初一年级第二学期期末考试数学试卷
- 格式:doc
- 大小:121.00 KB
- 文档页数:7
2024年人教版初一数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是2,则这个数是()A. 2B. 8C. 16D. 42. 在直角坐标系中,点(3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列哪个数是负数()A. 0B. 3/4C. 5/6D. 24. 若一个数的绝对值是3,则这个数是()A. 3B. 3C. 3或35. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 菱形二、判断题(每题1分,共5分)1. 两个互质的数的最小公倍数是它们的乘积。
()2. 一个数既是偶数又是奇数。
()3. 任何两个数的和都是正数。
()4. 任何两个数的差都是负数。
()5. 任何两个数的积都是正数。
()三、填空题(每题1分,共5分)1. 5的平方根是______。
2. 下列数中,最大的是______(2,3,0,5)。
3. 两个相邻的自然数之和是______。
4. 下列数中,最小的数是______(3,4,2,1)。
5. 下列数中,既是偶数又是合数的是______(4,5,6,7)。
四、简答题(每题2分,共10分)1. 请简述什么是勾股定理。
2. 请简述什么是绝对值。
3. 请简述什么是分数。
4. 请简述什么是比例。
5. 请简述什么是方程。
五、应用题(每题2分,共10分)1. 若一个数的平方是16,求这个数。
2. 若一个数的三分之一是4,求这个数。
3. 若一个数的二分之一是5,求这个数。
4. 若一个数的四分之一是3,求这个数。
5. 若一个数的五分之一是2,求这个数。
六、分析题(每题5分,共10分)1. 请分析什么是正比例函数,并举例说明。
2. 请分析什么是反比例函数,并举例说明。
七、实践操作题(每题5分,共10分)1. 请用尺规作一个边长为5cm的正方形。
2. 请用尺规作一个半径为3cm的圆。
八、专业设计题(每题2分,共10分)1. 设计一个包含两个变量的线性方程组,并给出一个解法。
2023-2024学年江苏省镇江市七年级下学期期末数学试题1.下列图形是我国几所大学的校徽,其中运用了“平移”制作的是()A.B.C.D.2.已知a+1>b+1,下列结论中错误的是()A.a+1>b+1B.a-1>b-1C.-2a>-2bD.3.如图,的一边DE与直线AB相交于点O,下列条件不能判定AB CD的是()A.B.C.D.4.下列命题中,是真命题的是()A.如果,那么B.如果,那么C.等角的余角相等D.三角形的一个外角等于两个内角的和5.三角形的两条边长为3和4,则第三边长可能为()A.1B.6C.7D.86.已知关于x,y的方程组,则的值为()A.B.C.D.17.通过计算我们知道:3¹,3²,3³,3⁴,3⁵的个位上的数字分别是3,9,7,1,3,则123¹²³的个位上的数字是()A.3B.9C.7D.18.正方形ABCD和正方形EFCG如图放置,点F、G分别在边BC、CD上,已知两个正方形的边长BC与FC的和为8,且BC与FC的积为6,则阴影部分的面积为()A.23B.24C.26D.299.如图,数轴上点A表示的数为x,点B表示的数为,则x的取值范围是______.10.“燕山雪花大如席,片片吹落轩辕台.”5000~10000朵雪花重1克,单朵雪花的质量约为0.00015克,数据0.00015用科学记数法可表示为______.11.命题“如果|x|=|y|,那么x=y”,举出一组能说明它是假命题的x、y的值________.12.若的结果中不含x的一次项,则________.13.如图,直线,点E、F分别在直线AB、CD上,EGF=60°,BEG比GFD大40°,设BEG=x°,GFD=y°,根据题意,可列方程组为_________.14.足球的表面是由12个正五边形和20个正六边形组成的.如图,将足球上的一个正六边形和它相邻的一个正五边形展开放平,则图中的_______________.15.已知的解集为,则的取值范围_________.16.小敏将图1中的长方形纸片ABCD沿对角线AC折叠,点B落在点E的位置,CE与AD交于点F,如图2,再将沿AF折叠,点E恰好落在线段AC上的点G的位置,如图3,则DFC=_________°.17.(1)计算:(2)化简:18.因式分解:(1);(2)19.(1)解不等式:;(2)解方程组:20.如图,点E是四边形ABCD边AD上一点,连接BE、CE,请从:,,这三个选项中,选择两个作为已知条件,剩余的一个作为结论,并说明结论的正确性.21.3月12日植树节,为深入践行绿色发展理念,某校组织师生开展了“植”此青绿,共“树”未来的主题植树活动.据了解购买30棵甲种树苗和20棵乙种树苗共花费1580元,购买2棵甲种树苗比购买3棵乙种树苗少花3元.(1)求购买1棵甲种树苗和1棵乙种树苗各需多少元;(2)学校计划用不超过2150元的经费购买甲、乙两种树苗,并将所购树苗全部栽种,围成一个圆形(如示意图),要求每两棵甲树苗之间栽种两棵乙树苗.求最多可以购买甲种树苗多少棵?22.关于的二元一次方程均可以变形为的形式,其中均为常数且.规定:方程的“关联系数”记为.(1)二元一次方程的“关联系数”为;(2)已知关于的二元一次方程的“关联系数”为(2,-1,1),若为该方程的一组解,且m、n均为正整数,求m、n的值;(3)关于x、y的二元一次方程的“关联系数”之和为4,若,求b的取值范围.23.“数缺形时少直观,形少数时难入微”.我们通过拼图观察、感受整式乘法和因式分解,体现了“数形结合”的数学思想下.面,我们一起来探索其中的规律.如图1,有若干张A,B,C三种不同型号的纸片,其中A型纸片是边长为a的正方形,B 型纸片是长为a、宽为的长方形,C型纸片是边长为b的正方形.(1)用上述三种卡片拼出图2,通过两种方法计算图2的面积,可以得到一个等式:;(2)现有A,B,C三种型号的纸片共6张,用这6张纸片拼成一边长为()的长方形,每种卡片至少选一张,请画出两种符合条件的示意图;(3)现有A,B,C三种型号的纸片若干张,用这些纸片拼成一边长为a+b的长方形,每种卡片至少选一张,设需要A型纸片x张,B型纸片y张,C型纸片z张(x、y、z是正整数),写出x、y、z之间满足的等量关系是,并请说明理由.24.【阅读】《九章算术》记载,淳风等按:平分知,诸分参差,欲令齐等,减彼之多,增此之少,故曰平分也.在我们的数学中也经常体现平分思想.例如:如图1,点C是线段AB中点,则【尝试】已知三角形纸片ABC的面积为6.(1)如图2,若AD是BC边上的中线,则的面积等于;(2)如图3,将三角形纸片ABC的折叠,使得点A落在边BC上的点的位置,折痕与AB、AC分别交于点E、F,若A'EF的面积等于四边形BEFC面积的一半,则AEF的面积等于;【探究】在中,(3)如图4,的内角的角平分线与的外角的角平分线交于点P,求的度数;(4)如图5,的外角和的角平分线交于点Q,求的度数;【应用】如图6,两条平行公路上分别有点A、D与B、C,连接AB、CD,测量得到,,计划在点P处建一个加油站,满足直线AP与CP所形成的锐角为.请利用量角器和直尺画出一个符合题意的加油站(用点P表示)的位置,并说明理由.。
2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。
2. 已知一个数的平方等于36,则这个数是______或______。
3. 下列各数中,是无理数的是______、______、______。
4. 一个等边三角形的周长为15,则它的边长是______,面积是______。
5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。
三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。
2. (10分)解方程:2x - 5 = 3x + 1。
3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。
2023-2024学年北京市朝阳区七年级(下)期末数学试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.9的算术平方根为()A.3B.C.D.812.在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,以单位长度为边长画一个正方形,以原点为圆心,正方形的对角线长为半径画弧,与数轴交于点A,则点A表示的数是()A. B. C. D.4.如图,三角形ABC中,,于点在线段AC,AB,BC,CD中,长度最短的是()A.线段ABB.线段ACC.线段BCD.线段CD5.若,则下列结论正确的是()A. B. C. D.6.一个等腰直角三角尺和一把直尺按如图所示的位置摆放厚度忽略不计,若,则的度数为()A.B.C.D.7.经调查,七年级某班学生上学所用的交通工具中,自行车占,公交车占,私家车占,其他占如果用扇形图描述以上数据,下列说法正确的是()A.“自行车”对应扇形的圆心角为B.“公交车”对应扇形的圆心角为C.“私家车”对应扇形的圆心角为D.“其他”对应扇形的圆心角为8.已知,,,给出下面3个结论:①当时,;②M的最小值是18;③M的最大值是上述结论中,所有正确结论的序号为()A.①②B.①③C.②③D.①②③二、填空题:本题共8小题,每小题3分,共24分。
9.的相反数是______.10.比较大小:4__________填“>”或“<”11.“a与2的差大于“用不等式表示为______.12.不等式的正整数解是______.13.有如下调查:①调查某批次汽车的抗撞击能力;②了解某班学生的视力情况;③选出某班长跑最快的学生参加全校比赛以上调查,适宜抽样调查的是______填写序号14.图中显示了15名七年级学生国家安全知识竞赛成绩和航天知识竞赛成绩单位:分例如:甲同学的国家安全知识竞赛成绩为40分,航天知识竞赛成绩为70分这15名学生中,国家安全知识竞赛成绩与航天知识竞赛成绩相等的有______人.15.如图,第一象限内有两个点,,将线段AB平移,使点A,B平移后的对应点分别同时落在两条坐标轴上,则点A平移后的对应点的坐标为______写出一个即可16.某校为提高校园足球质量和水平,让学生在参与校园足球运动中享受乐趣、增强体质、健全人格、锤炼意志,实现德智体美劳全面发展,举办了校园足球联赛.根据赛事安排,每队均需参赛19场,记分办法如下:胜1场得3分,平1场得1分,负1场得0分.在这次足球联赛中,若某队得13分,则该队可能负______场;写出一种情况即可在这次足球联赛中,若甲、乙两队都得33分,甲队所有比赛都没有踢平,甲、乙两队负场数不同,则乙队最多胜______场.三、计算题:本大题共1小题,共5分。
20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。
A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。
A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。
A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。
A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。
A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。
A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。
A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。
A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。
A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。
A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。
12. 下列各数中,是无理数的是__________。
13. 下列等式中,正确的是__________。
14. 若一个正方形的边长是a,则它的面积是__________。
15. 下列各数中,是负数的是__________。
16. 若一个数的平方是16,则这个数是__________。
17. 下列各数中,是正整数的是__________。
18. 若一个数的绝对值是7,则这个数是__________。
19. 下列各数中,是偶数的是__________。
20. 若一个数的立方是27,则这个数是__________。
三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。
22. 已知一个数的平方是9,求这个数。
李庄七年级数学下册期末测试题及答案姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A 。
16=±4B 。
±16=4 C.327-=-3 D 。
2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B ) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A 。
135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C 。
331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210。
2023-2024学年江苏省徐州市七年级下学期期末数学试题1.若某三角形的三边长分别为3,4,m,则m的值可以是()A.1B.5C.7D.92.下列计算正确的是()A.B.C.D.3.下列在数轴上表示的不等式组的解集,正确的是()A.B.C.D.4.已知,则下列结论正确的是()A.B.C.D.5.下列说法,错误..的是()A.对顶角相等B.两直线平行,内错角相等C.若,则D.若,则6.如图,将沿方向平移至,已知,则平移的距离是()A.2B.3C.5D.77.如图,有一块长、宽的长方形纸板,在其四角各剪去一个边长为的小正方形,将四周突出部分折起,可制成一个无盖长方体盒子,该盒子的底面积为()A .B .C .D .8.已知摄氏温度与华氏温度之间存在对应关系(为常数),下表的数据满足该对应关系,则的值为()摄氏温度0...华氏温度...A .B .C .D .9.不等式的解集为______.10.我市“五一”假期接待游客约5720000人次,5720000用科学记数法表示为______.11.已知,,则等于______.12.若一个多边形的每一个外角都等于40°,则这个多边形的边数是_____.13.据《九章算术》记载:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”译文:用绳子测量水井深度,若将绳子折成三等份,则每等份井外余绳四尺;若将绳子折成四等份,则每等份井外余绳一尺.问绳长和井深各几尺?设绳长尺,井深尺.由题意,可得方程组:______.14.当光线从空气斜射入水中时,传播方向会发生改变.如图,水面与水底平行,光线从出发,经过水面点折射到水底处,若为的延长线,,,则的大小为______.15.如图,已知图1、图2均为正方形拼图,其中所有直角三角形的形状及大小都相同,两个拼图中阴影部分的面积分别记为,则的值为______.16.某商品进价40元,标价50元出售,商家准备打折销售,但其利润率不能少于,则最多可打______折.17.计算:(1);(2).18.因式分解:(1);(2).19.求代数式的值,其中.20.(1)解方程组:(2)解不等式组:21.完成下面的证明.已知:如图,中,点D、E分别在,上,连接,点G,F分别在,上,连接,,.求证:.证明:(已知),(______).______.(______.)(已知),(______).______(两直线平行,同位角相等).(______).22.在所给的方格纸中,用无刻度的直尺分别按要求画图.(1)在图1中,已知A、B、C为格点,将向右平移2格,再向上平移1格,得到,画出;(2)在图2中,已知D、E、F、G均为格点,与交于点O,,画,使其同时满足下列条件:①点M为格点;②的一个角等于.23.已知与都是关于的方程的解.(1)求的值;(2)若的值不小于0,求的取值范围;(3)若,求的取值范围.24.用二元一次方程组解决问题:A、B两地相距,甲骑电动车从A地出发到B地,与此同时,乙骑电动车从B地出发到A地,两人均保持匀速行驶.已知第10分钟两人相遇,又经过4分钟,里剩余路程是乙剩余路程的8倍.求甲、乙二人的骑行速度.25.已知:,点在直线上,连接.(1)如图1,若.求证:;(2)若,的平分线与分别交于点.①如图2,当点在边上(不与重合)时,求证:;②当点在的延长线上时,“”是否依然成立?画出图形,并说明理由.。
2023-2024学年江苏省南京市秦淮区七年级(下)期末数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)化简(a2)3的结果为()A.a5B.a6C.a8D.a92.(2分)若m>n,则下列不等式不成立的是()A.m+2>n+2B.m﹣2>n﹣2C.2m>﹣2n D.3.(2分)三角形的两边长分别为4cm和8cm,则该三角形的第三条边的长度可能是()A.4cm B.8cm C.12cm D.14cm4.(2分)关于x,y的二元一次方程x﹣my=5的一个解是,则m的值为()A.2B.﹣2C.3D.﹣35.(2分)下列命题中,是真命题的是()A.相等的两个角是对顶角B.同位角相等C.若|a|=|b|,则a=b D.平行于同一条直线的两条直线平行6.(2分)下列各式中,计算正确的是()A.(﹣x+y)2=x2﹣2xy+y2B.(﹣3x+2)(3x﹣2)=9x2﹣4C.(x﹣1)(y﹣1)=xy﹣x﹣y﹣1D.(﹣2x+y)(2x+y)=4x2﹣y27.(2分)如图,在△ABC中,点D,E,F分别在AC,AB,BC上,以下条件能判断DE∥BC的是()A.∠1=∠2B.∠4=∠CC.∠1+∠3=180°D.∠3+∠C=180°8.(2分)如图,△ABC的三条中线AF,BE,CD相交于点P.以下结论:①S△APB=S△APC;②AP=BP;③AP=2PF;④∠BPC=2∠BAC.其中,正确的结论为()A.①③B.②③C.③④D.①②④二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卷相应位置上)9.(2分)纳秒(ns)是非常小的时间单位,1ns=10﹣9s,北斗全球导航系统亚太地区的授时精度优于10ns.用科学记数法表示10ns是s.10.(2分)写出命题“两直线平行,内错角相等”的逆命题:.11.(2分)一个多边形的每个内角都是150°,这个多边形是边形.12.(2分)如果x+y=﹣1,x2﹣y2=3,那么x﹣y=.13.(2分)若a m=6,a n=3,则a m﹣n=.14.(2分)如图,已知直线a∥b,∠1=70°,∠2=36°,则∠3=°.15.(2分)如图,△ABC中,CE,BD分别是AB,AC边上的高线.若∠ABC=62°,∠ACB=72°,则∠BOC的度数是°.16.(2分)如图,小明用直角三角尺和刻度尺画平行线时,将△ABC沿刻度尺推到△DEF的位置.若AB =BC=a,CF=b,则四边形ACED的面积是(用含a,b的代数式表示).17.(2分)若关于x的一元一次不等式ax<b的解集是,bx<a的解集是,则a和b的取值范围分别是.18.(2分)若m2+m﹣1=0,则代数式m2(m+2)的值是.三、解答题(本大题共8小题,共64分)19.(8分)(1)计算:(a﹣2b)(a+b)+2b(a﹣b);(2)因式分解:m3+2m2n+mn2.20.(7分)解方程组:.21.(8分)解不等式组:,并把解集在数轴上表示出来.22.(10分)如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,求证:BE ∥DF.23.(6分)超市开展“端午佳节至,浓浓粽香情”促销活动,蛋黄肉粽打八折,红豆粽打七折.已知购买一盒蛋黄肉粽和一盒红豆粽打折前需120元,打折后需92元.求打折前蛋黄肉粽和红豆粽每盒的价格.(用二元一次方程组解决问题)24.(6分)与几何证明一样,代数推理也需要有理有据.请完成下题中依据的填写.已知有理数x,y满足x>y>0,求证:x2>y2.证明:∵x>y>0,∴x+y>0(有理数的加法法则),x﹣y>0(不等式的基本性质1),∴(x+y)(x﹣y)>0().∵(x+y)(x﹣y)=x2﹣y2(),∴x2﹣y2>0(等量代换).∴x2>y2().25.(10分)(1)如图(1),△ABC中,∠A=80°,O是△ABC内一点,OD∥AC,OE∥AB,求∠EOD 的度数.(2)如图(2),O,P分别是△ABC内的两个点,OD∥AC,PE∥AB,连接PO.求证∠A=∠OPE﹣∠POD.26.(9分)如图,是某牛奶的“营养成分表”及相关说明.(注:NRV%表示100ml牛奶中相关营养的含量占一个人每日所需该种营养总量的百分比的参考值)假设一个同学每日所需相关营养的含量恰好符合根据该牛奶“营养成分表”中的信息计算出的结果,请解决下列问题:(1)该同学每日所需碳水化合物是g;(2)该同学的钙的吸收率为80%,求他每天喝多少毫升的该牛奶,才能恰好满足一天的钙的摄入?(不计其他渠道摄入的钙)(3)该同学某天早餐喝了200ml该牛奶,吃了一个鸡蛋和一块牛排(每100g牛排中蛋白质含量为20g).如果他在早餐中摄入的蛋白质全部吸收,且已经超过当日他所需蛋白质总量,那么这块牛排的质量至少是多少克?(用一元一次不等式解决问题,结果保留整数.)2023-2024学年江苏省南京市秦淮区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.【分析】利用幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数),求出即可.【解答】解:(a2)3=a6.故选:B.【点评】此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.2.【分析】根据不等式的基本性质(1)对A、C进行判断;根据不等式的基本性质(3)对A进行判断;根据不等式的基本性质(2)对D进行判断.【解答】解:A.m>n,则m+2>n+2,所以A选项不符合题意;B.m>n,则m﹣2>n﹣2,所以B选项不符合题意C.m>n,则2m与﹣2n的大小无法判定,所以C选项符合题意D.m>n,则m>,所以D选项不符合题意.故选:C.【点评】本题考查了不等式的性质:灵活运用不等式的性质是解决问题的关键.3.【分析】根据三角形的三边关系可得第三边的范围,再根据第三边的范围确定答案.【解答】解:设第三边长为x cm,有三角形的三边关系可得:8﹣4<x<8+4,即4<x<12,观察选项,只有选项B符合题意.故选:B.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.4.【分析】根据方程的解的定义把把代入方程x﹣my=5中即可求出m的值.【解答】解:把代入方程x﹣my=5中,得1﹣2m=5,解得m=﹣2,故选:B.【点评】本题考查了二元一次方程的解,熟知方程的解的定义是解题的关键.5.【分析】根据平行线,相交线,绝对值等知识逐项判断即可.【解答】解:等的两个角不一定是对顶角,故A是假命题,不符合题意;同位角不一定相等,故B是假命题,不符合题意;若|a|=|b|,则a=b或a=﹣b,故C是假命题,不符合题意;平行于同一条直线的两条直线平行,故D是真命题,符合题意;故选:D.【点评】本题考查命题与定理,解题的关键是掌握平行线与相交线相关的知识.6.【分析】根据多项式乘多项式的方法,以及完全平方公式和平方差公式,逐项判断即可.【解答】解:∵(﹣x+y)2=x2﹣2xy+y2,∴选项A符合题意;∵(﹣3x+2)(3x﹣2)=﹣9x2+12x﹣4,∴选项B不符合题意;∵(x﹣1)(y﹣1)=xy﹣x﹣y+1,∴选项C不符合题意;∵(﹣2x+y)(2x+y)=﹣4x2+y2,∴选项D不符合题意.故选:A.【点评】此题主要考查了整式的混合运算,解答此题的关键是注意完全平方公式和平方差公式的应用.7.【分析】由平行线的判定,即可判断.【解答】解:A、由内错角相等,两直线平行判定EF∥AC,不能判定DE∥BC,故A不符合题意;B、由同位角相等,两直线平行判定EF∥AC,不能判定DE∥BC,故B不符合题意;C、由同旁内角互补,两直线平行判定DE∥BC,故C符合题意;D、由同旁内角互补,两直线平行判定EF∥AC,不能判定DE∥BC,故D不符合题意.故选:C.【点评】本题考查平行线的判定,关键是掌握平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.8.【分析】由三角形面积公式推出△ABP的面积=△ACP的面积;AP不一定等于BP,由三角形重心的性质得到AP=2PF,P不一定是△ABC的外心,∠BPC不一定等于2∠BAC.【解答】解:∵AF是△ABC的中线,∴BF=CF,∴△ABF的面积=△ACF度数面积,△PBF的面积=△PCF的面积,∴△ABF的面积﹣△PBF的面积=△ACF的面积﹣△PCF的面积,∴△ABP的面积=△ACP的面积,故①符合题意;如果AP=BP,∵CD是△ABC的中线,∴PD⊥AB,但PD不一定垂直AB,故②不符合题意;∵△ABC的三条中线AF,BE,CD相交于点P,∴P是△ABC的重心,∴AP=2PF,故③符合题意;当P是△ABC的外心时,∠BPC=2∠BAC,P是△ABC的重心,不一定是△ABC的外心,∴∠BPC不一定等于2∠BAC,故④不符合题意.∴其中,正确的结论为①③.故选:A.【点评】本题考查三角形的重心,三角形的面积,关键是掌握三角形重心的性质.二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卷相应位置上)9.【分析】科学记数法的表现形式为a×10n,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正整数,当原数绝对值小于1时,n是负整数,表示时关键是要正确确定a及n的值.【解答】解:10ns=10×10﹣9s=1×10﹣8s,故答案为:1×10﹣8.【点评】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.10.【分析】将原命题的条件与结论互换即得到其逆命题.【解答】解:∵原命题的条件为:两直线平行,结论为:内错角相等∴其逆命题为:内错角相等,两直线平行.【点评】考查学生对逆命题的定义的理解及运用.11.【分析】根据多边形的内角和定理:180°•(n﹣2)求解即可.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.所以多边形是十二边形,故答案为:十二.【点评】本题主要考查了多边形的内角和定理.n边形的内角和为:180°•(n﹣2).此类题型直接根据内角和公式计算可得.12.【分析】根据平方差公式进行因式分解即可得出答案.【解答】解:∵x2﹣y2=3,∴(x+y)(x﹣y)=3,∵x+y=﹣1,∴x﹣y=﹣3.故答案为:﹣3.【点评】本题主要考查平方差公式,熟练运用平方差公式是解题的关键.13.【分析】根据同底数幂的除法法则求解.【解答】解:a m﹣n==2.故答案为:2.【点评】本题考查了同底数幂的除法,解答本题的关键是掌握同底数幂的除法法则:底数不变,指数相减.14.【分析】根据对顶角相等求出∠4=∠2=36°,根据平行线的性质求出∠5=∠4=36°,再根据平角定义求解即可.【解答】解:如图,∵∠2=36°,∠2=∠4,∴∠4=36°,∵a∥b,∴∠5=∠4=36°,∵∠3+∠1+∠5=180°,∠1=70°,∴∠3=74°,故答案为:74.【点评】此题考查了平行线的性质,熟记平行线的性质定理是解题的关键.15.【分析】在△BEC中根据三角形内角和定理求出∠BCE的度数,在△BCD中根据三角形内角和定理求出∠CBD的度数,在△BOC中根据三角形内角和定理求出∠BOC的度数即可.【解答】解:∵CE,BD分别是AB,AC边上的高线,∴∠BEC=90°,∠BDC=90°,在△BEC中,∠EBC+∠BEC+∠BCE=180°,∵∠ABC=62°,∠BEC=90°,∴∠BCE=180°﹣90°﹣62°=28°,在△BCD中,∠DCB+∠BDC+∠CBD=180°,∵∠ACB=72°,∠BDC=90°,∴∠CBD=180°﹣90°﹣72°=18°,在△BOC中,∠CBO+∠BOC+∠BCO=180°,∴∠BOC=180°﹣28°﹣18°=134°,故答案为:134.【点评】本题考查了三角形内角和定理,熟知三角形三个内角的和是180°是解题的关键.16.【分析】由平移得,AB=DE=BC=EF=a,AD=BE,AD∥BE,∠ABC=∠DEF=90°,可得∠ADE =∠CED=90°,CE+BC=BE=AD=b,CE=CF﹣EF=b﹣a,利用梯形的面积公式计算即可.【解答】解:由平移得,AB=DE=BC=EF=a,AD=BE,AD∥BE,∠ABC=∠DEF=90°,∴∠ADE=∠CED=90°.∵CF=CE+EF=b,∴CE+BC=BE=AD=b,CE=CF﹣EF=b﹣a,∴四边形ACED的面积是==ab﹣.故答案为:ab﹣.【点评】本题考查作图—复杂作图、平移的性质、列代数式,解题的关键是理解题意,灵活运用所学知识解决问题.17.【分析】根据不等式的性质2,不等式的性质3,可得答案.【解答】解:∵关于x的一元一次不等式ax<b的解集是,∴a<0,∵关于x的一元一次不等式bx<a的解集是,∴b>0,故答案为:a<0,b>0.【点评】本题考查解一元一次不等式,掌握不等式的性质是解题的关键.18.【分析】由题意可得m2=﹣m+1,m2+m=1,再代入所求代数式运用整式的运算方法和数学整体思想进行求解.【解答】解:∵m2+m﹣1=0,∴m2=﹣m+1,m2+m=1,∴m2(m+2)=(﹣m+1)(m+2)=﹣m2﹣m+2=﹣(m2+m)+2=﹣1+2=1,故答案为:1.【点评】此题考查了运用整体思想求代数式值的能力,关键是能准确变式、计算.三、解答题(本大题共8小题,共64分)19.【分析】(1)根据多项式乘多项式、单项式乘多项式的计算法则即可得出答案;(2)先提取公因式再利用完全平方公式进行因式分解即可得出答案.【解答】解:(1)原式=a2+ab﹣2ab﹣2b2+2ab﹣2b2=a2+ab﹣4b2;(2)原式=m(m2+2mn+n2)=m(m+n)2.【点评】本题主要考查多项式乘多项式、单项式乘多项式、提取公因式与公式法的综合运用,熟练掌握以上知识点是解题的关键.20.【分析】可以注意到①式可变形为y=3x+4,代入②式即可对y进行消元.再解一元一次方程即可【解答】解:由①式得y=3x+4,代入②式得x﹣2(3x+4)=﹣3解得x=﹣1将x=﹣1代入②式得﹣1﹣2y=﹣3,得y=1∴方程组解为【点评】此题主要考查二元一次方程组的解法,熟练运用代入消元法是解题的关键.21.【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:,解不等式①得:x>2,解不等式②得:x≤4,∴不等式组的解集是2<x≤4,在数轴上表示不等式组的解集为:【点评】本题考查了解一元一次不等式,在数轴上表示不等式组的解集,解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.22.【分析】根据角平分线的定义和四边形的内角和进行解答即可.【解答】证明:∵在四边形ABCD中,∠A=∠C=90°,∴∠ABC+∠ADC=180°,∵BE平分∠ABC,DF平分∠ADC,∴∠EBF+∠FDC=90°,∵∠C=90°,∴∠DFC+∠FDC=90°,∴∠EBF=∠DFC,∴BE∥DF.【点评】此题考查平行线的判定,关键是根据角平分线的定义和四边形的内角和进行解答.23.【分析】设打折前蛋黄肉粽的价格为x元,红豆粽每盒的价格为y元,根据购买一盒蛋黄肉粽和一盒红豆粽打折前需120元,打折后需92元.列出二元一次方程组,解方程组即可.【解答】解:设打折前蛋黄肉粽的价格为x元,红豆粽每盒的价格为y元,由题意得:,解得:,答:打折前蛋黄肉粽的价格为80元,红豆粽每盒的价格为40元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.【分析】先利用有理数的加法法则,不等式的基本性质可得x+y>0,x﹣y>0,然后利用有理数的乘法法则可得(x+y)(x﹣y)>0,再利用平方差公式可得x2﹣y2>0,从而利用不等式的基本性质1,即可解答.【解答】解:∵x>y>0,∴x+y>0(有理数的加法法则),x﹣y>0(不等式的基本性质1),∴(x+y)(x﹣y)>0(有理数的乘法法则).∵(x+y)(x﹣y)=x2﹣y2(平方差公式),∴x2﹣y2>0(等量代换).∴x2>y2(不等式的基本性质1),故答案为:有理数的乘法法则;平方差公式;不等式的基本性质1.【点评】本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.25.【分析】(1)由平行线的性质推出∠EOD+∠A=180°,即可求出∠EOD的度数;(2)延长OP交AB于M,由平行线的性质推出∠ODM=∠A,∠BMO=∠OPE,由三角形外角的性质即可证明∠A=∠OPE﹣∠POD.【解答】(1)解:如图(1),∵OD∥AC,∴∠ODB=∠A,∵OE∥AB,∴∠EOD+∠ODB=180°,∴∠EOD+∠A=180°,∵∠A=80°,∴∠EOD=100°;(2)证明:如图(2),延长OP交AB于M,∵OD∥AC,∴∠ODM=∠A,∵PE∥AB,∴∠BMO=∠OPE,∵∠ODM=∠BMO﹣∠POD,∴∠A=∠OPE﹣∠POD.【点评】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.26.【分析】(1)根据表格中给出数据直接计算即可;(2)设该同学每天喝x毫升的该牛奶,根据该同学喝的牛奶的含钙量×钙的吸收率=营养表中的含钙量列方程即可;(3)这块牛排的质量是y克,根据他摄入蛋白质的总量之和>营养表中的蛋白质量,列出不等式即可.【解答】解:(1)该同学每日所需碳水化合物为:5.5÷2%=275(g),故答案为:275;(2)设该同学每天喝x毫升的该牛奶,根据题意得:×125×80%=,解得x=781.25,答:该同学每天喝781.25毫升的该牛奶,才能恰好满足一天的钙的摄入;(3)这块牛排的质量是y克,根据题意得:×3.8+3.8×2+×20>,解不等式得:y>240,∵y取整数,∴y的最小值为241,答:这块牛排的质量至少是241g.【点评】本题考查一元一次不等式和一元一次方程的应用,关键是找到等量关系和不等关系列出方程和不等式。
2023-2024学年江苏省南京市联合体七年级(下)期末数学练习试卷一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)下列运算正确的是()A.3a2﹣a2=3B.a2+a3=a5C.a3•a2=a6D.(a2)3=a62.(2分)不等式4﹣2x<0的解集在数轴上表示正确的是()A.B.C.D.3.(2分)如图,已知AB∥CD,则下列结论成立的是()A.∠1=∠D B.∠B=∠D C.∠B=∠1D.∠D+∠2=180°4.(2分)一个正方形的边长是a,若边长增加2,则这个正方形的面积增加了()A.4B.2a C.2a+4D.4a+45.(2分)当0<x<1时,x2,,x之间的大小关系是()A.<x<x2B.<x2<x C.x<x2<D.x2<x<6.(2分)下列命题中,属于真命题的是()A.若a>b,则ac2>bc2B.若ac2>bc2,则a>bC.同位角相等D.有两个角是锐角的三角形是锐角三角形7.(2分)中国古代人民在生产生活中发现了许多数学问题,在《孙子算经》中记载了这样一个问题,大意为:有若干人乘车,若每车乘坐3人,则2辆车无人乘坐;若每车乘坐2人,则9人无车可乘,问共有多少辆车,多少人,设共有x辆车,y人,则可列方程组为()A.B.C.D.8.(2分)如图,AB∥CD,点E在AB的上方,G,F分别为AB,CD上的点,∠AGE,∠EFC的角平分线交于点H,∠EFD的角平分线与HG的延长线交于点M.下列结论:①HF⊥MF;②∠EFC=∠E+∠AGE;③∠E=2∠H;④若∠BGE﹣∠EFD=∠M,则∠H=40°.其中,所有正确结论的序号是()A.①②B.①②③C.①③④D.①②③④二、填空题(本大题共10小题,每小题2分,共20分)9.(2分)20=;2﹣2=.10.(2分)某品牌手机芯片采用了最新的0.000000009米的工艺制程,将数0.000000009用科学记数法表示为.11.(2分)任意写出一个解为的二元一次方程组.12.(2分)已知多边形的每个内角都等于135°,求这个多边形的边数是.(用两种方法解决问题)13.(2分)已知方程组,则x2﹣y2=.14.(2分)若3m=4,3n=5,则3m﹣2n的值为.15.(2分)如图,DE⊥AB,垂足为E,∠A=48°,∠ACB=64°,则∠D=°.16.(2分)代数式m2+6m+10的最小值为.17.(2分)若关于x的不等式组有解但没有整数解,则a的取值范围为.18.(2分)如图,△ABC中,BE是中线,点D在边BC上,BD=3CD,AD,BE相交于点O.若△BOD 的面积为6,则△AOE的面积为.三、解答题(本大题共8小题,共64分)19.(8分)分解因式:(1)x2y﹣4xy+4y;(2)2(a+b)2﹣8.20.(8分)先化简,再求值:(a+2b)(a﹣2b)﹣(a﹣2b)2,其中a=,b=﹣1.21.(8分)解不等式组并写出它的最大整数解.22.(8分)如图,△ABC中,CD是角平分线,点E,F分别在边AB,AC上,CD,BF相交于点G,∠BGC+∠EFB=180°.(1)求证∠ACD=∠AFE;(2)若∠A=60°,∠ABC=70°,求∠BEF的度数.23.(8分)为迎接校园文化节,学校计划购买甲、乙两种纪念品.已知购买3个甲种纪念品和2个乙种纪念品需要13元;购买2个甲种纪念品和5个乙种纪念品需要16元.(1)求甲、乙两种纪念品的价格各是多少元;(2)学校计划购买甲、乙两种纪念品共800件,总费用不超过2000元,那么最多能购买多少个甲种纪念品?24.(8分)(1)从“数”的角度证明:当a>b>0时,a2+b2>2ab;(2)从“形”的角度证明:当a>b>0时,a2+b2>2ab.25.(6分)如图,已知∠α,点P为直线AB外一点,在直线AB上求作点C,使得∠PCB=∠α.(要求:尺规作图,保留作图痕迹,写出必要的文字说明.)26.(10分)【初步认识】(1)如图①,线段AB,CD相交于点O,连接AD,BC.求证:∠A+∠D=∠B+∠C.【继续探索】(2)如图②,∠A=m°,∠C=n°,∠ABC,∠ADC的角平分线BP、DP相交于点P.①若m=40,n=32,求∠P的度数;②用m、n表示∠P的度数为.(3)如图③,∠ABC,∠ADC的角平分线BP,DP相交于点P,∠DAB,∠DCB的角平分线AQ,CQ 相交于点Q.若∠P=∠Q,判断AD与BC的位置关系并说明理由.2023-2024学年江苏省南京市联合体七年级(下)期末数学练习试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分)1.【分析】根据运算法则进行计算即可.【解答】解:A、3a2﹣a2=2a2,故该项不正确,不符合题意;B、a2与a3不是同类项,不能进行合并,故该项不正确,不符合题意;C、a3•a2=a5,故该项不正确,不符合题意;D、(a2)3=a6,故该项正确,符合题意;故选:D.【点评】本题考查同底数幂的乘法、幂的乘方与积的乘方、合并同类项,掌握运算法则是解题的关键.2.【分析】按照解一元一次不等式的步骤进行计算,即可解答.【解答】解:4﹣2x<0,﹣2x<﹣4,x>2,∴该不等式的解集在数轴上表示如图所示:故选:A.【点评】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的步骤是解题的关键.3.【分析】根据平行线的性质分析解答即可.【解答】解:∵AB∥CD,∴∠1=∠B.故选:C.【点评】本题考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.4.【分析】一个正方形的边长是a,若边长增加2,则边长变为(a+2),根据正方形的面积公式和作差法求得答案.【解答】解:根据题意,得(a+2)2﹣a2=4a+4.故选:D.【点评】本题考查了列代数式.解题的关键是掌握正方形的面积公式.5.【分析】本题可以采用特殊值的方法比较三个代数式的大小.【解答】解:∵0<x<1,∴令x=,∴x2=()2=,==2,∴<<2,即x2<x<.故选:D.【点评】本题考查了不等式的性质,采用特殊值法是一个比较不错的方法.6.【分析】利用不等式的性质、平行线的性质及锐角三角形的定义分别判断后即可确定正确的选项.【解答】解:A、若a>b,则ac2>bc2,当c=0时不成立,故原命题错误,是假命题,不符合题意;B、若ac2>bc2,则a>b,正确,是真命题,符合题意;C、两直线平行,同位角相等,故原命题错误,是假命题,不符合题意;D、有三个角是锐角的三角形是锐角三角形,故原命题错误,是假命题,不符合题意.故选:B.【点评】本题主要考查了命题与定理的知识,解题的关键是了解有关的定义及定理,难度不大.7.【分析】根据每车乘坐3人,则2辆车无人乘坐;若每车乘坐2人,则9人无车可乘,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:根据题意可得:,故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.【分析】①根据角平分线定义设∠EGH=∠AGH=α,∠EFH=∠CFH=β,∠EFM=∠DFM=θ,则∠AGE=2α,∠EFC=2β,∠EFD=2θ,∠HFM=β+θ,根据∠EFC+∠EFD=180°得β+θ=90°,则∠HFM=90°,据此可对结论①进行判断;②过点E作EK∥AB,则EK∥AB∥CD,进而得∠KEF=180°﹣2β,∠KEG=180°﹣2α,则∠FEG=∠KEG﹣∠KEF=2β﹣2α,继而得∠FEG+∠AGE=2β,再根据∠EFC=2β可对结论②进行判断;③过点H作HT∥AB,则HT∥AB∥CD,进而得∠THG=∠AGH=α,∠THF=∠CFH=β,则∠GHF =β﹣α,由②可知∠FEG=2β﹣2α,据此可对结论③进行判断;④过点M作MN∥AB,则AB∥MN∥CD,进而得∠HMN=∠AGH=α,∠FMN=∠DFM=θ,则∠HMF =∠HMN+∠FMN=α+θ,再根据∠BGE=180°﹣2α,∠EFD=2θ,∠BGE﹣∠EFD=∠M得α+θ=60°,则∠HMF=60°,根据①可知∠HFM=90°,则∠H=30°,据此可对结论④进行判断,综上所述即可得出答案.【解答】解:①∵GH平分∠AGE,FH平分∠EFC,FM平分∠EFD,设∠EGH=∠AGH=α,∠EFH=∠CFH=β,∠EFM=∠DFM=θ,则∠AGE=2α,∠EFC=2β,∠EFD=2θ,∠HFM=∠EFH+∠EFM=β+θ,∵点F在直线CD上,∴∠EFC+∠EFD=180°,∴2β+2θ=180°,∴β+θ=90°,∴∠HFM=β+θ=90°,即HF⊥MF,故结论①正确,符合题意;②过点E作EK∥AB,如图1所示:∵AB∥CD,∴EK∥AB∥CD,∴∠KEF=180°﹣∠EFC=180°﹣2β,∠KEG=180°﹣∠AGE=180°﹣2α,∴∠FEG=∠KEG﹣∠KEF=180°﹣2α﹣(180°﹣2β)=2β﹣2α,∴∠FEG+∠AGE=2β﹣2α+2α=2β,又∵∠EFC=2β,∴∠EFC=∠FEG+∠AGE,∴结论②正确,符合题意;③过点H作HT∥AB,如图2所示:∵AB∥CD,∴HT∥AB∥CD,∴∠THG=∠AGH=α,∠THF=∠CFH=β,∴∠GHF=∠THF﹣∠THG=β﹣α,由②可知:∠FEG=2β﹣2α,∴∠FEG=2∠GHF,故结论③正确,符合题意;④过点M作MN∥AB,如图3所示:∵AB∥CD,∴AB∥MN∥CD,∴∠HMN=∠AGH=α,∠FMN=∠DFM=θ,∴∠HMF=∠HMN+∠FMN=α+θ,∵∠BGE=180°﹣∠AGE=180°﹣2α,∠EFD=2θ,又∵∠BGE﹣∠EFD=∠M,∴180°﹣2α﹣2θ=α+θ,∴α+θ=60°,∴∠HMF=α+θ=60°,由①可知:∠HFM=90°,∴∠H=180°﹣(∠HFM+∠HMF)=180°﹣(90°+60°)=30°,故结论④不正确,不符合题意.综上所述:正确的结论是①②③.故选:B.【点评】此题主要考查了平行线的性质,垂线的定义,角平分线的定义,熟练掌握平行线的性质,垂线的定义,角平分线的定义是解决问题的关键.二、填空题(本大题共10小题,每小题2分,共20分)9.【分析】根据零次幂的性质、负指数次幂的性质,进行计算即可.【解答】解:20=1,2﹣2==,故答案为:1,.【点评】考查零次幂、负指数次幂的性质,掌握零次幂、负指数次幂的性质是正确计算的前提.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000009=9×10﹣9,故答案为:9×10﹣9.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】根据二元一次方程组解的定义进行解答即可.【解答】解:由于x=2,y=﹣1,因此有x+y=1,x﹣y=3,所以符合条件的方程组为,故答案为:(不唯一).【点评】本题考查二元一次方程组的定义以及二元一次方程组的解,理解二元一次方程组的解是正确解答的关键.12.【分析】根据多边形的内角和公式,可得方程,根据解方程,可得答案;根据正多边形的外角相等,可得每一个外角,根据多边形的外角和除以一个外角,可得答案.【解答】解:解法一:设这个多边形是n边形,由题意,得(n﹣2)×180°=135°n,解得n=8.解法二:由正多边的性质,得每个外角等于=180°﹣135°=45°外角和除以一个外角,得360°÷45°=8.故答案为:8.【点评】本题考查了多边形内角与外角,利用了多边形的内角和公式,外角和公式.13.【分析】首先把方程组的两个方程的左右两边分别相加、相减,求出x+y、x﹣y的值;然后把求出的x+y、x﹣y的值代入x2﹣y2计算即可.【解答】解:,①+②,可得3x+3y=9,∴x+y=9÷3=3,①﹣②,可得x﹣y=1,∴x2﹣y2=(x+y)(x﹣y)=3×1=3.故答案为:3.【点评】此题主要考查了解二元一次方程组的方法,解答此题的关键是注意观察方程组的两个方程和所求的代数式之间的关系.14.【分析】同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.据此计算即可.【解答】解:∵3m=3,3n=5,∴3m﹣2n=3m÷32n=3m÷(3n)2=4÷52=,故答案为:.【点评】本题考查了同底数幂的除法以及幂的乘方,熟记幂的运算法则是解答本题的关键.15.【分析】在△ABC中根据三角形内角和定理求出∠B的度数,再根据垂线的定义得出∠BED=90°,最后在△BED中根据三角形内角和定理求出∠D的度数.【解答】解:∵∠A=48°,∠ACB=64°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣48°﹣64°=68°,∵DE⊥AB,∴∠BED=90°,∴∠D=180°﹣∠B﹣∠BED=180°﹣68°﹣90°=22°,故答案为:22.【点评】本题考查了三角形内角和定理,垂线,熟练掌握三角形内角和定理是解题的关键.16.【分析】经过计算,可知m2+6m+10=(m+3)2+1,而(m+3)2≥0,因此(m+3)2+1≥1,即可得出结果.【解答】解:m2+6m+10=(m2+6m+32)+1=(m+3)2+1,∵(m+3)2≥0,∴(m+3)2+1≥1,∴代数式m2+6m+10的最小值为1,故答案为:1.【点评】本题考查的是配方法的应用,非负数的性质,熟练掌握上述知识点是解题的关键.17.【分析】由x﹣a<0得x<a,由x﹣2>0得x>2,结合不等式组有解但没有整数解,得出2<a≤3.【解答】解:由x﹣a<0得:x<a,由x﹣2>0得:x>2,∵不等式组有解但没有整数解,∴2<a≤3,故答案为:2<a≤3.【点评】本题考查的是解一元一次不等式组和一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【分析】连接OC,根据“同高的两个三角形,其面积比等于底边长之比”得到各三角形之间的数量关系,从而求出△AOE的面积.【解答】解:连接OC.∵BD=3CD,=3S△COD=6,∴S△BOD=2,∴S△COD=S,设S△AOE∵BE是中线,=S△AOE=S,∴S△COE+S△AOE=S△BOD+S△COD+S△COE,即S△AOB+S=6+2+S,∴S△AOB=8,∴S△AOB=S△AOB+S△BOD=8+6=14,S△ACD=S△AOE+S△COE+S△COD=S+S+2=2S+2,∴S△ABD∵BD=3CD,=3S△ACD,即14=3(2S+2),解得S=,∴S△ABD∴△AOE的面积为.故答案为:.【点评】本题考查三角形的面积,根据“同高的两个三角形,其面积比等于底边长之比”得到各三角形之间的数量关系是解题的关键.三、解答题(本大题共8小题,共64分)19.【分析】(1)先提取公因式,然后利用完全平方公式分解因式即可;(2)先提取公因式,然后利用平方差公式分解因式即可.【解答】解:(1)x2y﹣4xy+4y=y(x2﹣4x+4)=y(x﹣2)2;(2)2(a+b)2﹣8=2[(a+b)2﹣4]=2(a+b+2)(a+b﹣2).【点评】本题考查了因式分解,熟练掌握运用提取公因式法、公式法分解因式是解题的关键.20.【分析】先利用完全平方公式,平方差公式进行计算,然后把a,b的值代入化简后的式子进行计算,即可解答.【解答】解:(a+2b)(a﹣2b)﹣(a﹣2b)2=a2﹣4b2﹣(a2﹣4ab+4b2)=a2﹣4b2﹣a2+4ab﹣4b2=4ab﹣8b2,当a=,b=﹣1时,原式=4××(﹣1)﹣8×(﹣1)2=﹣2﹣8×1=﹣2﹣8=﹣10.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,平方差公式,准确熟练地进行计算是解题的关键.21.【分析】求出每个不等式的解集,从而可得不等式组的解集,得到答案.【解答】解:,解不等式①得:x>﹣2,解不等式②得:x<;∴不等式组的解集为﹣2<x<,∴它的最大整数解为1.【点评】本题考查解一元一次不等式组,解题的关键是求出每个不等式的解集.22.【分析】(1)根据∠BGC+∠EFB=180°,∠BGC+∠CGF=180°,得出∠CGF=∠EFG,再由平行线的判定与性质解答即可;(2)根据三角形的内角和定理求出∠ACB的度数,再根据三角形内角和定理解答即可.【解答】(1)证明:因为∠BGC+∠EFB=180°,∠BGC+∠CGF=180°,所以∠CGF=∠EFG,所以EF∥DC,因此∠ACD=∠AFE,(2)解:因为∠A=60°,∠ABC=70°,所以∠ACB=180°﹣∠A﹣∠ABC=50°,因为CD是角平分线,所以∠ACD=25°,∴∠ACD=∠AFE=25°,∴∠AEF=180°﹣60°﹣25°=95°,∴∠BEF=180°﹣95°=85°.【点评】本题考查了平行线的判定与性质,三角内角和定理,掌握平行线的性质是解题的关键.23.【分析】(1)设甲种纪念品的价格是x元,乙种纪念品的价格是y元,根据“购买3个甲种纪念品和2个乙种纪念品需要13元;购买2个甲种纪念品和5个乙种纪念品需要16元”,可列出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m个甲种纪念品,则购买(800﹣m)个乙种纪念品,利用总价=单价×数量,结合总价不超过2000元,可列出关于m的一元一次不等式,解之取其中的最大值,即可得出结论.【解答】解:(1)设甲种纪念品的价格是x元,乙种纪念品的价格是y元,根据题意得:,解得:.答:甲种纪念品的价格是3元,乙种纪念品的价格是2元;(2)设购买m个甲种纪念品,则购买(800﹣m)个乙种纪念品,根据题意得:3m+2(800﹣m)≤2000,解得:m≤400,∴m的最大值为400.答:最多能购买400个甲种纪念品.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.【分析】(1)运用完全平方公式和非负数的性质即可;(2)构造图形,用代数式表示各个图形的面积,再根据面积之间的关系得出结论;【解答】证明:(1)∵a>b>0,∴a﹣b>0,∴(a﹣b)2>0,即a2﹣2ab+b2>0,∴a2+b2>2ab;(2)构造的图形如下,=a(a﹣b)=a2﹣ab,S长方形EFCD=b(a﹣b)=ab﹣b2,证明:∵S长方形ABCD>S长方形EFCD,由图形可得S长方形ABCD∴a2﹣ab>ab﹣b2,∴a2+b2>2ab.【点评】本题考查的是完全平方公式,用代数式表示图形的面积,再根据面积之间的关系得出结论是解决问题的关键.25.【分析】在直线AB上任取一点D,连接PD,在PD的右侧作∠DPN=∠ADP,再作PN所在的直线MN,在直线MN的下方作∠MPC=∠α,与AB的交点即为所求的点C.【解答】解:在直线AB上任取一点D,连接PD,在PD的右侧作∠DPN=∠ADP,再作PN所在的直线MN,在直线MN的下方作∠MPC=∠α,交AB于点C,则点C即为所求.【点评】本题考查作图—基本作图,平行线的判定和性质,熟练掌握基本尺规作图方法是解答本题的关键.26.【分析】(1)依据题意,在△AOD中,∠A+∠D+∠AOD=180°,则∠A+∠D=180°﹣∠AOD,又在△BOC中,∠B+∠C+∠BOC=180°,故∠B+∠C=180°﹣∠BOC,从而可以得解;(2)①依据题意,结合(1)可得,∠A+∠ADC=∠ABC+∠C,∠A+∠ADP=∠P+∠ABP,结合BP平分∠ABC,DP平分∠ADC,从而∠ADP=∠ADC,∠ABP=∠ABC,故∠A+∠ADC=∠P+∠ABC,进而可得2∠A+∠ADC=2∠P+∠ABC,又∠A+∠ADC=∠ABC+∠C,从而∠A=2∠P﹣∠C,即可得∠P=,代入计算可以得解;②依据题意,根据①∠P=,又∠A=m°,∠C=n°,进而计算可以得解;(3)依据题意,根据(2)①∠P=,同理可得,∠Q=,又∠P=∠Q,故可得∠A+∠C=∠B+∠D,又∠A+∠D=∠C+∠B,则2∠A+∠C+∠D=2∠B+∠C+∠D,从而∠A=∠B,故可得解.【解答】(1)证明:由题意,在△AOD中,∠A+∠D+∠AOD=180°,∴∠A+∠D=180°﹣∠AOD.又在△BOC中,∠B+∠C+∠BOC=180°,∴∠B+∠C=180°﹣∠BOC.又∠AOD=∠BOC,∴∠A+∠D=∠B+∠C.(2)解:①由题意,结合(1)可得,∠A+∠ADC=∠ABC+∠C,∠A+∠ADP=∠P+∠ABP.∵BP平分∠ABC,DP平分∠ADC,∴∠ADP=∠ADC,∠ABP=∠ABC.∴∠A+∠ADC=∠P+∠ABC.∴2∠A+∠ADC=2∠P+∠ABC.又∠A+∠ADC=∠ABC+∠C,∴∠A=2∠P﹣∠C.∴∠P=.又∠A=m°=40°,∠C=n°=32°,∴∠P==36°.②由题意,根据①∠P=,又∠A=m°,∠C=n°,∴∠P=()°.故答案为:()°.(3)解:AD∥BC.理由如下:由题意,根据(2)①可得∠P=,同理可得,∠Q=.又∠P=∠Q,∴=.∴∠DAB+∠DCB=∠ABC+∠ADC.又∠DAB+∠ADC=∠DCB+∠ABC,∴2∠DAB+∠DCB+∠ADC=2∠ABC+∠DCB+∠ADC.∴∠DAB=∠ABC.∴AD∥BC.【点评】本题主要考查了三角形内角和定理、平行线的判定,解题时要熟练掌握并能灵活运用是关键。
2024—2025学年最新人教新版七年级下学期数学期末考试试卷(问卷)考生注意:本试卷共三道大题,25道小题一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、在平面直角坐标系中,下列各点在第四象限的是()A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(﹣1,2)2、在同一平面内,将直尺、含30°角的三角尺和木工角尺(CD⊥DE)按如图方式摆放,若AB∥CD,则∠1的大小为()A.30°B.45°C.60°D.75°3、下列调查方式,你认为最合适全面调查的是()A.调查某地全年的游客流量B.乘坐地铁前的安检C.调查某种型号灯泡的使用寿命D.调查春节联欢晚会的收视率4、关于x,y的二元一次方程组的解满足x﹣y=4,则m的值为()A.0B.1C.2D.35、在平面直角坐标系中,点A(1,5),B(m﹣2,m+1),若直线AB与y轴垂直,则m的值为()A.0B.3C.4D.76、下列命题为假命题的是()A.垂线段最短B.同旁内角互补C.对顶角相等D.两直线平行,同位角相等7、打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花()A.200元B.300元C.400元D.500元8、我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是()A.B.C.D.9、的整数部分是a,的整数部分是b,则a、b的大小关系是()A.a>b B.a=b C.a<b D.无法确定10、在平面直角坐标系中,已知点A(m﹣4,m+2),B(m﹣4,m),C(m,0),D(2,0),三角形ABD的面积是三角形ABC面积的2倍,则m的值为()A.﹣14B.2C.﹣14或2D.14或﹣2二、填空题(每小题3分,满分18分)11、已知是方程kx+2y=﹣8的解,则k=.12、由方程组,可用含x的代数式来表示y为.13、如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为E,若∠CBD=34°,则∠ADE的大小为度.14、如图,七个相同的小长方形组成一个大长方形ABCD,若CD=14,则长方形ABCD的面积为.15、如图,直径为1个单位长度的圆,从数轴上的A点处沿数轴向右滚动一周后到达B点,若点A表示的数为﹣1,则点B对应的数是.16、已知关于x,y的方程组的解为非负数,m﹣2n=3,z=2m+n,且n<0,则z的取值范围是.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(答题卡)考生注意:本试卷共三道大题,25道小题姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、已知正实数a的两个平方根分别是x和x+y.(1)若x=2,求y的值;(2)若x﹣y=3,求a的值.19、在平面直角坐标系中,已知点M(m﹣1,2m+3).(1)若AM∥x轴且A(0,1),求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.20、端午节是我国的传统佳节,民间历来有吃“粽子”的习俗.某食品厂为了解市民对去年销量较好的肉(A)、豆沙馅(B)、花生馅(C)、蜜枣馅(D)四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民人数是人.(2)将图①②补充完整;(直接补填在图中)(3)求图②中表示“A”的圆心角的度数;(4)若居民区有100人,请估计爱吃蜜枣馅粽子的人数.21、如图,已知AC∥DE,∠D+∠BAC=180°.(1)求证:AB∥CD;(2)连接CE,恰好满足CE平分∠ACD.若AB⊥BC,∠CED=35°,求∠ACB的度数.22、已知关于x,y的方程组,满足x﹣2y为负数.(1)求出x,y的值(用含m的代数式表示);(2)求出m的取值范围;(3)当m为何正整数时,求s=2x﹣3y+m的最大值?23、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:第一次第二次25甲种货车的辆数36乙种货车的辆数3170累计运货的吨数(1)现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货物,如果按每吨付运费50元计算,货主应付运费多少元?(2)能否租用这两种货车一次恰好运走125吨货物(不超载也不少运)?若能,请说出有哪几种装运方案?若不能,请说明理由.24、在平面直角坐标系xOy中,点P坐标为(x,y),且x﹣2a=﹣1,,其中a,b为实数.(1)若a=3,则点P到y轴的距离为;(2)若实数a,b满足4a﹣b=4.①求证:点P(x,y)不可能在第三象限;②若点Q(﹣2,0),△OPQ的面积为5,求点P的坐标.25、如图1,在平面直角坐标系中,点A,B,C,D均在坐标轴上,其坐标分别是A(a,0),B(0,b),C(0,c),D(d,0),若,c<0,d>0,且∠ABO=∠DCO.(1)求三角形AOB的面积;(2)求证:3d=﹣4c;(3)如图2,若﹣3<c<0,延长CD到Q,使CQ=AB,线段AQ交y轴于点K,求的值.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(参考答案)11、7 12、22 13、y=4﹣2x 14、280 15、π﹣1 16、1≤z<6三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、1<x≤4.18、(1)y=﹣4 (2)a=119、(1)﹣1(2)﹣420、(1)600;(2)略(3)108°(4)4000人21、(1)略(2)20°22、(1);(2)m<6;(3)m=5时,最大值为123、(1)略(2)略24、(1)5(2)①证明略②(﹣1,5)或(9,﹣5).25、(1)6(2)略(3)1.。
初一年级第二学期期末考试数学试卷
班级 学号 姓名 得分
一、填空题(每空2分,共30分) 1.在代数式a x x b a b a ab a 2,5,1,2
,,34,
2+++-中,单项式有 个;次数为2的单项式是 ;系数为1的单项式是 。
2.计算:2237)5(n m mn ⋅-= 。
3.计算:8100×0.125100 = 。
4.某种细胞的直径为0.000,000,000,001,05米,这个数用科学记数法表示为 米。
5.北京市土地面积为16807.8千米2。
这个数保留2个有效数字的近似数是 千米2。
6.如图,∠1=65°,∠3+∠4=180°,则∠2= °。
7.如图,ΔABD ≌ΔACE ,点B 和点C 是对应顶点,AB=8cm ,BD=7cm ,AD=3cm ,则AC=_____cm 。
8.在ΔABC 中,AB=3cm ,BC=7cm ,则AC 边的取值范围是 。
9.如图,∠A =29°,∠B =44°,则∠1=
E
D C
B
A
d
c b a
4
32
11
D C B
A
10.假如小猫在如图所示的地板上自由地走来走去,并随意停留在某块方砖上,它最终停留在黑色方砖上的概率是 (图中每一块方砖除颜色外完全相同)。
11.据世界人口组织公布,地球上的人口从1600年到1999年一直呈递增趋势,即随时间的增加,地球上的人口数量在逐渐地增加,如果用t 表示时间,y 表示人口数量,那么 是自变量, 是因变量。
12.如图,ΔABC 中,AB 的垂直平分线交AC 与点M 。
若CM=3cm ,BC=4cm ,AM=5cm ,则ΔMBC 的周长=_____________cm 。
.
二、选择题(每小题3分,共24分)
13.地球绕太阳每小时转动通过的路程约是51.110km ⨯,用科学记数法表示地球一天(以24小时计)转动通过的路程约是( )
A .70.26410km ⨯
B .62.6410km ⨯
C .526.410km ⨯
D .426410km ⨯
14.计算20
231-⨯⎪⎭⎫
⎝⎛的结果是( )
A .
34 B .4- C .3
4- D .41 15.掷一颗均匀的骰子,6点朝上的概率为( ) A .0 B .
21 C .1 D .6
1
16.如图,已知:D A ∠=∠,21∠=∠,下列条件中能使ΔABC ≌ΔDEF 的是( )
A .
B E ∠=∠ B .B
C E
D = C .EF AB = D .CD AF = 17.下列图形中对称轴最多的是( )
A .线段
B .等边三角形
C .正方形
D .钝角 18.墙上有一面镜子,镜子对面的墙上有一个数字式电子钟。
如果在镜子里看到
M
D
C
B
A
2
1
F
E
D
C
B
A
该电子钟的时间显示如图所示,那么它的实际时间是( ) A .12∶51 B .15∶21 C .15∶51 D .12∶21
19.小强和小敏练短跑,小敏在小强前面12米。
如图,OA 、BA 分别表示小强、 小敏在短跑中的距离S (单位:米)与时间t (单位:秒)的变量关系的图象。
根据图象判断小强的速度比小敏的速度每秒快( )
A .2.5米
B .2米
C .1.5米
D .1米
20.如图,ΔABC 中,AB=AC ,∠A 、∠B 的角平分线相交于点D 。
若∠ADB=︒130,则∠BAC 等于( ) A .80° B .50° C .40° D .20°
三、计算题(每小题4分,共24分)
21.()()y x y x 22-+; 22.2
212⎪⎭⎫ ⎝⎛
-a ;
23.()
2212y xy y x +-÷()y 2-; 24. ()()x x ---+55x 32
2;
D
C
B
A
O B
A
t (秒)
S (米)
12
64
8
25.()()()1
1
12+
+
-m
m
m;
26.已知一个角的余角比它的补角的1
3
小18°,求这个角。
四、操作题(每题4分,共8分)
27.请你以虚线l为对称轴画出四边形
ABCD的对称图形:
28.已知:线段a、c和∠β(如图),利用直尺和圆规作ΔABC,使BC=a,AB=c,∠ABC=∠β。
(不写作法,保留作图痕迹)。
五、(本题4分)
29.要测量河两岸相对两点A,B间的距离,
先在过点B的AB的垂线上取两点C、D,
A
使CD=BC ,再在过点D 的l 的垂线上取点E ,使A 、C 、E 三点在一条直线上,这时ED 的长就是A ,B 两点间的距离。
你知道为什么吗?说说你的理由。
六、(本题4分)
30.图为一位旅行者在早晨8时从城市出发到郊外所走的路程S (单位:千米)与时间t (单位:时)的变量关系的图象。
根据图象回答问题: (1)在这个变化过程中,自变量是____,因变量是______。
(2)9时,10时30分,12时所走的路程分别是多少? (3)他休息了多长时间? (4)他从休息后直至到达目的地这段时间的平均速度是多少?
七、(本题6分)
31.如图,已知:BD AB ⊥,BD ED ⊥,CD AB =,DE BC =,那么AC 与CE 有什么关系?写出你的猜想并说明理由。
路程S /千米
t / 时
11
1210
9
8
1614121086420
E
沁园春·雪 <毛泽东>
北国风光,千里冰封,万里雪飘。
望长城内外,惟余莽莽;
大河上下,顿失滔滔。
山舞银蛇,原驰蜡象,
欲与天公试比高。
须晴日,看红装素裹,分外妖娆。
江山如此多娇,引无数英雄竞折腰。
惜秦皇汉武,略输文采;
唐宗宋祖,稍逊风骚。
一代天骄,成吉思汗,
只识弯弓射大雕。
俱往矣,数风流人物,还看今朝。