种新运算*,规定运算法则:*n m n m mn =-(m ,n 均为整数,且0m ≠).例:32*32232=-⨯=,则(2)*2-=________.14. 围棋起源于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点________的位置,则所得的对弈图是轴对称图形.(填写A ,B ,C ,D 中的一处即可,A ,B ,C ,D位于棋盘的格点上)为15. 如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =-++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8mDE =的矩形,则可判定货车________完全停到车棚内(填“能”或“不能”).16. 甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形OBC 和扇形OAD 有相同的圆心O ,且圆心角100O ∠=︒,若120OA =cm ,60OB =cm ,则阴影部分的面积是______ 2cm .(结果用π表示)三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17.18. 解不等式组:()223122x x x x ⎧-<+⎪⎨+<⎪⎩19. 先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b =-.20.马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细.致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O 和圆上一点M .作法如下:①以点M 为圆心,OM 长为半径,作弧交O 于A ,B 两点;②延长MO 交O 于点C ;即点A ,B ,C 将O 的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O 的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB ,AC ,BC ,若O 的半径为2cm ,则ABC 的周长为______cm .21. 在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.(1)请用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲乙双方公平吗?请说明理由.22. 习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH 垂直于地面,测角仪CD ,EF 在AH 两侧, 1.6m CD EF ==,点C 与点E 相距182m (点C ,H ,E 在同一条直线上),在D 处测得简尖顶点A 的仰角为45︒,在F 处测得筒尖顶点A 的仰角为53︒.求风电塔筒AH 的高度.(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈.)四、解答题:本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.23. 在阳光中学运动会跳高比赛中,每位选手要进行五轮比赛,张老师对参加比赛的甲、乙、丙三位选手的得分(单位:分,满分10分)进行了数据的收集、整理和分析,信息如下:信息一:甲、丙两位选手的得分折线图:信息二:选手乙五轮比赛部分成绩:其中三个得分分别是9.0,8.9,8.3;信息三:甲、乙、丙三位选手五轮比赛得分的平均数、中位数数据如下:选手统计量甲乙丙平均数m9.18.9中位数9.29.0n根据以上信息,回答下列问题:(1)写出表中m ,n 的值:m =_______,n =_______;(2)从甲、丙两位选手的得分折线图中可知,选手_______发挥的稳定性更好(填“甲”或“丙”);(3)该校现准备推荐一位选手参加市级比赛,你认为应该推荐哪位选手,请说明理由.24. 如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0k y x x =>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0k y x x=>的图象于C ,D 两点.(1)求一次函数y ax b =+和反比例函数k y x=的表达式;(2)连接AD ,求ACD 的面积.25. 如图,AB 是O 的直径, BCBD =,点E 在AD 的延长线上,且ADC AEB ∠=∠.(1)求证:BE 是O 的切线;(2)当O 的半径为2,3BC =时,求tan AEB ∠的值.26. 【模型建立】(1)如图1,已知ABE 和BCD △,AB BC ⊥,AB BC =,CD BD ⊥,AE BD ⊥.用等式写出线段AE ,DE ,CD 的数量关系,并说明理由.【模型应用】(2)如图2,在正方形ABCD 中,点E ,F 分别在对角线BD 和边CD 上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.【模型迁移】(3)如图3,在正方形ABCD 中,点E 在对角线BD 上,点F 在边CD 的延长线上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.27. 如图1,抛物线()2y a x h k =-+交x 轴于O ,()4,0A 两点,顶点为(2,B .点C 为OB 的中点.(1)求抛物线2()y a x h k =-+的表达式;(2)过点C 作CH OA ⊥,垂足为H ,交抛物线于点E .求线段CE 的长.(3)点D 线段OA 上一动点(O 点除外),在OC 右侧作平行四边形OCFD .①如图2,当点F 落在抛物线上时,求点F 的坐标;②如图3,连接BD ,BF ,求BD BF +最小值.为的武威市2024年初中毕业升学暨高中阶段学校招生考试数学试卷考生注意:本试卷满分为150分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1. 下列各数中,比2-小的数是( )A. 1- B. 4- C. 4 D. 1答案:B解析:【分析】本题主要考查了有理数比较大小,根据正数大于0,0大于负数,两个负数比较大小,绝对值越大其值越小进行求解即可.解;∵442211-=>-=>-=,∴42114-<-<-<<,∴四个数中比2-小的数是4-,故选:B .2. 如图所示,该几何体的主视图是( )A.B. C. D.答案:C解析:【分析】本题考查了简单几何体的三视图,根据从正面看得到的图形是主视图,可得答案.解:从正面看得到的图形是:故选:C .3. 若55A ∠=︒,则A ∠的补角为( )A. 35︒B. 45︒C. 115︒D. 125︒答案:D解析:【分析】根据和为180︒的两个角互为补角,计算即可.本题考查了补角,熟练掌握定义是解题的关键.55A ∠=︒。
....
....
A .S 1+S 3.(3分)如图,△ABC 的面积为1,则ABC △A .
B .
sinA =
BC
AB
cosA =
.(3分)在边长相等的小正方形组成的网格中,点为( )
...
△ABC∠C
.(3分)如图,Rt中,
.(3分)如图所示,小王在晚上由路灯
三、计算题(共8分)
.(1)(4分)−32+
)−1−9+3tan30°+|
.(6分)如图,弦BC经过圆心AD于N.求证:△BND∽△ABD.
.(8分)如图所示,小红想利用竹竿来测量旗杆
竿竖直放置时影长2米,在同时刻测量旗杆的影长时,旗杆的影子一部分落在地面上(另一部分落在斜坡上(CD),他测得落在地面上的影长为
DCE=45°,求旗杆AB的高度?
∵,∠OAB =∠CAM ∠CMA ∴,△AOB ∽△AMC ∴,
AO AM =AB AC =
OB
CM ∵,C(1,−3)∴,,OM =1CM =3
由题意可知,
CE ⊥AB ∴四边形和四边形是矩形,CDNM DEBN ∴,,DE =BN CD =MN =10m 在中,
,Rt △ACE tanα=
AE
CE
(2)解:不等式的解集为;
2x +6−k x >0x >1(3)解:由题意,点M 、N 的坐标为,,
M(8n ,n)N(n−62,n)∵,
0<n <6∴8n −n−62
>0∴
,S △BMN =12|MN|⋅|y M |=12×(8n −n−62)n =−14(n−3)2+254∴时,的面积最大,最大值为n =3△BMN 254。
武威中考数学试题及答案第一部分选择题(共50分)1. 在同一个平面内,已知点P(-2,3),若直线L过原点O(0,0),且L上的点Q满足PQ与OP互为正数整数倍,那么直线L的方程为()A. y=2xB. y=-2xC. y=-0.5xD. y=0.5x答案:C2. 已知集合A={x|1≤x≤6},集合B={y|2≤y≤5},则集合A∩B的元素个数为()A. 1B. 2C. 3D. 4答案:C3. 在平面直角坐标系中,点A(x,y)满足条件:x-3≥y且y≤x+3. 那么点A的取值范围为()A. x≤3且y≤6B. x≥3且y≥-3C. x≥3且y≤6D. x≤3且y≥-3答案:D4. 下列运算正确的是()A. 5x2-3y=-25,x=4解得y=-7B. 2(x-3)=2x-6C. 5(x+1)+2=5x-3D. 0.4x+0.3=0.7,解得x=1答案:C5. 判断命题“三角形ABC是等腰三角形”是否正确,其中:AB=AC,∠B=∠CA. 正确B. 错误答案:A第二部分解答题(共50分)1. 若正方体ABCD-A1B1C1D1的棱长为a,则其对角线的长度为多少?解:设正方体的一条棱的长度为a,则对角线的长度为√(a^2+a^2+a^2)=√3a答案:√3a2. 解方程:2x-3+4(x+5)=-2(2-x)解:2x-3+4(x+5)=-2(2-x)2x-3+4x+20=-4+2x6x+17=2x-44x=-21x=-21/4答案:x=-21/43. 若等差数列{an}的首项为2,公差为3,求满足an≥20的正整数n 的最小值。
解:等差数列的通项公式为an=a1+(n-1)d代入a1=2,d=3,得到an=2+3(n-1)=3n-1当3n-1≥20时,即n≥7,满足条件的最小正整数n为7。
答案:74. 如图所示,ABCD是一个矩形,M、N分别是BC、CD的中点。
连接AM、DN交于点P。
若AB的长度为8cm,BC的长度为6cm,求四边形DPMB的面积。
2023年甘肃省武威市凉州区中考数学三模试卷一、选择题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1.如图所示的几何体的俯视图是( )A. B. C. D.2. 现在网购越来越多地成为人们的一种消费方式,在2014年的“双11”网上促销活动中天猫和淘宝的支付交易额突破57000 000 000元,将数字57000 000 000用科学记数法表示为( )A. 5.7×109B. 5.7×1010C. 0.57×1011D. 57×1093. 用配方法解方程x 2−2x =2时,配方后正确的是( )A. (x +1)2=3B. (x +1)2=6C. (x−1)2=3D. (x−1)2=64. 不等式3x−2>4的解集是( )A. x >−2B. x <−2C. x >2D. x <25. 下列算式中,结果是正数的是.( )A. −[−(−3)]B. −|−(−3)|3C. −(−3)2D. −32×(−2)36. 当三角形的面积一定时,三角形的底和底边上的高成关系.( )A. 正比例函数B. 反比例函数C. 一次函数D. 二次函数7. 在创建文明城市的进程中,某市为美化城市环境,计划种植树木50万棵,由于志愿者的加入,实际每天植树比原计划多30%,结果提前2天完成任务,设原计划每天植树x 万棵,由题意得到的方程是( )A. 50x −50(1+30%)x =2B. 50x −5030%x =2C. 5030%x −2=50xD. 50(1+30%)x −50x =28.如图,将平行四边形ABCD 沿对角线AC 折叠,使点B 落在点B′处,若∠1=∠2=36°,∠B 为( )A. 36°B. 144°C. 108°D. 126°9. 体育课上测量立定跳远,其中一组六个人的成绩(单位:米)分别是:1.0,1.3,2.2,2.0,1.8,1.6,则这组数据的中位数和极差分别是( )A. 2.1,0.6B. 1.6,1.2C. 1.8,1.2D. 1.7,1.210. 二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,对称轴为直线x =12,且经过点(2,0).下列说法:①abc <0;②−2b +c =0;③4a +2b +c <0;④若(−12,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2;⑤14b +c >m (am +b )+c (其中m ≠12).正确的结论有( )A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共8小题,共32.0分)11. 在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为______米.12. 因式分解:a 3−4a =______.13. 在函数y =1x−1中,自变量x 的取值范围是______.14. 若关于x 的一元二次方程x 2−3x +a =0的一个根是−1,则a 的值为 .15. ⊙O 的半径为10cm ,弦AB //CD ,AB =12cm ,CD =16cm ,则AB 与CD 的距离为______.16.如图,传送带的一个转动轮的半径为10cm ,转动轮转n °,传送带上的物品A 被传送6πcm ,则n =______.17.在△ABC 中,已知∠ABC =90°,∠BAC =30°,BC =1.如图所示,将△ABC 绕点A 按逆时针方向旋转90°后得到△AB′C′.则图中阴影部分的面积为______.18. 一组按规律排列的式子:2a ,−5a2,10a3,−17a4,26a5,…,第n个式子是______(用含a,n的式子表示,n为正整数).三、计算题(本大题共2小题,共12.0分)19. 解方程:3x(x−2)=x−2.20. 先化简,再求值:(1x2−4+1x+2)÷x−1x−2,其中x=−32.四、解答题(本大题共8小题,共64.0分。
武威市2022年初中毕业、高中招生考试数学试卷考生注意:本试卷满分为120分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.2-的相反数为()A.2- B.2 C.2± D.12【答案】B【解析】【分析】根据相反数的概念得出答案.【详解】∵()22--=∴2-的相反数为2.故选:B【点睛】本题考查了相反数的概念,熟练掌握相关概念是解本题的关键.2.若40A ∠=︒,则A ∠的余角的大小是()A.50°B.60°C.140°D.160°【答案】A【解析】【分析】用90°减去40°即可求解.【详解】解:∵40A ∠=︒,∴A ∠的余角=904050︒-︒=︒,故选A【点睛】本题考查了求一个角的余角,掌握和为90°的两角互为余角是解题的关键.3.不等式324x ->的解集是()A.2x >- B.2x <- C.2x > D.2x <【答案】C【解析】【分析】按照解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1即可得出答案.【详解】解:3x -2>4,移项得:3x >4+2,合并同类项得:3x >6,系数化为1得:x >2.故选:C .【点睛】本题考查了解一元一次不等式,掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1是解题的关键.4.用配方法解方程x 2-2x =2时,配方后正确的是()A.()213x += B.()216x += C.()213x -= D.()216x -=【答案】C【解析】【分析】方程左右两边都加上1,左边化为完全平方式,右边合并即可得到结果.【详解】解:x 2-2x =2,x 2-2x +1=2+1,即(x -1)2=3.故选:C .【点睛】本题考查了解一元二次方程-配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.5.若ABC DEF :△△,6BC =,4EF =,则AC DF =()A.49B.94C.23 D.32【答案】D【解析】【分析】根据△ABC ∽△DEF ,可以得到,BC AC EF DF =然后根据BC =6,EF =4,即可求解.【详解】解:∵ABC DEF:△△∴,BC AC EF DF = 6BC =,4EF =,∴AC DF =63=42故选D【点睛】本题考查了相似三角形的性质,掌握相似三角形的性质是解题的关键.6.2022年4月16日,神州十三号载人飞船返回舱在东风着陆场成功着陆,飞行任务取得圆满成功.“出差”太空半年的神州十三号航天员乘组顺利完成既定全部任务,并解锁了多个“首次”.其中,航天员们在轨驻留期间共完成37项空间科学实验,如图是完成各领域科学实验项数的扇形统计图,下列说法错误的是()A.完成航天医学领域实验项数最多B.完成空间应用领域实验有5项C.完成人因工程技术实验项数比空间应用领域实验项数多D.完成人因工程技术实验项数占空间科学实验总项数的24.3%【答案】B【解析】【分析】根据扇形统计图中的数据逐项分析即可.【详解】解:A.由扇形统计图可得,完成航天医学领域实验项数最多,所以A选项说法正确,故A选项不符合题意;B.由扇形统计图可得,完成空间应用领域实验占完成总实验数的5.4%,实验次项数为5.4%×37≈2项,所以B选项说法错误,故B选项符合题意;C.完成人因工程技术实验占完成总实验数的24.3%,完成空间应用领域实验占完成总实验数的5.4%,所以完成人因工程技术实验项数比空间应用领域实验项数多,说法正确,故C 选项不符合题意;D.完成人因工程技术实验项数占空间科学实验总项数的24.3%,所以D选项说法正确,故D选项不符合题意.故选:B.【点睛】本题主要考查了扇形统计图,熟练掌握扇形统计图的应用是解决本题的关键.7.大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF 的边长为()A.2mmB.C.D.4mm 【答案】D【解析】AD,【分析】如图,连接CF与AD交于点O,易证△COD为等边三角形,从而CD=OC=OD=12即可得到答案.【详解】连接CF与AD交于点O,∵ABCDEF为正六边形,∴∠COD=3606︒=60°,CO=DO,AO=DO=12AD=4mm,∴△COD为等边三角形,∴CD=CO=DO=4mm,即正六边形ABCDEF的边长为4mm,故选:D.【点睛】本题考查了正多边形与圆的性质,正确把握正六边形的中心角、半径与边长的关系是解题的关键.8.《九章算术》是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7天到北海;大雁从北海起飞,9天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x天相遇,根据题意可列方程为()A.11179x⎛⎫+=⎪⎝⎭B.11179x⎛⎫-=⎪⎝⎭C.()971x-= D.()971x+=【答案】A 【解析】【分析】设总路程为1,野鸭每天飞17,大雁每天飞19,当相遇的时候,根据野鸭的路程+大雁的路程=总路程即可得出答案.【详解】解:设经过x 天相遇,根据题意得:17x +19x =1,∴(17+19)x =1,故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,本题的本质是相遇问题,根据等量关系:野鸭的路程+大雁的路程=总路程列出方程是解题的关键.9.如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧( AB ),点O 是这段弧所在圆的圆心,半径90m OA =,圆心角80AOB ∠=︒,则这段弯路( AB )的长度为()A.20mπ B.30m π C.40m π D.50mπ【答案】C【解析】【分析】根据题目中的数据和弧长公式,可以计算出这段弯路( AB )的长度.【详解】解:∵半径OA =90m ,圆心角∠AOB =80°,∴这段弯路( AB )的长度为:809040(m)180ππ⨯=,故选C 【点睛】本题考查了弧长的计算,解答本题的关键是明确弧长计算公式.180n r l π=10.如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为()A.3B.3C.33D.43【答案】B【解析】【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为33【详解】解:在菱形ABCD 中,∠A =60°,∴△ABD 为等边三角形,设AB =a ,由图2可知,△ABD 的面积为33∴△ABD 的面积23334a ==解得:a =3故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.二、填空题:本大题共8小题,每小题3分,共24分.11.计算:323a a ⋅=_____________.【答案】53a 【解析】【分析】根据单项式的乘法直接计算即可求解.【详解】解:原式=323a a ⋅=53a .故答案为:53a .【点睛】本题考查了单项式的乘法,正确的计算是解题的关键.12.因式分解:34m m -=_________________.【答案】()()22m m m +-【解析】【分析】原式提取m ,再利用平方差公式分解即可.【详解】解:原式=m (m 2-4)=m (m +2)(m -2),故答案为:m (m +2)(m -2)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.若一次函数y =kx −2的函数值y 随着自变量x 值的增大而增大,则k =_________(写出一个满足条件的值).【答案】2(答案不唯一)【解析】【分析】根据函数值y 随着自变量x 值的增大而增大得到k >0,写出一个正数即可.【详解】解:∵函数值y 随着自变量x 值的增大而增大,∴k >0,∴k =2(答案不唯一).故答案为:2(答案不唯一).【点睛】本题考查了一次函数的性质,掌握一次函数的性质:k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小是解题的关键.14.如图,菱形ABCD 中,对角线AC 与BD 相交于点O ,若AB =,4cm AC =,则BD 的长为_________cm .【答案】8【解析】【分析】利用菱形对角线互相垂直且平分的性质结合勾股定理得出答案即可.【详解】解: 菱形ABCD 中,对角线AC ,BD 相交于点O ,AC =4,AC BD ∴⊥,12BO OD BD ==,AO =OC =12AC =25AB =Q ,224BO AB AO ∴=-=,28BD BO ∴==,故答案为:8.【点睛】此题主要考查了菱形的性质以及勾股定理的应用,熟练掌握菱形的性质,运用勾股定理解直角三角形,是解题关键.15.如图,在⊙O 内接四边形ABCD 中,若100ABC ∠=︒,则ADC ∠=________︒.【答案】80【解析】【分析】根据圆内接四边形的性质计算出18080ADC ABC ∠∠=︒-=︒即可.【详解】解:∵ABCD 是⊙O 的内接四边形,∠ABC =100°,∴∠ABC +∠ADC =180°,∴180********ADC ABC ∠∠=︒-=︒-︒=︒.故答案为80.【点睛】本题考查了圆内接四边形的性质、解题的关键是熟练掌握圆内接四边形的性质.16.如图,在四边形ABCD 中,AB DC ,AD BC ∥,在不添加任何辅助线的前提下,要想四边形ABCD 成为一个矩形,只需添加的一个条件是_______________.【答案】90A ∠=︒(答案不唯一)【解析】【分析】】先证四边形ABCD 是平行四边形,再由矩形的判定即可得出结论.【详解】解:需添加的一个条件是∠A =90°,理由如下:∵AB ∥DC ,AD ∥BC ,∴四边形ABCD 是平行四边形,又∵∠A =90°,∴平行四边形ABCD 是矩形,故答案为:∠A =90°(答案不唯一).【点睛】本题考查了矩形的判定、平行四边形的判定与性质等知识,熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.17.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系:2520h t t =-+,则当小球飞行高度达到最高时,飞行时间t =_________s .【答案】2【解析】【分析】把一般式化为顶点式,即可得到答案.【详解】解:∵h=-5t2+20t=-5(t-2)2+20,且-5<0,∴当t=2时,h取最大值20,故答案为:2.【点睛】本题考查二次函数的应用,解题的关键是掌握将二次函数一般式化为顶点式.18.如图,在矩形ABCD中,AB=6cm,BC=9cm,点E,F分别在边AB,BC上,AE=2cm,BD,EF交于点G,若G是EF的中点,则BG的长为____________cm.【答案】【解析】【分析】根据矩形的性质可得AB=CD=6cm,∠ABC=∠C=90°,AB∥CD,从而可得∠ABD=∠BDC,然后利用直角三角形斜边上的中线可得EG=BG,从而可得∠BEG=∠ABD,进而可得∠BEG=∠BDC,再证明△EBF∽△DCB,利用相似三角形的性质可求出BF的长,最后在Rt△BEF中,利用勾股定理求出EF的长,即可解答.【详解】解:∵四边形ABCD是矩形,∴AB=CD=6cm,∠ABC=∠C=90°,AB∥CD,∴∠ABD=∠BDC,∵AE=2cm,∴BE=AB-AE=6-2=4(cm),∵G是EF的中点,∴EG=BG=12 EF,∴∠BEG=∠ABD,∴∠BEG =∠BDC ,∴△EBF ∽△DCB ,∴EB BFDC CB =,∴469BF =,∴BF =6,∴EF ==cm ),∴BG =12EF (cm ),【点睛】本题考查了相似三角形的判定与性质,勾股定理,矩形的性质,直角三角形斜边上的中线,熟练掌握直角三角形斜边上的中线,以及相似三角形的判定与性质是解题的关键.三、解答题:本大题共5小题,共26分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.-.【答案】【解析】【分析】根据二次根式的混合运算进行计算即可求解.【详解】解:原式==【点睛】本题考查了次根式的混合运算,正确的计算是解题的关键.20.化简:()2233322x x x x x x++÷-++.【答案】1【解析】【分析】将除法转化为乘法,因式分解,约分,根据分式的加减法法则化简即可得出答案.【详解】解:原式()()232323x x x x x x++=⋅-++33x x x+=-=1.【点睛】本题考查了分式的混合运算,考查学生运算能力,掌握运算的结果要化成最简分式或整式是解题的关键.21.中国清朝末期的几何作图教科书《最新中学教科书用器画》由国人自编(图1),书中记载了大量几何作图题,所有内容均用浅近的文言文表述,第一编记载了这样一道几何作图题:原文释义甲乙丙为定直角.以乙为圆心,以任何半径作丁戊弧;以丁为圆心,以乙丁为半径画弧得交点己;再以戊为圆心,仍以原半径画弧得交点庚;乙与己及庚相连作线.如图2,ABC ∠为直角.以点B 为圆心,以任意长为半径画弧,交射线BA ,BC 分别于点D ,E ;以点D 为圆心,以BD 长为半径画弧与 DE交于点F ;再以点E 为圆心,仍以BD 长为半径画弧与 DE 交于点G ;作射线BF ,BG .(1)根据以上信息,请你用不带刻度的直尺和圆规,在图2中完成这道作图题(保留作图痕迹,不写作法);(2)根据(1)完成的图,直接写出DBG ∠,GBF ∠,FBE ∠的大小关系.【答案】(1)见解析(2)DBG GBF FBE∠=∠=∠【解析】【分析】(1)根据题意作出图形即可;(2)连接DF ,EG ,可得BDF 和BEG 均为等边三角形,60DBF EBG ∠=∠=︒,进而可得30DBG GBF FBE ∠=∠=∠=︒.【小问1详解】解:(1)如图:【小问2详解】DBG GBF FBE ∠=∠=∠.理由:连接DF ,EG 如图所示则BD =BF =DF ,BE =BG =EG 即BDF 和BEG 均为等边三角形∴60DBF EBG ∠=∠=︒∵90ABC ∠=︒∴30DBG GBF FBE ∠=∠=∠=︒【点睛】本题考查了尺规作图,根据题意正确作出图形是解题的关键.22.灞陵桥位于甘肃省渭源县城南清源河(渭河上游)上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥(图1),该桥为全国独一无二的纯木质叠梁拱桥.某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:方案设计:如图2,点C为桥拱梁顶部(最高点),在地面上选取A,B两处分别测得∠CAF 和∠CBF的度数(A,B,D,F在同一条直线上),河边D处测得地面AD到水面EG的距离DE(C,F,G在同一条直线上,DF∥EG,CG⊥AF,FG=DE).数据收集:实地测量地面上A,B两点的距离为8.8m,地面到水面的距离DE=1.5m,∠CAF=26.6°,∠CBF=35°.问题解决:求灞陵桥拱梁顶部C到水面的距离CG(结果保留一位小数).参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.根据上述方案及数据,请你完成求解过程.【答案】16.9m【解析】【分析】设BF=x m,根据题意可得:DE=FG=1.5m,然后在Rt△CBF中,利用锐角三角函数的定义求出CF的长,再在Rt△ACF中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答.【详解】解:设BF=x m,由题意得:DE=FG=1.5m,在Rt△CBF中,∠CBF=35°,∴CF=BF•tan35°≈0.7x(m),∵AB=8.8m,∴AF=AB+BF=(8.8+x)m,在Rt△ACF中,∠CAF=26.6°,∴tan26.6°=0.78.8CF xAF x=+≈0.5,∴x=22,经检验:x=22是原方程的根,∴CG=CF+FG=0.7x+1.5=16.9(m),∴灞陵桥拱梁顶部C到水面的距离CG约为16.9m.【点睛】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.23.第24届冬季奥林匹克运动会于2022年2月4至20日在我国北京-张家口成功举办,其中张家口赛区设有四个冬奥会竞赛场馆,分别为:A.云顶滑雪公园、B.国家跳台滑雪中心、C.国家越野滑雪中心、D.国家冬季两项中心.小明和小颖都是志愿者,他们被随机分配到这四个竞赛场馆中的任意一个场馆的可能性相同.(1)小明被分配到D.国家冬季两项中心场馆做志愿者的概率是多少?(2)利用画树状图或列表的方法,求小明和小颖被分配到同一场馆做志愿者的概率.【答案】(1)1 4(2)1 4【解析】【分析】(1)直接由概率公式求解即可;(2)画树状图,共有16种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有4种,再由概率公式求解即可.【小问1详解】解:小明被分配到D.国家冬季两项中心场馆做志愿者的概率是1 4;【小问2详解】解:画树状图如下:共有16种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有4种,∴小明和小颖被分配到同一场馆做志愿者的概率为41164=.【点睛】此题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.受疫情影响,某初中学校进行在线教学的同时,要求学生积极参与“增强免疫力、丰富学习生活”为主题的居家体育锻炼活动,并实施锻炼时间目标管理.为确定一个合理的学生居家锻炼时间的完成目标,学校随机抽取了30名学生周累计居家锻炼时间(单位:h )的数据作为一个样本,并对这些数据进行了收集、整理和分析,过程如下:【数据收集】7865910467511128764636891010136783510【数据整理】将收集的30个数据按A ,B ,C ,D ,E 五组进行整理统计,并绘制了如图所示的不完整的频数分布直方图(说明:A .35t ≤<,B .57t ≤<,C .79t ≤<,D .911t <≤,E .1113t ≤≤,其中t 表示锻炼时间);【数据分析】统计量平均数众数中位数锻炼时间(h)7.3m7根据以上信息解答下列问题:(1)填空:m ___________;(2)补全频数分布直方图;(3)如果学校将管理目标确定为每周不少于7h,该校有600名学生,那么估计有多少名学生能完成目标?你认为这个目标合理吗?说明理由.【答案】(1)6(2)见解析(3)340名;合理,见解析【解析】【分析】(1)由众数的定义可得出答案.(2)结合收集的数据,求出C组的人数,即可补全频数分布直方图.(3)用总人数乘以样本中每周不少于7h的人数占比,即可得出答案;过半的学生都能完成目标,即目标合理.【小问1详解】由数据可知,6出现的次数最多,∴m=6.故答案为:6.【小问2详解】补全频数分布直方图如下:【小问3详解】863176006003403030++⨯=⨯=.答:估计有340名学生能完成目标;目标合理.理由:过半的学生都能完成目标.【点睛】本题考查频数分布直方图、用样本估计总体,从收集的数据中获取必要的信息是解决问题的关键.25.如图,B ,C 是反比例函数y =kx(k ≠0)在第一象限图象上的点,过点B 的直线y =x -1与x 轴交于点A ,CD ⊥x 轴,垂足为D ,CD 与AB 交于点E ,OA =AD ,CD =3.(1)求此反比例函数的表达式;(2)求△BCE 的面积.【答案】(1)6 yx =(2)1【解析】【分析】(1)根据直线y=x-1求出点A坐标,进而确定OA,AD的值,再确定点C的坐标,代入反比例函数的关系式即可;(2)求出点E坐标,进而求出EC,再求出一次函数与反比例函数在第一象限的交点B的坐标,由三角形的面积的计算方法进行计算即可.【小问1详解】解:当y=0时,即x-1=0,∴x=1,即直线y=x-1与x轴交于点A的坐标为(1,0),∴OA=1=AD,又∵CD=3,∴点C的坐标为(2,3),而点C(2,3)在反比例函数y=kx的图象上,∴k=2×3=6,∴反比例函数的图象为y=6 x;【小问2详解】解:方程组16y xyx=-⎧⎪⎨=⎪⎩的正数解为32xy=⎧⎨=⎩,∴点B的坐标为(3,2),当x=2时,y=2-1=1,∴点E的坐标为(2,1),即DE=1,∴EC=3-1=2,∴S △BCE =12×2×(3-2)=1,答:△BCE 的面积为1.【点睛】本题考查反比例函数、一次函数交点坐标以及待定系数法求函数关系式,将一次函数、反比例函数的关系式联立方程组是求出交点坐标的基本方法,将点的坐标转化为线段的长是正确解答的关键.26.如图,ABC 内接于O ,AB ,CD 是O 的直径,E 是DB 延长线上一点,且DEC ABC ∠=∠.(1)求证:CE 是O 的切线;(2)若DE =,2AC BC =,求线段CE 的长.【答案】(1)见解析(2)4【解析】【分析】(1)根据直径所对的圆周角是90°,得出90A ABC ∠+∠=︒,根据圆周角定理得到A D ∠=∠,推出90DCE ∠=︒,即可得出结论;(2)根据tan tan A D =得出12BC CE AC CD ==,再根据勾股定理得出CE 即可.【小问1详解】证明:∵AB 是O 的直径,∴90ACB ∠=︒,∴90A ABC ∠+∠=︒,∵BC BC =,∴A D ∠=∠,又∵DEC ABC ∠=∠,∴90D DEC ∠+∠=︒,∴90DCE ∠=︒,∴CD CE ⊥,∵OC 为O 的半径,∴CE 是O 的切线;【小问2详解】由(1)知CD CE ⊥,在Rt ABC △和Rt DEC △中,∵A D ∠=∠,2AC BC =,∴tan tan A D =,即12BC CE AC CD ==,∴2CD CE =,在Rt CDE △中,222CD CE DE +=,DE =∴()(2222CE CE +=,解得4CE =.【点睛】本题主要考查圆的综合题,熟练掌握圆周角定理,切线的判定,勾股定理等知识是解题的关键.27.已知正方形ABCD ,E 为对角线AC 上一点.(1)【建立模型】如图1,连接BE ,DE .求证:BE DE =;(2)【模型应用】如图2,F 是DE 延长线上一点,FB BE ⊥,EF 交AB 于点G .①判断FBG △的形状并说明理由;②若G 为AB 的中点,且4AB =,求AF 的长.(3)【模型迁移】如图3,F 是DE 延长线上一点,FB BE ⊥,EF 交AB 于点G ,BE BF =.求证:)1GE DE =.【答案】(1)见解析(2)①等腰三角形,见解析;(3)见解析【解析】【分析】(1)根据正方形的性质,证明()SAS ABE ADE ≅△即可.(2)①根据(1)的证明,证明∠FBG =∠FGB 即可.②过点F 作FH AB ⊥,垂足为H .利用三角函数求得FH ,AH 的长度即可.(3)证明)1GE EF FG BF DE DE =-=-=-=即可.【小问1详解】)证明:∵四边形ABCD 为正方形,AC 为对角线,∴AB AD =,45BAE DAE ∠=∠=︒.∵AE AE =,∴()SAS ABE ADE ≅△,∴BE DE =.【小问2详解】①FBG △为等腰三角形.理由如下:∵四边形ABCD 为正方形,∴90GAD ∠=︒,∴90AGD ADG ∠+∠=︒.∵FB BE ⊥,∴90FBG EBG ∠+∠=︒,由(1)得ADG EBG ∠=∠,∴AGD FBG ∠=∠,又∵AGD FGB ∠=∠,∴FBG FGB ∠=∠,∴FBG △为等腰三角形.②如图1,过点F 作FH AB ⊥,垂足为H .∵四边形ABCD 为正方形,点G 为AB 的中点,4AB =,∴2AG BG ==,4=AD .由①知FG FB =,∴1GH BH ==,∴3AH AG GH =+=.在Rt FHG V 与Rt DAG △中,∵FGH DGA ∠=∠,∴tan tan FGH DGA ∠=∠,∴42FH AD GH AG ==,∴2FH =.在Rt AHF △中,AF ===【小问3详解】如图2,∵FB BE ⊥,∴90FBE ∠=︒.在Rt EBF △中,BE BF =,∴EF .由(1)得BE DE =,由(2)得FG BF =,∴)1GE EF FG BF DE DE =-=-=-=.【点睛】本题考查了正方形的性质,等腰三角形的判定和性质,三角函数的应用,勾股定理,熟练掌握正方形的性质,勾股定理和三角函数是解题的关键.28.如图1,在平面直角坐标系中,抛物线()()134y x x a =+-与x 轴交于A ,()4,0B 两点,点C 在y 轴上,且OC OB =,D ,E 分别是线段AC ,AB 上的动点(点D ,E 不与点A ,B ,C 重合).(1)求此抛物线的表达式;(2)连接DE 并延长交抛物线于点P ,当DE x ⊥轴,且1AE =时,求DP 的长;(3)连接BD .①如图2,将BCD △沿x 轴翻折得到BFG ,当点G 在抛物线上时,求点G 的坐标;②如图3,连接CE ,当CD AE =时,求BD CE +的最小值.【答案】(1)211344y x x =--(2)176(3)①420,39G ⎛⎫-- ⎪⎝⎭;97【解析】【分析】(1)把点B 代入抛物线关系式,求出a 的值,即可得出抛物线的关系式;(2)根据抛物线()()1344y x x =+-可求出点A 的坐标,点C 的坐标,根据1AE =,利用三角函数,求出DE 的长,再求出点E 的坐标,根据点P 与点E 的横坐标相同,得出点P 的横坐标,代入抛物线的关系式,求出点P 的纵坐标,即可得出EP 的值,最后求出DP 的值即可;(3)①连接DG 交AB 于点M ,设()0OM a a =>,则3AM OA OM a =-=-,求出()4tan 33MG MD AM CAO a ==⋅∠=-,得出点()4,33G a a ⎡⎤--⎢⎥⎣⎦,将其代入抛物线关系式,列出关于a 的方程,解方程,求出a 的值,即可得出G 的坐标;②在AB 下方作EAQ DCB ∠=∠且AQ BC =,连接EQ ,CQ ,证明AEQ CDB ≅△△,得出EQ BD =,说明当C ,E ,Q 三点共线时,BD CE EQ CE +=+最小,最小为CQ ,过C 作CH AQ ⊥,垂足为H ,先证明∠CAH =45°,算出AC 长度,即可求出CH 、AH ,得出HQ ,最后根据勾股定理求出CQ 的长度即可得出结果.【小问1详解】解:∵()4,0B 在抛物线()()134y x x a =+-上,∴()()143404a +-=,解得4a =,∴()()1344y x x =+-,即211344y x x =--;【小问2详解】在()()1344y x x =+-中,令0y =,得13x =-,24x =,∴()30A -,,3OA =,∵4OC OB ==,∴()0,4C ,∵1AE =,∴44tan 133OC DE AE CAO AE OA =⋅∠=⋅=⨯=,312OE OA AE =-=-=,∴()2,0E -,∵DE x ⊥轴,∴2P D E x x x ===-,∴()()13232442P y =-+--=-,∴32PE =,∴4317326DP DE PE =+=+=.【小问3详解】①连接DG 交AB 于点M ,如图1所示:∵BCD △与BFG 关于x 轴对称,∴DG AB ⊥,DM GM =,设()0OM a a =>,则3AM OA OM a =-=-,()4tan 33MG MD AM CAO a ==⋅∠=-,∴()4,33G a a ⎡⎤--⎢⎥⎣⎦,∵点()4,33G a a ⎡⎤--⎢⎥⎣⎦在抛物线()()1344y x x =+-上,∴()()()1434343a a a -+--=-,解得13a =(舍去),243a =,∴420,39G ⎛⎫-- ⎪⎝⎭;②在AB 下方作EAQ DCB ∠=∠且AQ BC =,连接EQ ,CQ ,如图2所示:∵AE CD =,∴()SAS AEQ CDB ≅△△,∴EQ BD =,∴当C ,E ,Q 三点共线时,BD CE EQ CE +=+最小,最小为CQ ,过C 作CH AQ ⊥,垂足为H ,∵OC OB ^,4OC OB ==,∴45CBA ∠=︒,BC =∵18018045CAH CAB EAQ CAB DCB CBA ∠=︒-∠-∠=︒-∠-∠=∠=︒,5AC ===,25222AH CH AC ===,22HQ AH AQ AH BC =+=+=+=,∴CQ ===,+.即BD CE【点睛】本题主要考查了二次函数的综合应用,待定系数法求抛物线的关系式,全等三角形=,得出当C,的判定和性质,解直角三角形,三角函数的定义,作出辅助线,证明EQ BD+=+最小,是解题的关键.E,Q三点共线时,BD CE EQ CE。
2022年甘肃省武威市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.−2的相反数是( )A. −12B. 2 C. −2 D. 122.若∠A=40°,则∠A的余角的大小是( )A. 50°B. 60°C. 140°D. 160°3.不等式3x−2>4的解集是( )A. x>−2B. x<−2C. x>2D. x<24.用配方法解方程x2−2x=2时,配方后正确的是( )A. (x+1)2=3B. (x+1)2=6C. (x−1)2=3D. (x−1)2=65.若△ABC∽△DEF,BC=6,EF=4,则ACDF=( )A. 49B. 94C. 23D. 326.2022年4月16日,神州十三号载人飞船返回舱在东风着陆场成功着陆,飞行任务取得圆满成功.“出差”太空半年的神州十三号航天员乘组顺利完成既定全部任务,并解锁了多个“首次”.其中,航天员们在轨驻留期间共完成37项空间科学实验,如图是完成各领域科学实验项数的扇形统计图,下列说法错误的是( )A. 完成航天医学领域实验项数最多B. 完成空间应用领域实验有5项C. 完成人因工程技术实验项数比空间应用领域实验项数多D. 完成人因工程技术实验项数占空间科学实验总项数的24.3%7.大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF的边长为( )A. 2mmB. 2√2mmC. 2√3mmD. 4mm8.《九章算术》是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7天到北海;大雁从北海起飞,9天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x天相遇,根据题意可列方程为( )A. (17+19)x=1 B. (17−19)x=1 C. (9−7)x=1 D. (9+7)x=19.如图,一条公路(公路的宽度忽略不计)的转弯处是一段圆弧(AB⏜),点O是这段弧所在圆的圆心,半径OA=90m,圆心角∠AOB=80°,则这段弯路(AB⏜)的长度为( )A. 20πmB. 30πmC. 40πmD. 50πm10.如图1,在菱形ABCD中,∠A=60°,动点P从点A出发,沿折线AD→DC→CB方向匀速运动,运动到点B停止.设点P的运动路程为x,△APB的面积为y,y与x的函数图象如图2所示,则AB的长为( )A. √3B. 2√3C. 3√3D. 4√3二、填空题(本大题共8小题,共24.0分)11.计算:3a3⋅a2=______.12.因式分解m3−4m=______.13.若一次函数y=kx−2的函数值y随着自变量x值的增大而增大,则k=______(写出一个满足条件的值).14.如图,菱形ABCD中,对角线AC与BD相交于点O,若AB=2√5cm,AC=4cm,则BD的长为______cm.15.如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC=______°.16.如图,在四边形ABCD中,AB//DC,AD//BC,在不添加任何辅助线的前提下,要想四边形ABCD成为一个矩形,只需添加的一个条件是______.17.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度ℎ(单位:m)与飞行时间t(单位:s)之间具有函数关系:ℎ=−5t2+20t,则当小球飞行高度达到最高时,飞行时间t=______s.18.如图,在矩形ABCD中,AB=6cm,BC=9cm,点E,F分别在边AB,BC上,AE=2cm,BD,EF交于点G,若G是EF的中点,则BG的长为______cm.三、解答题(本大题共10小题,共66.0分)19.计算:√2×√3−√24.20.化简:(x+3)2x+2÷x2+3xx+2−3x.21.中国清朝末期的几何作图教科书《最新中学教科书用器画》由国人自编(图1),书中记载了大量几何作图题,所有内容均用浅近的文言文表述,第一编记载了这样一道几何作图题:原文释义甲乙丙为定直角.以乙为圆心,以任何半径作丁戊弧;以丁为圆心,以乙丁为半径画弧得交点己;再以戊为圆心,仍以原半径画弧得交点庚;乙与己及庚相连作线.如图2,∠ABC为直角,以点B为圆心,以任意长为半径画弧,交射线BA,BC分别于点D,E;以点D为圆心,以BD长为半径画弧与DE⏜交于点F;再以点E为圆心,仍以BD长为半径画弧与DE⏜交于点G;作射线BF,BG.(1)根据以上信息,请你用不带刻度的直尺和圆规,在图2中完成这道作图题(保留作图痕迹,不写作法);(2)根据(1)完成的图,直接写出∠DBG,∠GBF,∠FBE的大小关系.22.灞陵桥位于甘肃省渭源县城南清源河(渭河上游)上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥(图1),该桥为全国独一无二的纯木质叠梁拱桥.某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:方案设计:如图2,点C为桥拱梁顶部(最高点),在地面上选取A,B两处分别测得∠CAF和∠CBF的度数(A,B,D,F在同一条直线上),河边D处测得地面AD到水面EG的距离DE(C,F,G在同一条直线上,DF//EG,CG⊥AF,FG=DE).数据收集:实地测量地面上A,B两点的距离为8.8m,地面到水面的距离DE=1.5m,∠CAF=26.6°,∠CBF=35°.问题解决:求灞陵桥拱梁顶部C到水面的距离CG(结果保留一位小数).参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.根据上述方案及数据,请你完成求解过程.23.第24届冬季奥林匹克运动会于2022年2月4至20日在我国北京−张家口成功举办,其中张家口赛区设有四个冬奥会竞赛场馆,分别为:A.云顶滑雪公园、B.国家跳台滑雪中心、C.国家越野滑雪中心、D.国家冬季两项中心.小明和小颖都是志愿者,他们被随机分配到这四个竞赛场馆中的任意一个场馆的可能性相同.(1)小明被分配到D.国家冬季两项中心场馆做志愿者的概率是多少?(2)利用画树状图或列表的方法,求小明和小颖被分配到同一场馆做志愿者的概率.24.受疫情影响,某初中学校进行在线教学的同时,要求学生积极参与“增强免疫力、丰富学习生活”为主题的居家体育锻炼活动,并实施锻炼时间目标管理.为确定一个合理的学生居家锻炼时间的完成目标,学校随机抽取了30名学生周累计居家锻炼时间(单位:ℎ)的数据作为一个样本,并对这些数据进行了收集、整理和分析,过程如下:【数据收集】7865910467511128764636891010136783510【数据整理】将收集的30个数据按A,B,C,D,E五组进行整理统计,并绘制了如图所示的不完整的频数分布直方图(说明:A.3≤t<5,B.5≤t<7,C.7≤t<9,D.9≤t< 11,E.11≤t≤13,其中t表示锻炼时间);【数据分析】请根据以上信息解答下列问题:(1)填空:m=______;(2)补全频数分布直方图;(3)如果学校将管理目标确定为每周不少于7ℎ,该校有600名学生,那么估计有多少名学生能完成目标?你认为这个目标合理吗?说明理由.(k≠0)在第一象限图象上的点,过点B的直线y= 25.如图,B,C是反比例函数y=kxx−1与x轴交于点A,CD⊥x轴,垂足为D,CD与AB交于点E,OA=AD,CD=3.(1)求此反比例函数的表达式;(2)求△BCE的面积.26.如图,△ABC内接于⊙O,AB,CD是⊙O的直径,E是DB延长线上一点,且∠DEC=∠ABC.(1)求证:CE是⊙O的切线;(2)若DE=4√5,AC=2BC,求线段CE的长.27.已知正方形ABCD,E为对角线AC上一点.【建立模型】(1)如图1,连接BE,DE.求证:BE=DE;【模型应用】(2)如图2,F是DE延长线上一点,FB⊥BE,EF交AB于点G.①判断△FBG的形状并说明理由;②若G为AB的中点,且AB=4,求AF的长.【模型迁移】(3)如图3,F是DE延长线上一点,FB⊥BE,EF交AB于点G,BE=BF.求证:GE=(√2−1)DE.(x+3)(x−a)与x轴交于A,B(4,0)两28.如图1,在平面直角坐标系中,抛物线y=14点,点C在y轴上,且OC=OB,D,E分别是线段AC,AB上的动点(点D,E不与点A,B,C重合).(1)求此抛物线的表达式;(2)连接DE并延长交抛物线于点P,当DE⊥x轴,且AE=1时,求DP的长;(3)连接BD.①如图2,将△BCD沿x轴翻折得到△BFG,当点G在抛物线上时,求点G的坐标;②如图3,连接CE,当CD=AE时,求BD+CE的最小值.答案和解析1.【答案】B【解析】【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“−”,据此解答即可.此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“−”.【解答】解:根据相反数的含义,可得−2的相反数是:−(−2)=2.故选:B.2.【答案】A【解析】解:∵∠A=40°,∴∠A的余角为:90°−40°=50°,故选:A.根据互余两角之和为90°计算即可.本题考查的是余角的定义,如果两个角的和等于90°,就说这两个角互为余角.3.【答案】C【解析】解:3x−2>4,移项得:3x>4+2,合并同类项得:3x>6,系数化为1得:x>2.故选:C.按照解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1即可得出答案.本题考查了解一元一次不等式,掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1是解题的关键.4.【答案】C【解析】解:x2−2x=2,x2−2x+1=2+1,即(x−1)2=3.故选:C.方程左右两边都加上1,左边化为完全平方式,右边合并即可得到结果.本题考查了解一元二次方程−配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.5.【答案】D【解析】解:∵△ABC∽△DEF,∴BCEF =ACDF,∵BC=6,EF=4,∴ACDF =64=32,故选:D.根据△ABC∽△DEF,可以得到BCEF =ACDF,然后根据BC=6,EF=4,即可得到ACDF的值.本题考查相似三角形的性质,解答本题的关键是明确题意,利用相似三角形的性质解答.6.【答案】B【解析】解:A.由扇形统计图可得,完成航天医学领域实验项数最多,所以A选项说法正确,故A选项不符合题意;B.由扇形统计图可得,完成空间应用领域实验占完成总实验数的5.4%,不能算出完成空间应用领域的实验次数,所以B选项说法错误,故B选项符合题意;C.完成人因工程技术实验占完成总实验数的24.3%,完成空间应用领域实验占完成总实验数的5.4%,所以完成人因工程技术实验项数比空间应用领域实验项数多说法正确,故C选项不符合题意;D.完成人因工程技术实验项数占空间科学实验总项数的24.3%,所以D选项说法正确,故D选项不符合题意.故选:B.应用扇形统计图用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.进行判定即可得出答案.本题主要考查了扇形统计图,熟练掌握扇形统计图的应用是解决本题的关键.7.【答案】D【解析】解:连接AD ,CF ,AD 、CF 交于点O ,如右图所示,∵六边形ABCDEF 是正六边形,AD 的长约为8mm ,∴∠AOF =60°,OA =OD =OF ,OA 和OD 约为4mm ,∴AF 约为4mm ,故选:D .根据正六边形的性质和题目中的数据,可以求得正六边形ABCDEF 的边长.本题考查多边形的对角线,解答本题的关键是明确正六边形的特点.8.【答案】A【解析】解:设经过x 天相遇, 根据题意得:17x +19x =1,∴(17+19)x =1,故选:A .设总路程为1,野鸭每天飞17,大雁每天飞19,当相遇的时候,根据野鸭的路程+大雁的路程=总路程即可得出答案.本题考查了由实际问题抽象出一元一次方程,本题的本质是相遇问题,根据等量关系:野鸭的路程+大雁的路程=总路程列出方程是解题的关键.9.【答案】C【解析】解:∵半径OA =90m ,圆心角∠AOB =80°,∴这段弯路(AB⏜)的长度为:80π×90180=40π(m), 故选:C .根据题目中的数据和弧长公式,可以计算出这段弯路(AB⏜)的长度. 本题考查圆心角、弧、弦的关系,解答本题的关键是明确弧长计算公式l =nπr 180.10.【答案】B【解析】解:在菱形ABCD中,∠A=60°,∴△ABD为等边三角形,设AB=a,由图2可知,△ABD的面积为3√3,∴△ABD的面积=√3a2=3√3,4解得:a=2√3,故选:B.根据图1和图2判定三角形ABD为等边三角形,它的面积为3√3解答即可.本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.11.【答案】3a5【解析】解:原式=3a3+2=3a5.故答案为:3a5.根据同底数幂的乘法法则化简即可本题考查了同底数幂的乘法,掌握a m⋅a n=a m+n是解题的关键.12.【答案】m(m+2)(m−2)【解析】解:原式=m(m2−4)=m(m+2)(m−2),故答案为:m(m+2)(m−2)原式提取m,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.【答案】2(答案不唯一)【解析】解:∵函数值y随着自变量x值的增大而增大,∴k>0,∴k=2(答案不唯一).故答案为:2(答案不唯一).根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.本题考查了一次函数的性质,掌握一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小是解题的关键.14.【答案】8【解析】解:∵四边形ABCD是菱形,AC=4cm,∴AC⊥BD,BO=DO,AO=CO=2cm,∵AB=2√5cm,∵BO=√AB2−AO2=4cm,∴DO=BO=4cm,∴BD=8cm,故答案为:8.由菱形的性质可得AC⊥BD,BO=DO,由勾股定理可求BO,即可求解.本题考查了菱形的性质,勾股定理,掌握菱形的性质是解题的关键.15.【答案】70【解析】解:∵四边形ABCD内接于⊙O,∠ABC=110°,∴∠ADC=180°−∠ABC=180°−110°=70°,故答案为:70.根据圆内接四边形的对角互补即可得到结论.本题考查了圆内接四边形的性质,熟练掌握圆内接四边形的对角互补是解题的关键.16.【答案】∠A=90°(答案不唯一)【解析】解:需添加的一个条件是∠A=90°,理由如下:∵AB//DC,AD//BC,∴四边形ABCD是平行四边形,又∵∠A=90°,∴平行四边形ABCD是矩形,故答案为:∠A=90°(答案不唯一).先证四边形ABCD是平行四边形,再由矩形的判定即可得出结论.本题考查了矩形的判定、平行四边形的判定与性质等知识,熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.17.【答案】2【解析】解:∵ℎ=−5t2+20t=−5(t−2)2+20,且−5<0,∴当t=2时,ℎ取最大值20,故答案为:2.把一般式化为顶点式,即可得到答案.本题考查二次函数的应用,解题的关键是掌握将二次函数一般式化为顶点式.18.【答案】√13【解析】解:∵四边形ABCD是矩形,∴AB=CD=6cm,∠ABC=∠C=90°,AB//CD,∴∠ABD=∠BDC,∵AE=2cm,∴BE=AB−AE=6−2=4(cm),∵G是EF的中点,∴EG=BG=12EF,∴∠BEG=∠ABD,∴∠BEG=∠BDC,∴△EBF∽△DCB,∴EBDC =BFCB,∴46=BF9,∴BF=6,∴EF=√BE2+BF2=√42+62=2√13(cm),∴BG=12EF=√13(cm),故答案为:√13.根据矩形的性质可得AB=CD=6cm,∠ABC=∠C=90°,AB//CD,从而可得∠ABD=∠BDC,然后利用直角三角形斜边上的中线可得EG=BG,从而可得∠BEG=∠ABD,进而可得∠BEG=∠BDC,再证明△EBF∽△DCB,利用相似三角形的性质可求出BF的长,最后在Rt△BEF中,利用勾股定理求出EF的长,即可解答.本题考查了相似三角形的判定与性质,勾股定理,矩形的性质,直角三角形斜边上的中线,熟练掌握直角三角形斜边上的中线,以及相似三角形的判定与性质是解题的关键.19.【答案】解:原式=√6−2√6=−√6.【解析】根据二次根式的乘法法则和二次根式的化简计算,再合并同类二次根式即可.本题考查了二次根式的混合运算,掌握√a⋅√b=√ab(a≥0,b≥0)是解题的关键.20.【答案】解:原式=(x+3)2x+2⋅x+2x(x+3)−3x=x+3x −3x=x+3−3x=1.【解析】将除法转化为乘法,因式分解,约分,根据分式的加减法法则化简即可得出答案.本题考查了分式的混合运算,考查学生运算能力,掌握运算的结果要化成最简分式或整式是解题的关键.21.【答案】解:(1)如图,射线BG,BF即为所求.(2)∠DBG=∠GBF=∠FBE.理由:连接DF,EG,则BD=BF=DF,BE=BG=EG,即△BDF和△BEG均为等边三角形,∴∠DBF=∠EBG=60°,∵∠ABC=90°,∴∠DBG=∠GBF=∠FBE=30°.【解析】(1)按题干直接画图即可.(2)连接DF,EG,可得△BDF和△BEG均为等边三角形,则∠DBF=∠EBG=60°,进而可得∠DBG=∠GBF=∠FBE=30°.本题考查尺规作图,根据题意正确作出图形是解题的关键.22.【答案】解:设BF=x m,由题意得:DE=FG=1.5m,在Rt△CBF中,∠CBF=35°,∴CF=BF⋅tan35°≈0.7x(m),∵AB=8.8m,∴AF=AB+BF=(8.8+x)m,在Rt△ACF中,∠CAF=26.6°,∴tan26.6°=CFAF =0.7x8.8+x≈0.5,∴x=22,经检验:x=22是原方程的根,∴CG=CF+FG=0.7x+1.5=16.9(m),∴灞陵桥拱梁顶部C到水面的距离CG约为16.9m.【解析】设BF=x m,根据题意可得:DE=FG=1.5m,然后在Rt△CBF中,利用锐角三角函数的定义求出CF的长,再在Rt△ACF中,利用锐角三角函数的定义列出关于x 的方程,进行计算即可解答.本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.23.【答案】解:(1)小明被分配到D.国家冬季两项中心场馆做志愿者的概率是14;(2)画树状图如下:共有16种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有4种,∴小明和小颖被分配到同一场馆做志愿者的概率为416=14.【解析】(1)直接由概率公式求解即可;(2)画树状图,共有16种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有4种,再由概率公式求解即可.此题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】6【解析】解:(1)由数据可知,6出现的次数最多,∴m=6.故答案为:6.(2)补全频数分布直方图如下:(3)600×8+6+330=340(名).答:估计有340名学生能完成目标.目标合理.理由:过半的学生都能完成目标.(1)由众数的定义可得出答案.(2)结合收集的数据,求出C组的人数,即可补全频数分布直方图.(3)用总人数乘以样本中每周不少于7ℎ的人数占比,即可得出答案;过半的学生都能完成目标,即目标合理.本题考查频数分布直方图、用样本估计总体,从收集的数据中获取必要的信息是解决问题的关键.25.【答案】解:(1)当y =0时,即x −1=0,∴x =1,即直线y =x −1与x 轴交于点A 的坐标为(1,0),∴OA =1=AD ,又∵CD =3,∴点C 的坐标为(2,3),而点C(2,3)在反比例函数y =k x 的图象上,∴k =2×3=6,∴反比例函数的图象为y =6x ;(2)方程组{y =x −1y =6x 的正数解为{x =3y =2, ∴点B 的坐标为(3,2),当x =2时,y =2−1=1,∴点E 的坐标为(2,1),即DE =1,∴EC =3−1=2,∴S △BCE =12×2×(3−2)=1,答:△BCE 的面积为1.【解析】(1)根据直线y =x −1求出点A 坐标,进而确定OA ,AD 的值,再确定点C 的坐标,代入反比例函数的关系式即可;(2)求出点E 坐标,进而求出EC ,再求出一次函数与反比例函数在第一象限的交点B 的坐标,由三角形的面积的计算方法进行计算即可.本题考查反比例函数、一次函数交点坐标以及待定系数法求函数关系式,将一次函数、反比例函数的关系式联立方程组是求出交点坐标的基本方法,将点的坐标转化为线段的长是正确解答的关键.26.【答案】(1)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠A +∠ABC =90°,∵BC =BC ,∴∠A =∠D ,又∵∠DEC=∠ABC,∴∠D+∠DEC=90°,∴∠DCE=90°,∴CD⊥CE,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)解:由(1)知,CD⊥CE,在Rt△ABC和Rt△DEC中,∵∠A=∠D,AC=2BC,∴tanA=tanD,即BCAC =CECD=12,∴CD=2CE,在Rt△CDE中,CD2+CE2=DE2,DE=4√5,∴(2CE)2+CE2=(4√5)2,解得CE=4,即线段CE的长为4.【解析】(1)根据直径所对的圆周角是90°,得出∠A+∠ABC=90°,根据圆周角定理得出∠A=∠D,推出∠DCE=90°即可得出结论;(2)根据tanA=tanD得出BCAC =CECD=12,再根据勾股定理得出CE即可.本题主要考查圆的综合题,熟练掌握圆周角定理,切线的判定,勾股定理等知识是解题的关键.27.【答案】(1)证明:∵AC是正方形ABCD的对角线,∴AB=AD,∠BAE=∠DAE=45°,∵AE=AE,∴△ABE≌△ADE(SAS),∴BE=DE;(2)解:①△FBG为等腰三角形,理由:∵四边形ABCD是正方形,∴∠GAD=90°,∴∠AGD+∠ADG=90°,由(1)知,△ABE≌△ADE,∴∠ADG=∠EBG,∴∠AGD+∠EBG=90°,∵PB⊥BE,∴∠FBG+∠EBG=90°,∴∠AGD=∠FBG,∵∠AGD=∠FGB,∴∠FBG=∠FGB,∴FG=FB,∴△FBG是等腰三角形;②如图,过点F作FH⊥AB于H,∵四边形ABCD为正方形,点G为AB的中点,AB=4,∴AG=BG=2,AD=4,由①知,FG=FB,∴GH=BH=1,∴AH=AG+GH=3,在Rt△FHG与Rt△DAG中,∵∠FGH=∠DGA,∴tan∠FGH=tan∠DGA,∴FHGH =ADAG=2,∴FH=2GH=2,在Rt△AHF中,AF=√AH2+FH2=√13;(3)∵FB⊥BE,∴∠FBG=90°,在Rt△EBF中,BE=BF,∴EF=√2BE,由(1)知,BE=DE,由(2)知,FG=BF,∴GE=EF−FG=√2BE−BF=√2DE−DE=(√2−1)DE.【解析】(1)(1)先判断出AB=AD,∠BAE=∠DAE=45°,进而判断出△ABE≌△ADE,即可得出结论;(2)①先判断出∠AGD=∠FBG,进而判断出∠FBG=∠FGB,即可得出结论;②过点F作FH⊥AB于H,先求出AG=BG=2,AD=4,进而求出AH=3,进而求出FH=2,最后用勾股定理即可求出答案;(3)先判断出EF=√2BE,由(1)知,BE=DE,由(2)知,FG=BF,即可判断出结论.此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数,作出辅助线构造出直角三角形是解(2)的关键.28.【答案】解:(1)∵抛物线y=14(x+3)(x−a)与x轴交于A,B(4,0)两点,∴14(4+3)(4−a)=0,解得a=4,∴y=14(x+3)(x−4)=14x2−14x−3,即抛物线的表达式为y=14x2−14x−3;(2)在y=14(x+3)(x−4)中,令y=0,得x=−3或4,∴A(−3,0),OA=3,∵OC=OB=4,∴C(0,4),∵AE=1,∴DE=AE⋅tan∠CAO=AE⋅OCOA =1×43=43,OE=OA−AE=3−1=2,∴E(−2,0),∵DE⊥x轴,∴x P=x D=x E=−2,∴y P=14(−2+3)(−2−4)=−32,∴PE=32,∴DP=DE+PE=43+32=176;(3)①如下图,连接DG交AB于点M,∵△BCD与BFG关于x轴对称,∴DG⊥AB,DM=GM,设OM=a(a>0),则AM=OA−OM=3−a,MG=MD=AM⋅tan∠CAO=43(3−a),∴G(−a,43(a−3)),∵点G(−a,43(a−3))在抛物线y=14(x+3)(x−4)上,∴14(−a+3)(−a−4)=43(a−3),解得a=43或3(舍去),∴G(−43,−209);②如下图,在AB的下方作∠EAQ=∠DCB,且AQ=BC,连接EQ,CQ,∵AE=CD,∴△AEQ≌△CDB(SAS),∴EQ=BD,∴当C、E、Q三点共线时,BD+CE=EQ+CE最小,最小为CQ,过点C作CH⊥AQ,垂足为H,∵OC⊥OB,OC=OB=4,∴∠CBA=45°,BC=4√2,∵∠CAH=180°−∠CAB−∠EAQ=180°−∠CAB−∠DCB=∠CBA=45°,AC =√OA 2+OC 2=√32+42=5,AH =CH =√22AC =5√22, HQ =AH +AQ =AH +BC =5√22+4√2=13√22, ∴CQ =√CH 2+HQ 2=(5√22)(13√22)=√97,即BD +CE 的最小值为√97.【解析】(1)用待定系数法求解析式即可;(2)根据函数解析式求出OA 的长度,根据三角函数求出DE 的长度,根据P 点的坐标得出PE 的长度,根据DP =DE +PE 得出结论即可;(3)①连接DG 交AB 于点M ,设OM =a(a >0),则AM =OA −OM =3−a ,得出G(−a,43(a −3)),根据G 点在抛物线上得出a 的值,即可得出G 点的坐标; ②在AB 的下方作∠EAQ =∠DCB ,且AQ =BC ,连接EQ ,CQ ,构造△AEQ≌△CDB ,得出当C 、E 、Q 三点共线时,BD +CE =EQ +CE 最小,最小为CQ ,求出CQ 的值即可. 本题主要考查二次函数的综合题,熟练掌握二次函数的图象和性质,全等三角形的判定和性质,三角函数,勾股定理等知识是解题的关键.。
2023年甘肃省武威市中考数学一模试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 2023的绝对值为( )A. 2023B. −2023C. 12023D. −120232. 一个等腰三角形的顶角是50°,则它的底角的大小是( )A. 50°B. 65°C. 100°D. 130°3. 代数式√ x−5x−6有意义,则x的取值范围是( )A. x≤5B. x≥5C. x>5且x≠6D. x≥5且x≠64. 关于x的方程x2+bx+c=0的两个实数根分别为−2和3,则分解因式x2+bx+c等于( )A. (x+2)(x−3)B. (x−2)(x+3)C. (x−2)(x−3)D. (x+2)(x+3)5. 如图,在△ABC中,D、E分别是AB和AC上的点,DE//BC,若ADBD =31,那么DEBC=( )A. 14B. 12C. 34D. 236. 垃圾分类是对垃圾进行有效处置的一种科学管理方式,是对垃圾收集处置传统方式的改革,甲乙两班各有50名同学参加了学校组织的2022年“生活垃圾分类回收”的考试.考试规定成绩大于等于86分为优异,两个班成绩的平均数、中位数、方差如表所示,则下列说法正确的是( )参加人数平均数中位数方差甲508583 5.1乙508585 4.6A. 甲班的成绩比乙班的成绩稳定B. 小高得84分将排在甲班的前25名C. 甲、乙两班竞赛成绩的众数相同D. 甲班成绩优异的人数比乙班多7. 生活中处处有数学,多边形在生活中的应用更是不胜枚举.如图是一个正六边形的螺帽,它的边长是4cm,则这个正六边形的半径R和扳手的开口a的值分别是( )A. 2cm,2√ 3cmB. 4cm,4√ 3cmC. 4cm,2√ 3cmD. 4cm,√ 3cm8. 为响应承办“绿色奥运”的号召,某校计划组织七年级部分同学参加义务植树180棵.由于同学们参与的积极性很高,实际参加植树活动的人数比原计划增加了50%,结果每人比原计划少栽了2棵.若设原计划有x人参加这次植树活动,则根据题意可列出方程为( )A. 180x +1801.5x=2 B. 180x+1800.5x=2 C. 180x−1801.5x=2 D. 180x−1800.5x=29. 如图,AB是半圆O的直径,C是OB的中点,过点C作CD⊥AB,交半圆于点D,则BD⏜与AD⏜的长度的比为( )A. 1:2B. 1:3C. 1:4D. 1:510. 如图①,在矩形ABCD的边BC上有一点E,连结AE,点P从顶点A出发,沿A→D→C以1cm/s的速度匀速运动到点C.图②是点P运动时,△APE的面积y(cm2)随时间x(s)变化的函数图象,则BE的长为( )A. 5cmB. 4cmC. 3cmD. 2cm二、填空题(本大题共8小题,共24.0分)11. 计算:|tan60°−2|=______ .12. 因式分解:a2−169=______ .13. 若方程(k+2)x|k+1|+6=0是关于x的一元一次方程,则k+2023=______ .14. 如图,已知矩形ABCD的对角线AC的长为10cm,顺次连结各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为______cm.15. 如图,A,B,C是⊙O上的三个点,∠ABC=25°,则∠OAC的度数是______ .16. 某机器零件的尺寸标注如图所示,在其主视图,左视图和俯视图中,既是轴对称图形又是中心对称图形的是______ .17. “水幕电影”的工作原理是把影像打在抛物线状的水幕上,通过光学原理折射出图象,水幕是由若干个水嘴喷出的水柱组成的(如图),水柱的最高点为P,AB=2m,BP=9m,水嘴高AD=5m,则水柱落地点C到水嘴所在墙的距离AC是______ m.18. 如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为______.三、计算题(本大题共1小题,共6.0分)19. 计算:√ 2(√ 2−√ 3).四、解答题(本大题共9小题,共72.0分。
武威市2023年初中毕业、高中招生考试数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.【答案】C【解析】解:9的算术平方根是3,故选C2.【答案】A【解析】解:等式两边乘以2b ,得6ab =,故选:A .3.【答案】B【解析】解:()222222a a a a a a a +-=+-=,故选:B4.【答案】D【解析】∵直线y kx =(k 是常数,0k ≠)经过第一、第三象限,∴0k >,∴k 的值可为2,故选:D .5.【答案】C【解析】解:∵BD 是等边ABC 的边AC 上的高,∴1302DBC ABC ∠=∠=︒,∵DB DE =,∴30DBE DEB ∠=∠=︒,故选C6.【答案】A【解析】去分母得()21x x +=,解方程得2x =-,检验:2x =-是原方程的解,故选A .7.【答案】B【解析】解:∵将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH ,∴EF GH ⊥,EF 与GH 互相平分,∴四边形EFGH 是菱形,∵2FH AB ==,4GE BC ==,∴菱形EFGH 的面积为1124422FH GE ⋅=⨯⨯=.故选:B8.【答案】D【解析】解:A 选项,年龄范围为9899-的人数为10人,对应的百分比为10%,则可得1010%100÷=(人),即该小组共统计了100名数学家的年龄,故选项正确,不符合题意;B 选项,由A 选项可知该小组共统计了100名数学家的年龄,则1005%5m =⨯=,故选项正确,不符合题意;C 选项,由扇形统计图可知,长寿数学家年龄在9293-岁的占的百分比最大,即长寿数学家年龄在9293-岁的人数最多,故选项正确,不符合题意;D 选项,《数学家传略辞典》中收录的数学家年龄在9697-岁的人数估计有112200242100⨯=人,故选项错误,符合题意.故选:D .9.【答案】B【解析】解:如图,过B 作BQ ⊥平面镜EF ,∴90QBE QBF ∠=∠=︒,ABC CBQ ABQ MBQ ∠+∠=∠=∠,而90CBQ QBM CBM ∠+∠=∠=︒,∴5090CBQ CBQ ︒+∠=︒-∠,∴20CBQ ∠=︒,∴902070EBC ∠=︒-︒=︒,故选B .10.【答案】C【解析】解:∵正方形ABCD 的边长为4,E 为CD 边的中点,∴4AB BC CD AD ====,90C D ∠=∠=︒,2CE DE ==,当P 与A ,B 重合时,PE 最长,此时PE ==,运动路程为0或4,结合函数图象可得(4,M ,故选C 二、填空题:本大题共6小题,每小题3分,共18分.11.【答案】()21a x -【解析】解:()()2222211ax ax a a x x a x -+=-+=-,故答案为:()21a x -12.【答案】2-(答案不唯一,合理即可)【解析】解:∵关于x 的一元二次方程2240x x c ++=有两个不相等的实数根,∴224144160c c ∆=-⨯⨯=->,解得14c <,当2c =-时,满足题意,故答案为:2-(答案不唯一,合理即可)13.【答案】10907-【解析】解:把海平面以上9050米记作“9050+米”,则海平面以下10907米记作10907-米,故答案为:10907-.14.【答案】35【解析】解:,A CDB ∠∠Q 是 BC所对的圆周角,55,A CDB ∴∠=∠=︒AB 是O 的直径,90ACB ∠=︒ ,在Rt ACB △中,90905535ABC A ∠=︒-∠=︒-︒=︒,故答案为:35.15.【答案】【解析】解:在菱形ABCD 中,60DAB ∠=︒,160,302DAB DCB BAC DAC DCF DAB ∴∠=∠=︒∠=∠=∠=∠=︒,DF CD ⊥Q ,90DFC ∴∠=︒,9060DFC DCF ∴∠=︒-∠=︒,在Rt CDF △中,12DF CF =,603030,ADF DFC DAF ∠=∠-∠=︒-︒=︒Q ,FAD ADF ∴∠=∠11,23AF DF CF AC ∴===同理,13CE AC =,13EF AC AF CE AC ∴=--=,12EF AE ∴=,在Rt ABE △中,cos3032AB AE ==︒12EF AE ∴==故答案为:16.【答案】5π【解析】150********n r l πππ⨯⨯===故填:5π.三、解答题:本大题共6小题,共32分.解答时,应写出必要的文字说明、证明过程或演算步骤.17.【答案】32⨯==-=18.【答案】21x -<≤【解析】解:解不等式组:6234x x x x >--⎧⎪⎨+≤⎪⎩①②,解不等式①,得2x >-.解不等式②,得1x ≤.因此,原不等式组的解集为21x -<≤.19.【答案】4ba b+【解析】解:原式22(2)2()()a b a b a b a b a b a b a b +--=-⋅+-+-22a b a b a b a b+-=-++4b a b =+.20.【答案】见解析【解析】解:如图,即点A ,G ,D ,H 把O 的圆周四等分.理由如下:如图,连接,,,,,,,AE DE AC DC OE OH OG AH ,由作图可得: AB BC CD==,且OA OB AB ==,∴AOB 为等边三角形,60AOB ∠=︒,同理可得:60BOC COD ∠=∠=︒,∴180AOB BOC COD ∠+∠+∠=︒,∴A ,O ,D 三点共线,AD 为直径,∴=90ACD ∠︒,设CD x =,而30DAC ∠=︒,∴2AD x =,AC =,由作图可得:DE AE AC ===,而OA OD x ==,∴⊥EO AD ,OE ==,∴由作图可得AG AH ==,而OA OH x ==,∴22222OA OH x AH +==,∴90AOH =︒∠,同理90AOG DOG DOH ∠=︒=∠=∠,∴点A ,G ,D ,H 把O 的圆周四等分.21.【答案】(1)13(2)19【解析】(1)P (小亮抽到卡片A )13=.(2)列表如下:小刚小亮A B C A(),A A (),A B (),A C B (),B A (),B B (),B C C(),C A (),C B (),C C 或画树状图如下:共有9种等可能的结果,两人都抽到卡片C 的结果有1种,所以,P (两人都抽到卡片C )19=.22.【答案】新生物A 处到皮肤的距离约为8.4cm【解析】解:过点A 作AH MN ⊥,垂足为H .由题意得,35ABH DBN ∠=∠= ,22ACH ECN ∠=∠= ,在Rt AHB △中,tan tan 350.70AH AH AH BH ABH ==≈∠︒.在Rt AHC 中,tan tan 220.40AH AH AH CH ACH ==≈∠︒.∵CH BH BC -=,∴90.400.70AH AH -=,∴()8.4cm AH =.答:新生物A 处到皮肤的距离约为8.4cm .四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.【答案】(1)16(2)35(3)八年级,理由见解析【解析】(1)解:由中位数的概念,可知40人成绩的中位数是第20、21位的成绩,由统计图知A 组4人,B 组10人,C 组10人,则中位数在C 组,第20、21位的成绩分别是16,16,则中位数是1616162+=;故答案为:16;(2)解:612003540+⨯=(人),这200名学生八年级下学期期末地理成绩达到优秀的约有35人,故答案为:35;(3)解:因为抽取的八年级学生的期末地理成绩的平均分(或中位数)下学期的比上学期的高,所以八年级学生下学期期末地理成绩更好.24.【答案】(1)()3,2B(2)32n m =-+(3)863y x =-【解析】(1)解:∵点()3,B a 在反比例函数()60y x x =>的图象上,∴623a ==,∴()3,2B .(2)∵点()3,2B在一次函数y mx n =+的图象上,∴32m n +=,即32n m =-+.(3)如图,连接OB .∵192OAB B S OA x =⋅⋅=△,∴1392OA ⋅⨯=,∴6OA =,∴()0,6A -,∴6n =-,∴326m -+=-,∴83m =,∴一次函数的表达式为:863y x =-.25.【答案】(1)见解析(2)245【解析】(1)证明:∵ AC AC=,∴ADC B ∠=∠.∵OB OC =,∴B OCB ∠=∠.∵CO 平分BCD ∠,∴OCB OCD ∠=∠,∴ADC OCD ∠=∠.∵CE AD ⊥,∴90ADC ECD ∠+∠=︒,∴90OCD ECD ∠+∠=︒,即CE OC ⊥.∵OC 为O 的半径,∴CE 是O 的切线.(2)连接OD ,得OD OC =,∴ODC OCD ∠=∠.∵OCD OCB B ∠=∠=∠,∴ODC B ∠=∠,∵CO CO =,∴OCD OCB ≌,∴CD CB =.∵AB 是O 的直径,∴90ACB ∠=︒,∴3sin 1065AC AB B =⋅=⨯=,∴8CB ==,∴8CD =,∴324sin sin 855CE CD ADC CD B =⋅∠=⋅=⨯=.26.【答案】(1)①见解析;②AD DF BD =+,理由见解析;(2DF BD =+,理由见解析;(3)【解析】(1)①证明:∵ABC 和BDE 都是等边三角形,∴AB BC =,BE BD =,60ABC EBD ∠=∠=︒,∴ABC CBE EBD CBE ∠-∠=∠-∠,∴ABE CBD ∠=∠,∴()SAS ABE CBD ≅△△.∴AE CD =.②AD DF BD =+.理由如下:∵DF 和DC 关于AD 对称,∴DF DC =.∵AE CD =,∴AE DF =.∴AD AE DE DF BD =+=+.(2DF BD =+.理由如下:如图,过点B 作BE AD ⊥于点E ,得90BED ∠=︒.∵DF 和DC 关于AD 对称,∴DF DC =,ADF ADC ∠=∠.∵CD BD ⊥,∴45ADF ADC ∠=∠=︒,∴45EBD ∠=︒.∴22DE BD =.∵ABC 是直角三角形,AB AC =,∴=45ABC ∠︒,2AB BC =,∴ABC CBE EBD CBE ∠-∠=∠-∠,∴ABE CBD ∠=∠,∴sin sin ABE CBD ∠=∠,∴AE CD AB BC=,∴AE BC CD AB ⋅=⋅,∴22AE CD =.∴22222222AD AE DE =+=+=+,即DF BD =+.(3)∵33BD CD DF ==,34DF DF DF =+=,∵AD =2DF DC ==,∴6BD =.如图,过点A 作AH BD ⊥于点H .∵AB AC AF ==,∴()11222HF BF BD DF ==-=,BC ==∴2222AF AC BC ===.∴cos5HF AFB AF ∠===.27.【答案】(1)23y x x=-+(2)四边形OCPD 是平行四边形,理由见解析(3)【解析】(1)解:∵抛物线2y x bx =-+过点()4,4B -,∴1644b -+=-,∴3b =,∴23y x x =-+;(2)四边形OCPD 是平行四边形.理由:如图1,作PD OA ⊥交抛物线于点D ,垂足为H ,连接PC ,OD .∵点P 在y x =-上,∴OH PH =,45POH ∠=︒,连接BC ,∵4OC BC ==,∴OB =,∵BP =,∴OP OB BP =-=,∴22222OH PH ===,当2D x =时,4322D DH y ==-+⨯=,∴224PD DH PH =+=+=,∵()0,4C -,∴4OC =,∴PD OC =,∵OC x ⊥轴,PD x ⊥轴,∴PD OC ∥,∴四边形OCPD 是平行四边形;(3)如图2,由题意得,BP OQ =,连接BC .在OA 上方作OMQ ,使得45MOQ ∠=︒,OM BC =,∵4OC BC ==,BC OC ⊥,∴45CBP ∠=︒,∴CBP MOQ ∠=∠,∵BP OQ =,CBP MOQ ∠=∠,BC OM =,∴()SAS CBP MOQ △≌△,∴CP MQ =,∴CP BQ MQ BQ MB +=+≥(当M ,Q ,B 三点共线时最短),∴CP BQ +的最小值为MB ,∵454590MOB MOQ BOQ ∠=∠+∠=︒+︒=︒,∴MB ==即CP BQ +的最小值为.。
2024年中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份2.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的()A.H或N B.G或H C.M或N D.G或M3.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为()A .3B .23C .22D .44.如图,过点A (4,5)分别作x 轴、y 轴的平行线,交直线y=﹣x+6于B 、C 两点,若函数y=kx(x >0)的图象△ABC 的边有公共点,则k 的取值范围是( )A .5≤k≤20B .8≤k≤20C .5≤k≤8D .9≤k≤205.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )之间.A .B 与CB .C 与DC .E 与FD .A 与B6.计算±81的值为( ) A .±3B .±9C .3D .97.已知点()2,4P -,与点P 关于y 轴对称的点的坐标是( ) A .()2,4--B .()2,4-C .()2,4D .()4,2-8.如图,△ABC 中,D 为BC 的中点,以D 为圆心,BD 长为半径画一弧交AC 于E 点,若∠A=60°,∠B=100°,BC=4,则扇形BDE 的面积为何?( )A .13πB .23π C .49πD .59π9.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF=3,那么菱形ABCD 的周长为( )A .24B .18C .12D .910.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A.B.C.D.11.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.12.北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为()A.0.72×106平方米B.7.2×106平方米C.72×104平方米D.7.2×105平方米二、填空题:(本大题共6个小题,每小题4分,共24分.)13.下面是“作已知圆的内接正方形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正方形.作法:如图,(1)作⊙O的直径AB;(2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;(3)作直线MN与⊙O交于C、D两点,顺次连接A、C、B、D.即四边形ACBD为所求作的圆内接正方形.请回答:该尺规作图的依据是_____.14.如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,……,依次下去.则点B6的坐标____________.15.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(53,0),B(0,4),则点B4的坐标为_____,点B2017的坐标为_____.16.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为S n.当n≥2时,S n﹣S n﹣1=▲ .17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB2c m的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒lcm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P ′,设Q 点运动的时间为t 秒,若四边形QP ′CP 为菱形,则t 的值为_____.18.一组数据4,3,5,x ,4,5的众数和中位数都是4,则x=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)计算:2cos30°+27-33--(12)-220.(6分)如图,某地方政府决定在相距50km 的A 、B 两站之间的公路旁E 点,修建一个土特产加工基地,且使C 、D 两村到E 点的距离相等,已知DA ⊥AB 于A ,CB ⊥AB 于B ,DA=30km ,CB=20km ,那么基地E 应建在离A 站多少千米的地方?21.(6分)在△ABC 中,已知AB=AC ,∠BAC=90°,E 为边AC 上一点,连接BE . (1)如图1,若∠ABE=15°,O 为BE 中点,连接AO ,且AO=1,求BC 的长;(2)如图2,D 为AB 上一点,且满足AE=AD ,过点A 作AF ⊥BE 交BC 于点F ,过点F 作FG ⊥CD 交BE 的延长线于点G ,交AC 于点M ,求证:BG=AF+FG .22.(8分)化简,再求值:222x-3231,211121x x x x x x x --÷+=+--++23.(8分)中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查了 名学生,扇形统计图中“1部”所在扇形的圆心角为 度,并补全条形统计图;(2)此中学共有1600名学生,通过计算预估其中4部都读完了的学生人数;(3)没有读过四大古典名著的两名学生准备从四大固定名著中各自随机选择一部来阅读,求他们选中同一名著的概率.24.(10分)如图,在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于点D ,BE ⊥AB 于点B ,BE=CD ,连接CE ,DE .(1)求证:四边形CDBE 为矩形; (2)若AC =2,1tan 2ACD ∠=,求DE 的长.25.(10分)已知:如图,在正方形ABCD 中,点E 、F 分别是AB 、BC 边的中点,AF 与CE 交点G ,求证:AG =CG .26.(12分)雾霾天气严重影响市民的生活质量。
2023年甘肃临夏中考数学试题及答案考生注意:本试卷满分为120分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.9的算术平方根是()A.3± B.9± C.3D.3-2.若32a b=,则ab =()A.6B.32C.1D.233.计算:()22a a a +-=()A.2B.2aC.22a a+ D.22a a-4.若直线y kx =(k 是常数,0k ≠)经过第一、第三象限,则k 的值可为()A.2- B.1- C.12-D.25.如图,BD 是等边ABC △的边AC 上的高,以点D 为圆心,DB 长为半径作弧交BC 的延长线于点E ,则DEC ∠=()A.20︒B.25︒C.30︒D.35︒6.方程211x x =+的解为()A.2x =-B.2x =C.4x =- D.4x =7.如图,将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH .若2AB =,4BC =,则四边形EFGH 的面积为()A.2B.4C.5D.68.据统计,数学家群体是一个长寿群体,某研究小组随机抽取了收录约2200位数学家的《数学家传略辞典》中部分90岁及以上的长寿数学家的年龄为样本,对数据进行整理与分析,统计图表(部分数据)如下,下列结论错误的是()年龄范围(岁)人数(人)90-912592-9394-9596-971198-9910100-101mA.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在92-93岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在96-97岁的人数估计有110人9.如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于人射角”。
2023年甘肃省武威市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.2-的相反数是()A.2-B.2C.12D.12-2.如图所示的几何体的俯视图是()A.B.C.D.3.据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为()A.0.8×1013B.8×1012C.8×1013D.80×1011 4.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.5.下列运算正确的是()A.3a+3b=6ab B.a3﹣a=a2C.(a2)3=a6D.a6÷a3=a2 6.如图,直线a与直线b平行,将三角板的直角顶点放在直线a上,若∠1=40°,则∠2等于()A.40°B.50°C.60°D.140°7.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x,则下面所列方程正确的是()A.289(1﹣x)2=256B.256(1﹣x)2=289C .289(1﹣2x )=256D .256(1﹣2x )=2898.已知∠O 的直径等于12cm ,圆心O 到直线l 的距离为5cm ,则直线l 与∠O 的交点个数为【 】A .0B .1C .2D .无法确定 9.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点B 坐标(﹣1,0),下面的四个结论:∠OA =3;∠a +b +c <0;∠ac >0;∠b 2﹣4ac >0.其中正确的结论是( )A .∠∠B .∠∠C .∠∠D .∠∠10.如图,在矩形ABCD 中,AB =9,BC =3,点E 是沿A →B 方向运动,点F 是沿A →D →C 方向运动.现E 、F 两点同时出发匀速运动,设点E 的运动速度为每秒1个单位长度,点F 的运动速度为每秒3个单位长度,当点F 运动到C 点时,点E 立即停止运动.连接EF ,设点E 的运动时间为x 秒,EF 的长度为y 个单位长度,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .二、填空题11.函数y x 的取值范围是________.12.下列各数:π3,sin30︒,______个 13.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于_____. 14.定义新运算“⊗”,规定:2a b a b ⊗=-.若关于x 的不等式3x m ⊗>的解集为1x >-,则m 的取值范围是________.15.在∠ABC 中,已知∠ABC =90°,∠BAC =30°,BC =1,如图所示,将∠ABC 绕点A 按逆时针方向旋转90°后得到∠AB ′C ′.则图中阴影部分的面积为_____.16.如图,点B 是AD 延长线上的一点,//DE AC ,AE 平分∠CAB ,∠C =50°,∠E =30°,则∠CDA 的度数等于____.17.如图,已知O 为原点,点A 的坐标为()0,4,点B 的坐标为()3,0,D 过,,A B O 三点,点C 为优弧OAB 上一点(不与点O 重合),则cosC 的值为________________.18.为切实做好当前疫情防控工作,根据国务院联防联控机制有关规定,结合疫情流调溯源情况,某市统筹疫情防控和经济运行工作领导小组(指挥部)办公室决定,增加部分封控区、管控区、防范区.某地区根据疫情的发展状况,决定安排足量的工作人员.如图所示,把封控区、管控区、防范区根据需要设计成正多边形,各边上的点代表需要的工作人员,按此规律,则第n 个图形需要的数是______人.三、解答题19.计算:()011201420156tan 304-⎛⎫-+-︒ ⎪⎝⎭ 20.先化简,后求值.已知实数a 满足2212a a ++=,求()()2212121121a a a a a a a +++-÷+--+的值.21.如图,已知ABC ,90BAC ∠=︒;(1)用直尺和圆规作出O ,使O 经过A ,B 两点且圆心O 在BC 上(保留作图痕迹不写作法);(2)圆心O 到弦AB 的距离为3,求AC 的长.22.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果; (2)求至少有一辆汽车向左转的概率.23.为了了解全校1800名学生对学校设置的体操、球类、跑步、踢毽子等课外体育活动项目的喜爱情况,在全校范围内随机抽取了若干名学生.对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整).(1)在这次问卷调查中,一共抽查了多少名学生?(2)补全频数分布直方图;(3)估计该校1800名学生中有多少人最喜爱球类活动?24.某中学紧挨一座山坡,如图所示,已知AF∥BC ,AB 长30米,∠ABC =66°,为防止山体滑坡,需要改造山坡,改造后的山坡BE 与地面成45°角,求AE 是多少米?(精确到1米)(参考数据:sin66°≈0.91,cos66°≈0.41,tan66°≈2.25)25.如图,一次函数1y x =--的图像与x 轴交于点A ,与y 轴交于点B ,与反比例函数k y x=图像的一个交点为(2,)M m -.(1)求反比例函数的表达式;(2)若点P 是反比例函数k y x=图像上一点,且2BOP AOB S S =△△,求点P 的坐标. 26.如图,在四边形ABCD 中,AB CD ∥,点E 是对角线AC 上一点,ADC ABC ∠=∠.(1)求证:四边形ABCD 是平行四边形:(2)分别过点E ,B 作EF AB ∥,BF AC ∥,当FCE ∠和DCE ∠满足怎么样的数量关系时,四边形EFCD 是菱形?请说明理由.27.如图,BE 是ABC 的角平分线,90C ∠=︒,点D 在AB 边上,以DB 为直径的O 经过点E ,交BC 于点F .(1)求证:AC 是O 的切线;(2)若3sin 5A =,O 的半径为5,求BEF 的面积. 28.如图,在平面直角坐标系中,抛物线y =ax 2+bx +4与x 轴交于A ,B 两点(点A 在原点左侧,点B 在原点右侧),与y 轴交于点C ,已知OA =1,OC =OB .(1)求抛物线的解析式;(2)若D (2,m )在该抛物线上,连接CD ,DB ,求四边形OCDB 的面积;(3)设E 是该抛物线上位于对称轴右侧的一个动点,过点E 作x 轴的平行线交抛物线于另一点F ,过点E 作EH ∠x 轴于点H ,再过点F 作FG ∠x 轴于点G ,得到矩形EFGH .在点E 运动的过程中,当矩形EFGH 为正方形时,求出该正方形的边长.参考答案:1.B【解析】【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B.【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.B【解析】【分析】找到从上面看所得到的图形即可.【详解】从上面可看到是三个左右相邻的长方形.故选:B.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.B【解析】【详解】试题解析:8000000000000=8×1012,故选B.考点:科学记数法—表示较大的数.4.D【解析】【分析】如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形;把一个图形绕着某一点旋转180°后能与原来位置的图形重合,这个图形叫做中心对称图形.【详解】解:A选项,两者都不是;B选项,不是轴对称图形;C选项,两者都不是;D选项,两者均是.故选择D.【点睛】本题考查了中心对称图形和轴对称图形的概念.5.C【解析】【分析】分别根据合并同类项法则、幂的乘方、同底数幂除法法则逐项进行计算即可得.【详解】解:A、3a与3b不是同类项,不能合并,不符合题意;B、a3与a不是同类项,不能合并,不符合题意;C、(a2)3=a6,符合题意;D、a6÷a3=a3,不符合题意,故选C.【点睛】本题考查了合并同类项、幂的乘方、同底数幂除法等运算,熟练掌握各运算的运算法则是关键.6.B【解析】【分析】先根据两角互余的性质求出∠3的度数,再由平行线的性质即可得出结论.【详解】解:∠三角板的直角顶点放在直线a上,∠1=40°,∠∠3=90°-40°=50°.∠a∠b,∠∠2=∠3=50°.故选:B.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.7.A【解析】【分析】设平均每次的降价率为x,则经过两次降价后的价格是289(1﹣x)2,由题意可列方程289(1﹣x)2=256.【详解】解:设平均每次降价的百分率为x,则第一次降价售价为289(1﹣x),则第二次售价为289(1﹣x)2由题意得:289(1﹣x)2=256故选A.【点睛】本题考查了一元二次方程的应用.解题的关键在于根据题意列正确的方程.8.C【解析】【分析】首先求得该圆的半径,再根据直线和圆的位置关系与数量之间的联系进行分析判断.若d <r,则直线与圆相交,直线与圆相交有两个交点;若d=r,则直线于圆相切,直线与圆相交有一个交点;若d>r,则直线与圆相离,直线与圆相交没有交点.【详解】∠∠O的直径等于12cm,∠该圆的半径是6cm,即r=6cm,∠圆心O 到直线l 的距离为5cm ,即d =5cm ,∠d <r ,∠直线和圆相交,∠直线l 与∠O 的交点个数为2.故选:C .9.A【解析】【详解】∠由图象知,点B 坐标(﹣1,0),对称轴是直线x =1,∠A 的坐标是(3,0).∠OA =3.∠结论∠正确.∠由图象知:当x =1时,y >0,∠把x =1代入二次函数的解析式得:y =a +b +c >0.∠结论∠错误.∠抛物线的开口向下,与y 轴的交点在y 轴的正半轴上,∠a <0,c >0.∠ac <0.∠结论∠错误.∠抛物线与x 轴有两个交点,∠b 2﹣4ac >0.∠结论∠正确.综上所述,结论∠∠正确.故选A .10.C【解析】【分析】当点E 是沿A →B 方向运动,点F 是沿A →D 方向运动时;当点E 是沿A →B 方向运动,点F 是沿D →C 方向运动时,利用勾股定理即可解答.【详解】分两种情况讨论:∠当点E 是沿A →B 方向运动,点F 是沿A →D 方向运动时,此时,01x <≤,AE =x ,AF =3x ,∠y ==.∠当点E 是沿A →B 方向运动,点F 是沿D →C 方向运动时,如答图,过点F 作FH ∠AB 于点H ,14x <≤,AH =33x -, HE =()3323x x x --=-,∠y ==∠()22399x -+≥,∠当32x =时,()2239x -+有最小值,即y 有最小值. 故选:C .【点睛】本题考查了:1.双动点问题的函数图象;2.勾股定理;3.分类思想的应用.11.2x >【解析】【分析】【详解】由题意得20x ->,解得2x >,故答案为:2x >.12.2【解析】【分析】 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可得到答案.【详解】解:π3是无理数,符合题意; 1sin 30=2︒是有理数,不符合题意;是有理数,不符合题意;∠无理数一共有2个,故答案为:2.【点睛】本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义以及特殊角三角函数值,算术平方根.13.1.【解析】【分析】根据红球的概率结合概率的计算方法即可得到结果.【详解】 解:因为红球的概率是13,布袋里有2个红球,3个白球和a 个黄球, 所以21233a =++ ∠a=1故答案为1.【点睛】此题重点考察学生对概率的应用,会计算事件的概率是解题的关键.14.m =-2【解析】【分析】根据定义的新运算得到23x m x m ⊗=->,得32x m >+,从而3+2m =-1,求得m 的值.【详解】解:∠2a b a b ⊗=-,∠2x m x m ⊗=-,∠3x m ⊗>,∠23x m ->,∠23x m >+,∠不等式3x m ⊗>的解集为1x >-,∠231m +=-,∠m =-2,故答案为:m =-2.【点睛】本题考查了新定义运算在不等式的应用,解题的关键是准确理解新定义的运算.15.2π【解析】【分析】利用勾股定理求出AC 及AB 的长,根据阴影面积等于AB C CAC DAB S S S''''--扇形扇形求出答案. 【详解】解:由旋转得,AB AB AC AC ''==,90CAC '∠=︒,B AC ''∠=∠BAC =30°,∠∠ABC =90°,∠BAC =30°,BC =1,∠AC =2BC =2,AB 60CAB '∠=︒,∠阴影部分的面积=AB C CAC DAB S S S ''''--扇形扇形2260902113603602ππ⨯⨯=--⨯=2π故答案为:2π.【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.16.70°【解析】【分析】先根据平行线的性质得出∠CAE 的度数,再由角平分线的性质求出∠CAD 的度数,根据三角形内角和定理即可得出结论.【详解】∠DE ∠AC ,∠E =30°,∠∠CAE =∠E =30°.∠AE 平分∠CAB ,∠∠CAD =2∠CAE =60°.在∠ACD 中,∠∠C =50°,∠CAD =60°,∠∠CDA =180°﹣∠C ﹣∠CAD =180°﹣50°﹣60°=70°.故答案为:70°.【点睛】本题考查了平行线的性质,角平分线的性质及三角形内角和定理,题目较易,是基础题.17.45【解析】【分析】连接AB ,利用圆周角定理得∠C =∠OAB ,将问题转化到Rt △ABO 中,利用锐角三角函数定义求解.【详解】解:如图,连接.AB∠90,4,3AOB OA OB ∠=︒==∠在Rt ∠AOB 中 5.AB ==∠,C OAB ∠=∠45AO cosC cos OAB AB ∴=∠==故答案为:45【点睛】本题考查了圆周角定理,坐标与图形的性质,勾股定理及锐角三角函数的定义.关键是运用圆周角定理将所求角转化到直角三角形中解题.18.()2n n +【解析】【分析】由第1个图象是233⨯-,第2个图象是344⨯-,第3个图象是455⨯-,依此规律即可得出结果.【详解】第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子233⨯-个.第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子344⨯-个.第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子455⨯-个.按照这样的规律摆下去,第 n 个图形需要黑色棋子的个数是()()()()1222.n n n n n ++-+=+故答案为: ()2.n n +【点睛】本题考查了图形的变化类问题,首先计算几个特殊图形,发现:数出每边上的个数,乘以边数,但各个顶点的重复了一次,应减去,找出规律是解此题的关键.19.5【解析】【分析】先化简二次根式以及计算零指数幂,负整数指数幂和特殊角三角函数值,然后根据实数的运算法则求解即可.【详解】()011201420156tan304-⎛⎫-+-︒⎪⎝⎭146+-14+-=5.【点睛】本题主要考查了实数的运算,熟知化简二次根式,零指数幂,负整数指数幂,特殊角三角函数值的计算法则是解题的关键.20.2221a a++,1【解析】【分析】先根据分式的混合计算法则化简,然后代值计算即可.【详解】解:()()2212121121a aaa a a a+++-÷+--+()()()()()21111212=1aaa aaaa+-+++÷--+()()()()()21121=1112aa aaa aa+--⋅++-++()21=111aaa--++()211=1a aa+-++22=21a a++,当2212a a++=时,原式212==.【点睛】本题主要考查了分式的化简求值,熟知相关计算法则是解题的关键.21.(1)见解析(2)6【解析】【分析】(1)作线段AB的垂直平分线EF交BC于O,以O为圆心,OB为半径作圆即可;(2)根据作图可知EF是AB的垂直平分线,易证OD是∠BAC的中位线,即可求解.(1)解:如图,(2)解:连接OA,如图,由作图可知,EF是AB的垂直平分线,即DE∠AB,D是AB的中点,又∠∠BAC=90°,∠∠BDO=∠BAC=90°,∠OD∠AC,∠OD是∠BAC的中位线,∠AC=2OD=6.【点睛】本题考查了基本作图,及线段的垂直平分线的性质,三角形的中位线性质,掌握线段的垂直平分线的性质,三角形的中位线性质是解题的关键.22.(1)答案见解析;(2)5 9【解析】【分析】画树状图求解.可以得到一共有9种情况,两辆车全部继续直行的有1种情况,至少有一辆车向右转有5种情况,根据概率公式求解即可.【详解】解:(1)根据题意,可以画出如下的“树形图”:∠这两辆汽车行驶方向共有9种可能的结果(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∠P(至少有一辆汽车向左转)=5 9【点睛】本题考查树状图或列表法求概率,正确画图是本题的解题关键.23.(1)80人; (2)见解析;(3)810人.【解析】【分析】(1)利用体操的人数和百分比可求出总数为10÷12.5%=80(人);(2)利用总人数和踢毽子的百分比可求出其人数是80×25%=20(人),补全统计图即可;(3)用样本估计总体即可.【详解】解:(1)10÷12.5%=80(人),∠一共抽查了80名学生;(2)踢毽子的人数=80×25%=20(人),如图:(3)36180081080⨯=(人),估计有810人最喜爱球类活动.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数目;扇形统计图直接反映部分占总体的百分比大小.24.15米.【解析】【分析】过E作EN∠BC于N,则四边形AEND是矩形,有NE=AD,AE=DN,在Rt∠ADB和Rt∠BEN 中都已知一边和一个锐角,满足解直角三角形的条件,可求出AD 和BD 、AE 的长.【详解】解:在Rt∠ADB 中,AB =30米,∠ABC =66°,∠AD =AB sin∠ABC =30×sin66°=30×0.91=27.3(米),DB =AB cos∠ABC =30×cos66°=30×0.41=12.3(米).过E 作EN ∠BC 于N ,如图所示:∠AE∥BC ,∠四边形AEND 是矩形,∠NE =AD =27.3米,在Rt∠ENB 中,∠EBN =45°时,BN =EN =AD =27.3米,∠AE =DN =BN ﹣BD =27.3﹣12.3=15米,答:AE 是15米.【点睛】本题考查了解直角三角形的应用;通过构造直角三角形和矩形是解决问题的关键.25.(1)2y x=- (2)(2,-1)或(-2,1)【解析】【分析】(1)通过交点M 坐标代入一次函数解析式求出m ,再将M 坐标代入反比例函数解析式求出k ,即可求出反比例函数的表达式;(2)先求出点A 、B 坐标,从而求出AOB S,设点P 坐标为(x ,y ),通过x 为∠BOP 的高列出BOP S 表达式,根据2BOP AOB S S =△△求出x 的值,再求出y 的值即可.(1)因为点M 为一次函数1y x =--与反比例函数k y x =的交点,所以点M 在一次函数上, ∠点M 坐标为(-2,m ),∠(2)11m =---=,即点M 的坐标为(-2,1), 代入反比例函数得:12k =-, ∠2k =-,∠反比例函数的表达式为:2y x =-; (2)因为点A 、B 是一次函数1y x =--与坐标轴的交点,所以当x =0时,y =-1,当y =0时,x =-1,即点A 、B 坐标分别为(-1,0),(0,-1),∠AO =1,BO =1, ∠11111222AOB S AO BO =⨯=⨯⨯=, 设点P 的坐标为(x ,y ),则点P 到y 轴的距离为x , ∠1122BOP S OB x x =⨯=△, ∠2BOP AOB S S =△△ ∠112122x =⨯=, 解得:2x =±,x 的值分别代入2y x=-, 当x =2时,y =-1,当x =-2时,y =1,故点P 的坐标为(2,-1)或(-2,1).【点睛】本题考查了一次函数和反比例函数,能熟练求一次函数和反比例函数交点和反比例函数上的点与坐标轴上线段构成的三角形面积是解题关键.26.(1)见解析(2)FCE DCE ∠=∠,理由见解析【解析】【分析】(1)根据//AB CD 得180ABC BCD ∠+∠=︒,根据ADC ABC ∠=∠等量代换得180ADC BCD ∠+∠=︒得//AD BC ,即可证得结论;(2)根据//EF AB ,//BF AC 得四边形ABEF 是平行四边形,根据平行四边形的性质//AB EF ,AB EF =,根据四边形ABCD 是平行四边形得//AB CD ,AB CD =,等量代换得//CD EF ,CD EF =,即可得四边形EFCD 是平行四边形,根据//CD EF ,即可得平行四边形EFCD 是菱形.(1)证明:∠//AB CD ,∠180ABC BCD ∠+∠=︒,∠ADC ABC ∠=∠,∠180ADC BCD ∠+∠=︒,∠//AD BC ,∠四边形ABCD 是平行四边形.(2)当FEC ECD ∠=∠时,四边形EFCD 是菱形,理由如下:解:∠//EF AB ,//BF AC ,∠四边形ABEF 是平行四边形,∠AB EF =,∠四边形ABCD 是平行四边形,∠//AB CD ,AB CD =,∠//CD EF ,CD EF =,∠四边形EFCD 是平行四边形,∠//CD EF ,∠FEC ECD ∠=∠,∠DCE FCE ∠=∠,∠FEC FCE ∠=∠,∠EF =FC ,∠平行四边形EFCD 是菱形.【点睛】本题考查了平行线的判定与性质,菱形的判定,解题的关键是熟练掌握相关知识点并能准确应用其解决问题.27.(1)证明见解析(2)12【解析】【分析】(1)连接OE .根据OB =OE 得到∠OBE =∠OEB ,然后再根据BE 是△ABC 的角平分线得到∠OEB =∠EBC ,从而判定OE ∠BC ,最后根据∠C =90°得到∠AEO =∠C =90°证得结论AC 是∠O 的切线.(2)如图所示,过点E 作EG ∠AB 于G ,连接DF ,先解直角三角形求出OA ,从而求出AE ,即可利用面积法求出EG ,即可利用角平分线的性质求出CE 的长,再解直角三角形求出BF 的长即可.(1)解:连接OE .∠OB =OE ,∠∠OBE =∠OEB ,∠BE是∠ABC的角平分线,∠∠OBE=∠EBC,∠∠OEB=∠EBC,∠OE∠BC,∠∠C=90°,∠∠AEO=∠C=90° ,∠AC是∠O的切线;(2)解:如图所示,过点E作EG∠AB于G,连接DF,∠3sin=55A OE=,,∠AEO=90°,∠25=sin3OEOAA=,∠203 AE==,∠1122AOES OE AE OA EG=⋅=⋅△,∠4EG=,∠BE平分∠ABC,EG∠AB,∠C=90°,∠EC=EG=4,∠BD是圆O的直径,∠∠BFD=∠C=90°,∠AC∠DF,∠∠BDF=∠A,∠=sin=sin=6BF BD BDF BD A⋅⋅∠,∠1122BEFS BF CE=⋅=△.【点睛】本题主要考查了圆切线的判定,解直角三角形,角平分线的性质,等腰三角形的性质,平行线的性质与判定,直径所对的圆周角是直角等等,正确作出辅助线是解题的关键.28.(1)y=﹣x2+3x+4.;(2)16;(322.【解析】【分析】(1)先求出点C的坐标,则B的坐标即可求得,利用待定系数法即可求得抛物线的解析式;(2)求出D的坐标,作DM∠x轴于点E.则S四边形OCDB=S梯形OCDM+S△BMD,利用C、D的坐标即可求出四边形OCDB的面积;(3)分两种情况考虑,当点E在x轴上方和下方,根据E和F关于对称轴对称,然后利用正方形的性质即可列方程求解.【详解】解:(1)在y=ax2+bx+4中,令x=0,得y=4,则点C的坐标是(0,4).∵OC=OB,∴B的坐标是(4,0).∴抛物线的解析式为y=﹣x2+3x+4.(2)∴点D(2,m)在抛物线y=﹣x2+3x+4上,∴﹣4+6+4=m,解得m=6.所以D(2,6).作DM∠x轴于点M,如图∠所示.则S四边形OCDB=S梯形OCDM+S△BMD=12×(4+6)×2+12×2×6=10+6=16.(3)∵抛物线的解析式为y=﹣x2+3x+4,∴抛物线的对称轴是x=﹣3 22 ba=.如图∠,设点E的坐标为(x,-x2+3x+4),则点F的坐标为(3-x,-x2+3x+4),EF= x-(3-x)=2x-3.∵四边形EFGH是正方形,∴EF=EH.当E在x轴上方时,2x-3=-x2+3x+4,解得x1x2∴2;当E在x轴下方时,2x-3=-(-x2+3x+4),解得x1x2(舍去).∴2.22.【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、图形面积的分割、正方形的性质,会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度是解题的关键.。
初中毕业数学试卷一、单项选择题(每小题2分,共12分)1.如图,四边形ABCD是矩形,E是边BC延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对C.2对D.1对2.一个由相同正方体堆积而成的几何体如图所示,从正面看,这个几何体的形状是()。
A.B.C.D.(k≠0),当x<0时,y随x的增大而增大,那么一3.已知反比例函数y=kx次函数y=kx−k的图象经过()。
A.第一,二,三象限B.第一,二,四象限C.第一,三,四象限D.第二,三,四象限4.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3D.x1=0,x2=35.若相似△ABC与△DEF的相似比为1:3,则△ABC与△DEF的周长比为()。
A.1:3 B.1:9 C.3:1D.9:16.如图,在三角形ABC中D,E分别是AB和AC上的点,且DE平行BC,AE 比EC=5/2,D E=10,则BC的长为()。
A.16B.14C.12D.117.在正方形网格中,△ABC的位置如图所示,则tanB的值为()A.1B.√22C.√3D.√33二、填空题(每小题3分,共24分)8.如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30∘方向,同时测得岛礁P正东方向上的避风港M在北偏东60∘方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达()。
(结果保留根号)9.两圆的半径分别为3和5,当这两圆相交时,圆心距d的取值范围是。
10.一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是。
11.已知△ABC,若有|sinA−12|与(tanB−√3)2互为相反数,则∠C的度数是。
2023年甘肃省武威市中考数学押题试卷
一、选择题。
本大题共10小题,每小题3分,共30分,每小题只有一个正确选项。
1.(3分)估计的值在()
A.2和3之间B.3和4之间C.4和5之间D.5和6之间2.(3分)民间剪纸是中国古老的传统民间艺术,它历史悠久,风格独特,深受国内外人士所喜爱,下列剪纸作品中,是轴对称图形的为()
A .
B .
C .
D .
3.(3分)下列运算正确的是()
A.2ab+3ba=5ab B.a+a=a2
C.5ab﹣2a=3b D.7a2b﹣7ab2=0
4.(3分)纳米是一种长度单位,它用来表示微小的长度,1纳米为十亿分之一米,即10﹣9米.新型冠状病毒(SARS﹣CoV﹣2,简称新冠病毒)是一种小型病毒,长度仅50纳米左右(约为人类头发直径的千分之一),“50纳米”用科学记数法表示为()
A.5×10﹣7米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米5.(3分)将直线y=3(x﹣1)向上平移3个单位长度,所得直线的表达式为()A.y=3(x+1)B.y=3x﹣1C.y=3x D.y=3x+1
6.(3分)一副三角板,按如图所示叠放在一起,则图中∠α的度数是()
A.55°B.60°C.65°D.75°
7.(3分)如图,点B,D,C是⊙O上的点,∠BDC=120°,则∠BOC是()
第1页(共27页)。
2023年甘肃省武威市中考数学真题试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1. 9的算术平方根是( )A. 3±B. 9±C. 3D. 3- 2. 若32a b=,则ab =( ) A. 6 B. 32 C. 1 D. 233. 计算:()22a a a +-=( )A. 2B. 2aC. 22a a +D. 22a a - 4. 若直线y kx =(k 是常数,0k ≠)经过第一、第三象限,则k 的值可为( )A. 2-B. 1-C. 12-D. 25. 如图,BD 是等边ABC ∆的边AC 上的高,以点D 为圆心,DB 长为半径作弧交BC 的延长线于点E ,则DEC ∠=( )A. 20︒B. 25︒C. 30︒D. 35︒ 6. 方程211x x =+的解为( ) A. 2x =-B. 2x =C. 4x =-D. 4x = 7. 如图,将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH .若2AB =,4BC =,则四边形EFGH 的面积为( )A. 2B. 4C. 5D. 68. 据统计,数学家群体是一个长寿群体,某研究小组随机抽取了收录约2200位数学家的《数学家传略辞典》中部分90岁及以上的长寿数学家的年龄为样本,对数据进行整理与分析,统计图表(部分数据)如下,下列结论错误的是( )A. 该小组共统计了100名数学家的年龄B. 统计表中m 的值为5C. 长寿数学家年龄在9293-岁的人数最多D. 《数学家传略辞典》中收录的数学家年龄在9697-岁的人数估计有110人9. 如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于人射角”.为了探清一口深井的底部情况,运用此原理,如图在井口放置一面平面镜可改变光路,当太阳光线AB 与地面CD 所成夹角50ABC ∠=︒时,要使太阳光线经反射后刚好垂直于地面射入深井底部,则需要调整平面镜EF 与地面的夹角EBC ∠=( )A. 60︒B. 70︒C. 80︒D. 85︒10. 如图1,正方形ABCD 的边长为4,E 为CD 边的中点.动点P 从点A 出发沿AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x ,线段PE 的长为y ,y 与x 的函数图象如图2所示,则点M 的坐标为( )A. (4,B. ()4,4C. (4,D. ()4,5二、填空题:本大题共6小题,每小题3分,共18分.11. 因式分解:22ax ax a -+=________.12. 关于x 的一元二次方程2240x x c ++=有两个不相等的实数根,则c =________(写出一个满足条件的值).13. 近年来,我国科技工作者践行“科技强国”使命,不断取得世界级的科技成果,如由我国研制的中国首台作业型全海深自主遥控潜水器“海斗一号”,最大下潜深度10907米,填补了中国水下万米作业型无人潜水器的空白;由我国自主研发的极目一号Ⅲ型浮空艇“大白鲸”,升空高度至海拔9050米,创造了浮空艇原位大气科学观测海拔最高的世界记录.如果把海平面以上9050米记作“9050+米”,那么海平面以下10907米记作“________米”. 14. 如图,ABC ∆内接于O ,AB 是O 的直径,点D 是O 上一点,55CDB ∠=︒,则ABC ∠=________︒.15. 如图,菱形ABCD 中,60DAB ∠=︒,BE AB ⊥,DF CD ⊥,垂足分别为B ,D ,若6cm AB =,则EF =________cm .16. 如图1,我国是世界上最早制造使用水车的国家.1556年兰州人段续的第一架水车创制成功后,黄河两岸人民纷纷仿制,车水灌田,水渠纵横,沃土繁丰.而今,兰州水车博览园是百里黄河风情线上的标志性景观,是兰州“水车之都”的象征.如图2是水车舀水灌溉示意图,水车轮的辐条(圆的半径)OA 长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次舀满河水在点A 处离开水面,逆时针旋转150︒上升至轮子上方B 处,斗口开始翻转向下,将水倾入木槽,由木槽导入水渠,进而灌溉,那么水斗从A 处(舀水)转动到B 处(倒水)所经过的路程是________米.(结果保留π)三、解答题:本大题共6小题,共32分.解答时,应写出必要的文字说明、证明过程或演算步骤. 17. 计算218. 解不等式组:6234x x x x >--⎧⎪⎨+≤⎪⎩19. 化简:22222244a b a b a b a b a b a ab b+---÷+--+. 20. 1672年,丹麦数学家莫尔在他的著作《欧几里得作图》中指出:只用圆规可以完成一切尺规作图.1797年,意大利数学家马斯凯罗尼又独立发现此结论,并写在他的著作《圆规的几何学》中.请你利用数学家们发现的结论,完成下面的作图题:如图,已知O ,A 是O 上一点,只用圆规将O 的圆周四等分.(按如下步骤完成,保留作图痕迹)Ⅲ以点A为圆心,OA长为半径,自点A起,在O上逆时针方向顺次截取AB BC CD==;Ⅲ分别以点A,点D为圆心,AC长为半径作弧,两弧交于O上方点E;Ⅲ以点A为圆心,OE长为半径作弧交O于G,H两点.即点A,G,D,H将O的圆周四等分.21. 为传承红色文化,激发革命精神,增强爱国主义情感,某校组织七年级学生开展“讲好红色故事,传承红色基因”为主题的研学之旅,策划了三条红色线路让学生选择:A.南梁精神红色记忆之旅(华池县);B.长征会师胜利之旅(会宁县);C.西路军红色征程之旅(高台县),且每人只能选择一条线路.小亮和小刚两人用抽卡片的方式确定一条自己要去的线路.他们准备了3张不透明的卡片,正面分别写上字母A,B,C,卡片除正面字母不同外其余均相同,将3张卡片正面向下洗匀,小亮先从中随机抽取一张卡片,记下字母后正面向下放回,洗匀后小刚再从中随机抽取一张卡片.(1)求小亮从中随机抽到卡片A的概率;(2)请用画树状图或列表的方法,求两人都抽到卡片C的概率.22. 如图1,某人的一器官后面A处长了一个新生物,现需检测到皮肤的距离(图1).为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离.方案如下:请你根据上表中的测量数据,计算新生物A 处到皮肤的距离.(结果精确到0.1cm )(参考数据:sin350.57︒≈,cos350.82︒≈,tan350.70︒≈,sin 220.37︒≈,cos220.93︒≈,tan220.40︒≈)四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤. 23. 某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用x 表示,分成6个等级:A .10x <;B .10 1.5x ≤<;C .1520x ≤<;D .2025x ≤<;E .2530x ≤<;F .3035x ≤≤).下面给出了部分信息: a .八年级学生上、下两个学期期末地理成绩的统计图如下:b .八年级学生上学期期末地理成绩在C .1520x ≤<这一组的成绩是:15,15,15,15,15,16,16,16,18,18c .八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:根据以上信息,回答下列问题:(1)填空:m =________;(2)若25x ≥为优秀,则这200名学生八年级下学期期末地理成绩达到优秀的约有________人; (3)你认为该校八年级学生的期末地理成绩下学期比上学期有没有提高?请说明理由.24. 如图,一次函数y mx n =+的图象与y 轴交于点A ,与反比例函数()60y x x=>的图象交于点()3,B a .(1)求点B 的坐标;(2)用m 的代数式表示n ;(3)当OAB ∆的面积为9时,求一次函数y mx n =+的表达式.25. 如图,ABC ∆内接于O ,AB 是O 的直径,D 是O 上的一点,CO 平分BCD ∠,CE AD ⊥,垂足为E ,AB 与CD 相交于点F .(1)求证:CE 是O 的切线; (2)当O 的半径为5,3sin 5B =时,求CE 的长. 26. 【模型建立】(1)如图1,ABC ∆和BDE ∆都是等边三角形,点C 关于AD 的对称点F 在BD 边上. Ⅲ求证:AE CD =;Ⅲ用等式写出线段AD ,BD ,DF 的数量关系,并说明理由.【模型应用】(2)如图2,ABC ∆是直角三角形,AB AC =,CD BD ⊥,垂足为D ,点C 关于AD 的对称点F 在BD 边上.用等式写出线段AD ,BD ,DF 的数量关系,并说明理由.【模型迁移】(3)在(2)的条件下,若AD =3BD CD =,求cos AFB ∠的值.27. 如图1,抛物线2y x bx =-+与x 轴交于点A ,与直线y x =-交于点()4,4B -,点()0,4C -在y 轴上.点P 从点B 出发,沿线段BO 方向匀速运动,运动到点O 时停止.(1)求抛物线2y x bx =-+的表达式;(2)当BP =,请在图1中过点P 作PD OA ⊥交抛物线于点D ,连接PC ,OD ,判断四边形OCPD 的形状,并说明理由.(3)如图2,点P 从点B 开始运动时,点Q 从点O 同时出发,以与点P 相同的速度沿x 轴正方向匀速运动,点P 停止运动时点Q 也停止运动.连接BQ ,PC ,求CP BQ +的最小值.2023年甘肃省武威市中考数学真题试卷试卷一、选择题.1. C2. A3. B4. D5. C6. A7. B8. D9. B解:如图,过B 作BQ ⊥平面镜EF .Ⅲ90QBE QBF ∠=∠=︒,ABC CBQ ABQ MBQ ∠+∠=∠=∠. 而90CBQ QBM CBM ∠+∠=∠=︒.Ⅲ5090CBQ CBQ ︒+∠=︒-∠.Ⅲ20CBQ ∠=︒.Ⅲ902070EBC ∠=︒-︒=︒.故选B .10. C解:Ⅲ正方形ABCD 的边长为4,E 为CD 边的中点.Ⅲ4AB BC CD AD ====,90C D ∠=∠=︒,2CE DE ==. 当P 与A ,B 重合时,PE 最长.此时PE == 运动路程为0或4.结合函数图象可得(M . 故选C 二、填空题. 11. ()21a x - 12. 2-(答案不唯一,合理即可) 13. 10907-14. 3515. 16. 5π 三、解答题. 17.18. 21x -<≤ 19. 4b a b+ 20. 解:如图.即点A ,G ,D ,H 把O 的圆周四等分.理由如下: 如图,连接,,,,,,,AE DE AC DC OE OH OG AH .由作图可得:AB BC CD ==,且OA OB AB ==. ⅢAOB 为等边三角形,60AOB ∠=︒.同理可得:60BOC COD ∠=∠=︒.Ⅲ180AOB BOC COD ∠+∠+∠=︒.ⅢA ,O ,D 三点共线,AD 为直径.Ⅲ=90ACD ∠︒.设CD x =,而30DAC ∠=︒,Ⅲ2AD x =,AC =.由作图可得:DE AE AC ===,而OA OD x ==.Ⅲ⊥EO AD ,OE =.Ⅲ由作图可得AG AH ==. 而OA OH x ==.Ⅲ22222OA OH x AH +==.Ⅲ90AOH =︒∠.同理90AOG DOG DOH ∠=︒=∠=∠.Ⅲ点A ,G ,D ,H 把O 的圆周四等分. 21. (1)13 (2)1922. 新生物A 处到皮肤的距离约为8.4cm解:过点A 作AH MN ⊥,垂足为H .由题意得,35ABH DBN ∠=∠=,22ACH ECN ∠=∠=. 在Rt AHB △中,tan tan 350.70AH AH AH BH ABH ==≈∠︒. 在Rt AHC 中,tan tan 220.40AH AH AH CH ACH ==≈∠︒.ⅢCH BH BC -=. Ⅲ90.400.70AH AH -=. Ⅲ()8.4cm AH =.四、解答题.23. (1)16 (2)35(3)八年级,理由见解析24. (1)()3,2B(2)32n m =-+(3)863y x =- 【小问1详解】解:Ⅲ点()3,B a 在反比例函数()60y x x =>的图象上. Ⅲ623a ==. Ⅲ()3,2B .【小问2详解】 Ⅲ点()3,2B在一次函数y mx n =+的图象上. Ⅲ32m n +=.即32n m =-+.【小问3详解】如图,连接OB .Ⅲ192OAB B S OA x =⋅⋅=△. Ⅲ1392OA ⋅⨯=. Ⅲ6OA =.Ⅲ()0,6A -.Ⅲ6n =-.Ⅲ326m -+=-. Ⅲ83m =. Ⅲ一次函数的表达式为:863y x =-. 25. (1)见解析 (2)245 【小问1详解】证明:ⅢAC AC =.ⅢADC B ∠=∠.ⅢOB OC =.ⅢB OCB ∠=∠.ⅢCO 平分BCD ∠.ⅢOCB OCD ∠=∠.ⅢADC OCD ∠=∠.ⅢCE AD ⊥.Ⅲ90ADC ECD ∠+∠=︒.Ⅲ90OCD ECD ∠+∠=︒,即CE OC ⊥.ⅢOC 为O 的半径. ⅢCE 是O 的切线.【小问2详解】连接OD ,得OD OC =.ⅢODC OCD ∠=∠.ⅢOCD OCB B ∠=∠=∠.ⅢODC B ∠=∠.ⅢCO CO =.ⅢOCD OCB ≌.ⅢCD CB =.ⅢAB 是O 的直径.Ⅲ90ACB ∠=︒. Ⅲ3sin 1065AC AB B =⋅=⨯=.Ⅲ8CB ===.Ⅲ8CD =. Ⅲ324sin sin 855CE CD ADC CD B =⋅∠=⋅=⨯=.26. (1)Ⅲ见解析,ⅢAD DF BD =+,理由见解析,(2DF BD =+,理由见解析,(3 解:(1)Ⅲ证明:ⅢABC 和BDE 都是等边三角形. ⅢAB BC =,BE BD =,60ABC EBD ∠=∠=︒. ⅢABC CBE EBD CBE ∠-∠=∠-∠.ⅢABE CBD ∠=∠.Ⅲ()SAS ABE CBD ≅△△.ⅢAE CD =.ⅢAD DF BD =+.理由如下:ⅢDF 和DC 关于AD 对称.ⅢDF DC =.ⅢAE CD =.ⅢAE DF =.ⅢAD AE DE DF BD =+=+.(2DF BD =+.理由如下:如图,过点B 作BE AD ⊥于点E ,得90BED ∠=︒.ⅢDF 和DC 关于AD 对称.ⅢDF DC =,ADF ADC ∠=∠.ⅢCD BD ⊥,Ⅲ45ADF ADC ∠=∠=︒,Ⅲ45EBD ∠=︒.ⅢDE BD =. ⅢABC 是直角三角形,AB AC =.Ⅲ=45ABC ∠︒,2AB BC =.ⅢABC CBE EBD CBE ∠-∠=∠-∠.ⅢABE CBD ∠=∠.Ⅲsin sin ABE CBD ∠=∠. ⅢAE CD AB BC=. ⅢAE BC CD AB ⋅=⋅.Ⅲ2AE =.Ⅲ2222AD AE DE BD DF BD =+=+=+,DF BD =+. (3)Ⅲ33BD CD DF ==.34DF DF DF =+=.ⅢAD =2DF DC ==,Ⅲ6BD =.如图,过点A 作AH BD ⊥于点H .ⅢAB AC AF ==. Ⅲ()11222HF BF BD DF ==-=.BC ===Ⅲ22AF AC BC ====.ⅢcosHF AFB AF ∠===. 27. (1)23y x x =-+(2)四边形OCPD 是平行四边形,理由见解析(3)【小问1详解】解:Ⅲ抛物线2y x bx =-+过点()4,4B -. Ⅲ1644b -+=-.Ⅲ3b =.Ⅲ23y x x =-+【小问2详解】四边形OCPD 是平行四边形.理由:如图1,作PD OA ⊥交抛物线于点D ,垂足为H ,连接PC ,OD .Ⅲ点P 在y x =-上.ⅢOH PH =,45POH ∠=︒.连接BC .Ⅲ4OC BC ==.ⅢOB =ⅢBP =.ⅢOP OB BP =-=.Ⅲ222OH PH ===⨯=. 当2D x =时,4322D DH y ==-+⨯=. Ⅲ224PD DH PH =+=+=.Ⅲ()0,4C -.Ⅲ4OC =.ⅢPD OC =.ⅢOC x ⊥轴,PD x ⊥轴.ⅢPD OC ∥.Ⅲ四边形OCPD 是平行四边形,【小问3详解】如图2,由题意得,BP OQ =,连接BC .在OA 上方作OMQ ,使得45MOQ ∠=︒,OM BC =. Ⅲ4OC BC ==,BC OC ⊥.Ⅲ45CBP ∠=︒.ⅢCBP MOQ ∠=∠.ⅢBP OQ =,CBP MOQ ∠=∠,BC OM =. Ⅲ()SAS CBP MOQ △≌△.ⅢCP MQ =.ⅢCP BQ MQ BQ MB +=+≥(当M ,Q ,B 三点共线时最短). ⅢCP BQ +的最小值为MB .Ⅲ454590MOB MOQ BOQ ∠=∠+∠=︒+︒=︒.ⅢMB ===即CP BQ +的最小值为。