sf01_v1_原理图
- 格式:pdf
- 大小:214.22 KB
- 文档页数:11
电路图主要分成以下5部分:第1部分:主控供电电路主要使用了固定负输出79L05稳压器,使得VCC与GND之间电压为5V,然后给主控芯片SH79F1633供电,稳压管D1使得VCC与VIN之间压差为12V,满足了79L05使用条件。
第2部分:双向可控硅控制电路可控硅等效于2个SCR反向构成的电路,如图所示既然一个双向可控硅是由两只普通可控硅反向并联而成的,那么,我们会很自然地想到,它的特性曲线就应该是由这两只普通可控硅的特性曲线组合而成。
下图是双向可控硅正负半周的工作象限图:双向可控硅虽然有以上四种触发方式,但由于负信号触发所需要的触发电压和电流都比较小。
工作比较可靠,因此在实际使用时,负触发方式应用较多,而且象限2和象限1有着相似的灵敏度。
所以设计了如下电路,使得其工作在QII,QII三象限。
第三部分:整流整流使得不论AC是正半周还是负半周,电机同向。
第4部分:过零检测电路利用分压电阻,使得能够直接检测。
设置C_ZERO引脚为外部中断,双边沿触发。
第五部分:ADVR根据TR1的调节确定1到6档。
根据VR电路可知,VR端电压范围为:0到(100/110)*5V,由于AD是10bit,所以AD采集值的范围为0到(100/110)*1024. 每档的值为:((100/110)*1024)/6 = 155.所以,根据AD值确定档位:VR确定档位的导通时间2800,3250,3550,4350,4600,5150,挡位确定如下:1档AD范围为:155*0:155*1;2档AD范围为:155*1:155*2;3档AD范围为:155*2:155*3;4档AD范围为:155*3:155*4;5档AD范围为:155*4:155*5;6档AD范围为:155*5:155*6;CALIB实现微调,范围±10%。
同上,AD采集值范围为0到(150/160)*1024=960,由于要实现正负调节,所以确定中心值:AVG=960/2,然后根据采集得到的AD值,减去AVG,然后在除以AVG,在乘以当前挡位的10%。
电源设计原理图每个元器件该如何选择原理图FS1由TR1(热敏VDR1(突波吸收器)当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。
CY1,CY2(Y-Cap)Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此CX1(X-Cap)、RX1X-Cap为防制EMI零件,EMI可分为ConducLF1(Common Choke)EMI防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI特性及温升,以同样尺寸的Common Choke而言,线圈数愈多(相对的线径愈细),EMI防制效果愈好,但温升可能较高。
BD1(整流C1(滤波电容)由C1的大小(电容值)可决定变压器计算中的Vin(D2(辅助电源二极管)整流二极管,一般常用FR105(1A/600V)或BYT42M(1A/1000V),两者主要差异:R10(辅助电源电阻)主要用于调整PWM IC的VCC电压,以目前使用的3843而言,设计时VCC必须大于8.4V(Min. Load 时),但为考虑输出短路的情况,VCC电压不可设计的太高,以免当输出短路时不保护(或输入瓦数过大)。
C7(滤波电容)辅助电源的滤波电容,提供PWM IC较稳定的直流电压,一般使用100uf/25V电容。
Z1(Zener 二极管)当回授失效时的R2(启动电阻)提供3843第一次启动的路径,第一次启动时透过R2对C7充电,以提供3843 VCC所需的电压,R2阻值较大时,turn on的时间较长,但短路时Pin瓦数较小,R2阻值较小时,turn on的时间较短,短路时Pin瓦数较大,一般使用220KΩ/2W M.O。
微波防盗报警电路作者:来源:更新日期:2019-12-17 浏览次数:微波防盗报警器微波是指频率f>300MHz的无线电波。
根据微波多普勒效应原理(也就是雷达基本原理)制作成的防盗报警器,我们就叫它微波防盗报警器或者雷达式防盗报警器。
这种微波防盗报警器无方向性及死区,可对360度的一个圆区域进行探测,很适合在机关、仓库、银行、商店、果园、鱼塘、家庭等需要保安防盗的场所安装使用。
只要作案分子进人警戒范围(半径<=8m 的圆区域),它便反复发出响亮的“抓贼呀一”喊声来,使盗贼闻声丧胆。
为防止犯罪分子破坏报警器,它还具有断线报警和交直流电源自动转换供电功能。
电路原理微彼防盗报警器由微波多普勒探头和主机两部分组成。
微波多普勒探头的电路原理如图所示。
微波三极管VT1在微调电容C1正反馈的作用下产生自激振荡,其振荡频率可通过电位器RP1、可调电容器C1进行调节,一般为1000MHz左右。
由天线W将电磁波辐射到周围空间,产生一个立体的微波警戒场。
当有人在该范围内活动时,根据电磁波的多普勒效应,人体的反射波就会通过天线使VT1 的自激振荡幅度和频率都发生变化,这会导致C3正端的电压发生波动。
该波动信号经C3加到VT2的基极进行放大,放大后的信号从VT2的集电极取出,送到主机进行鉴别并触发报警。
正常情况下,VT2送出的电压是稳定的(为6V),当人体在微波场内走动时,这电压就会在+- l~5V的范围内变化,其变化频率与人体活动快慢有关,而幅度大小与人体离探头的距离成正比。
微波防盗报警器微波是指频率f>300MHz的无线电波。
根据微波多普勒效应原理(也就是雷达基本原理)制作成的防盗报警器,我们就叫它微波防盗报警器或者雷达式防盗报警器。
这种微波防盗报警器无方向性及死区,可对360度的一个圆区域进行探测,很适合在机关、仓库、银行、商店、果园、鱼塘、家庭等需要保安防盗的场所安装使用。
只要作案分子进人警戒范围(半径<=8m 的圆区域),它便反复发出响亮的“抓贼呀一”喊声来,使盗贼闻声丧胆。
电源原理图--每个元器件的功能详解!▽FS1:由变压器计算得到Iin值以此Iin值(0.42A)可知使用公司共享料2A/250V , 设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。
TR1(热敏电网):电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用5。
-10。
热敏,若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。
VDR1(突波吸收器):当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。
CY1 , CY2(Y-Cap):Y-Cap 一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有〃回〃符号或注明Y1),此电路蛭蟹G所以使用Y2-Cap , Y-Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。
CXl(X-Cap)、RX1:X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction 规范一般可分为:FCC Part 15J Class B 、CISPR 22(EN55022) Class B两种,FCC测试频率在450K〜30MHz , CISPR 22测试频率在150K〜30MHz , Conduction可在厂内以频谱分析仪验证,Radiation则必须到实验室验证,X-Cap 一般对低频段(150K〜数M之间)的EMI防制有效,一般而言X-C叩愈大,EMI防制效果愈好(但价格愈高),若X-C叩在0.22uf以上(包含0.22uf),安规规定必须要有泄放电阻(RX1,一般为1.2MQ 1/4W)。
反激式开关电源电路图讲解一,先分类开关电源的拓扑结构按照功率大小的分类如下:10W以内常用RCC(自激振荡)拓扑方式10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振300W-500W 准谐振、双管正激、半桥等500W-2000W 双管正激、半桥、全桥2000W以上全桥二,重点在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。
优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出.缺点:输出纹波比较大。
(输出加低内阻滤波电容或加LC 噪声滤波器可以改善)今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。
给大家讲解如何读懂反激开关电源电路图!三,画框图一般来说,总的来分按变压器初测部分和次侧部分来说明。
开关电源的电路包括以下几个主要组成部分,如图1图1,反激开关电源框图四,原理图图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。
下面会根据这个原理图进行各个部分的设计说明。
图2 典型反激开关电源原理图五,保险管图3 保险管先认识一下电源的安规元件—保险管如图3。
作用:安全防护。
在电源出现异常时,为了保护核心器件不受到损坏。
技术参数:额定电压 ,额定电流 ,熔断时间。
分类:快断、慢断、常规计算公式:其中:Po:输出功率η效率:(设计的评估值)Vinmin :最小的输入电压2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。
0.98: PF值六,NTC和MOVNTC 热敏电阻的位置如图4。
图4 NTC热敏电阻图4中的RT为NTC,电阻值随温度升高而降低,抑制开机时产生的浪涌电压形成的浪涌电流。
图4中RV为MOV压敏电阻,压敏电阻是一种限压型保护器件,过电压保护、防雷、抑制浪涌电流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等七,XY电容图5 X和Y电容如图X电容,Y电容。