大学物理A上练习题
- 格式:doc
- 大小:2.94 MB
- 文档页数:31
A1r 2r ab1、 下列几个叙述中哪一个是正确的?A 、电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向;B 、在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同;C 、场强方向可由E =F/q 定出,其中q 为试验电荷的电量,q 可正可负; D 、以上说法都不正确。
[ ] 1. C解释:A 答案点电荷可能有正负;B 答案场强是矢量2、 关于高斯定理的理解有下面几种说法,其中正确的是 A 、如果高斯面内无电荷,则高斯面上E处处为零; B 、如果高斯面上E处处不为零,则该面内必无电荷;C 、如果高斯面内有净电荷,则通过该面的电通量必不为零;D 、如果高斯面上E处处为零,则该面内必无电荷。
[ ] 2. C解释:A 答案通量为零不一定场强为零;D 答案考虑等量异号电荷,可以使得处处为零。
3、 在静电场中,下列说法中哪一个是正确的?A 、带正电荷的导体,其电势一定是正值;B 、等势面上各点的场强一定相等;C 、场强为零处,电势也一定为零;D 、场强相等处,电势梯度矢量一定相等。
[ ] 3. D解释:A 答案电势是个相对值,要参考零电势的选择。
4、 如图所示,在电荷为Q -的点电荷A 的静电场中,将另一电荷为q 的点电荷B 从a 点移到b 点,a 、b 两点距离点电荷A 的距离分别为1r 和2r ,则移动过程中电场力做的功为 A 、012114Q r r πε⎛⎫-- ⎪⎝⎭; B 、012114qQ r r πε⎛⎫- ⎪⎝⎭;C 、012114qQ r r πε⎛⎫-- ⎪⎝⎭; D 、()0214qQ r r πε-- [ ]4. C解释:电场力做功等于电势能差,注意正负号。
5、 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 [ ](A) (B) (C) (D) 5. D解释:由高斯定理依次求出各部分场强即可。
2002级大学物理上 (A ) 试题答案及评分参考二、填空(2‘x 20 = 40’)1、(1)0011a t n += (m/s 2) , (2)2(m/s 2);2、(3)t mkev v -=0 , (4)t m ke v mka --=0;3、(5)gR v 22=, (6)R gT R h -=32224π;4、(7)lg3 , (8)ιg 321; 5、(9)⎪⎭⎫⎝⎛-=32cos ππt T A x , (10)2'T T =; 6、(11)⎪⎭⎫⎝⎛+=22cos 20ππt y (m ), (12)⎪⎭⎫ ⎝⎛+-=2)10(2cos 2ππx t y (m ); 7、(13)1000m/s ; (14)2500m/s (或705-707m/s ) 8、(15)高斯定理,0ε∑⎰=⋅qs d E s,(16)环流定理,0=⋅⎰Ll d E ;9、(17)27R (或30.8J.mol -1.K -1); (18)2ln RT ;10、(19)013ερr ; (20)2033r R ερ。
二、(12‘)(1) 如图示。
-4‘(2) 121ab 1lnQ Q V V vRT == (1)-2‘432cd 2lnQ Q V V vRT == (2)-2‘43112212ln ln11V V T V V T Q Q -=-=卡η (3)-2‘b -c 和d -a 两个绝热过程,则142111132121----==γγγγV T V T V T V T ——>4312V V V V = (4)-2‘代入(3)式得:121T T -=卡η 三、(12‘)(1) 由高斯定理可得:B A R r R r Q E <≤=,4r 20πε)(; -3‘ (2) )11(44020BA R R BAAB R R Q dr rQd E V U BA-==⋅==⎰⎰πεπει ;-3‘(3) )(40A B B A AB R R R R U Q C -⋅==πε ; -3‘ (4) ==AB QU W 21)11(802BA R R Q -πε; -3‘四、(12‘) (1)20204x 4xdx dq dE πελπε==① -3‘)11(44020la a x dx dE E la ap +-===⎰⎰+πελπελ ② -3‘(2)x dx dq dU 004x4πελπε==③ -3‘al a x dx dU U la ap +===⎰⎰+ln 4400πελπελ ④ -3‘五、(12‘)(1))](T 2cos[1u xt A y -=π -4‘ (2) ])(2cos[2ππ-+=ux t T A y -4‘(3)反射端为波节点,相邻两波节间距λ/2;而λ=uT所以波节点为:2)12(,,23,,2,0uTn uT uT uT x +----= 。
《 大学物理1》试卷一、选择 (共44分,每题4分)1、一条河在某一段直线岸边有A、B两个码头,相距1km.甲、乙两人需要从码头A码头B,再立即由B返回.甲划船前去,船相对河水的速度4km/h;而乙沿岸步行,步行速度也为4km/h.如河水流速为2km/h,方向从A到B,则 [ A ] (A)甲比乙晚10分钟回到A. (B)甲和乙同时回到A. (C)甲比乙早10分钟回到A. (D)甲比乙早2分钟回到A.2、一质点受力i x F 23=(SI)作用,沿X轴正方向运动.从x =0到x =2m过程中,力F作功为 [ A ](A)8J. (B)12J. (C)16J. (D)24J.3、有一直尺固定在K ' 系中,它与OO ' 轴的夹角θ' =45°,如果K ' 系以速度u沿OX方向相对于K 系运动,K 系中观察者测得该尺与OX轴的夹角 [ A ](A)大于45°. (B)小于45°. (C)等于45°. (D)当K ' 系沿OX正方向运动时大于45°,而当K ' 系沿OX负方向运动时小于45°4、两物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图所示.对物体A施以水平推力F,则物体A对物体B的作用力等于[ C ](A)Fm m m 211+. (B)F . (C)F m m m 212+. (D)Fm m 12.5、一轻绳跨过一具有水平光滑轴、质量M的定滑轮,绳的两端分别悬有质量为m1和m2的物体(m1<m2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力[ C ] (A)处处相等. (B)左边大于右边. (C)右边大于左边. (D)无法判断.6、一个电子运动速度v=0.99c,它的动能是:(电子的静止能量为 0.51MeV)[ C ] (A) 3.5MeV. (B) 4.0MeV.(C) 3.1MeV. (D) 2.5MeV.7、一弹簧振子,当把它水平放置时,它可以作简谐振动.若把它竖直放置或放在固定的光滑斜面上(弹性形变范围内),试判断下面哪种情况是正确的: [ C ] (A)竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动.(B)竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动.(C)两种情况都可作简谐振动. (D)两种情况都不能作简谐振动.8、设v 代表气体分子运动的平均速率,p v代表气体分子运动的最可几速率,()212v代表气体分子运动的方均根速率.处于平衡状态下的理想气体,三种速率的关系为 [ C ](A)()pv v v ==212. (B)()212v v v p <=(C)()212v v v p <<. (D)()212vv v p >>.9、动能为EK 的A物体与静止的B物体碰撞,设A物体的质量为B物体的二倍,mA =2mB .若碰撞为完全非弹性的,则碰撞后两物体总动能为 [ D ] (A)EK . (B)EK / 2.(C)EK / 3. (D)2EK / 3.10、两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x1=Acos(ωt+α).当第一个质点从相对平衡位置的正位移处回到平衡位置时,第二个质点在正最大位移处.则第二个质点的振动方程为 [ B ](A)x2=Acos(ωt+α+π/2). (B)x2=Acos(ωt+α-π/2). (C)x2=Acos(ωt+α-3π/2). (D)x2=Acos(ωt+α+π). 11、两个相同的容器,一个盛氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等,现将6J热量传给氦气,使之升高到一定温度.若使氢气也升高同样温度,则应向氢气传递热量 [ B ](A)6J. (B)10J . (C)12J . (D)5J.二、填空题(共16分 每题4分)1、已知惯性系S ’相对惯性系S 以0.5c 的均匀速度沿x 轴的负方向运动,若从S ’的坐标原点O ’沿x 轴正方向发出一光波,则S 系中测得此光波的波速为 ____C____________ 。
大学物理a考试题及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是多少?A. 3×10^8 m/sB. 3×10^4 m/sC. 3×10^2 m/sD. 3×10^6 m/s答案:A2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
这个定律的数学表达式是什么?A. F = maB. F = m/aC. a = F/mD. a = mF答案:A3. 一个物体从静止开始自由下落,其下落的高度h与时间t的关系是什么?A. h = gtB. h = 1/2 gt^2C. h = 1/2 gtD. h = gt^2答案:B4. 波长为λ的光波在介质中的波速为v,该介质的折射率n是多少?A. n = λ/vB. n = v/λD. n = c/v答案:D5. 一个电路中包含一个电阻R和一个电感L,当电流I通过时,电感的电动势EMF是多少?A. EMF = -I * L * di/dtB. EMF = I * L * di/dtC. EMF = -I * R * di/dtD. EMF = I * R * di/dt答案:A6. 根据热力学第一定律,一个系统吸收了热量Q,对外做了功W,系统的内能U变化是多少?A. ΔU = Q - WB. ΔU = Q + WC. ΔU = W - QD. ΔU = W + Q答案:A7. 一个质量为m的物体在两个相互垂直的力F1和F2的作用下做直线运动,这两个力的合力F是多少?A. F = √(F1^2 + F2^2)B. F = F1 + F2C. F = |F1 - F2|D. F = (F1^2 + F2^2) / (F1 + F2)答案:A8. 一个电子在电场中受到的电场力是F,电子的电荷量是e,电场强度E是多少?A. E = F/eC. E = F * eD. E = 1/e * F答案:A9. 一个理想的气体经历一个等压过程,气体的温度T和体积V之间的关系是什么?A. T ∝ VB. T ∝ 1/VC. T ∝ V^2D. T ∝ √V答案:A10. 根据麦克斯韦方程组,电场E和磁场B在真空中的关系是什么?A. ∇ × E = -∂B/∂tB. ∇ × B = -∂E/∂tC. ∇ × E = ∂B/∂tD. ∇ × B = ∂E/∂t答案:A二、填空题(每题3分,共30分)11. 一个物体的质量为2kg,受到的力为10N,根据牛顿第二定律,其加速度是______ m/s²。
大学物理第一学期试题(A 卷) (含力学、热学、静电场部分) 全卷满分100分;时量:120分钟一、 填空题(每空2分,共40分)1.一运动质点的速率与路程的关系为:v=1+S 2(SI ),则其切向加速度以路程S 表示为的表达式为:a τ= (SI )。
另有一质量为m 的质点在指向圆心的平方反比力F=-k / r 2 的作用下,作半径为r 的圆周运动,此质点的速度v = ,若取距圆心无穷远处为势能零点,它的机械能 E = 。
2. 如图所示,A 、B 两飞轮的轴杆在一条直线上,并可用摩擦啮合器C 使它们连结。
开始时B 轮静止,A 轮以角速度ωA 转动,设在啮合过程中两飞轮不再受其它力矩的作用。
当两用人才轮连结在一起后,共同的角速度为ω。
若A 轮的转动惯量为J A ,则B 轮的转动惯量J B =_________________。
3. 观察者甲以4c/5 的速度(c 为真空中光速)相对于静止的观察者乙运动,若甲携带一长度为l ,质量为m 的棒,这根棒安放在运动方向上,则 (1)甲测得此棒的线密度为________________; (2)乙测得此棒的线密度为________________。
4.1mol 氧气 ( 视为刚性双原子分子的理想气体 ) 贮于一氧气瓶中,温度为270C ,这瓶氧气的内能为 J ;分子的平均总动能为 J 。
5.用总分子数N 、气体分子速率v 和速率分布函数f(v)表示下列各量: (1)速率小于v 0的分子数= ;(2)多次观察某一分子的速率,发现其速率小于v 0的几率 = 。
(3)速率小于v 0的那些分子的平均速率 = 。
6.一氧气瓶的容积为V ,充入氧气的压强为P 1,用了一段时间后,压强降为P 2,。
则瓶中剩下的氧气的内能与未用前氧气的内能之比为 。
7.在一个孤立系统内,一切实际过程都向着 的方向进行,这是热力学第二定律的统计意义,从宏观上说,一切与热现象有关的的实际过程都是 。
《大学物理A Ⅰ》恒定磁场习题、答案及解法一.选择题。
1.边长为a 的一个导体边框上通有电流I ,则此边框中心的磁感应强度【C 】 (A )正比于2a ; (B )与a 成正比; (C )与a 成反比 ; (D )与2I 有关。
参考答案:()210cos cos 4ββπμ-=a IB a I a I B πμπππμ002243cos 4cos 244=⎪⎭⎫ ⎝⎛-⨯=2.一弯成直角的载流导线在同一平面内,形状如图1所示,O 到两边无限长导线的距离均为a ,则O 点磁感线强度的大小【B 】(A) 0 (B)aI π2u )221(0+(C )a I u π20 (D )aIu o π42参考答案:()210cos cos 4ββπμ-=aIB ⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=2212cos 4cos 443cos 0cos 400021a I a I a I B B B πμπππμππμ3.在磁感应强度为B的均匀磁场中,沿半径为R 的圆周做一如图2所示的任意曲面S ,则通过曲面S 的磁通量为(已知圆面的法线n与B 成α角)【D 】(A )B 2r π (B )θπcos r 2BI(C )θπsin r -2B (D )θπcos r 2B -参考答案:⎰-=•=ΦSM B r S d B απcos 24.两根长直导线通有电流I ,如图3所示,有3个回路,则【D 】(A )IB 0a l d μ-=•⎰(B)I B 0b 2l d μ=•⎰(C) 0l d =•⎰ c B (D) IB C 02l d μ=•⎰参考答案: ⎰∑==•Ln i i I l d B 10μ5.在磁场空间分别取两个闭合回路,若两个回路各自包围载流导线的条数不同,但电流的代数和相同,则由安培环路定理可知【B 】(A)B沿闭合回路的线积分相同,回路上各点的磁场分布相同 (B)B沿闭合回路的线积分相同,回路上各点的磁场分布不同 (C)B沿闭合回路的线积分相同,回路上各点的磁场分布相同 (D)B沿闭合回路的线积分不同,回路上各点的磁场分布不同参考答案:6.恒定磁场中有一载流圆线圈,若线圈的半径增大一倍,且其中电流减小为原来的一半,磁场强度变为原来的2倍,则该线圈所受的最大磁力矩与原来线圈的最大磁力矩之比为【 C 】(A)1:1 (B)2:1 (C)4:1 (D)8:1参考答案: S I m= B m M ⨯=()()142420000000000max max =⎪⎭⎫⎝⎛==B S I B S I B S I ISB M M7.质量为m 的电子以速度v垂直射入磁感应强度大小为B 的均匀磁场中,则该电子的轨道磁矩为【A 】(A)B mv 22 (B)B v m π222 (C)π222v m (A)Bm ππ22参考答案: R v m evB 2= eBmvR = R ev R v e I ππ22== Bmv eB mv ev R ev R R ev IS m 222222=====ππ 8.下列对稳定磁场的描述正确的是【B 】(A) 由I B L∑=•⎰0l d μ可知稳定磁场是个无源场(B )由0S d =•⎰LB 可知磁场为无源场 (C )由I B L ∑=•⎰0l d μ可知稳定磁场是有源场 (D )由0S d =•⎰L B 可知稳定磁场为有源场参考答案: ⎰=•SS d B 0磁场是一个无源场⎰∑==•Ln i i I l d H 1磁场是一个有旋场9.一运动电荷Q ,质量为m ,垂直进入一匀强磁场中,则【C 】 (A )其动能改变,动量不变; (B )其动能和动量都改变; (C )其动能不变,动量改变; (D )其动能、动量都不变.参考答案:洛沦兹力提供向心力,该力不做功。
大学物理A (1)章节练习题第一章 质点运动学1.关于质点的概念下列理解正确的是( )A.研究地球公转时,因为地球直径太大,不能把地球看成质点来研究B.质点是一个理想化的模型,并且是真实存在的C.如果一个物体可以被看成质点,那么我们在研究问题时就可以忽略这个物体的形状和大小D.只有质量小的物体才能被看成质点,质量大的物体则不能被看成质点2.关于质点的概念下列理解错误的是( )A.只有很小的物体才能看成质点B.质点是为了方便研究物体运动而提出的一个理想化的模型,实际并不存在C.质点忽略了物体的形状和大小,看成一个有质量的点D.质点不同于数学中的几何点3. 下列关于速度和速率的说法,正确的是()A.瞬时速度是矢量,而平均速度是平均值,是个标量B.瞬时速率不是平均速率的极限值C.瞬时速率和瞬时速度的大小相等D.瞬时速度可以描述物体运动的快慢,而平均速度不能描述物体运动的快慢4.一运动质点在某瞬时位于位矢r (x ,y )的端点处,对其速度的大小的表示有四种意见,即(1)t d d r ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 下述判断正确的是( )A. 只有(1)(2)正确B. 只有(2)正确C. 只有(2)(3)正确D. 只有(3)(4)正确5.质点作圆周运动时,下列说表述中正确的是( )A.速度方向一定指向切向,加速度方向一定指向圆心B.切向加速度仅由速率的变化引起C.由于法向分速度为零,所以法向加速度也一定为零D.速度方向一定指向切向,加速度方向也一般指向切向6.(判断)质点是一个理想化的模型,所以质点没有大小,形状和质量.7.(判断)物体在做单向直线运动时,位移的大小等于路程.8.(判断)当质点的位矢和速度被同时确定时,其运动状态也就被确定.9.(判断)匀速圆周运动的物体,速度方向一直沿着切线方向.10.(判断)匀加速运动时,速度方向总是与加速度方向在一条直线上.11.(判断)变速圆周运动中,其加速度的方向始终指向圆心.12.(判断)相对地面做匀速直线运动的火车车厢可以看做是惯性参考系.13.(判断)路程和位移是两个不同的概念,在时间趋于零时,位移的大小等于路程.14.一质点在半径为2m 的圆周上运动,其角位置为32t =θ,式中θ的单位为rad ,t 单位是s .(1)质点在任意时刻的角速度=ω .(2)t=1s 时质点的法向加速度 .切向加速度为 。
《第2章 质点力学的运动定律 守恒定律》一 选择题1. 水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图所示.欲使物体A 有最大加速度,则恒力F 与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ. (C) tg θ =μ. (D) ctg θ =μ.[ ]2. 一质点在力F = 5m (5 - 2t ) (SI)的作用下,t =0时从静止开始作直线运动,式中m 为质点的质量,t 为时间,则当t = 5 s 时,质点的速率为(A) 50 m ·s -1. (B) 25 m ·s -1.(C) 0. (D) -50 m ·s -1.[ ]3. 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A) 甲先到达. (B) 乙先到达.(C) 同时到达. (D) 谁先到达不能确定.[ ]4.一质点在如图所示的坐标平面内作圆周运动,有一力)(0j y i x F F+=作用在质点上.在该质点从坐标原点运动到(0,2R )位置过程中,力F 对它所作的功为(A) 20R F . (B) 202R F . (C) 203R F . (D) 204R F .[ ]5. 对质点组有以下几种说法:(1) 质点组总动量的改变与内力无关. (2) 质点组总动能的改变与内力无关. (3) 质点组机械能的改变与保守内力无关.在上述说法中: (A) 只有(1)是正确的. (B) (1)、(3)是正确的.(C) (1)、(2)是正确的. (D) (2)、(3)是正确的.[ ] 6. 一火箭初质量为M 0,每秒喷出的质量(-d M /d t )恒定,喷气相对火箭的速率恒定为u.设火箭竖直向上发射,不计空气阻力,重力加速度g 恒定,则t = 0时火箭加速度a在竖直方向(向上为正)的投影式为 (A) g t M M u a --=)d d (0. (B) g tM M u a +=)d d (0.(C) d d (0t M M u a -=. (D) g tM M u a -=d d (0 [ ]7. 一竖直向上发射之火箭,原来静止时的初质量为m 0经时间t 燃料耗尽时的末质量为m ,喷气相对火箭的速率恒定为u ,不计空气阻力,重力加速度g 恒定.则燃料耗尽时火箭速率为(A) 2/ln0gt m m u -=v . (B) gt m m u -=0ln v . (C) gt m m u +=0ln v . (D) gt mmu -=0ln v .[ ]二 填空题 1. 某质点在力F =(4+5x )i(SI)的作用下沿x 轴作直线运动,在从x =0移动到x =10 m的过程中,力F所做的功为__________.2.质量为m =0.5kg 的质点,在Oxy 坐标平面内运动,其运动方程为x =5t ,y =0.5t 2(SI),从t =2s 到t =4s 这段时间内,外力对质点作的功为_____________.3. 设作用在质量为1 kg 的物体上的力F =6t +3(SI ).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=__________.4. 质量m =1 kg 的物体,在坐标原点处从静止出发在水平面内沿x 轴运动,其所受合力方向与运动方向相同,合力大小为F =3+2x (SI),那么,物体在开始运动的3 m 内,合力所作的功W =_________;且x =3 m 时,其速率v =_________.5. 质量为0.05 kg 的小块物体,置于一光滑水平桌面上.有一绳一端连接此物,另一端穿过桌面中心的小孔(如图所示).该物体原以3 rad/s 的角速度在距孔0.2 m 的圆周上转动.今将绳从小孔缓慢往下拉,使该物体之转动半径减为0.1 m .则拉力所做的功为____________________.6. 粒子B 的质量是粒子A 的质量的4倍,开始时粒子A 的速度j i43+=0A v ,粒子B 的速度j i72-=0B v ;在无外力作用的情况下两者发生碰撞,碰后粒子A 的速度变为j i 47-=A v ,则此时粒子B 的速度B v=____________________.7. 一维保守力的势能曲线如图所示,有一粒子自右向左运动,通过此保守力场区域时,在 _________________ 区间粒子所受的力F x > 0; 在 _________________ 区间粒子所受的力F x < 0; 在x = _______________ 时粒子所受的力F x = 0.三 计算题1. 一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a =2+6 x 2 (SI),如果质点在原点处的速度为零,试求其在任意位置处的速度.2. 质点沿曲线 j t i t r22+= (SI) 运动,其所受摩擦力为 v 2-=f (SI).求摩擦力在t = 1 s 到t = 2 s 时间内对质点所做的功.3. 一辆水平运动的装煤车,以速率v 0从煤斗下面通过,每单位时间内有质量为m 0的煤卸入煤车.如果煤车的速率保持不变,煤车与钢轨间摩擦忽略不计,试求: (1) 牵引煤车的力的大小; (2) 牵引煤车所需功率的大小;(3) 牵引煤车所提供的能量中有多少转化为煤的动能?其余部分用于何处?4. 一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的长度为a .设链条与桌面之间的滑动摩擦系数为 .令链条由静止开始运动,则(1)到链条刚离开桌面的过程中,(2)链条刚离开桌面时的速率是多少?a5. 如图所示,在中间有一小孔O 的水平光滑桌面上放置一个用绳子连结的、质量m = 4 kg 的小块物体.绳的另一端穿过小孔下垂且用手拉住.开始时物体以半径R 0 = 0.5 m 在桌面上转动,其线速度是4 m/s .现将绳缓慢地匀速下拉以缩短物体的转动半径.而绳最多只能承受 600 N 的拉力.求绳刚被拉断时,物体的转动半径R 等于多少?6. 小球A ,自地球的北极点以速度0v 在质量为M 、半径为R 的地球表面水平切向向右飞出,如图所示,地心参考系中轴OO '与0v 平行,小球A 的运动轨道与轴OO '相交于距O 为3R 的C 点.不考虑空气阻力,求小球A 在C点的速度v 与0v 之间的夹角θ.7. 一个具有单位质量的质点在随时间 t 变化的力j t i t t F)612()43(2-+-= (SI) 作用下运动.设该质点在t = 0时位于原点,且速度为零.求t = 2秒时,该质点受到对原点的力矩和该质点对原点的角动量.四研讨题1. 汽车发动机内气体对活塞的推力以及各种传动部件之间的作用力能使汽车前进吗?使汽车前进的力是什么力?2. 在经典力学范围内,若某物体系对某一惯性系满足机械能守恒条件,则在相对于上述惯性系作匀速直线运动的其它参照系中,该物体系是否一定也满足机械能守恒条件?请举例说明.3. 在车窗都关好的行驶的汽车内,漂浮着一个氢气球,当汽车向左转弯时,氢气球在车内将向左运动还是向右运动?4. 为了避免门与墙壁的撞击,常常在门和墙上安装制动器,目前不少制动器安装在靠近地面的位置上(如图),在开关门的过程中,门与制动器发生碰撞,从而门受到撞击力的作用。
2012级大学物理A1练习题(马文蔚5版,上)一.填空题质点力学与刚体定轴转动质点运动学1. 已知质点运动方程为: j i r )314()2125(32t t t t ++-+=(SI ),当t=2s 时,加速度a = 。
2. 质点沿半径为R 的圆周运动,运动学方程为 223t +=θ (SI) ,则t时刻质点的法向加速度大小为a n = ,法向加速度大小为 ,角加速度β= 。
3. 一质点沿x 方向运动,其加速度随时间变化关系为a=3+2t (SI ),如果初速度V 0=5m/s ,则当t 为3s 时,质点的速度V= 。
4. 一质点速率v 与路程s 的关系为:v=1+s 2(SI ),则其切向加速度以路程s 表示的表达式为:a t = 。
5. 一质量为5kg 的物体在平面上运动,其运动方程为j t i r 236-=,式中j i ,分别为X 、Y 轴正方向单位矢量,则物体所受的合外力F 的大小为 N ;方向为 。
6. 已知一质点沿直线运动,其加速度a= - kv ,其中 k 为正值的常量,t = 0 时,质点速度为 v 0,则任意 t 时刻质点的速度v= 。
7. 质量为M 的车以速度v 沿光滑水平地面直线前进,车上的人将一质量为m 的物体相对于车以速度u 竖直上抛,则此时车的速度为 。
8. 在xy 平面内有一运动质点,其运动方程为:j t i t r 5sin 105cos 10+= (SI),则t 时刻其切向加速度的大小a τ =________.9. 一质点作半径为 0.1 m 的圆周运动,其运动方程为:2214πt +=θ (SI) ,则其加速度大小为a = . 质点动力学10. 某质点在力 F =(4+5x )i (SI) 作用下沿x 轴作直线运动 ,在从x =0移动到x =10m 的过程中,力F所做的功为__________ 。
11. 两弹簧质量忽略不计,原长都是10cm ,第一个弹簧上端固定,下挂一个质量为m 的物体后,长为11cm ,而第二个弹簧上端固定,下挂一个质量为m 的物体后,长为13cm 。
14/15(二)大 学 物 理 A (1)试 卷(题库版)班级:_____________ 姓名:_____________ 学号:_____________ 日期:__________年_______月_______日 成绩:_____________一 选择题 (共18分)1. (本题 3分)(0025) 一条河在某一段直线岸边同侧有A 、B 两个码头,相距1 km .甲、乙两人需要从码头A 到码头B ,再立即由B 返回.甲划船前去,船相对河水的速度为4 km/h ;而乙沿岸步行,步行速度也为4 km/h .如河水流速为 2 km/h, 方向从A 到B ,则 (A) 甲比乙晚10分钟回到A . (B) 甲和乙同时回到A . (C) 甲比乙早10分钟回到A . (D) 甲比乙早2分钟回到A .[ ]2. (本题 3分)(0344) 站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过电梯内的一个无摩擦的定滑轮而处于“平衡”状态.由此,他断定电梯作加速运动,其加速度为(A) 大小为g ,方向向上. (B) 大小为g ,方向向下.(C) 大小为g 21,方向向上. (D) 大小为g 21,方向向下.[ ]3. (本题 3分)(4022) 在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为: (A) 3 / 10. (B) 1 / 2.(C) 5 / 6. (D) 5 / 3. [ ]4. (本题 3分)(4313) 一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两态处于同一条绝热线上(图中虚线是绝热线),则气体在(A) (1)过程中吸热,(2) 过程中放热. (B) (1)过程中放热,(2) 过程中吸热.(C) 两种过程中都吸热.(D) 两种过程中都放热. [ ]p V图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ(x <0)和-λ (x >0),则Oxy 坐标平面上点(0,a )处的场强E K为(A) 0. (B) i a K 02ελπ. (C)i a K 04ελπ. (D) ()j i aKK +π04ελ. [ ]6. (本题 3分)(4172) 一宇宙飞船相对于地球以 0.8c (c 表示真空中光速)的速度飞行.现在一光脉冲从船尾传到船头,已知飞船上的观察者测得飞船长为90 m ,则地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为 (A) 270 m . (B) 150 m .(C) 90m . (D) 54m .[ ]二 填空题 (共32分)7. (本题 3分)(4008) 若某种理想气体分子的方均根速率()4502/12=vm / s ,气体压强为p =7×104Pa ,则该气体的密度为ρ=_______________.8. (本题 5分)(4656) 用绝热材料制成的一个容器,体积为2V 0,被绝热板隔成A 、B 两部分,A内储有1 mol 单原子分子理想气体,B 内储有2 mol 刚性双原子分子理想气体,A 、B 两部分压强相等均为p 0,两部分体积均为V 0,则(1) 两种气体各自的内能分别为E A =________;E B =________; (2) 抽去绝热板,两种气体混合后处于平衡时的温度为T =______.9. (本题 4分)(4282) 现有两条气体分子速率分布曲线(1)和(2),如图所示.若两条曲线分别表示同一种气体处于不同的温度下的速率分布,则曲线_____表示气体的温度较高.若两条曲线分别表示同一温度下的氢气和氧气的速率分布,则曲线_____表示的是氧气的速率分布.一定量的理想气体,在p —T 图上经历一个如图所示的循环过程(a →b →c →d →a),其中a →b ,c →d 两个过程是绝热过程,则该循环的效率η =______________.11. (本题 4分)(1427) 图示两块“无限大”均匀带电平行平板,电荷面密度分别为+σ和-σ,两板间是真空.在两板间取一立方体形的高斯面,设每一面面积都是S ,立方体形的两个面M 、N 与平板平行.则通过M 面的电场强度通量Φ1=____________,通过N 面的电场强度通量Φ2=________________.σ+σ12. (本题 3分)(1330) 一金属球壳的内、外半径分别为R 1和R 2,带电荷为Q .在球心处有一电荷为q 的点电荷,则球壳内表面上的电荷面密度σ =______________.13. (本题 3分)(1237) 两个电容器1和2,串联以后接上电动势恒定的电源充电.在电源保持联接的情况下,若把电介质充入电容器2中,则电容器1上的电势差______________;电容器1极板上的电荷____________.(填增大、减小、不变)14. (本题 3分)(5705) 地面上的观察者测得两艘宇宙飞船相对于地面以速度 v = 0.90c 逆向飞行.其中一艘飞船测得另一艘飞船速度的大小v ′ =___________________.15. (本题 4分)(4499) (1) 在速度=v ____________情况下粒子的动量等于非相对论动量的两倍. (2) 在速度=v ____________情况下粒子的动能等于它的静止能量.三 计算题 (共55分)16. (本题10分)(0984) 一升降机内有一倾角为α 的固定光滑斜面,如图所示.当升降机以匀加速度0a K上升时,质量为m 的物体A 沿斜面滑下,试以升降机为参考系,求A 对地面的加速度a K.质量分别为m 和M 的两个粒子,最初处在静止状态,并且彼此相距无穷远.以后,由于万有引力的作用,它们彼此接近.求:当它们之间的距离为d 时,它们的相对速度多大?18. (本题 5分)(0156) 如图所示,转轮A 、B 可分别独立地绕光滑的固定轴O 转动,它们的质量分别为m A =10 kg 和m B =20 kg ,半径分别为r A 和r B .现用力f A 和f B 分别向下拉绕在轮上的细绳且使绳与轮之间无滑动.为使A 、B 轮边缘处的切向加速度相同,相应的拉力f A 、f B 之比应为多少?(其中A 、B 轮绕O 轴转动时的转动惯量分别为221A A A r m J =和221B B B r m J =)f19. (本题10分)(0787) 一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5 kg ,长度为l = 1.0 m ,对轴的转动惯量为J = 231ml .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示.子弹的质量为m ′= 0.020 kg ,速率为v = 400 m ·s -1.试问: (1) 棒开始和子弹一起转动时角速度ω有多大?(2) 若棒转动时受到大小为M r = 4.0 N ·m 的恒定阻力矩作用,棒能转过多大的角度θ?m , l v m ′20. (本题 5分)(1453) 如图所示,一半径为R 的均匀带正电圆环,其电荷线密度为λ.在其轴线上有A 、B 两点,它们与环心的距离分别为R OA 3=,R OB 8= . 一质量为m 、电荷为q 的粒子从A 点运动到B 点.求在此过程中电场力所作的功.21. (本题 5分)(1157) 有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷.如图所示,试求:(1) 导体板面上各点的感生电荷面密度分布. (2)面上感生电荷的总电荷.一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径Array分别为R1 = 2 cm,R2 = 5 cm,其间充满相对介电常量为ε的各r向同性、均匀电介质.电容器接在电压U = 32 V的电源上,(如图所示),试求距离轴线R = 3.5 cm处的A点的电场强度和A点与外筒间的电势差.23. (本题 5分)(4357)在O参考系中,有一个静止的正方形,其面积为 100 cm2.观测者O'以 0.8c 的匀速度沿正方形的对角线运动.求O'所测得的该图形的面积.四理论推导与证明题 (共 5分)24. (本题 5分)(4708)某理想气体作卡诺循环,其循环效率为η,试在p-V图上画出循环曲线,并证明,在绝热膨胀过程中,膨胀后的气体压强与膨胀前的气体压强之比为/()1η.(式中γ为该理想气体的比热容比)1(−)−γγ五回答问题 (共 5分)25. (本题 5分)(0188)如图所示,有两个高度相同、质量相同、倾角不同的光滑斜面,放在光滑水平面上.在两个斜面上分别放两个大小可以忽略、质量相同的滑块,使两滑块分别从这两个斜面的顶点由静止开始滑下,以地面为参照系,指出下面几个结论中哪些是错误的,为什么?(1) 两滑块滑到斜面底端时的动量相同.(2) 滑块与楔形物体组成的系统动量守恒.(3) 滑块与楔形物体组成的系统动能保持不变.(4) 滑块与楔形物体组成的系统水平方向动量守恒.。
江苏省交通技师学院大学物理(上)考试试卷A一、 选择题:(本大题共10小题,每小题2分,共20分) 1.下列说法正确的是( )A 加速度恒定不变时,物体的运动方向也不变。
B 平均速率等于平均平均速度的大小。
C 当物体的速度为零时,加速度必定为零。
D 质点作曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速度。
2. 如图所示,质点作匀速率圆周运动,其半径为R ,从A 点出发,经半圆到达B 点,试问下列叙述中不正确的是( )A 速度增量0=v ∆;B 速率增量0=v ∆C 位移大小R r 2=∆; D 路程R s π=3. 某人骑自行车以速率v 相西行驶,风以相同的速率从北偏东30︒方向吹来,人感到风吹来的方向是:( )A 北偏东30︒ ;B 北偏西30︒;C 西偏南30︒;D 南偏东30︒; 4. 质量一定的一个质点,在下列说法中,哪个是正确的( ) A 若质点所受合力的方向不变,则一定作直线运动; B 若质点所受合力的大小不变,则一定作匀加速直线运动;C 若质点所受合力恒定,则一定作直线运动;D 若质点自静止开始,所受的合力恒定,则一定作匀加速直线运动。
5. 用细绳系一小球,使其在铅直平面内作圆周运动,当小球达到最高点时,在下列说法中,哪个是正确的( ) A 此时小球受重力和向心力的作用B 此时小球受重力、绳子拉力和向心力的作用C 此时小球并没有落下,因此小球还受到一个方向向上的离心力的作用,以与重力、绳子拉力和向心力这三个力相平衡。
D 此时小球所受的绳子的拉力为最小。
6.当站在电梯内的观察者看到质量不同的两物体跨过一无摩擦的定滑轮,并处于平衡状态,如图。
由此他断定电梯作加速运动,而且起加速度的大小和方向为:( )A g ,向上;B g ,向下。
C (m 2-m 1)g/(m 2+m 1),向上 ;D m 2g/(m 2+m 1),向下。
7.对功的概念有以下几种说法:(1) 保守力做正功时,系统内相应的势能增加。
第8章 光的偏振一、选择题1(B),2(B),3(B),4(A),5(B),二、填空题(1). 2, 1/4(2). 1/ 2(3). I 0 / 2, 0(4). 1.48 tan560(5). 遵守通常的折射,不遵守通常的折射. 传播速度,单轴三、计算题1. 有三个偏振片叠在一起.已知第一个偏振片与第三个偏振片的偏振化方向相互垂直.一束光强为I 0的自然光垂直入射在偏振片上,已知通过三个偏振片后的光强为I 0 / 16.求第二个偏振片与第一个偏振片的偏振化方向之间的夹角.解:设第二个偏振片与第一个偏振片的偏振化方向间的夹角为θ.透过第一个偏 振片后的光强 I 1=I 0 / 2.透过第二个偏振片后的光强为I 2,由马吕斯定律,I 2=(I 0 /2)cos 2θ透过第三个偏振片的光强为I 3,I 3 =I 2 cos 2(90°-θ ) = (I 0 / 2) cos 2θ sin 2θ = (I 0 / 8)sin 22θ由题意知 I 3=I 2 / 16所以 sin 22θ = 1 / 2,()2/2sin 211-=θ=22.5°2. 将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.解:(1) 透过第一个偏振片的光强I 1I 1=I 0 cos 230°=3 I 0 / 4透过第二个偏振片后的光强I 2, I 2=I 1cos 260°=3I 0 / 16(2) 原入射光束换为自然光,则I 1=I 0 / 2I 2=I 1cos 260°=I 0 / 83. 如图,P 1、P 2为偏振化方向相互平行的两个偏振片.光强为I 0的平行自然光垂直入射在P 1上. (1) 求通过P 2后的光强I . (2) 如果在P 1、P 2之间插入第三个偏振片P 3,(如图中虚线所示)并测得最后光强I =I 0 / 32,求:P 3的偏振化方向与P 1的偏振化方向之间的夹角α (设α为锐角).解:(1) 经P 1后,光强I 1=21I 0 I 1为线偏振光.通过P 2.由马吕斯定律有I =I 1cos 2θ∵ P 1与P 2偏振化方向平行.∴θ=0.故 I =I 1cos 20°=I 1=21I 0 (2) 加入第三个偏振片后,设第三个偏振片的偏振化方向与第一个偏振化方向间的夹角为α.则透过P 2的光强αα2202cos cos 21I I =α40cos 21I = 由已知条件有 32/cos 21040I I =α ∴ cos 4α=1 / 16得 cos α=1 / 2 即 α =60°4.有一平面玻璃板放在水中,板面与水面夹角为θ (见图).设水和玻璃的折射率分别为1.333和1.517.已知图中水面的反射光是完全偏振光,欲使玻璃板面的反射光也是完全偏振光,θ 角应是多大?解:由题可知i 1和i 2应为相应的布儒斯特角,由布儒斯特定律知tg i 1= n 1=1.33;tg i 2=n 2 / n 1=1.57 / 1.333,由此得 i 1=53.12°,i 2=48.69°.由△ABC 可得 θ+(π / 2+r )+(π / 2-i 2)=π整理得 θ=i 2-r由布儒斯特定律可知, r =π / 2-i 1将r 代入上式得θ=i 1+i 2-π / 2=53.12°+48.69°-90°=11.8°.四研讨题1. 为了得到线偏振光,就在激光管两端安装一个玻璃制的“布儒斯特窗”(见图),使其法线与管轴的夹角为布儒斯特角。
姓名班级学号………密……….…………封…………………线…………………内……..………………不…………………….准…………………答….…………题…大学物理学专业《大学物理(上册)》综合检测试题A卷附答案考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
3、请仔细阅读各种题目的回答要求,在密封线内答题,否则不予评分。
一、填空题(共10小题,每题2分,共20分)1、一小球沿斜面向上作直线运动,其运动方程为:,则小球运动到最高点的时刻是=_______S。
2、一质点沿半径R=0.4m作圆周运动,其角位置,在t=2s时,它的法向加速度=______,切向加速度=______。
3、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。
4、一个半径为、面密度为的均匀带电圆盘,以角速度绕过圆心且垂直盘面的轴线旋转;今将其放入磁感应强度为的均匀外磁场中,的方向垂直于轴线。
在距盘心为处取一宽度为的圆环,则该带电圆环相当的电流为________,该电流所受磁力矩的大小为________ ,圆________盘所受合力矩的大小为________。
5、已知质点的运动方程为,式中r的单位为m,t的单位为s。
则质点的运动轨迹方程,由t=0到t=2s内质点的位移矢量______m。
6、均匀细棒质量为,长度为,则对于通过棒的一端与棒垂直的轴的转动惯量为_____,对于通过棒的中点与棒垂直的轴的转动惯量_____。
7、动方程当t=常数时的物理意义是_____________________。
8、刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成______,与刚体本身的转动惯量成反比。
(填“正比”或“反比”)。
9、两列简谐波发生干涉的条件是_______________,_______________,_______________。
《大学物理A1》练习题 第一章 质点运动学姓名:__________ 学号:_________ 专业及班级:_________1. 某质点的运动方程为6533+-=t t x (SI),则该质点作( )(A)匀加速直线运动,加速度为正值; (B)匀加速直线运动,加速度为负值; (C)变加速直线运动,加速度为正值; (D)变加速直线运动,加速度为负值。
2.一质点沿直线运动,其运动方程为)(62SI t t x -=,则在t 由0至4s 的时间间隔内, 质点的位移大小为:( )A m 6;B m 8;C m 10;D m 12。
3.下列说法正确的是( )A. 在圆周运动中,加速度的方向一定指向圆心B. 匀速率圆周运动的速度和加速度都恒定不变C. 物体作曲线运动时,速度方向一定在运动轨道的切向方向,法向分速度恒等于零,因此其法向加速度也一定等于零D. 物体作曲线运动时,必定有加速度,加速度的法向分量一定不等于零4.某人以4km/h 的速率向东前进时,感觉风从正北吹来,如将速率增加一倍,则感觉风从东北方向吹来。
实际风速与风向为( )A. 4km/h ,从北方吹来B. 4km/h ,从西北方吹来C. 4√2km/h ,从东北方吹来D. 4√2km/h ,从西北方吹来5.沿半径为R 的圆周运动,运动学方程为 212t θ=+ (SI) ,则t时刻质点的法向加速度大小为n a = 。
6.在XY 平面内有一运动的质点,其运动方程为)(5sin 55cos 5SI j t i t r+=,则t 时刻其速度=v_____________________________。
7.灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为v M = 。
8.质点P 在水平面内沿一半径为1m 的圆轨道转动,转动的角速度ω与时间t 的关系为2kt =ω,已知t =2s 时,质点P 的速率为16m/s ,试求t=1s 时,质点P 的速率与加速度的大小。
第七章 练习题1、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α ,则通过半球面S的磁通量(取弯面向外为正)为(A) πr 2B .. (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2B cos α.2、如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电流在框中心O 点产生的磁感强度分别用 1B 、2B、3B 表示,则O点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但0321=++B B B. (C) B ≠ 0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B.3、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P .4、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系?[ ]5、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll B d 等于(A) I 0μ. (B)I 031μ. (C) 4/0I μ. (D) 3/20I μ.IBxOR (D )Bx O R(C )BxO R (E )电流筒6、如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: (A) 靠近大平板. (B) 顺时针转动.(C) 逆时针转动.(D) 离开大平板向外运动.7、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量Φ =______________.8、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l Id 所受的安培力F d 的大小为____,方向________.9、有一根质量为m ,长为l 的直导线,放在磁感强度为 B的均匀磁场中B的方向在水平面内,导线中电流方向如图所示,当导 线所受磁力与重力平衡时,导线中电流I =___________________.10、图示为三种不同的磁介质的B ~H 关系曲线,其中虚线表示的是B = μ0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:a 代表____________________的B ~H 关系曲线.b 代表____________________的B ~H 关系曲线.c 代表____________________的B ~H 关系曲线.11、AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)12、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面且距平板一边为b 的任意点P 的磁感强度.I 1I 2IlI dIB13、螺绕环中心周长l = 10 cm ,环上均匀密绕线圈N = 200匝,线圈中通有电流I = 0.1 A .管内充满相对磁导率μr = 4200的磁介质.求管内磁场强度和磁感强度的大小.14、一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.答案:一 选择题1、D2、A3、D4、B5、D6、B7、2ln 20πIaμ 8、a l I 4/d 20μ 垂直电流元背向半圆弧(即向左)9、)/(lB mg10、铁磁质、 顺磁质、 抗磁质 11、解:AA '线圈在O 点所产生的磁感强度002502μμ==AAA A r I NB (方向垂直AA '平面)CC '线圈在O 点所产生的磁感强度 005002μμ==CCC C r I N B (方向垂直CC '平面)O 点的合磁感强度 42/1221002.7)(-⨯=+=C AB B B T B 的方向在和AA '、CC '都垂直的平面内,和CC '平面的夹角︒==-4.63tg1AC B B θC A12、解:利用无限长载流直导线的公式求解.(1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流 x i d d δ=(2) 这载流长条在P 点产生的磁感应强度 xiB π=2d d 0μxxπ=2d 0δμ 方向垂直纸面向里.(3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P点产生的磁感强度==⎰B B d ⎰+πba bxdx x20δμbb a x+π=ln20δμ 方向垂直纸面向里.13、解: ===l NI nI H /200 A/m===H H B r μμμ0 1.06 T14、解:由安培环路定理:∑⎰⋅=iI l Hd0< r <R 1区域: 212/2R Ir rH =π 212R Ir H π=, 2102R Ir B π=μR 1< r <R 2区域: I rH =π2rI H π=2, rIB π=2μR 2< r <R 3区域: )()(22223222R R R r I I rH ---=π )1(22223222R R R r rI H ---π=)1(2222322200RR R r rIH B ---π==μμr >R 3区域: H = 0,B = 0。
)2(选择题(5)选择题(7)选择题第一章 质点运动学一、选择题1. 下列两句话是否正确:(1) 质点作直线运动,位置矢量的方向一定不变;【 ⨯ 】(2) 质点作园周运动位置矢量大小一定不变。
【 ⨯ 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。
3. 某质点的运动方程为x=3t-5t3+6(SI),则该质点作 【 D 】(A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向;(C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s2则一秒钟后质点的速度:【 D 】(A) 等于零(B) 等于-2m/s (C) 等于2m/s (D) 不能确定。
5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。
设该人以匀速度V0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。
6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,质点在x 轴上的位置为 【 C 】(A) 0; (B) 5m ; (C) 2m ; (D) -2m ; (E) -5m*7. 某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数。
当t=0时,初速为v0,则速度v 与时间t 的函数关系是 【 C 】(A) 02v kt 21v += (B) 02v kt 21v +-=(C) 02v 1kt 21v 1+= (D) 02v 1kt 21v 1+-=二、填空题(2)填空题(3)填空题1. )t t (r )t (r ∆+ 与为某质点在不同时刻的位置矢量,)t (v 和)t t (v ∆+为不同时刻的速度矢量,试在两个图中分别画出s ,r ,r ∆∆∆ 和v ,v ∆∆。
[1]. 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( c ) (A ) |Δr |= Δs = Δr(B ) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( b )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v(C ) |v |= v ,|v |≠ v (D ) |v |≠v ,|v |= v[2]. 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( a )(A) 只有(1)(2)正确 (B ) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确[3]. 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B ) 只有(2)、(4)是对的(C) 只有(2)是对的 (D ) 只有(3)是对的 [4]. 一个质点在做圆周运动时,则有( ) (A ) 切向加速度一定改变,法向加速度也改变 (B ) 切向加速度可能不变,法向加速度一定改变 (C ) 切向加速度可能不变,法向加速度不变 (D ) 切向加速度一定改变,法向加速度不变[5]. 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m ,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程; (3) t =4 s 时质点的速度和加速度.[6]. 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr[7]. 质点的运动方程为23010t t x +-= 22015t t y -=式中x ,y 的单位为m ,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向[8]. 质点沿直线运动,加速度a =4 -t 2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m ,v =2 m·s-1 ,求质点的运动方程.[9]. 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a=A —B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.[10].一质点具有恒定加速度a =6i+4j,式中a的单位为m·s-2.在t=0时,其速度为零,位置矢量r0=10 m i.求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图[11].质点在Oxy 平面内运动,其运动方程为r=2。
)2(选择题(5)选择题(7)选择题第一章 质点运动学一、选择题1. 下列两句话是否正确:(1) 质点作直线运动,位置矢量的方向一定不变;【 ⨯ 】(2) 质点作园周运动位置矢量大小一定不变。
【 ⨯ 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。
3. 某质点的运动方程为x=3t-5t3+6(SI),则该质点作 【 D 】(A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向;(C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s2则一秒钟后质点的速度:【 D 】(A) 等于零(B) 等于-2m/s (C) 等于2m/s (D) 不能确定。
5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。
设该人以匀速度V0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。
6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,质点在x 轴上的位置为 【 C 】(A) 0; (B) 5m ; (C) 2m ; (D) -2m ; (E) -5m*7. 某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数。
当t=0时,初速为v0,则速度v 与时间t 的函数关系是 【 C 】(A) 02v kt 21v += (B) 02v kt 21v +-= (C)02v 1kt 21v 1+= (D) 02v 1kt 21v 1+-=二、填空题(2)填空题(3)填空题1. )t t (r )t (r ∆+ 与为某质点在不同时刻的位置矢量,)t (v 和)t t (v ∆+为不同时刻的速度矢量,试在两个图中分别画出s ,r ,r ∆∆∆ 和v ,v ∆∆。
2. 一质点从P 点出发以匀速率1cm/s 作顺时针转向的圆周运动,圆半径为1m ,如图当它走过2/3圆周时,走过的路程是m 34π; 这段时间平均速度大小为:s /m 40033π;方向是与X 正方向夹角3πα=3. 一质点作直线运动,其坐标x 与时间t 的函数曲线如图所示,则该质点在第3秒瞬时速度为零;在第3秒至第6秒间速度与加速度同方向。
三、计算题1. 已知一质点的运动方程为t ,r ,j )t 2(i t 2r 2-+=分别以m 和s 为单位,求:(1) 质点的轨迹方程,并作图; (2) t=0s 和t=2s 时刻的位置矢量;(3) t=0s 到t=2s 质点的位移?v ,?r ==∆解 (1)轨迹方程:08y 4x 2=-+; (2) j 2r 0=,j 2i 4r 2 -=(3) j 4i 4r r r 02-=-=∆,j 2i 2tr v -==∆∆ 2. 一质点沿x 轴作直线运动,其运动方程为x=3+5t+6t2-t3 (SI),求 (1) 质点在t=0时刻的速度; (2) 加速度为零时,该质点的速度。
解 任一时刻的速度:2t 3t 125dt dx v -+==,任一时刻的加速度:t 612dtdva -==s 0t =时的速度:s /m 5v =;当加速度为零:s 2t =,速度:s /m 17v =*3. 湖中一小船,岸边有人用绳子跨过高出水面h 的滑轮拉船,如图所示。
如用速度V0收绳,计算船行至离岸边x 处时的速度和加速度。
(1)填空题)3(计算题解 选取如图所示的坐标,任一时刻小船满足:222h x l +=,两边对时间微分dt dx x dt dl l=,dt dl V 0-=,dt dx V = 022V xh x V +-=方向沿着X 轴的负方向。
方程两边对时间微分:xa V V 220+=,xV V a 220-=3220xh V a -=,方向沿着X 轴的负方向。
4. 质点沿X 轴运动,其速度与时间的关系为v=4+t2 m/s ,当t=3s 时质点位于x=9m 处,求质点的运动方程。
当t=2s 时,质点的位置在哪里?解 质点的位置满足: )dt t 4(vdt x 2+==⎰⎰,C t 31t 4x 3++=由初始条件:t=3s 时质点位于x=9m ,得到c=-12,12t 31t 4x 3-+= 当t=2s 时,质点的位置:m 3412388x -=-+= *5. 质点沿X 轴运动,其加速度和位置的关系是)SI (x 62a 2+=。
如质点在x=0处的速度为1s m 10-⋅,求质点在任意坐标x 处的速度。
解 由速度和加速度的关系式:dt dv a =,dxdvv dt dx dx dv a ==vdv adx =,vdv dx )x 62(2=+,两边积分,并利用初始条件:0x =,10s m 10v -⋅=vdv dx )x 62(v102x⎰⎰=+,得到质点在任意坐标x 处的速度:25x x 2v 3++=第二章 牛顿定律一、 选择题1. 一质点在平面上运动,已知质点的位置矢量为j bt i at r 22+= (a ,b 为常数)则质点作: 【 B 】(A) 匀速直线运动; (B) 变速直线运动; (C) 抛物线运动;(D) 一般曲线运动。
2. 质点作曲线运动,r表示位置矢量,S 表示路程,at 表示切向加速度,下列表达式中, 【 D 】(1)a dt dV =; (2) V dt dr =; (3) V dtds=; (4) t a dt V d =。
(A) 只有(1)、(2)是对的; (B) 只有(2)、(4)是对的; (C) 只有(2)是对的; (D) 只有(3)是对的。
3. 某人骑自行车以速率v 向正西方向行驶,遇到由北向南刮的风 (风速大小也为v ) 则他感到风是从【 C 】(A) 东北方向吹来;(B) 东南方向吹来; (C) 西北方向吹来;(D) 西南方向吹来。
4. 在相对地面静止的坐标系内,A 、B 两船都以1s m 2-⋅的速率匀速行驶,A 船沿X 轴正向,B 船沿y 轴正向,今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢量i j ,表示),那么从A 船看B 船它相对A 船的速度(以1sm -⋅为单位)为【 B 】;j 2i 2)D (,j 2i 2)C (,j 2i 2)B (,j 2i 2)A (---+-+ 5. 一条河设置A , B 两个码头,相距1 km ,甲,乙两人需要从码头A 到码头B ,再由B 返回,甲划船前去,船相对河水的速度4 km/h ;而乙沿岸步行,步行速度也为4 km/h ,如河水流速为2km/h ,方向从A 到B 下述结论中哪个正确?【 A 】(A) 甲比乙晚10分钟回到A ; (B) 甲和乙同时回到A ;(C) 甲比乙早10分钟回到A ;(D) 甲比乙早2分钟回到A二、填空题1. 在x ,y 面内有一运动质点其运动方程为 )SI (j t 5sin 10i t 5cos 10r+=,则t 时刻其速度j t 5cos 50i t 5sin 50v +-=;其切向加速度0a =τ;该质点运动轨迹是100y x 22=+。
2. 试说明质点作何种运动时,将出现下述各种情况0v ≠ (1) 0a ,0a n t ≠≠:变速曲线运动(2) 0a ,0a n t =≠:变速直线运动, a a t n ,分别表示切向加速度和法向加速度。
3. 如图所示,小球沿固定的光滑的1/4圆弧从A 点由静止开始下滑,圆弧半径为R ,则小球在A 点处的切向加速度g a t =,小球在B 点处的法向加速度g 2a n =。
4. 在一个转动的齿轮上,一个齿尖P 做半径为R 的圆周运动,其路程S 随时间的变化规律为020v ,bt 21t v S 其中+=和b 都是正的常量,则t 时刻齿尖P 的速度大小为:bt v 0+,加速度大小为:2402R )bt v (b a ++=。
5. 一物体在某瞬时,以初速度v 0从某点开始运动,在∆t 时间内,经一长度为S 的曲线路径后,又回到出发点,此时速度为-v 0,则在这段时间内:(1) 物体的平均速率是t S∆; (2) 物体的平均加速度是tv 20∆ -。
6. 一质点沿半径为R 的圆周运动,路程随时间的变化规律为),SI (ct 21bt S 2-=式中b ,c 为大于零的常数,且21c R c b ⎪⎭⎫ ⎝⎛>。
)9(填空题 (1) 质点运动的切向加速度:c a -=τ;法向加速度:R)ct b (a 2n -=;(2) 质点经过cRc b t ±=时,n t a a =。
7. 质点沿半径R 作圆周运动,运动方程为)SI (t 232+=θ,则t 时刻质点法向加速度大小2n Rt 16a =,角加速度4=β,切向加速度大小R 4a =τ。
8. 楔形物体A 的斜面倾角为α,可沿水平方向运动,在斜面上物体B 沿斜面以 v t 相对斜面下滑时,物体A 的速度为v ,如图,在固接于地面坐标oxy 中,B 的速度是矢量式 j )sin v (i )v cos v (v t t Bαα-+-=地分量式 v cos v v t x -=α,αsin v v t y -=三、计算题1. 如图,一质点作半径R=1m 的圆周运动, t=0时质点位于A 点,然后顺时针方向运动,运动方程)SI (t t s 2ππ+=求: (1) 质点绕行一周所经历的路程、位移、平均速度和平均速率;(2) 质点在1秒末的速度和加速度的大小。
解 (1) 质点绕行一周所需时间:R 2t t 2πππ=+,s 1t =质点绕行一周所经历的路程:)m (2R 2s ππ==位移:0r =∆;平均速度:0tr v ==∆∆ 平均速率:s /m 2tsv π∆==(2) 质点在任一时刻的速度大小:ππ+==t 2dtdsv 加速度大小:22222n )dtdv ()R v (a a a +=+=τ 质点在1秒末速度的大小: )s /m (3v π=加速度的大小:222)2()9(a ππ+=,)s /m (96.88a 2=2. 如图,飞机绕半径r=1km 的圆弧在竖直平面内飞行,飞行路程服从)m (t 50)t (s 3+=的规律,飞机飞过最低点A 时的速率1A s m 192v -⋅=,求飞机飞过最低点A 时的切向加速度a t ,法向加速度n a 和总加速度a 。