用向量求二面角的四种方法
- 格式:docx
- 大小:6.00 KB
- 文档页数:1
二面角向量法公式在咱们学习立体几何的时候,有一个很重要的概念——二面角向量法公式。
这玩意儿可真是个厉害的工具,能帮咱们解决不少难题呢!先来说说啥是二面角。
想象一下,你有两块板子,它们斜着靠在一起,形成的那个“夹角”就是二面角。
要想准确算出这个角的大小,二面角向量法公式就派上用场啦。
公式是这样的:cosθ = |(n1·n2) / (|n1| × |n2|)| ,这里的 n1 和 n2 是两个平面的法向量。
可别被这一堆符号吓到,咱们慢慢捋一捋。
法向量又是啥呢?简单说,就是和平面垂直的向量。
比如说,有一个平面,你总能找到一个向量,它直直地立在这个平面上,那它就是法向量。
我记得我之前教过一个学生,叫小李。
这孩子呀,刚开始接触二面角向量法公式的时候,那叫一个迷糊。
有一次上课,我在黑板上写了一道例题,让大家试着用公式算一下二面角。
小李坐在那儿,抓耳挠腮,半天没动静。
我走过去一看,他连法向量都还没找对。
我就耐心地跟他说:“小李呀,你看这个平面的方程,先把它的系数找出来,然后设法向量是(x,y,z),根据垂直的条件列出方程组,就能求出法向量啦。
”小李似懂非懂地点点头,又埋头苦算了起来。
经过几次这样的耐心指导,小李终于慢慢掌握了窍门。
后来有一次小测验,碰到一道二面角的题目,他刷刷刷几下就把法向量求出来,然后顺利地用公式算出了二面角的大小。
看到他那自信满满的样子,我心里也特别欣慰。
那咱们再回到这个公式。
计算的时候,一定要注意向量的点乘和模长的计算,可别马虎。
有时候一个小数字算错了,整个结果就全错啦。
而且呀,用这个公式的时候,要先判断二面角是锐角还是钝角。
这就需要咱们对图形有一个清晰的认识。
比如说,如果两个法向量的方向都是从二面角内部指向外部,那算出的余弦值就是二面角的余弦值;如果一个从内部指向外部,一个从外部指向内部,那算出的余弦值的相反数才是二面角的余弦值。
总之,二面角向量法公式虽然看起来有点复杂,但只要咱们多做几道题,多琢磨琢磨,就能熟练掌握,让它成为咱们解决立体几何问题的有力武器。
空间向量二面角求法空间向量二面角是指两个非零向量之间的夹角。
在空间中,向量的方向和大小都是重要的,因此求解空间向量的二面角是一项重要的任务。
本文将介绍几种常见的方法来计算空间向量的二面角。
一、点乘法点乘法是最简单直接的方法之一。
给定两个向量a和b,它们的点乘结果可以表示为a·b=|a||b|cosθ,其中θ为向量a和b之间的夹角。
通过对点乘结果进行逆余弦运算,可以得到夹角的大小。
然而,点乘法只适用于平面内的向量,对于空间向量则不适用。
二、向量投影法向量投影法是通过将一个向量投影到另一个向量上,然后计算投影向量与原向量之间的夹角来求解二面角。
具体方法是,首先计算向量a在向量b上的投影向量p,然后计算向量a与投影向量p之间的夹角θ。
这种方法适用于空间向量,但需要计算向量的投影,相对复杂一些。
三、向量叉乘法向量叉乘法是一种常用的求解空间向量二面角的方法。
给定两个向量a和b,它们的叉乘结果可以表示为|a×b|=|a||b|sinθ,其中θ为向量a和b之间的夹角。
通过对叉乘结果进行逆正弦运算,可以得到夹角的大小。
这种方法适用于空间向量,且不需要计算向量的投影,相对简单方便。
四、三角函数法三角函数法是一种基于三角函数的计算方法。
给定两个向量a和b,它们的夹角θ可以通过以下公式计算:cosθ=(a·b)/(∥a∥∥b∥)sinθ=∥a×b∥/(∥a∥∥b∥)tanθ=sinθ/cosθ通过上述公式,可以根据向量的点乘和叉乘结果来计算夹角的大小。
这种方法适用于空间向量,且具有较高的计算准确性。
总结:空间向量的二面角求解是一个重要的问题,涉及到向量的方向和大小。
本文介绍了几种常见的求解方法,包括点乘法、向量投影法、向量叉乘法和三角函数法。
这些方法各有特点,可以根据具体情况选择合适的方法来求解空间向量的二面角。
在实际应用中,需要根据具体问题的要求和计算复杂度来选择合适的方法。
求解二面角的四种基本方法高中数学学习过程中,求解二面角是高考理科高考的必考题型,多种角度,多种方法处理这类问题是一项重要的基本能力,是落实数学核心素养培养的基本方法,在教学过程中有必要对本类型习题进行详尽的介绍和广泛的探索,提升本类问题的处理方式和方法,是多种知识交汇,处理问题的能力的体现,本文根据近年高考题与模拟题中的常见题型,对常用的处理方法进行探究和总结,希望能够找到本类题型的常见处理方法,帮助学生建立良好的处理策略.一、利用定义求解例1. 如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,23AC =,12A A BD ==,E 为1BD 中点.求二面角E DC A --的余弦值.分析 过O 作OF CD ⊥,垂足为F ,连OF ,则EFO ∠是二面角E OC A --的平面角.解答过O 作OF CD ⊥,垂足为F ,连OF ,∵1DD ⊥面ABCD ,1//OE DD ,∴OE ⊥面ABCD .∴EFO ∠是二面角E OC A --的平面角.∵1112OE DD ==,3OF =,∴7EF =,217cos EFO ∠=. 故二面角E DC A --的余弦值为217. 说明 二面角是规则图形的面与面之间的角是,采用二面角的定义,直接做出角,利用边长的长度关系找到二面角的平面角之间的边长长度关系,进而求解二面角大小.变式训练1 (2019年天津高考题)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,D C O A B求直线AD 与平面PAC 所成角的正弦值.二、利用面积面积射影求解例2. 在三棱锥中P ABC -,,D E 分别为PBC ∆、ABC ∆的重心,若DE ABC ⊥∆面,2PBC ABC S ∆∆=S ,则二面角P BC A --的大小为______.分析 易证DE ∥PA ,则PA ABC ⊥面,则PBC ∆的射影为ABC ∆,此时宜采用“面积射影法”. 解答 设二面角为θ,因为,D E 分别为PBC ∆、ABC ∆的重心,则可得=MD ME DP EA,所以DE ∥PA .又因为DE ABC ⊥面,所以PA ABC ⊥面.因为cos ABC PBC S θ∆∆=S 222==45θ=o . 说明 当题目中涉及斜面三角形面积和相应射影三角形面积时,可采用“面积射影法”求二面角的大小.变式训练2 在等腰直角ABC ∆中,1AB BC ==,M 为AC 的中点,沿BM 把ABC ∆折成二面角,折后A 与C 的距离为62,则二面角C —BM —A 的大小为________. 三、利用三正弦定理求解 例3. (2012年全国新课标卷)在直三棱柱ABC A B C '''-中,12AC BC AA '==,D 是棱AA '的中点,DC BD '⊥.(1)证明:DC BC '⊥;(2)求二面角A BD C ''--的大小.分析 考察面BDC '内的直线DC ',易求90BDC '∠=o ,即2sin 1θ=;取A B ''的中点N ,则C N ABB A '''⊥面,则C DN '∠即为直线DC '与ABB A ''面所成的角,且1sin 2C DN '∠=,即11sin 2θ=,最后代入公式即可求出二面角的大小.解答 因为DA C ''∆和DAC ∆均为等腰直角三角形,所以DC DC '⊥.又因为DC BC '⊥,所以DC DBC '⊥面,从而DC DB '⊥,即2sin sin 901θ==o ;取A B ''的ME D CB A P B B'A'C'A DN中点N ,连接DN ,则C N A B '''⊥.又因为AA C N ''⊥,所以C N ABB A '''⊥面,则C DN '∠即为直线DC '与ABB A ''面所成的角.设2AA a '=,则AC BC a ==,因为2C N a'=,2D C a '=,即11sin sin 2C N C DN CD θ''=∠==.由12sin sin sin θθθ=得1sin 2θ=,又据题意知所求二面角为锐二面角,所以30θ=o .说明 当其中一个半平面内的一条直线与另一个半平面、二面角的棱所成的角的正弦值容易求出时,可采用“三正弦定理法”.变式训练3 已知点O 在二面角AB αβ--的棱上,点P 在平面α内,且60∠=︒POB .若直线PO 与平面β所成的角为45°,则二面角AB αβ--的正弦值为______.四、利用空间向量求解例4. 如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.分析 建立空间直角坐标系,分别求得直线的方向向量和平面的法向量,然后结合线面角的正弦值和同角三角函数基本关系可得线面角的余弦值.解答 (1) 略.(2)在底面ABC 内作EH ⊥AC ,以点E 为坐标原点,EH ,EC ,1EA 方向分别为x ,y ,z 轴正方向建立空间直角坐标系E xyz -.设1EH =,则3AE EC ==1123AA CA ==3,3BC AB ==, 据此可得:()()()1330,3,0,,,0,0,3,3,022A B A C ⎛⎫- ⎪ ⎪⎝⎭,由11AB A B =u u u r u u u u r 可得点1B 的坐标为1333,322B ⎛⎫ ⎪⎝⎭, 利用中点坐标公式可得:333,344F ⎛⎫ ⎪⎝⎭,由于()0,0,0E , 故直线EF 的方向向量为:333,344EF ⎛⎫= ⎪⎝⎭u u u r 设平面1A BC 的法向量为(),,m x y z =u r ,则:()()13333,,330223333,,,,002222m A B x y z x y z m BC x y z x y u u u v v u u u v v ⎧⎛⎫⋅=⋅-=+-=⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎪⋅=⋅-=-+= ⎪⎪ ⎪⎝⎭⎩, 据此可得平面1A BC 的一个法向量为()3,1m =u r ,333,344EF ⎛⎫= ⎪⎝⎭u u u r 此时4cos ,53552EF m EF m EF m ⋅===⨯⨯u u u r u r u u u r u r u u u r u r , 设直线EF 与平面1A BC 所成角为θ,则43sin cos ,,cos 55EF m θθ===u u u r u r .说明 空间向量方法是处理空间中两平面所成角比较通用的方法,建系也是Dz C 1A 1B 1C B A本节要注意的一个重点,合理建系才能比较容易、准确的找到各点坐标,求解法向量,在求解过程中应该充分重视,准确掌握好求解法向量的基本步骤,进一步提升步骤的严谨性,科学性,另,在求解过程中要注意判断二面角是锐角还是钝角,以方便对余弦值的正负进行判断. 解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.变式训练4 已知四棱锥P —ABCD 中,PA ⊥平面,底面ABCD 为菱形,60ABC ∠=o,AB=PA=2,E .F 分别为BC .PD 的中点.求平面PAE 与平面PCD 所成锐二面角的余弦值.(参考答案:3;2. 23π;6 4. 217)。
用向量求二面角的四种方法
作者:林明成
来源:《数理化学习·高三版》2008年第12期
向量法求二面角是一种独特的方法,因为它不仅是对传统方法的有力补充,而且还可以最大限度地避开思维的高强度转换和各种辅助线添加的困难,将灵活的逻辑推理转化为机械的代数运算.它降低了问题的难度,简缩了思维的过程,可操作性强.但在具体运用过程中也需针对具体问题采用不同的转化方式.
一、借助空间向量基本定理和向量夹角公式
例1 如图1,四边形ABCD是直角梯形,∠ABC=90°,SA⊥平面ABCD,
SA=AB=BC=1,AD=1/2,求平面SCD与平面SAB所成锐角二面角的大小.。