【初一复习精品期末试卷】2019年重庆市七年级(下)数学期末试卷+答案
- 格式:docx
- 大小:252.14 KB
- 文档页数:22
2019-2020学年重庆市沙坪坝区七年级(下)期末数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.下列方程是一元一次方程的是()A.2x﹣3y=0 B.x﹣1=0 C.x2﹣3=x D.2.如图图形中,是轴对称图形的是()A.B.C.D.3.解方程组时,把①代入②,得()A.2(3y﹣2)﹣5x=10 B.2y﹣(3y﹣2)=10C.(3y﹣2)﹣5x=10 D.2y﹣5(3y﹣2)=104.若三角形的两边长分别为3和8,则第三边的长可能是()A.3 B.4 C.5 D.65.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.若x=5是关于x的方程ax=5+2x的解,则a的值等于()A.20 B.15 C.4 D.37.由方程组可得出x与y的关系式是()A.x+y=8 B.x+y=1 C.x+y=﹣1 D.x+y=﹣88.某商场将A商品按进货价提高50%后标价,若按标价的八折销售可获利40元,设该商品的进货价为x元,根据题意列方程为()A.0.8×(1+50%)x=40 B.8×(1+50%)x=40C.0.8×(1+50%)x﹣x=40 D.8×(1+50%)x﹣x=409.如图,△ABC≌△DCB,∠A=80°,∠DBC=40°,则∠DCA的度数为()A.20°B.25°C.30°D.35°10.已知:|2x+y﹣3|+(x﹣3y﹣5)2=0,则y x的值为()A.1 B.﹣1 C.2 D.﹣211.如图,将一张正三角形纸片剪成四个全等的正三角形,得到4个小正三角形,称为第一次操作;然后,将其中的一个正三角形再剪成四个小正三角形,共得到7个小正三角形,称为第二次操作;再将其中的一个正三角形再剪成四个小正三角形,共得到10个小正三角形,称为第三次操作;…,以上操作n次后,共得到49个小正三角形,则n的值为()A.n=13 B.n=14 C.n=15 D.n=1612.如图,点D为△ABC边BC的延长线上一点.∠ABC的角平分线与∠ACD的角平分线交于点M,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的角平分线与∠NCB的角平分线交于点Q,若∠A=48°,则∠BQC的度数为()A.138°B.114°C.102°D.100°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.方程3x=6的解为.14.将一副直角三角板如图放置,使两直角重合,则∠1=度.15.已知是方程组的解,则a+b=.16.方程与方程1=x+7的解相同,则m的值为.17.关于x的方程k﹣2x=3(k﹣2)的解为非负数,且关于x的不等式组有解,则符合条件的整数k的值的和为.18.假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019-2020学年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过小时车库恰好停满.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.(1)解方程:2+3(x﹣2)=2(3﹣x);(2)解不等式:﹣1.20.如图,格点△ABD在长方形网格中,边BD在直线l上.(1)请画出△ABD关于直线l对称的△CBD;(2)将四边形ABCD平移得到四边形A1B1C1D1,点A的对应点A1的位置如图所示,请画出平移后的四边形A1B1C1D1.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.解不等式组,并写出不等式组的最大整数解.22.李师傅要为某单位修建正多边形花台,已知正多边形花台的一个外角的度数比一个内角度数的多12°,请你帮李师傅求出这个正多边形的一个内角的度数和它的边数.23.沙坪坝区2019-2020学年已经成功创建国家卫生城区,现在正全力争创全国文明城区(简称“创文”).某街道积极响应“创文”活动,投入一定资金用于绿化一块闲置空地,购买了甲、乙两种树木共72棵,其中甲种树木每棵90元,乙种树木每棵80元,共用去资金6160元.(1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了a%,且总费用不超过6804元,求a的最大值.24.如图,在四边形ABCD中,∠B+∠ADC=180°,CE平分∠BCD交AB于点E,连结DE.(1)若∠A=50°,∠B=85°,求∠BEC的度数;(2)若∠A=∠1,求证:∠CDE=∠DCE.五、解答题:(本大题2个小题,25小题10分,26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.我们知道,任意一个正整数a都可以进行这样的分解:a=m×n(m,n是正整数,且m ≤n),在a的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是a的最佳分解.并规定:F(a)=.例如:12可以分解成1×12,2×6,3×4,因为|1﹣12|>|2﹣6|>|3﹣4|,所以3×4是12的最佳分解,所以F(12)=.(1)求F(18)﹣F(16);(2)若正整数p是4的倍数,我们称正整数p为“四季数”.如果一个两位正整数t,t=10x+y (1≤x<y≤9,x,y为自然数),交换个位上的数字与十位上的数字得到的新两位正整数减去原来的两位正整数所得的差为“四季数”,那么我们称这个数t为“有缘数”,求所有“有缘数”中F(t)的最小值.26.在△ABC中,AD⊥BC于点D.(1)如图1,若∠BAC的角平分线交BC于点E,∠B=42°,∠DAE=7°,求∠C的度数;(2)如图2,点M、N分别在线段AB、AC上,将△ABC折叠,点B落在点F处,点C落在点G处,折痕分别为DM和DN,且点F,点G均在直线AD上,若∠B+∠C=90°,试猜想∠AMF与∠ANG之间的数量关系,并加以证明;(3)在(2)小题的条件下,将△DMF绕点D逆时针旋转一个角度α(0°<α<360°),记旋转中的△DMF为△DM1F1(如图3).在旋转过程中,直线M1F1与直线AB交于点P,直线M1F1与直线BC交于点Q.若∠B=28°,是否存在这样的P、Q两点,使△BPQ为直角三角形?若存在,请直接写出旋转角α的度数;若不存在,请说明理由.2019-2020学年重庆市沙坪坝区七年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.下列方程是一元一次方程的是()A.2x﹣3y=0 B.x﹣1=0 C.x2﹣3=x D.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、含有两个未知数,不是一元一次方程;B、符合一元一次方程的定义;C、未知项的最高次数为2,不是一元一次方程;D、分母中含有未知数,不是一元一次方程.故选:B.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.如图图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.【点评】本题考查的是轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.解方程组时,把①代入②,得()A.2(3y﹣2)﹣5x=10 B.2y﹣(3y﹣2)=10C.(3y﹣2)﹣5x=10 D.2y﹣5(3y﹣2)=10【分析】根据二元一次方程组解法中的代入消元法求解.【解答】解:把①代入②得:2y﹣5(3y﹣2)=10,故选:D.【点评】此题考查了解二元一次方程组,利用了消元的思想.4.若三角形的两边长分别为3和8,则第三边的长可能是()A.3 B.4 C.5 D.6【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,小于:3+8=11.则此三角形的第三边可能是:6.故选:D.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先根据不等式组求出解集,然后在数轴上准确的表示出来即可.【解答】解:原不等式组可化简为:.∴在数轴上表示为:故选:A.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.若x=5是关于x的方程ax=5+2x的解,则a的值等于()A.20 B.15 C.4 D.3【分析】把x=5代入方程ax=5+2x组成一次方程,即可解答.【解答】解:把x=5代入方程ax=5+2x,可得:5a=5+10,解得:a=3,故选:D.【点评】本题主要考查对解一元一次方程,二元一次方程的解等知识点的理解和掌握,能根据题意得到方程是解此题的关键.7.由方程组可得出x与y的关系式是()A.x+y=8 B.x+y=1 C.x+y=﹣1 D.x+y=﹣8【分析】将第二个方程代入第一个方程消去m即可得.【解答】解:,将②代入①,得:x+y﹣1=7,则x+y=8,故选:A.【点评】此题考查了解一元一次方程和二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.某商场将A商品按进货价提高50%后标价,若按标价的八折销售可获利40元,设该商品的进货价为x元,根据题意列方程为()A.0.8×(1+50%)x=40 B.8×(1+50%)x=40C.0.8×(1+50%)x﹣x=40 D.8×(1+50%)x﹣x=40【分析】首先理解题意找出题中存在的等量关系:0.8×(1+50%)x﹣x=40,根据此列方程即可.【解答】解:设这件的进价为x元,则这件衣服的标价为(1+50%)x元,打8折后售价为0.8×(1+50%)x元,可列方程为0.8×(1+50%)x﹣x=40,故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,此题的关键是理解成本价、标价、售价之间的关系及打8折的含义.9.如图,△ABC≌△DCB,∠A=80°,∠DBC=40°,则∠DCA的度数为()A.20°B.25°C.30°D.35°【分析】根据全等三角形的性质得到∠D=∠A=80°,∠ACB=DBC=40°,根据三角形内角和定理求出∠DCB,计算即可.【解答】解:∵△ABC≌△DCB,∴∠D=∠A=80°,∠ACB=DBC=40°,∴∠DCB=180°﹣∠D﹣∠DBC=60°,∴∠DCA=∠DCB﹣∠ACB=20°,故选:A.【点评】本题考查的是全等三角形的性质、三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.10.已知:|2x+y﹣3|+(x﹣3y﹣5)2=0,则y x的值为()A.1 B.﹣1 C.2 D.﹣2【分析】根据几个非负数和的性质得到,利用①×3+②得6x+x﹣9﹣5=0,可解得x=2,再代入①可求出y=﹣1,然后利用乘方的意义计算y x.【解答】解:∵|2x+y﹣3|+(x﹣3y﹣5)2=0,∴,①×3+②得6x+x﹣9﹣5=0,解得x=2,把x=2代入①得4+y﹣3=0,解得y=﹣1,∴y x=(﹣1)2=1.故选:A.【点评】本题考查了解二元一次方程组:利用代入消元或加减消元法把解二元一次方程组转化为一元一次方程,分别求出两个未知数的值,从而确定方程组的解.也考查了几个非负数和的性质.11.如图,将一张正三角形纸片剪成四个全等的正三角形,得到4个小正三角形,称为第一次操作;然后,将其中的一个正三角形再剪成四个小正三角形,共得到7个小正三角形,称为第二次操作;再将其中的一个正三角形再剪成四个小正三角形,共得到10个小正三角形,称为第三次操作;…,以上操作n次后,共得到49个小正三角形,则n的值为()A.n=13 B.n=14 C.n=15 D.n=16【分析】根据已知得出第n次操作后,正三角形的个数为3n+1,据此求解可得.【解答】解:∵第一次操作后得到4个小正三角形,第二次操作后得到7个小正三角形;第三次操作后得到10个小正三角形,∴第n次操作后,正三角形的个数为3n+1.则:49=3n+1,解得:n=16,故若要得到49个小正三角形,则需要操作的次数为16次.故选:D.【点评】此题主要考查了图形的变化类,根据已知得出第n次操作后,总的正三角形的个数为3n+1是解题关键.12.如图,点D为△ABC边BC的延长线上一点.∠ABC的角平分线与∠ACD的角平分线交于点M,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的角平分线与∠NCB的角平分线交于点Q,若∠A=48°,则∠BQC的度数为()A.138°B.114°C.102°D.100°【分析】依据∠ABC的角平分线与∠ACD的角平分线交于点M,即可得到∠M=∠DCM﹣∠DBM=24°,依据∠NBC的角平分线与∠NCB的角平分线交于点Q,即可得到∠Q=180°﹣(∠CBQ+∠BCQ)=102°.【解答】解:∵∠ABC的角平分线与∠ACD的角平分线交于点M,∴∠DCM=∠ACD,∠DBM=∠ABC,∴∠M=∠DCM﹣∠DBM=(∠ACD﹣∠ABC)=∠A=24°,由折叠可得,∠N=∠M=24°,又∵∠NBC的角平分线与∠NCB的角平分线交于点Q,∴∠CBQ=∠CBN,∠BCQ=∠BCN,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(∠CBN+∠BCN)=180°﹣×(180°﹣∠N)=90°+∠N=102°,故选:C.【点评】本题主要考查了折叠问题,三角形内角和定理以及角平分线的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.方程3x=6的解为x=2 .【分析】直接将原方程系数化1,即可求得答案.【解答】解:3x=6,系数化1得:x=2.故答案为:x=2【点评】此题考查了一元一次方程的解.注意使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.14.将一副直角三角板如图放置,使两直角重合,则∠1=165 度.【分析】由题意得出∠CAD=60°、∠B=45°、∠CAB=120°,根据∠1=∠B+∠CAB可得答案.【解答】解:如图,由题意知,∠CAD=60°,∠B=45°,∴∠CAB=120°,∴∠1=∠B+∠CAB=45°+120°=165°,故答案为:165.【点评】本题主要考查三角形外角的性质,解题的关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.15.已知是方程组的解,则a+b=﹣2 .【分析】解题关键是把方程组的解代入原方程组,使方程组转化为关于a和b的二元一次方程组,再解方程组.【解答】解:把代入方程组中,可得:,解得:,所以a+b=﹣2,故答案为:﹣2【点评】本题主要考查了二元一次方程组的解及解二元一次方程组,解方程组常用的方法是加减法和代入法.16.方程与方程1=x+7的解相同,则m的值为﹣21 .【分析】求出方程1=x+7的解,把x的值代入方程得出一个关于m的方程,求出m 即可.【解答】解:1=x+7,x=﹣6,∵方程与方程1=x+7的解相同,∴把x=﹣6代入方程得:﹣3+=﹣6﹣4,=﹣7,m=﹣21,故答案为:﹣21.【点评】本题考查了同解方程和解一元一次方程,关键是能得出关于m的方程.17.关于x的方程k﹣2x=3(k﹣2)的解为非负数,且关于x的不等式组有解,则符合条件的整数k的值的和为 5 .【分析】先求出方程的解与不等式组的解集,再根据题目中的要求求出相应的k的值即可解答本题.【解答】解:解方程k﹣2x=3(k﹣2),得:x=3﹣k,由题意得3﹣k≥0,解得:k≤3,解不等式x﹣2(x﹣1)≤3,得:x≥﹣1,解不等式≥x,得:x≤k,∵不等式组有解,∴k≥﹣1,则﹣1≤k≤3,∴符合条件的整数k的值的和为﹣1+0+1+2+3=5,故答案为:5.【点评】本题考查一元一次方程的解、一元一次不等式组的整数解,解题的关键是明确题意,找出所求问题需要的条件.18.假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019-2020学年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过小时车库恰好停满.【分析】设1个进口1小时开进x辆车,1个出口1小时开出y辆,根据题意列出方程组求得x、y,进一步代入求得答案即可.【解答】解:设1个进口1小时开进x辆车,1个出口1小时开出y辆,车位总数为a,由题意得解得:,则60%a÷(2×﹣)a=小时答:从早晨6点开始经过小时车库恰好停满.故答案为:.【点评】此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.(1)解方程:2+3(x﹣2)=2(3﹣x);(2)解不等式:﹣1.【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)2+3(x﹣2)=2(3﹣x),2+3x﹣6=6﹣2x,3x+2x=6+6﹣2,5x=10,x=2;(2)去分母得:2x+3﹣6>3(x﹣1),2x+3﹣6>3x﹣3,2x﹣3x>﹣3+6﹣3,﹣x>0,x<0.【点评】本题考查了解一元一次方程和解一元一次不等式,能正确根据等式的性质和不等式的性质进行变形是解此题的关键.20.如图,格点△ABD在长方形网格中,边BD在直线l上.(1)请画出△ABD关于直线l对称的△CBD;(2)将四边形ABCD平移得到四边形A1B1C1D1,点A的对应点A1的位置如图所示,请画出平移后的四边形A1B1C1D1.【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△CBD即为所求;(2)如图所示:四边形A1B1C1D1,即为所求.【点评】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.解不等式组,并写出不等式组的最大整数解.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式2x﹣4≤3(x+1)得:x≥﹣7,解不等式得:x<﹣,∴不等式组的解集是﹣7≤x<﹣,∴该不等式组的最大整数解为﹣4.【点评】本题考查了解一元一次不等式(组),不等式组的整数解的应用,解此题的关键是求出不等式组的解集.22.李师傅要为某单位修建正多边形花台,已知正多边形花台的一个外角的度数比一个内角度数的多12°,请你帮李师傅求出这个正多边形的一个内角的度数和它的边数.【分析】设这个多边形的一个内角的度数是x°,则相邻的外角度数是x°+12°,得出方程x+x+12=180,求出x,再根据多边形的外角和等于360°求出边数即可.【解答】解:设这个多边形的一个内角的度数是x°,则相邻的外角度数是x°+12°,则x+x+12=180,解得:x=140,这个正多边形的一个内角度数是140°,180°﹣140°=40°,所以这个正多边形的边数是=9.【点评】本题考查了多边形的内角与外角,能求出多边形的一个内角的度数是解此题的关键,注意:多边形的外角和等于360°.23.沙坪坝区2019-2020学年已经成功创建国家卫生城区,现在正全力争创全国文明城区(简称“创文”).某街道积极响应“创文”活动,投入一定资金用于绿化一块闲置空地,购买了甲、乙两种树木共72棵,其中甲种树木每棵90元,乙种树木每棵80元,共用去资金6160元.(1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了a%,且总费用不超过6804元,求a的最大值.【分析】(1)设甲种树苗购买了x棵,乙种树苗购买了y棵,根据总费用=单价×数量结合“购买了甲、乙两种树木共72棵,共用去资金6160元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总费用=单价×数量结合总费用不超过6804元,即可得出关于a的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设甲种树苗购买了x棵,乙种树苗购买了y棵,根据题意得:,解得:.答:甲种树苗购买了40棵,乙种树苗购买了32棵.(2)根据题意得:90×(1+a%)×40+80×(1﹣a%)×32≤6804,解得:a≤25.答:a的最大值为25.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.如图,在四边形ABCD中,∠B+∠ADC=180°,CE平分∠BCD交AB于点E,连结DE.(1)若∠A=50°,∠B=85°,求∠BEC的度数;(2)若∠A=∠1,求证:∠CDE=∠DCE.【分析】(1)求出∠A+∠BCD=180°,求出∠BCD,求出∠BCE,根据三角形内角和定理求出即可;(2)根据三角形内角和定理和∠A+∠BCD=180°求出∠CDE=∠BCE,即可得出答案.【解答】(1)解:∵∠B+∠ADC=180°,∠A+∠B+∠BCD+∠ADC=360°,∴∠A+∠BCD=180°,∵∠A=50°,∴∠BCD=130°,∵CE平分∠BCD,∴∠BCE=∠BCD=65°,∵∠B=85°,∴∠BEC=180°﹣∠BCE﹣∠B=180°﹣65°﹣85°=30°;(2)证明:∵由(1)知:∠A+∠BCD=180°,∴∠A+∠BCE+∠DCE=180°,∵∠CDE+∠DCE+∠1=180°,∠1=∠A,∴∠BCE=∠CDE,∵CE平分∠BCE,∴∠DCE=∠BCE,∴∠CDE=∠DCE.【点评】本题考查了多边形的内角与外角、角平分线定义等知识点,能正确根据多边形的内角和定理进行推理是解此题的关键,注意:边数为n的多边形的内角和=(n﹣2)×180°.五、解答题:(本大题2个小题,25小题10分,26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.我们知道,任意一个正整数a都可以进行这样的分解:a=m×n(m,n是正整数,且m ≤n),在a的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是a的最佳分解.并规定:F(a)=.例如:12可以分解成1×12,2×6,3×4,因为|1﹣12|>|2﹣6|>|3﹣4|,所以3×4是12的最佳分解,所以F(12)=.(1)求F(18)﹣F(16);(2)若正整数p是4的倍数,我们称正整数p为“四季数”.如果一个两位正整数t,t=10x+y (1≤x<y≤9,x,y为自然数),交换个位上的数字与十位上的数字得到的新两位正整数减去原来的两位正整数所得的差为“四季数”,那么我们称这个数t为“有缘数”,求所有“有缘数”中F(t)的最小值.【分析】(1)根据题意求出F(18),F(16)的值代入即可.(2)根据题意列出二元一次方程,解的所有可能性,求出F(t)最小值.【解答】解:(1)∵F(18)=2,F(16)=1∴F(18)﹣F(16)=1(2)根据题意得:10y+x﹣(10x+y)=4k(k为正整数)∴9(y﹣x)=4k∴y﹣x=4,或y﹣x=8且1≤x<y≤9∴y=5,x=1y=6,x=2,y=7,x=3y=8,x=4y=9,x=5y=9,x=1∴两位正整数为51,62,73,84,95,91∴F(51)=,F(62)=,F(73)=73,F(84)=,F(95)=,F(91)=∴F(t)的最小值为【点评】本题考查了因式分解的应用,关键是通过阅读能理解题目的新概念.26.在△ABC中,AD⊥BC于点D.(1)如图1,若∠BAC的角平分线交BC于点E,∠B=42°,∠DAE=7°,求∠C的度数;(2)如图2,点M、N分别在线段AB、AC上,将△ABC折叠,点B落在点F处,点C落在点G处,折痕分别为DM和DN,且点F,点G均在直线AD上,若∠B+∠C=90°,试猜想∠AMF与∠ANG之间的数量关系,并加以证明;(3)在(2)小题的条件下,将△DMF绕点D逆时针旋转一个角度α(0°<α<360°),记旋转中的△DMF为△DM1F1(如图3).在旋转过程中,直线M1F1与直线AB交于点P,直线M1F1与直线BC交于点Q.若∠B=28°,是否存在这样的P、Q两点,使△BPQ为直角三角形?若存在,请直接写出旋转角α的度数;若不存在,请说明理由.【分析】(1)利用三角形的内角和定理即可解决问题;(2)结论:∠AMF=∠ANG.由翻折可知:∠B=∠F,∠C=∠DGN,由∠B+∠C=90°,推出∠BAC=90°,∠F+∠DGN=90°,推出∠BAD+∠CAD=90°,由∠BAD=∠F+∠AMF,∠CAD=∠DGN﹣∠ANG,推出∠F+∠AMF+∠DGN﹣∠ANG=90°,可得∠AMF =∠ANG;(3)分两种情形分别求解即可解决问题;【解答】解:(1)如图1中,∵AD⊥BC,∴∠ADB=∠ADC=90°在Rt△AED中,∵∠EAD=7°,∴∠AED=83°,∵∠AED=∠B+∠BAE,∠B=42°,∴∠BAE=∠CAE=41°,∴∠BAC=82°,∴∠C=180°﹣42°﹣82°=56°.(2)结论:∠AMF=∠ANG.理由:如图2中,由翻折可知:∠B=∠F,∠C=∠DGN,∵∠B+∠C=90°,∴∠BAC=90°,∠F+∠DGN=90°,∴∠BAD+∠CAD=90°,∵∠BAD=∠F+∠AMF,∠CAD=∠DGN﹣∠ANG,∴∠F+∠AMF+∠DGN﹣∠ANG=90°,∴∠AMF=∠ANG.(3)①当∠PQB=90°时,∵∠B=∠F′=28°,∴∠F′DQ=90°﹣28°=62°,∵∠FDB=90°,∴∠FDF′=90°﹣62°=28°,∴旋转角为28°.②当∠BPQ=90°时,∠B=∠F′=28°,∴∠PQB=90°﹣28°=62°,∵∠PQB=∠F′+∠F′DB,∴∠F′DB=62°﹣28°=34°,∴∠FDF′=90°﹣34°=56°,∴旋转角为56°,综上所述,满足条件的旋转角为28°或56°.【点评】本题考查三角形综合题、旋转变换、翻折变换、三角形的内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
2019年重庆市七年级数学下期末试卷含答案一、选择题1.下列各式中计算正确的是( ) A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=2.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°3.下面不等式一定成立的是( ) A .2a a < B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b >4.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( )A .k=-5B .k=5C .k=-10D .k=105.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x 人,买鸡的钱数为y ,依题意可列方程组为( )A .8374x y x y +=⎧⎨+=⎩B .8374x yx y -=⎧⎨-=⎩C .8374x y x y +=⎧⎨-=⎩D .8374x y x y -=⎧⎨+=⎩6.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( ) A .﹣3 B .﹣5 C .1或﹣3 D .1或﹣5 7.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2B .3C .4D .58.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩9.在实数0,-π34中,最小的数是( )A .0B .-πC 3D .-410.下列命题中,是真命题的是()A.在同一平面内,垂直于同一直线的两条直线平行B.相等的角是对顶角C.两条直线被第三条直线所截,同旁内角互补D.过一点有且只有一条直线与已知直线平行11.关于x,y的方程组2,226x y ax y a+=⎧⎨+=-⎩的解满足0x y+=,则a的值为()A.8B.6C.4D.212.某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x辆车,共有y名学生.则根据题意列方程组为()A.453560(2)35x yx y-=⎧⎨-=-⎩B.453560(2)35x yx y=-⎧⎨-+=⎩C.453560(1)35x yx y+=⎧⎨-+=⎩D.453560(2)35x yy x=+⎧⎨--=⎩二、填空题13.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE <15°,∠C的度数为整数,则∠C的度数为_____.14.如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC=________°.15.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.16.对一个实数x技如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到判断结果是否大于190?“为一次操作,如果操作恰好进行三次才停止,那么x的取值范围是__________.17.关于x的不等式组352223x xx a-≤-⎧⎨+>⎩有且仅有4个整数解,则a的整数值是______________.18.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了4个参赛者的得分情况.在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是_____.参赛者答对题数答错题数得分A191112B182104C17396D10104019.若关于x的不等式组532x mx+<⎧⎨-⎩无解,则m的取值范围是_____.20.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是________________________三、解答题21.(1)同题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC的度数.小明想到一种方法,但是没有解答完:如图2,过P作PE∥AB,∴∠APE+∠P AB=180°.∴∠APE=180°-∠P AB=180°-130°=50°.∵AB∥C D.∴PE∥C D.…………请你帮助小明完成剩余的解答.(2)问题迁移:请你依据小明的思路,解答下面的问题:如图3,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β.①当点P在A、B两点之间时,∠CPD,∠α,∠β之间有何数量关系?请说明理由.②当点P在A、B两点外侧时(点P与点O不重合),请直接写出∠CPD,∠α,∠β之间的数量关系.22.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 是13的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根. 23.已知:如图,∠1=∠2,∠3=∠E .求证:AD ∥BE .24.如图,已知在ABC ∆中,FG EB ,23∠∠=,说明180EDB DBC ∠+∠=︒的理由.解:∵FG EB (已知),∴_________=_____________(____________________). ∵23∠∠=(已知),∴_________=_____________(____________________). ∴DE BC ∥(___________________).∴180EDB DBC ∠+∠=︒(_________________________).25.已知:方程组713x y ax y a +=--⎧⎨-=+⎩的解x 为非正数,y 为负数.(1)求a 的取值范围; (2)化简|a -3|+|a +2|;(3)在a 的取值范围中,当a 为何整数时,不等式2ax +x >2a +1的解为x <1.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案. 【详解】A 3=,此选项错误错误,不符合题意;B 3=,此选项错误错误,不符合题意;C 3=-,此选项错误错误,不符合题意;D 3=,此选项正确,符合题意; 故选:D . 【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.D解析:D 【解析】 【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论. 【详解】 ∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°, 故选D . 【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.3.D解析:D 【解析】 【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案. 【详解】A. 当0a ≤时,2aa ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误;C. 若a b >,当0c d =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确; 故选D . 【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.4.A解析:A【解析】【分析】根据方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,可得方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值,再代入4x-3y+k=0即可求得k的值.【详解】∵方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,∴5320x yx y-=⎧⎨-=⎩,解得,1015xy=-⎧⎨=-⎩;把1015xy=-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.5.D解析:D【解析】【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.6.A【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等, ∴4=|2a +2|,a +2≠3, 解得:a =−3, 故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.7.D解析:D 【解析】∵方程2x +a ﹣9=0的解是x =2,∴2×2+a ﹣9=0, 解得a =5.故选D .8.D解析:D 【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可.详解:∵3210x y --=, ∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1, 把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩.故选:D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.9.D解析:D 【解析】 【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.∵正数大于0和一切负数, ∴只需比较-π和-4的大小, ∵|-π|<|-4|, ∴最小的数是-4. 故选D . 【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.10.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可. 详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确; 根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确. 故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.11.D解析:D 【解析】 【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值. 【详解】两式相加得:3336x y a +=-; 即3()36,x y a +=-得2x y a +=- 即20,2a a -== 故选:D. 【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.12.B解析:B 【解析】 根据题意,易得B.二、填空题13.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BA E+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.40【解析】根据平行线的性质先求出∠BEF和∠CEF的度数再求出它们的差就可以了解:∵AB∥EF∴∠BEF=∠ABE=70°;又∵EF∥CD∴∠CEF=180°-∠ECD=180°-150°=30°解析:40【解析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°, ∴∠BEC=∠BEF -∠CEF=40°; 故应填40.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.15.25【解析】【分析】【详解】设需安排x 名工人加工大齿轮安排y 名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能解析:25 【解析】 【分析】 【详解】设需安排x 名工人加工大齿轮,安排y 名工人加工小齿轮,由题意得:85316210x y x y +=⎧⎨⨯=⨯⎩,解得:2560x y =⎧⎨=⎩. 即安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套. 故答案为25. 【点睛】本题考查理解题意能力,关键是能准确得知2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.16.【解析】【分析】表示出第一次第二次第三次的输出结果再由第三次输出结果可得出不等式解出即可【详解】解:第一次的结果为:3x-2没有输出则3x-2≤190解得:x≤64;第二次的结果为:3(3x-2)- 解析:822x <≤【解析】 【分析】表示出第一次、第二次、第三次的输出结果,再由第三次输出结果可得出不等式,解出即可. 【详解】解:第一次的结果为:3x-2,没有输出,则3x-2≤190, 解得:x≤64;第二次的结果为:3(3x-2)-2=9x-8,没有输出,则9x-8≤190, 解得:x≤22;第三次的结果为:3(9x-8)-2=27x-26,输出,则27x-26>190, 解得:x >8; 综上可得:8<x≤22. 故答案为:8<x≤22. 【点睛】本题考查了一元一次方程组的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.17.12【解析】【分析】求出每个不等式的解集根据已知得出不等式组的解集根据不等式组的整数解即可得出关于a 的不等式组求出即可【详解】解不等式3x-5≤2x -2得:x≤3解不能等式2x+3>a 得:x >∵不等解析:1,2【解析】【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出关于a 的不等式组,求出即可.【详解】解不等式3x-5≤2x -2,得:x≤3,解不能等式2x+3>a ,得:x >32a -, ∵不等式组有且仅有4个整数解,∴-1≤32a -<0, 解得:1≤a <3,∴整数a 的值为1和2,故答案为:1,2.【点睛】本题考查了一元一次不等式组的整数解,解答本题的关键应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.【解析】【分析】设答对1道题得x 分答错1道题得y 分根据图表列出关于x 和y 的二元一次方程组解之即可【详解】解:设答对1道题得x 分答错1道题得y 分根据题意得:解得:答对13道题打错7道题得分为:13×6 解析:【解析】【分析】设答对1道题得x 分,答错1道题得y 分,根据图表,列出关于x 和y 的二元一次方程组,解之即可.【详解】解:设答对1道题得x 分,答错1道题得y 分,根据题意得:19112182104x y x y +=⎧⎨+=⎩, 解得:62x y =⎧⎨=-⎩, 答对13道题,打错7道题,得分为:13×6+(﹣2)×7=78﹣14=64(分),故答案为:64.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.19.m≥﹣1【解析】【分析】分别表示出不等式组中两不等式的解集根据不等式组无解即可确定出m的范围【详解】解不等式x+m<0得:x<﹣m解不等式5﹣3x≤2得:x≥1∵不等式组无解∴﹣m≤1则m≥﹣1故答解析:m≥﹣1【解析】【分析】分别表示出不等式组中两不等式的解集,根据不等式组无解,即可确定出m的范围.【详解】解不等式x+m<0,得:x<﹣m,解不等式5﹣3x≤2,得:x≥1,∵不等式组无解,∴﹣m≤1,则m≥﹣1,故答案为:m≥﹣1.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.20.【解析】【分析】设绳索长为x尺竿子长为y尺根据索比竿子长一托折回索子却量竿却比竿子短一托即可得出关于xy的二元一次方程组【详解】解:根据题意得:故答案为:【点睛】本题考查了二元一次方程组的应用找准等解析:5 15 2x yx y+⎧⎪⎨-⎪⎩==【解析】【分析】设绳索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】解:根据题意得:515 2x yx y+⎧⎪⎨-⎪⎩==.故答案为:515 2x yx y+⎧⎪⎨-⎪⎩==.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.三、解答题21.(1)110°;(2) 详见解析 【解析】分析:(1)根据平行线的判定与性质补充即可;(2)①过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;②画出图形(分两种情况(i )点P 在BA 的延长线上,(ii )点P 在AB 的延长线上),根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案.详解:(1)剩余过程:∴∠CPE +∠PCD =1800,∴∠CPE =1800—1200=600,∴∠APC =500+600=1100.(2)①∠CPD =∠α+∠β.理由如下:过P 作PQ ∥AD .∵AD ∥BC ,∴PQ ∥BC ,∴1α∠=∠,同理,2β∠=∠,∴12CPD αβ∠=∠+∠=∠+∠;②(i )当P 在BA 延长线时,如图4,过P 作PE ∥AD 交CD 于E ,同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠β﹣∠α;(ii )当P 在AB 延长线时,如图5, 同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠α﹣∠β.点睛:本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,难度适中.22.(1)a =5,b =2,c =3 ;(2)±4.【解析】【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c∴c=3,(2)∵a=5,b=2,c=3,∴3a-b+c=16,3a-b+c 的平方根是±4.【点睛】考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.23.证明见解析.【解析】【分析】由∠1=∠2,得BD∥CE,所以∠4=∠E,又∠3=∠E,所以∠3=∠4,可得AD∥BE.【详解】证明:∵∠1=∠2,又∵∠3=∠E,∴BD∥CE,∴∠3=∠4,∴∠4=∠E,∴AD∥BE.【点睛】本题考核知识点:平行线的判定.解题关键点:理解平行线的判定.24.1∠;2∠;两直线平行,同位角相等;1∠;3∠;等量代换;内错角相等,两直线平行;两直线平行,同旁内角互补【解析】【分析】先根据FG ∥EB 得出12∠=∠,进而推导出13∠=∠,证明DE ∥BC ,从而得出同旁内角互补.【详解】解:∵FG ∥EB (已知),∴12∠=∠(两直线平行,同位角相等).∵23∠∠=(已知),∴13∠=∠(等量代换).∴DE ∥BC (内错角相等,两直线平行).∴180EDB DBC ∠+∠=︒(两直线平行,同旁内角互补).【点睛】本题考查平行线的性质和证明,需要注意仅当两直线平行时才有:同位角相等、内错角相等、同旁内角互补.25.(1)-2<a≤3.(2)5;(3)a =-1.【解析】【分析】(1)求出不等式组的解集即可得出关于a的不等式组,求出不等式组的解集即可;(2)根据a的范围去掉绝对值符号,即可得出答案;(3)求出a<-12,根据a的范围即可得出答案.【详解】解:(1)713x y ax y a+=-⎧⎨-=+⎩①②∵①+②得:2x=-6+2a,x=-3+a,①-②得:2y=-8-4a,y=-4-2a,∵方程组713x y ax y a+=-⎧⎨-=+⎩的解x为非正数,y为负数,∴-3+a≤0且-4-2a<0,解得:-2<a≤3;(2)∵-2<a≤3,∴|a-3|+|a+2|=3-a+a+2=5;(3)2ax+x>2a+1,(2a+1)x>2a+1,∵不等式的解为x<1∴2a+1<0,∴a<-12,∵-2<a≤3,∴a的值是-1,∴当a为-1时,不等式2ax+x>2a+1的解为x<1.【点睛】本题考查了解方程组和解不等式组的应用,主要考查学生的理解能力和计算能力,题目比较好.。
2019-2020学年重庆市九龙坡区七年级第二学期期末数学试卷一、选择题(共12小题).1.下列实数中,最小的是()A.0B.﹣1C.D.﹣2.在下列四个汽车标志图案中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.3.在平面直角坐标系中,点P(﹣4,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限4.下列调查方式,你认为最合适的是()A.了解北京市每天的流动人口数,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式5.若是关于x、y的二元一次方程ax﹣y=3的解,则a=()A.2B.3C.4D.56.不等式5x﹣3<3x+6的最大整数解为()A.2B.3C.4D.57.估计的值在下列哪两个整数之间()A.6和7之间B.7和8之间C.8和9之间D.无法确定8.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术,其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四.问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x人,鸡的价钱是y钱,则可列方程组为()A.B.C.D.9.下列命题是假命题的是()A.两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B.在实数﹣7.5、、4、、﹣π、()2中,有4个有理数,2个无理数C.在平面直角坐标系中,点P(2a﹣1,a+7)在x轴上,则点P的坐标为(﹣7,0)D.不等式组的所有整数解的和为710.如图,三角形OAB的边OB在x轴的正半轴上,点O是原点,点B的坐标为(3,0),把三角形OAB沿x轴向右平移2个单位长度,得到三角形CDE,连接AC,DB,若三角形DBE的面积为3,则图中阴影部分的面积为()A.B.1C.2D.11.甲、乙两人分别从A、B两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达B地后立刻以原路和提高后的速度向A地返行,乙到达A地后也立刻以原路和提高后的速度向B地返行.甲、乙两人在开始出发后的5小时36分钟又再次相遇,则A、B两地的距离是()A.24千米B.30千米C.32千米D.36千米12.已知关于x、y的二元一次方程组的解满足x>y,且关于x的不等式组无解,那么所有符合条件的整数a的个数为()A.6个B.7个C.8个D.9个二.填空题(共6小题).13.如图,直线AB,CD相交于点O,OE⊥AB,O为垂足,∠EOD=26°,则∠AOC=.14.计算:﹣﹣|﹣5|=.15.某超市为了测定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间2分钟到3分钟表示大于或等于2分钟而小于3分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为.16.在平面直角坐标系中,点P(6﹣2m,4﹣m)在第三象限,则m的取值范围是.17.如图,点A、B为定点,直线l∥AB,P是直线l上一动点,对于下列各值:①线段AB的长;②△PAB的周长;③△PAB的面积;④∠APB的度数,其中不会随点P的移动而变化的是(填写所有正确结论的序号).18.一个农场的工人们要把两片草地的草锄掉,大的一片草地的锄草量是小的一片的两倍,上午半天工人们都在大的一片上锄草,中午后工人们对半分开,一半人留在大的草地上,刚好下午半天就把草锄完了;另一半人到小的草地上去锄草,下午半天锄草后还剩一小块,第二天由一个工人去锄,恰好用了一天时间将草锄完成.如果每一个工人每天锄草量相同,那么这个农场有个工人.三、解答题(本题7个小题,每题10分,共70分)19.(1)解方程组:;(2)解不等式组:,并把它的解集表示在数轴上.20.如图,AB∥CD,点E在直线CD上,射线EF经过点B,BG平分∠ABE交CD于点G.(1)求证:∠BGE=∠GBE;(2)若∠DEF=70°,求∠FBG的度数.21.如图,在平面直角坐标系中,△ABC的三个顶点的坐标别为A(﹣2,4),B(﹣4,2),C(﹣1,0).(1)将△ABC先向右平移3个单位,再向下平移4个单位,则得到△A1B1C1,请在图中画出△A1B1C1;(2)请直接写点B1的坐标;(3)求出△ABC的面积.22.某中学积极开展跳绳锻炼,一次体育测试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和频数分布直方图,如图:次数频数60≤x<8080≤x<1004100≤x<12018120≤x<14013140≤x<1608160≤x<180180≤x<2001(1)补全频数分布表和频数分布直方图.(2)表中组距是次,组数是组.(3)跳绳次数在100≤x<140范围的学生有人,全班共有人.(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?23.某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?24.对x、y定义一种新运算T.规定:T(x,y)=(mx+ny)(x+2y)(其中m,n均为非零常数).例如:T(1,1)=3m+3n.(1)已知T(1,﹣1)=0,T(0,2)=8.①求m、n的值;②若关于p的不等式组恰好有3个整数解,求a的取值范围;(2)当x2≠y2时,T(x,y)=T(y,x)对任意有理数x,y都成立,请直接写出m、n满足的关系式.学习参考:①a(b+c)=ab+ac,即单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的结果相加;②(a+b)(m+n)=am+an+bm+bn,即多项式乘以多项式就是用一个多项式的每一项去乘另一个多项式的每一项,再把所得的结果相加.25.如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴上,CB∥x 轴,BA⊥x轴,点B的坐标为(a,b),且b=++4.(1)请直接写出点A、B、C的坐标;(2)若动点P从原点O出发,沿x轴以每秒2个长度单位的速度向右运动,在运动过程中形成的△OPC的面积是长方形OABC面积的时,点P停止运动,求点P的运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使△CPQ的面积与长方形OABC的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.四.解答题(本大题1个小题,共8分).解答时必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中相应的位置上26.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME 的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.参考答案一.选择题(共12小题).1.下列实数中,最小的是()A.0B.﹣1C.D.﹣【分析】根据实数的大小比较的法则进行比较即可.解:∵﹣<﹣1<0<,∴这四个数中最小的是﹣.故选:D.2.在下列四个汽车标志图案中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据平移变换的定义判断即可.解:选项B是由基本图形圆平移得到,故选:B.3.在平面直角坐标系中,点P(﹣4,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点坐标特征解答.解:点P(﹣4,﹣2)所在象限为第三象限.故选:C.4.下列调查方式,你认为最合适的是()A.了解北京市每天的流动人口数,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A、了解北京市每天的流动人口数,采用抽样调查方式,正确;B、旅客上飞机前的安检,采用全面调查方式,故错误;C、了解北京市居民”一带一路”期间的出行方式,抽样调查方式,故错误;D、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式,故错误;故选:A.5.若是关于x、y的二元一次方程ax﹣y=3的解,则a=()A.2B.3C.4D.5【分析】把x与y的值代入已知方程计算即可求出a的值.解:把代入方程得:2a﹣1=3,解得:a=2,故选:A.6.不等式5x﹣3<3x+6的最大整数解为()A.2B.3C.4D.5【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得不等式的解集,从而得出答案.解:∵5x﹣3<3x+6,∴5x﹣3x<6+3,∴2x<9,∴x<,则该不等式的最大整数解为4,故选:C.7.估计的值在下列哪两个整数之间()A.6和7之间B.7和8之间C.8和9之间D.无法确定【分析】由于=10﹣,因为2<<3,由此可以得到实数在哪两个整数之间,进一步得到的值在哪两个整数之间.解:=10﹣,∵2<<3,∴7<10﹣<8,即的值在7和8之间.故选:B.8.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术,其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四.问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x人,鸡的价钱是y钱,则可列方程组为()A.B.C.D.【分析】设人数有x人,鸡的价钱是y钱,根据每人出8钱,多余3钱得出等量关系一:鸡的价钱=8×买鸡人数﹣3;根据每人出7钱,还缺4钱得出等量关系二:鸡的价钱=7×买鸡人数+4,依此两个等量关系列出方程组即可.解:设人数有x人,鸡的价钱是y钱,由题意得.故选:A.9.下列命题是假命题的是()A.两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B.在实数﹣7.5、、4、、﹣π、()2中,有4个有理数,2个无理数C.在平面直角坐标系中,点P(2a﹣1,a+7)在x轴上,则点P的坐标为(﹣7,0)D.不等式组的所有整数解的和为7【分析】根据平行线的判定、无理数、平面直角坐标系和不等式组的解判断即可.解:A、两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行,是真命题;B、在实数﹣7.5、、4、、﹣π、()2=2中,有4个有理数,2个无理数,是真命题;C、在平面直角坐标系中,点P(2a﹣1,a+7)在x轴上,a+7=0,a=﹣7,则点P的坐标为(﹣15,0),原命题是假命题;D、不等式组的所有整数解的和为7,是真命题;故选:C.10.如图,三角形OAB的边OB在x轴的正半轴上,点O是原点,点B的坐标为(3,0),把三角形OAB沿x轴向右平移2个单位长度,得到三角形CDE,连接AC,DB,若三角形DBE的面积为3,则图中阴影部分的面积为()A.B.1C.2D.【分析】根据平移的性质和等高的三角形面积比等于底边的比即可求解.解:∵点B的坐标为(3,0),把三角形OAB沿x轴向右平移2个单位长度,∴BE=2,BC=3﹣2=1,∵图中阴影部分与三角形DBE等高,三角形DBE的面积为3,∴图中阴影部分的面积为=3×=.故选:D.11.甲、乙两人分别从A、B两地同时骑自行车相向而行,2小时后在途中相遇,相遇后,甲、乙骑自行车的速度都提高了1千米/小时,当甲到达B地后立刻以原路和提高后的速度向A地返行,乙到达A地后也立刻以原路和提高后的速度向B地返行.甲、乙两人在开始出发后的5小时36分钟又再次相遇,则A、B两地的距离是()A.24千米B.30千米C.32千米D.36千米【分析】设第一次相遇时,甲、乙的速度和为xkm/h,由第一次到第二次相遇的过程中,甲,乙的路程和是第一次相遇时甲,乙路程和的两倍.可列方程,即可求解.解:设第一次相遇时,甲、乙的速度和为xkm/h,5小时36分钟=5(小时)由题意可得:2×2x=(5﹣2)(x+2),解得:x=18,∴A、B两地的距离=2×18=36(km),故选:D.12.已知关于x、y的二元一次方程组的解满足x>y,且关于x的不等式组无解,那么所有符合条件的整数a的个数为()A.6个B.7个C.8个D.9个【分析】先求出方程组和不等式的解集,再求出a的范围,最后得出答案即可.解:解方程组得:,∵关于x、y的二元一次方程组的解满足x>y,∴2a+1>a﹣2,解得:a>﹣3,,∵解不等式①得:x,解不等式②得:x≥,又∵关于x的不等式组无解,∴≥a﹣,解得:a≤4,即﹣3<a≤4,∴所有符合条件的整数a的个数为7个(﹣2,﹣1,0,1,2,3,4,共7个),故选:B.二.填空题:本大题6个小题,每小题4分,共24分,把答案填写在答题卡相应的位置上. 13.如图,直线AB,CD相交于点O,OE⊥AB,O为垂足,∠EOD=26°,则∠AOC=64°.【分析】根据OE⊥AB,∠EOD=26°,可得∠BOD=68°,再根据对顶角相等即可得出答案.解:∵OE⊥AB,∴∠BOE=90°,∵∠EOD=26°,∴∠BOD=64°,∵∠AOC=∠BOD,∴∠AOC=64°.故答案为:64°.14.计算:﹣﹣|﹣5|=0.【分析】首先开方,化简绝对值,再按实数的加减运算顺序运算即可.解:原式=3﹣(﹣2)﹣5=3+2﹣5=0,故答案为:0.15.某超市为了测定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间2分钟到3分钟表示大于或等于2分钟而小于3分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为7.【分析】根据题意和频数分布直方图可以得到这个时间段内顾客等待时间不少于6分钟的人数,本题得以解决.解:由频数分布直方图可得,这个时间段内顾客等待时间不少于6分钟的人数为:5+2=7,故答案为:7.16.在平面直角坐标系中,点P(6﹣2m,4﹣m)在第三象限,则m的取值范围是m>4.【分析】根据题意列出关于m的不等式组,解之即可得.解:根据题意,得:,解不等式①,得:m>3,解不等式②,得:m>4,则不等式组的解集为m>4,故答案为:m>4.17.如图,点A、B为定点,直线l∥AB,P是直线l上一动点,对于下列各值:①线段AB的长;②△PAB的周长;③△PAB的面积;④∠APB的度数,其中不会随点P的移动而变化的是(填写所有正确结论的序号)①③.【分析】由点A、B为定点可得出线段AB的长为定值;由直线l∥AB可得出△PAB的面积为定值.综上即可得出结论.解:∵点A、B为定点,∴线段AB的长为定值;∵直线l∥AB,∴直线l到线段AB的距离为定值,∴△PAB的面积为定值.∴不会随点P的移动而变化的是①③.故答案为①③.18.一个农场的工人们要把两片草地的草锄掉,大的一片草地的锄草量是小的一片的两倍,上午半天工人们都在大的一片上锄草,中午后工人们对半分开,一半人留在大的草地上,刚好下午半天就把草锄完了;另一半人到小的草地上去锄草,下午半天锄草后还剩一小块,第二天由一个工人去锄,恰好用了一天时间将草锄完成.如果每一个工人每天锄草量相同,那么这个农场有8个工人.【分析】设这个农场有x个工人,每个工人一天的锄草量为1,根据大的一片草地的锄草量是小的一片的两倍,即可得出关于x的一元一次方程,解之即可得出结论.解:设这个农场有x个工人,每个工人一天的锄草量为1,依题意,得:x+×x=2(×x+1),解得:x=8.故答案为:8.三、解答题:(本大题7个小题,每题10分,共70分),解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.(1)解方程组:;(2)解不等式组:,并把它的解集表示在数轴上.【分析】(1)利用代入消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:(1),由①,得:x=2y+3 ③,将③代入②,得:3(2y+3)+5y=﹣2,解得y=﹣1,将y=﹣1代入③,得:x=2×(﹣1)+3=1,∴方程组的解为;(2)解不等式4(x+1)≤7x﹣8,得:x≥4,解不等式x﹣5<,得:x<6.5,则不等式组的解集为4≤x<6.5,将不等式组的解集表示在数轴上如下:20.如图,AB∥CD,点E在直线CD上,射线EF经过点B,BG平分∠ABE交CD于点G.(1)求证:∠BGE=∠GBE;(2)若∠DEF=70°,求∠FBG的度数.【分析】(1)根据AB∥CD,可得∠ABG=∠BGE,根据BG平分∠ABE,可得∠ABG =∠GBE,进而可得∠BGE=∠GBE;(2)根据AB∥CD,可得∠ABE=∠DEF=70°,根据平角定义可得∠ABF=180°﹣∠ABE=110°,根据BG平分∠ABE,可得∠ABG=ABE=35°,进而可得∠FBG 的度数.解:(1)证明:∵AB∥CD,∴∠ABG=∠BGE,∵BG平分∠ABE,∴∠ABG=∠GBE,∴∠BGE=∠GBE;(2)∵AB∥CD,∴∠ABE=∠DEF=70°,∴∠ABF=180°﹣∠ABE=110°,∵BG平分∠ABE,∴∠ABG=ABE=35°,∴∠FBG=∠ABF+∠ABG=110°+35°=145°.答:∠FBG的度数为145°.21.如图,在平面直角坐标系中,△ABC的三个顶点的坐标别为A(﹣2,4),B(﹣4,2),C(﹣1,0).(1)将△ABC先向右平移3个单位,再向下平移4个单位,则得到△A1B1C1,请在图中画出△A1B1C1;(2)请直接写点B1的坐标(﹣1,﹣2);(3)求出△ABC的面积.【分析】(1)(2)利用点平移的坐标变换规律写出A1、B1、C1的坐标,然后描点即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积.解:(1)如图,△A1B1C1为所作;(2)点B1的坐标为(﹣1,﹣2);(3)△ABC的面积=3×4﹣×2×3﹣×1×4﹣×2×2=5.故答案为(﹣1,﹣2).22.某中学积极开展跳绳锻炼,一次体育测试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和频数分布直方图,如图:次数频数60≤x<80280≤x<1004100≤x<12018120≤x<14013140≤x<1608160≤x<1804180≤x<2001(1)补全频数分布表和频数分布直方图.(2)表中组距是20次,组数是7组.(3)跳绳次数在100≤x<140范围的学生有31人,全班共有50人.(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?【分析】(1)利用分布表和频数分布直方图可得到成绩在60≤x≤80的人数为2人,成绩在140≤x≤160的人数为8人,成绩在160≤x≤180的人数为4人,然后补全补全频数分布表和频数分布直方图;(2)利用频数分布表和频数分布直方图求解;(3)把第3组和第4组的频数相加可得到跳绳次数在100≤x<140范围的学生数,把全部7组的频数相加可得到全班人数;(4)用后三组的频数和除以全班人数可得到全班同学跳绳的优秀率.解:(1)如图,成绩在60≤x≤80的人数为2人,成绩在160≤x≤180的人数为4人,(2)表中组距是20次,组数是7组.(3)跳绳次数在100≤x<140范围的学生有31人,全班人数为2+4+18+13+8+4+1=50(人);故答案为2,4;20,7;31,50;(4)跳绳次数不低于140次的人数为8+4+1=13,所以全班同学跳绳的优秀率=×100%=26%.23.某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?【分析】(1)分别利用孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,分别得出等式求出答案;(2)利用测试成绩占80%,平时成绩占20%,进而得出答案;(3)首先假设平时成绩为满分,进而得出不等式,求出测试成绩的最小值.解:(1)设孔明同学测试成绩为x分,平时成绩为y分,依题意得:解之得:答:孔明同学测试成绩为90分,平时成绩为95分;(2)由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.(3)设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为a分,根据题意可得:20+80%a≥80,解得:a≥75答:他的测试成绩应该至少为75分.24.对x、y定义一种新运算T.规定:T(x,y)=(mx+ny)(x+2y)(其中m,n均为非零常数).例如:T(1,1)=3m+3n.(1)已知T(1,﹣1)=0,T(0,2)=8.①求m、n的值;②若关于p的不等式组恰好有3个整数解,求a的取值范围;(2)当x2≠y2时,T(x,y)=T(y,x)对任意有理数x,y都成立,请直接写出m、n满足的关系式.学习参考:①a(b+c)=ab+ac,即单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的结果相加;②(a+b)(m+n)=am+an+bm+bn,即多项式乘以多项式就是用一个多项式的每一项去乘另一个多项式的每一项,再把所得的结果相加.【分析】(1)①构建方程组即可解决问题;②根据不等式即可解决问题;(2)利用恒等式的性质,根据关系式即可解决问题.解:(1)①由题意得,解得;②由题意得,解不等式①得p>﹣1.解不等式②得p≤.∴﹣1<p≤.∵恰好有3个整数解,∴2≤<3.∴42≤a<54;(2)由题意:(mx+ny)(x+2y)=(my+nx)(y+2x),∴mx2+(2m+n)xy+2ny2=2nx2+(2m+n)xy+my2,∵对任意有理数x,y都成立,∴m=2n.25.如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴上,CB∥x 轴,BA⊥x轴,点B的坐标为(a,b),且b=++4.(1)请直接写出点A、B、C的坐标;(2)若动点P从原点O出发,沿x轴以每秒2个长度单位的速度向右运动,在运动过程中形成的△OPC的面积是长方形OABC面积的时,点P停止运动,求点P的运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使△CPQ的面积与长方形OABC的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)由算术平方根的性质求出a=8,b=4,得出OC=4,OA=8,即可得出答案;(2)设点P的运动时间为ts,则OP=2t,由面积关系得出4t=×32,得出t=2即可;(3)由(2)得OP=4,①当点Q在点C的上方时,由面积关系得出×CQ×4=2CQ,求出CQ=16,则OQ=CQ+OC=20,得出Q(0,20);②当点Q在点C的下方时,由面积关系得出×CQ×4=2CQ,求出CQ=16,则OQ =CQ﹣OC=12,得出Q(0,﹣12)即可.解:(1)∵b=++4,∴a﹣8≥0,8﹣a≥0,∴a=8,∴b=4,∵CB∥x轴,BA⊥x轴,∴OC=4,OA=8,∴A(8,0),B(8,4),C(0,4);(2)设点P的运动时间为ts,则OP=2t,如图1所示:S长方形OABC=OA•OC=8×4=32,S△OPC=OP•OC=×2t×4=4t,∵S△OPC=S长方形OABC,∴4t=×32,解得:t=2,∴点P的运动时间为2s;(3)存在;理由如下:由(2)得:OP=2×2=4,①当点Q在点C的上方时,如图2所示:S△CPQ=CQ•OP=×CQ×4=2CQ,∴2CQ=32,∴CQ=16,∴OQ=CQ+OC=16+4=20,∴Q(0,20);②当点Q在点C的下方时,如图3所示:S△CPQ=CQ•OP=×CQ×4=2CQ,∴2CQ=32,∴CQ=16,∴OQ=CQ﹣OC=16﹣4=12,∴Q(0,﹣12);综上所述,点Q的坐标为:(0,20)或(0,﹣12).四.解答题(本大题1个小题,共8分).解答时必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中相应的位置上26.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:∠BME=∠MEN﹣∠END;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:∠BMF=∠MFN+∠FND;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME 的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F 作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF﹣∠FND =180°,可求解∠BMF=60°,进而可求解;(3)根据培训心得性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若关于x 的不等式组03115x a x ->⎧⎪-⎨<⎪⎩无解,则a 的取值范围是( ) A .a >2B .a≥2C .1<a≤2D .1≤a<2【答案】B【解析】分析:先分别解两个不等式求出它们的解集,再根据不等式组无解得到关于a 的不等式求解即可. 详解:03115x a x ->⎧⎪⎨-<⎪⎩①②,解①得,x>a ,解②得,x<2,∵不等式组无解,∴a≥2.故选B.点睛:本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 2.关于x 的分式方程22433x a x x --=---有增根,则a 的值为( ) A .3B .17C .3-D .2 【答案】A【解析】先去分母,化成整式方程,再根据增根为使得分母为0的值,将其代入变形后的整式方程即可解出a . 【详解】解:22433x a x x--=---, 224(3)x a x ∴-=---,方程有增根,即3x =满足方程,将3x =代入得232a -=-,解得3a =.故选:A .【点睛】本题考查了分式方程增根的求法,属于基础题型,难度不大,熟知增根的概念是解题的关键.3.下列运算正确的是( )A .22()()x y x y x y ---+=--B .10x x -+=C .22(2)143x x x -+=-+D .()21222x x x x +÷=+ 【答案】D【解析】根据整式乘法的计算法则,分别算出每一项式子的值,再判断即可.【详解】解:A 、22()()x y x y x y ---+=-,故本选项不正确; B 、11+x x-+=x x ,故本选项不正确; C 、222(2)144145-+=-++=-+x x x x x ,故本选项不正确;D 、()21222x x x x +÷=+,故本选项正确; 故选:D .【点睛】本题考查的主要有平方差公式、完全平方公式、负整数指数幂、多项式除法,这里需要牢固掌握整式的计算法则.4.下面调查中,最适合使用全面调查的是( )A .调查某公司生产的一批酸奶的保质期B .调查全国中学生对《奔跑吧,兄弟》节目的喜爱程度C .调查某校七(5)班男生暑假旅游计划D .调查某省居民知晓“中国梦”的内涵情况【答案】C【解析】根据统计调查的方式即可判断.【详解】A. 调查某公司生产的一批酸奶的保质期,具有破坏性,采用抽样调查,故错误;B. 调查全国中学生对《奔跑吧,兄弟》节目的喜爱程度,人数太多,采用抽样调查,故错误;C. 调查某校七(5)班男生暑假旅游计划,用全面调查,正确;D. 调查某省居民知晓“中国梦”的内涵情况,人数太多,采用抽样调查,故错误;故选C.【点睛】此题主要考查统计调查的方式,解题的关键是熟知全面调查的特点.5.乐乐发现等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形底角的度数为( ) A .50°B .65°C .65°或25°D .50°或40° 【答案】C【解析】在等腰△ABC中,AB= AC,BD为腰AC上的高,∠ABD=40°,讨论:当BD在ABC内部时,如图1,先计算出∠BAD=50°,再根据等腰三角形的性质和三角形内角和可计算出∠ACB;当BD在△ABC外部时,如图2,先计算出∠BAD=50°,再根据等腰三角形的性质和三角形外角性质可计算出∠ACB.【详解】在等腰△ABC中,AB= AC,BD为腰AC上的高,∠ABD=40°,当BD在△ABC内部时,如图1,∵BD是高,∴∠ADB=90°,∴∠BAD=90°-40°=50°,∵AB=AC,∴∠ABC=∠ACB=12(180°-50°)=65°;当BD在△ABC外部时,如图2,∵BD是高,∴∠ADB=90°,∴∠BAD=90°-40°=50°,∵AB=AC,∴∠ABC=∠ACB,∵∠BAD=∠ABC+∠ACB,∴∠ACB=12∠BAD=25°,综上,这个等腰三角形底角的度数为65°或25°.故选:C.【点睛】此题考查等腰三角形的性质,三角形内角和定理,解题中注意讨论思想的运用,这是解此题的关键. 6.不等式组3(x1)>x1{2x323+--+≥的整数解是()A.-1,0,1 B.0,1 C.-2,0,1 D.-1,1【答案】A【解析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).最后求出不等式组的整数解: 3(x 1)>x 1x>23{{2<x 232x 32x 32+--⇒⇒-≤-+≥≤. ∴原不等式组的整数解是-1,0,1.故选A .考点:解一元一次不等式组,求不等式组的整数解.7.若分式22432x x x --+的值为零,则x =( ) A .0B .2-C .2D .2或2-【答案】B【解析】根据分式值为零的条件列出关于x 的方程和不等式,进行求解即可得到答案. 【详解】解:∵分式22432x x x --+的值为零 ∴2240320x x x ⎧-=⎨-+≠⎩∴2x =-.故选:B【点睛】本题考查了分式值为零的条件---分子等于零而分母不等于零,能够正确列出关于x 的方程和不等式是解题的关键.8.如图,将ABC ∆沿直线AB 向右平移后到达BDE ∆的位置,连接,CD CE ,若ACD ∆的面积为10,则BCE ∆的面积为( )A .5B .6C .10D .4【答案】A 【解析】根据平移的性质可得AB=BD=CE ,再由三角形的面积计算公式求解即可.【详解】由平移得,AB=BD=CE ,CE ∥BD ,根据“等底等高,面积相等”得,S △ABC =S △BDC =S △CBE ,∵△ACD 的面积为10,∴S△CBE=12S△ACD=5.故选A.【点睛】此题主要考查了平移的性质,注意掌握性质的运用是解题的关键.9.在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm【答案】C【解析】分类讨论:当直线c在直线a,b之间或直线c不在直线a,b之间,然后利用平行线间的距离的意义分别求解.【详解】解:当直线c在直线a,b之间时∵a,b,c是三条平行的直线而a和b的距离为4cm,b和c的距离为1cm∴a和c的距离=4-1=3(cm);当直线c不在直线a,b之间时∵a,b,c是三条平行的直线而a和b的距离为4cm,b和c的距离为1cm∴a和c的距离=4+1=5(cm)综上所述,a与c的距离为3cm或5cm.故答案选择C.【点睛】本题考查了平行线之间的距离,从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,平行线间的距离处处相等,注意分类讨论.10.下列命题中,是真命题的是()A.三角形的一条角平分线将三角形的面积平分B.同位角相等C.如果a2=b2,那么a=bD.21 4x x-+是完全平方式【答案】D【解析】利用三角形的中线的性质、平行线的性质、实数的性质及完全平方式的定义分别判断后即可确定正确的选项.【详解】解:A、三角形的一条角中线将三角形的面积平分,故错误,是假命题;B、两直线平行,同位角相等,故错误,是假命题;C 、如果a 2=b 2,那么a =±b ,故错误,是假命题;D ,D. 214x x -+=21()2x -,是完全平方式,正确,是真命题, 故选:D .【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形的中线的性质、平行线的性质、实数的性质及完全平方式的定义,难度不大.二、填空题题11.某灯泡厂的一次质量检查,从3000个灯泡中抽查了300个,其中有6个不合格,则出现不合格灯泡的频率为_____.【答案】0.1【解析】频率=样本中满足条件的频数与样本总数据之比.【详解】解:频率=6÷300=0.1故答案为:0.1.【点睛】本题考查了频率的计算,掌握概念是解题的关键.12.计算:(3a+1)(3a ﹣1)=_____.【答案】9a 2﹣1【解析】直接根据平方差公式结算即可【详解】原式=(3a+1)(3a ﹣1)=9a 2﹣1故答案为=9a 2﹣1【点睛】此题考查平方差公式,难度不大13.如图,6AB cm =,4AC BD cm ==.CAB DBA ∠=∠,点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为()t s .设点Q 的运动速度为/x cm s ,若使得ACP BPQ ∆≅∆全等,则x 的值为_____.【答案】2【解析】根据全等三角形的性质可知PA=BQ ,根据路程、速度、时间之间的关系即可判断;【详解】解:ACP BPQ ∆≅∆,AP BQ∴=,运动时间相同,P∴,Q的运动速度也相同,2x∴=.故答案为2【点睛】本题考查全等三角形的性质,路程、速度、时间之间的关系等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.14.当x_________时,分式23x-有意义.【答案】≠3【解析】根据分式有意义,分母不为0解答.【详解】解:∵分式23x-有意义,∴x-3≠0,解得:x≠3,故答案为:≠3.【点睛】本题考查了分式有意义的条件,熟知分式有意义分母不为0是解题关键.15.如图,不添加辅助线,请写出一个能判定AB CD∥的一个条件是__________.【答案】∠1=∠2或∠1=∠3或∠1+∠4=180°【解析】平行线判定方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此可得结论.【详解】∠1与∠2是内错角,如果∠1=∠2,则两直线平行;∠1与∠3是同位角,如果∠1=∠3,则两直线平行;∠1与∠4是同旁内角,如果∠1+∠4=180°,两直线平行.故答案为:∠1=∠2或∠1=∠3或∠1+∠4=180°.【点睛】本题主要考查了平行线的判定,解答此类要围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索因”的思维方式与能力.16.一件夹克衫先按成本提高20%标价,再以9折出售,售价为270元,这件夹克衫的成本是_____.【答案】1.【解析】设这件夹克衫的成本是x元,根据售价=原价×(1+20%)×0.9,即可得出关于x的一元一次方程,解之即可得出结论.【详解】设这件夹克衫的成本是x元,依题意,得:(1+20%)×0.9x=270,解得:x=1.故答案是:1.【点睛】考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.17.不等式组360{420xx+≥->的所有整数解的和为_________.【答案】-2【解析】360 420xx+≥⎧⎨->⎩①②,由①得:x⩾−2,由②得:x<2,∴−2⩽x<2,∴不等式组的整数解为:−2,−1,0,1. 所有整数解的和为−2−1+0+1=−2.故答案为−2.三、解答题18.(1)计算:4|(2)解方程的253 x yx y+=⎧⎨+=⎩【答案】(1(2)12xy=⎧⎨=⎩【解析】(1)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.(2)应用加减消元法,求出方程组的解是多少即可.【详解】解:(1)4|=4(2)253x yx y+=⎧⎨+=⎩①②由①﹣②,得y=2,把y=2代入②,得x+2=3,解得:x=1,∴原方程组的解是12 xy=⎧⎨=⎩.【点睛】此题主要考查了实数的运算,以及解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.19.为了解某校学生的身高情况,王老师随机抽取该校男生、女生进行抽样调查,已知抽取的样本中,男生、女生人数相同,利用所得数据绘制如下统计图表:组别身高身高情况分组表根据图表提供的信息,回答下列问题:(1)样本中,女生身高在组的人数有_________人;(2)在上面的扇形统计图中,表示组的扇形的圆心角是_________°;(3)已知该校共有男生800人,女生760人,请估计该校身高在之间的学生约有多少人?【答案】(1)2;(2)18;(3)664人【解析】(1)先求出女生身高在E组所占的百分比,再求出女生总人数然后相乘即可得解;(2)用360°乘以E组所占的百分比,即可得到组的扇形的圆心角的度数;(3)分别用男、女生的人数乘以C、D两组的频率的和,计算即可得解.【详解】解:(1)女生身高在E组的百分比为:1-17.5%-37.5%-25%-15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E组的人数有:40×5%=2(人),故答案为:2(2)E组所在扇形的圆心角度数为:360°×5%=18°故答案为:18(3)(人).答:估计该校身高在之间的学生约有664人.【点睛】本题考查的是频数分布直方图以及扇形统计图的应用,掌握用样本估计总体的方法、正确读懂扇形图的信息、理解中位数和众数的概念是解题的关键.20.如图:已知OB⊥OX,OA⊥OC,∠COX=40°,若射线OA绕O点以每秒30°的速度顺时针旋转,射线OC绕O 点每秒10°的速度逆时针旋转, 两条射线同时旋转,当一条射线与射线OX重合时,停止运动.(1)开始旋转前,∠AOB=______________(2)当OA与OC的夹角是10°时,求旋转的时间.(3)若射线OB也绕O点以每秒20°的速度顺时针旋转,三条射线同时旋转,当一条射线与射线OX重合时,停止运动.当三条射线中其中一条射线是另外两条射线夹角的角平分线时,求旋转的时间.【答案】(1)∠AOB=40°;(2)∠AOC=10°时t=2或t=2.5;(3)t=0.5或t=2或t=2.1.【解析】(1)根据余角的性质求解即可;(2)分两种情况求解即可:①OA与OC相遇前∠AOC=10°, ②OA与OC相遇后∠AOC=10°;(3)分三种情况求解即可:①OB是OA与OC的角平分线,②OC是OA与OB的角平分线,③ OA是OB 与OC的角平分线.【详解】解:(1)∵∠AOB+∠BOC=90°, ∠COX+∠BOC=90°,∴∠AOB=∠COX=40°;(2)①OA 与OC 相遇前∠AOC=10°,即30t+10°+10t=90°,∴t=2;②OA 与OC 相遇后∠AOC=10°,即30t+10t=90°+10°,∴t=2.5,综上可得∠AOC=10°时t=2或t=2.5;(3) ①经分析知53秒时OB 与OC 重合,所以在53秒以前设运动t 1秒时,OB 是OA 与OC 的角平分线, 40+20t 1-30t 1=50-30 t 1,解得t 1=0.5;②经分析知54秒时OB 与OC 重合,94秒时OA 与OC 重合,所以在54秒到94秒间,OC 是OA 与OB 的角平分线,设运动t 2秒时,30t 2-50=90-40t 2,t 2=2;③4秒时OA 与OB 重合,所以在4秒以前设运动t 3秒时,OA 是OB 与OC 的角平分线,30t 3+10t 3-90=20t 3+40-30t 3,解得t 3=2.1.故运动t=0.5秒或t=2秒或t=2.1秒时,其中一条射线是另外两条射线夹角的平分线.【点睛】此题主要考查了一元一次方程的应用,本题将数与式的考查有机地融入“图形与几何”中,渗透“数形结合思想”、“方程思想”等,也是一道较优秀的操作活动型问题,难度程度--中.21.如图,已知A ∠的两边与D ∠的两边分别平行,且D ∠比A ∠的3倍少20︒,求D ∠的度数.【答案】130D ∠=︒【解析】根据∠A ,∠D 的两边分别平行,根据图形,所以∠A ,∠D 互补列出方程求解即可.【详解】设A x ∠=度,则()320D x ∠=-度因为AB DE ∥所以DGC A x ∠=∠=度.因为DF AC所以180DGC D ∠+∠=即320180x x +-=解得x=50°,320130x -=所以,130D ∠=度【点睛】本题考查了平行线的性质的应用,注意:在没有图形的情况下,如果一个角的两边分别和另一个角的两边分别平行,那么这两个角相等或互补.22.在平面直角坐标系xOy 中,点A 的坐标为(0,4),线段MN 的位置如图所示,其中点M 的坐标为(﹣3,﹣1),点N 的坐标为(3,﹣2).(1)将线段MN 平移得到线段AB ,其中点M 的对应点为A ,点N 的对称点为B .①点M 平移到点A 的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;②点B 的坐标为 ;(2)在(1)的条件下,若点C 的坐标为(4,0),连接AC ,BC ,求△ABC 的面积.【答案】(1)①右、3、上、5;②(6,3);(2)1.【解析】(1)由点M 及其对应点的A 的坐标可得平移的方向和距离,据此可得点N 的对应点B 的坐标; (2)运用割补法求解可得.【详解】(1)如图,①点M平移到点A的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;②点B的坐标为(6,3),故答案为:右、3、上、5、(6,3);(2)如图,S△ABC=6×4﹣12×4×4﹣12×2×3﹣12×6×1=1.【点睛】本题主要考查作图-平移变换,熟练掌握平移变换的定义及其性质是解题的关键.23.某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?【答案】应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.【解析】试题分析:设应分配x人生产甲种零件,则(60-x)人生产乙种零件,才能使每天生产的这两种种零件刚好配套,根据每人每天平均能生产甲种零件24个或乙种零件12个,可列方程求解.试题解析:设分配x人生产甲种零件,则共生产甲零件24x个和乙零件12(60-x),依题意得方程:24x=2312(60-x),解得x=15,60-15=45(人).答:应分配15人生产甲种零件,45人生产乙种零件,才能使每天生产的这两种零件刚好配套.考点:一元一次方程的应用.24.已知点A(-5,0)、B(3,0).(1)若点C 在y 轴上,且使得△ABC 的面积等于16,求点C 的坐标;(2)若点C 在坐标平面内,且使得△ABC 的面积等于16,这样的点C 有多少个?你发现了什么规律?【答案】(1)C(0,4)或(0,-4)(2)有无数个,这些点到x轴的距离都等于4;【解析】分析题意,结合已知,首先将AB的长度求出来,再根据三角形的面积公式确定出AB边上的高,从而得到点C的坐标,完成(1),注意点C在y轴上,对于(2),根据AB边上的高,即可确定这样的点C的个数和位置【详解】(1)∵A(-5,0),B(3,0),∴AB=8,∴12AB=4.又因为S△ABC=16,∴AB边上的高为4,∴点C的坐标为(0,4)或(0,-4).(2)∵到x轴距离等于4的点有无数个,∴在坐标平面内,能满足S△ABC=16的点C有无数个,这些点到x轴的距离等于4.【点睛】本题考查坐标与图形的性质,根据俩平行线间的距离推出有无数个点是解题关键.25.公园里有一条“Z”字形道路ABCD,如图所示,其中AB CD∥,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE CF=,M是BC的中点,试说明三只石凳E,F,M恰好在一条直线上.(提示:可通过证明180EMF=∠)【答案】详见解析【解析】先根据SAS 判定△BEM≌△CFM,从而得出∠BME=∠CMF.通过角之间的转换可得到E,M,F在一条直线上.【详解】证明:∵AB CD∥(已知)∴B C∠=∠(两直线平行,内错角相等)在EBM△与FCM△中,BE CFB CBM CM=⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(中点的意义)∴(...)EBM FCM S A S△≌△∴BME CMF∠=∠(全等三角形的对应角相等)∵180BMF CMF+=∠∠(平角的意义)∴180BMF BME∠+∠=(等量代换)∴E,M,F三点共线(平角的意义)【点睛】本题主要考查了学生对全等三角形的判定的掌握情况,关键是共线的证明方法.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列事件中,是必然事件的是()A.掷一枚质地均匀的硬币,一定正面向上B.将一滴花生油滴入水中,油会浮在水面上C.车辆随机到达一个路口,遇到红灯D.如果a2=b2,那么a=b【答案】B【解析】根据必然事件的定义即可求解.【详解】A. 掷一枚质地均匀的硬币,不一定正面向上,不是必然事件;B. 将一滴花生油滴入水中,油会浮在水面上,必然事件;C. 车辆随机到达一个路口,不一定遇到红灯,不是必然事件;D. 如果a2=b2,那么a=b或a=-b,不是必然事件;故选B.【点睛】此题主要考查必然事件的定义,一点发生的事情叫做必然事件.2.如图是一个运算程序的示意图,若开始输入x的值为81,则第2019次输出的结果为()A.3 B.27 C.9 D.1【答案】A【解析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,12×81=27,第2次,12×27=9,第3次,12×9=3,第4次,12×3=1,第5次,1+2=3,第6次,12×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2019是奇数,∴第2019次输出的结果为3,故选:A.【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.3.若x是方程2x+m﹣3(m﹣1)=1+x的解为负数,则m的取值范围是()A.m>﹣1 B.m<﹣1 C.m>1 D.m<1【答案】D【解析】首先将m看作常数解一元一次方程,再根据解为负数建立不等式求出m的取值范围.【详解】解:2x+m﹣3(m﹣1)=1+x,去括号得:2x+m﹣3m+3=1+x,移项得:2x﹣x=1﹣m+3m﹣3,合并同类项得:x=2m﹣2,∵方程的解为负数,即x<0,∴2m﹣2<0,解得:m<1,故选:D.【点睛】本题考查根据一元一次方程解的情况求参数,熟练掌握一元一次方程的解法,得到关于m的不等式是解题的关键.4.若3m=5,3n=2,则3m﹣2n等于()A.2516B.9 C.54D.52【答案】C【解析】直接利用同底数幂的乘除运算法则、幂的乘方运算法则将原式变形进而计算得出答案.【详解】∵3m=5,3n=2,∴3m﹣2n=3m÷(3n)2=5÷22=54.故选:C.【点睛】本题考查同底数幂的乘除法运算法则,逆向思维,将3m﹣2n转化为3m÷(3n)2是解题的关键.5.在数轴上表示实数a 和b 的点的位置如图所示,那么下列各式成立的是( )A .a b <B .a b >C .0ab >D .||||a b >【答案】B【解析】根据数轴上的点所表示的数,右边的总比左边的大,且离原点的距离越远,则该点所对应的数的绝对值越大,进行分析.【详解】解:A 、根据a 在b 的右边,则a >b ,故本选项错误;B 、根据a 在b 的右边,则a >b ,故本选项正确;C 、根据a 在原点的右边,b 在原点的左边,得b <0<a ,则ab <0,故本选项错误;D 、根据b 离原点的距离较远,则|b|>|a|,故本选项错误.故选:B .【点睛】此题考查了数轴上的点和实数之间的对应关系,同时能够根据点在数轴上的位置判断它们所对应的数之间的大小关系以及绝对值的大小关系.6.下列调查中,适合采用全面调查方式的是( )A .了解一批同种型号电池的使用寿命B .电视台为了解某栏目的收视率C .了解某水库的水质是否达标D .了解某班40名学生的100米跑的成绩 【答案】D【解析】利用普查和抽样调查的特点即可作出判断.【详解】解: A. 了解一批同种型号电池的使用寿命 , 破坏性强,适合采用抽样调查,故此选项错误;B. 电视台为了解某栏目的收视率, 人数众多,适合采用抽样调查,故此选项错误;C. 了解某水库的水质是否达标 , 无法普查,故不符合题意;D. 了解某班40名学生的100米跑的成绩, 人数较少,适合采用全面调查,故此选项正确;故选:D .【点睛】本题考查抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.为应对越来越复杂的交通状况,某城市对其道路进行拓宽改造,工程队在工作了一段时间后,因雨被迫停工几天,随后工程队加快了施工进度,按时完成了拓宽改造任务.下面能反映该工程尚未改造的道路(米)与时间(天)的关系的大致图象是()A.B.C.D.【答案】D【解析】根据y随x的增大而减小,即可判断选项A错误;根据施工队在工作了一段时间后,因雨被迫停工几天,即可判断选项B错误;根据施工队随后加快了施工进度得出y随x的增大减小得比开始的快,即可判断选项C、D的正误.【详解】解:∵y随x的增大而减小,∴选项A错误;∵施工队在工作了一段时间后,因雨被迫停工几天,∴选项B错误;∵施工队随后加快了施工进度,∴y随x的增大减小得比开始的快,∴选项C错误;选项D正确;故选:D.【点睛】本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键.8.如图,已知a∥b,∠1=75°,则∠2的度数是()A.35°B.75°C.105°D.125°【答案】C【解析】如图,∵a∥b,∴∠3=∠1=75°,∵∠2+∠3=180°,∴∠2=105°.故选C.9.将1.18×12-3化为小数的是( )A .2.222118B .2.22118C .2.2118D .2.118 【答案】B【解析】试题分析:科学记数法的标准形式为a×12n (1≤|a|<12,n 为整数).本题把数据“1.18×12-3中1.18的小数点向左移动3位就可以得到.试题解析:把数据“1.18×12-3中1.18的小数点向左移动3位就可以得到为2.22118.故选B .考点:科学记数法—原数.10.将0.00000573用科学记数法表示为( )A .0.573×10﹣5B .5.73×10﹣5C .5.73×10﹣6D .0.573×10﹣6 【答案】C【解析】根据绝对值小于1 的正数用科学计数法表示使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.00000573=5.73×610-.故选C.二、填空题题11.不等式332x a a -≤-的正整数解为1,2,则a 的取值范围是____________________.【答案】69a ≤<.【解析】根据不等式的性质求出不等式的解集,根据不等式的正整数解得出2≤3a <3,求出不等式的解集即可.【详解】解答:解:3x−3a≤−2a ,移项得:3x≤−2a +3a ,合并同类项得:3x≤a ,∴不等式的解集是x≤3a , ∵不等式3x−3a≤−2a 的正整数解为1,2,∴2≤3a <3, 解得:6≤a <1.故答案为:6≤a <1.【点睛】本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的解集得出2≤3a <3是解此题的关键.12.为了估计一个鱼池中鱼的条数,采用了如下方法:先从鱼池的不同地方捞出40 条鱼,给这些鱼做上记号后放回鱼池,过一段时间后,在同样的地方捞出200 条鱼,其中有记号的鱼有4条.请你估计鱼池中鱼的条数约为_________条.【答案】1【解析】先计算出有记号鱼的频率,再用频率估计概率,利用概率计算鱼的总数.【详解】解:设鱼的总数为x条,捞出有记号的鱼的频率近似等于4:200=40:x解得x=1.故答案为:1.【点睛】本题主要考查了频率=所求情况数与总情况数之比,关键是根据有记号的鱼的频率得到相应的等量关系,难度适中.13.在创建国家生态园林城市活动中,某市园林部门为了扩大城市的绿化面积,进行了大量的树木移栽.下表记录的是在相同的条件下移栽某种幼树的棵数与成活棵数:依此估计这种幼树成活的概率是__________.(结果用小数表示,精确到0.1)【答案】0.9【解析】分析:根据“某事件发生的概率与该事件发生的频率间的关系”进行分析解答即可.详解:由表中数据可知,当移栽的幼树棵数分别为100棵,1000棵和10000棵时,幼树成活的频率分别为:0.89、0.91、0.9,∴我们估计这种幼树成活的概率为:P(幼树成活)=0.9.故答案为:0.9.点睛:理解“在大次数的实验中,当某事件发生的频率逐渐稳定在一个常数周围小幅波动时,我们就说这个常数是该事件发生的概率”这句话的含义是正确解答本题的关键.14=_____.【答案】【解析】根据二次根式的性质,通过化简即可得到答案.故答案为23.【点睛】本题考查了二次根式的性质,解题的关键是用二次根式性质准确化简.15.已知.在△ABC中,∠B=3∠A,∠C﹣∠A=30°,则∠A的度数为_____.【答案】30°.【解析】设∠A=x°,则∠B=3x°,∠C=x°+30°,利用三角形内角等于180°列出方程,即可解决问题.【详解】解:设∠A=x°,则∠B=3x°,∠C=x°+30°,在△ABC中,∠A+∠B+∠C=180°,∴x+3x+x+30=180,∴x=30,即∠A=30°.故答案为:30°.【点睛】本题考查三角形内角和定理,解题的关键是学会构建方程解决问题.16.如图△ABC≌△ADE,若∠DAE=80°,∠C=30°,∠DAC=35°,AC、DE交于点F,则∠CFE的度数为________。
七年级(下)期末数学试卷题号一二三四总分得分一、选择题(本大题共12 小题,共 48.0 分)1. 以下实数中不是无理数的是()A. B. C. D.2. 的平方根是()A. B. C. D.3. 不等式组的解集在数轴上表示正确的选项是()A. B.C. D.4. 第四象限内的点P 到x 轴的距离为 3 y 轴的距离为 4 P 的坐标为(),到,则点A. B. C. D.5. 以下检查中,最适合采全面检查(普查)的是()A.认识某市市民对中美贸易争端的了解状况B.认识一批导弹的杀伤半径C.对“神州十一”号各零零件的检查D.认识重庆市民生活垃圾分类状况6. 3+的结果在以下哪两个整数之间().A.6和7B.5和6C.4和5D.3和47.如图,直线 AB∥CD, BC 均分∠ABD,若∠1=65 °,则∠2的大小为()A.B.C.D.8.有以下四个命题:①假如两条直线都与第三条直线平行,那么这两条直线也相互平行②两条直线被第三条直线所截,同旁内角互补③在同一平面内,假如两条直线都与第三条直线垂直,那么这两条直线也相互垂直④在同一平面内,过一点有且只有一条直线与已知直线垂直此中全部正确的命题是()A. ①②B. ②③C. ①④D. ③④9. 若a b 0)>>,则以下不等式不必定建立的是(A. B. C. D.A.,B.,C.,D.,11.察看以下图形规律,此中第 1 个图形由 6 个构成,第 2 个图形由14 个构成,第3 个图形由24 个构成,,照此规律下去,则第8个图形的个数一共是()A. 84B. 87C. 104D. 12312. 若对于 x 的方程4( 2-x)+x=ax 的解为正整数,且对于 x 的不等式组>有解,则知足条件的全部整数 a 的值之和是()A. 4B. 0C.D.二、填空题(本大题共 6 小题,共 24.0 分)13. 计算:+ =______.14.如图是一种丈量角的仪器,它依照的原理是______ .15.七年级( 1)班在一次数学抽测中某道选择题的答题状况的统计图以下所示,依据统计图可得选 C 的有 ______人.16.假如点P(a+2,a-3)向左平移 2 个单位长度正好落在y 轴上,那么点P 的坐标为______.17.如图,三条直线 AB、CD 、EF 订交于 O,且 CD ⊥EF ,∠AOE =68 °.若 OG 均分∠BOF ,则∠DOG=______度.18.某校在“筑梦少年正当时,不忘初心跟党走”知识竟赛中,七年级(2)班 2 人获一等奖, 1 人获二等奖, 3 人获三等奖,奖品价值 41 元;七年级( 7)班 1 人获一等三、计算题(本大题共 1 小题,共10.0 分)19.解以下方程组、不等式组:( 1)( 2)>四、解答题(本大题共7 小题,共68.0 分)20.达成下边推理过程:如图,已知 DE∥BC, DF 、BE 分别均分∠ADE 、∠ABC,可推得∠FDE =∠DEB 的原因:∵DE ∥BC(已知)∴∠ADE =______.( ______)∵DF 、 BE 分别均分∠ADE 、∠ABC,∴∠ADF = ______ ,∠ABE = ______.( ______)∴∠ADF =∠ABE∴DF ∥______.( ______)∴∠FDE =∠DEB .( ______)21.已知一个正数的两个平方根分别为 a 和 3a﹣8.( 1)求 a 的值,并求这个正数;( 2)求 1﹣7a2的立方根.22. 2018 “体彩杯”重庆开州汉丰湖半程马拉松赛开跑前一周,某校七年级数学研究学习小组在某十字路口随机检查部分市民对“半马拉松赛”的认识状况,统计结果后绘制了如图的两副不完好的统计图,请联合图中有关数据回答以下问题:得分A50< n≤ 60B60< n≤ 70C70< n≤ 80D80< n≤ 90E90< n≤ 100(1)本次检查的总人数为 ______人,在扇形统计图中“ C”所在扇形的圆心角的度数为 ______度;(2)补全频数散布图;( 3)若在这一周里,该路口共有 7000 人经过,请预计得分超出 80 的大概有多少人?23. 我区某中学体育组因高中教课需要本学期购进篮球和排球共80 个,共花销 5800 元,24.25. ( 2)因该中学秋天开学准备为初中也购置篮球和排球,教课资源实现共享,体育组提出还需购进相同的篮球和排球共 40 个,但学校要求花销不可以超出 2810 元,那么篮球最多能购进多少个(列不等式解答)?如图,已知BC∥GE, AF ∥DE ,∠1=56 °.(1)求∠AFG 的度数;(2)若 AQ 均分∠FAC ,交 BC 于点 Q,且∠Q=14°,求∠ACB的度数.设 x 是实数,此刻我们用 { x} 表示不小于 x 的最小整数,如 {3.2}=4 ,{-2.6}=-2 ,{4}=4 ,{-5}=5 .在此规定下任一实数都能写出以下形式:x={ x}- b,此中 0≤b< 1.(1)直接写出 { x} 与 x, x+1 的大小关系是 ______(由小到大);(2)依据( 1)中的关系式解决以下问题:①求知足 {3 x+11}=6 的 x 的取值范围;②解方程: {3.5 x+2}=2 x- .26. 已知在平面直角坐标系中,O 为坐标原点,点 A 的坐标为(1 a B 的坐标为,),点(b, 1),点 C 的坐标为( c, 0),此中 a、 b 知足( a+b-8)2+|a-b+2|=0 .(1)求 A、B 两点的坐标;(2)当△ABC 的面积为 6 时,求点 C 的坐标;(3)当 4≤S△ABC≤ 10时,求点 C 的横坐标 c 的取值范围.答案和分析1.【答案】D【分析】解:-π、、均为无理数,=2 是整数,属于有理数,应选:D.依据无理数的观点及算术平方根可得.本题主要考察了无理数的定义:无理数就是无穷不循环小数,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及,等有这样规律的数.2.【答案】B【分析】解:±=± .应选:B.依据一个正数有两个平方根,它们互为相反数进行解答即可.本题考察了平方根和立方根的观点.注意一个正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根.3.【答案】C【分析】组的解集在数轴上表示正确的选项是,解:不等式应选:C.表示出不等式组的解集,表示在数轴上即可.本题考察了在数轴上表示不等式的解集,熟练掌握运算法则是解本题的重点.4.【答案】C【分析】解:∵点 P 在第四象限且到 x 轴的距离是 3,到y 轴的距离是 4,∴点 P 的横坐标为 4,纵坐标为 -3,∴点 P 的坐标是(4,-3).依据第四象限内点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度求出点 P的横坐标和纵坐标,而后写出答案即可.本题考察了点的坐标,熟记点到 x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度以及第四象限内点的坐标特色求出点P的横坐标与纵坐标是解题的重点.5.【答案】C【分析】解:A 、检查某市市民对中美贸易争端的知晓状况人数多,耗时长,应该使用抽样检查,故本选项错误;B、检查一批导弹的杀伤半径,拥有损坏性,故应该采纳抽样检查;C、检核对“神州十一”号各零零件的检查,应该采纳全面检查,故本选项正确;D、检查重庆市民生活垃圾分类状况,范围广,耗时长,应该采纳抽样检查的方式,故本选项错误.应选:C.检查方式的选择需要将普查的限制性和抽样检查的必需性联合起来,详细问题详细剖析,普查结果正确,因此在要求精准、难度相对不大,实验无损坏性的状况下应选择普查方式,当考察的对象好多或考查会给被检核对象带来损害损坏,以及考察经费和时间都特别有限时,普查就遇到限制,这时就应选择抽样检查.本题考察了抽样检查和全面检查,由普查获得的检查结果比较正确,但所费人力、物力和时间许多,而抽样检查获得的检查结果比较近似.6.【答案】A【分析】解:直接利用 3<<4,从而得出答案.本题主要考察了估量无理数的大小,正确得出无理数靠近的整数是解题关键.7.【答案】C【分析】解:∵直线 AB ∥CD,若∠1=65°,∴∠1=∠ABC= ∠DCB=65°,∠2=∠CDB ,∵BC 均分∠ABD ,∴∠ABC= ∠CBD ,∴在三角形 BCD 中∠CBD+ ∠CDB+∠BCD=180°,∴∠CDB=180°-∠1-∠CBD=180°-65 -°65 °=50 °,∴∠2=50 °,应选:C.由平行线的性质获得∠ABC= ∠1=67°,由 BC 均分∠ABD ,获得∠ABD=2 ∠ABC ,再由平行线的性质求出∠2 的度数.本题考察了平行线的性质和角均分线定义等知识点,解本题的重点是求出∠ABD 的度数,题目较好,难度不大.8.【答案】C【分析】解:假如两条直线都与第三条直线平行,那么这两条直线也相互平行,因此① 正确;两条平行直线被第三条直线所截,同旁内角互补,因此② 错误;在同一平面内,假如两条直线都与第三条直线垂直,那么这两条直线平行,因此③ 错误;在同一平面内,过一点有且只有一条直线与已知直线垂直,因此④ 正确.应选:C.依据平行线的判断方法对①③ 进行判断;依据平行线的性质对② 进行判断;本题考察了命题与定理:判断一件事情的语句,叫做命题.很多命题都是由题设和结论两部分构成,题设是已知事项,结论是由已知事项推出的事项,一个命题能够写成“假如那么”形式. 2、有些命题的正确性是用推理证明的,这样的真命题叫做定理.9.【答案】A【分析】解:当c=0,则 ac>bc 不建立;当 a>b>0,则 a+c>b+c;<;ab>b 2.应选:A.举特比如 c=0,可对 A 进行判断;依据不等式性质,把 a>b>0 两边都加上 c 获得 B,都除以 ab 获得 C,都乘以 b 获得 D.本题考察了不等式性质:① 在不等式两边同加上或减去一个数(或式子),不等号方向不改变;② 在不等式两边同乘以或除以一个正数,不等号方向不改变;③ 在不等式两边同乘以或除以一个负数,不等号方向改变.10.【答案】D【分析】解:依据题意,得|a|-1=1,b 2=1,且a+2≠0,b-1≠0,解得,a=2,b=-1.应选:D.依据二元一次方程的定义列出对于 a、b 的二元一次方程,通过解方程组来求a,b 的值.主要考察二元一次方程的观点,要求熟习二元一次方程的形式及其特色:含有 2 个未知数,未知数的项的次数是 1 的整式方程.11.【答案】C【分析】重庆地区专用七年级(下)期末数学试卷(含答案)解:∵第 1 个图形由 6 个构成,6=1×(1+5),第 2 个图形由 14 个构成,14=2×(2+5),第 3 个图形由 24 个构成,24=3×(3+5),∴第 n 个图形的个数是 n(n+5),∴第 8 个图形的个数 8×(8+5)=104.应选:C.依据第 1 个图形由6 个构成,第2 个图形由 14 个构成,第3 个图形由 24个组成,得出第 n 个图进图形的个形的个数是 n(n+5),而获得第 8 个数.本题考察了规律型:图形的变化类,经过察看图形得出第 n 个图形的个数是题的关键.n(n+5)是解12.【答案】D【分析】解:4(2-x)+x=ax,8-4x+x=ax ,ax-x+4x=8 ,(a+3)x=8,x=,∵对于 x 的方程 4(2-x)+x=ax 的解为正整数,∴a+3=1 或 a+3=2 或 a+3=4 或 a+3=8,解得:a=-2 或 a=-1 或 a=1 或 a=4;解不等式①得:x<1,解不等式②得:x≥a,∵对于 x 的不等式组有解,∴a<1,∴a 只好为-1 和 -2,-1+(-2)=-3,先求出方程的解x=,依据方程的解为正整数求出a的值,再依据不等式组有解得出 a<1,得出 a 的值,即可得出选项.本题考察认识一元一次方程、解一元一次不等式和解一元一次不等式组等知识点,能得出 a 的取值范围和 a 的值是解本题的重点.13.【答案】12【分析】解:原式=8+4=12.故答案为:12.直接利用二次根式的性质以及立方根的性质分别化简得出答案.本题主要考察了实数运算,正确化简各数是解题重点.14.【答案】对顶角相等【分析】解:丈量角的仪器依照的原理是:对顶角相等.故答案为:对顶角相等.依据对顶角相等的性质解答.本题考察了对顶角相等的性质,是基础题,熟记性质是解题的重点.15.【答案】28【分析】解:10÷20%×56%=28(人)故答案为 28.依据 D 的人数除以 D 所占的百分比,可得抽测的总人数,再乘以 C 所占的百分比,可得答案.本题考察的是条形统计图的综合运用.读懂统计图,从统计图中获得必需的信息是解决问题的重点.条形统计图能清楚地表示出每个项目的数据.16.【答案】(2,-3)【分析】解:点P(a+2,a-3)向左平移 2 个单位长度所得点的坐标为(a,a-3),∵向左平移 2 个单位长度正好落在 y 轴上,则点 P 的坐标为(2,-3),故答案为:(2,-3).依据横坐标,右移加,左移减获得平移后点的坐标为(a+2-2,a-3),再依据y 轴上的点横坐标为 0 可得 a+2-2=0,算出 a 的值,可得点 P 的坐标.本题主要考察了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.掌握点的坐标的变化规律是解题的关键.同时考察了 y 轴上的点横坐标为 0 的特色.17.【答案】56【分析】解:∵CD⊥EF,∴∠COE=90°,∵∠AOE=68°,∴∠AOC=∠BOD=22°,∠BOF=68°,∵OG 均分∠BOF,∴∠BOG=∠BOF=34°,∴∠DOG=∠DOB+ ∠BOG=56°.故答案为:56.直接利用垂直的定义得出∠AOC=∠BOD 的度数,再利用角均分线的定义得出答案.本题主要考察了垂线以及角均分线的定义和角的计算,正确应用垂直的定义是解题重点.18.【答案】33【分析】解:设一等奖奖品的单价为 x 元/个,二等奖奖品的单价为 y 元/个,三等奖奖品的单价为 z 元/ 个,依据题意得:,2×② -①,得:5y+3z=33.故答案为:33.设一等奖奖品的单价为 x 元/个,二等奖奖品的单价为 y 元/个,三等奖奖品的个一等奖、3 个二等奖、3 个三等将奖品价值 37 元”,即可得出对于 x、y、z 的三元一次方程组,利用 2×② -①即可求出结论.本题考察了三元一次方程组,找准等量关系,正确列出三元一次方程组是解题的重点.19.【答案】解:(1)①,②①+②,得: 4x=12 ,解得: x=3,将 x=3 代入①,得: 3+2y=1,解得: y=-1 ,因此方程组的解为;( 2)解不等式x-3( x-2)≤4,得: x≥1,解不等式> x-1,得: x<4,则不等式组的解集为1≤x<4.【分析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可得.本题考察的是解一元一次不等式组与二元一次方程组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的重点.20.【答案】∠ABC;两直线平行,同位角相等;∠ADE;∠ABC;角均分线定义;BE;同位角相等,两直线平行;两直线平行,内错角相等【分析】解:原因是:∵DE∥BC(已知),∴∠ADE= ∠ABC (两直线平行,同位角相等),∵DF、BE 分别均分 ADE 、∠ABC ,∴∠ADF=∠ADE,∠ABE=∠ABC(角均分线定义),∴∠ADF= ∠ABE ,∴DF∥BE(同位角相等,两直线平行),故答案为:∠ABC ,两直线平行,同位角相等,∠ADE ,∠ABC ,角均分线定义,BE,同位角相等,两直线平行,两直线平行,内错角相等.依据平行线的性质得出∠ADE= ∠ABC ,依据角均分线定义得出∠ADF=∠ADE ,∠ABE= ∠ABC ,推出∠ADF= ∠ABE ,依据平行线的判断得出DF∥BE 即可.本题考察了平行线的性质和判断的应用,能熟记平行线的性质和判断定理是解本题的重点.21.【答案】解:(1)依据题意,得:a+3 a-8=0,解得: a=2,因此这个正数为22=4;2( 2)当 a=2 时, 1-7a =-27 ,2【分析】(1)依据平方根的性质一个正数有两个平方根,它们互为相反数列出算式,求出 a 的值,进一步求解可得;(2)求出1-7a 2的值,依据立方根的观点求出答案.本题考察了平方根和立方根的观点.注意一个正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0 的立方根是 0.22.【答案】200;108【分析】解:(1)本次检查的总人数为 20÷10%=200 人,在扇形统计图中“C”所在扇形的圆心角的度数为 360°×=108°,故答案为:200、108;(2)80<n≤90的人数为 200-(10+20+60+20)=90,补全频数散布图以下:计 过 80 的大 约 有 7000×=3850人. (3)估 得分超(1)由B 组人数及其所占百分比可得 总人数,用 360°乘以 C 组的人数所占比 例可得;组 总 人数求得 D 组 人数即可 补 全 图 形; (2)依据各 人数之和等于总 样 本中 D 、E 组 人数和所占比率.(3)用 人数乘以本 题 考 查 条形 统计图 统计图 样 计总 体,解答本 题 的关 键 是明 、扇形 、用 本估 确题意,找出所求问题需要的条件.利用数形 联合的思想解答. 23. x 个,购进排球 y 个,【答案】 解:( 1)设购进篮球依据题意得:,解得:.答:购进篮球 60 个,购进排球 20 个.( 2)设购进篮球 m 个,则购进排球( 40-m )个,依据题意得: 80m+50 ( 40-m ) ≤2810,解得: m ≤27. 答:篮球最多能购进27 个.【分析】(1)设购进篮 球 x 个,购进排球 y 个,依据“购进篮 球和排球共 80 个,共花销5800 元 ”,即可得出对于 x 、y 的二元一次方程 组,解之即可得出结论;(2)设购进篮 球 m 个,则购进排球(40-m )个,依据总价 =单价×数目联合花销不可以超出 2810 元,即可得出对于 m 的一元一次不等式,解之取此中的最大值本题考察了二元一次方程组的应用以及一元一次不等式的应用,解题的重点是:(1)找准等量关系,正确列出二元一次方程组;(2)依据各数目之间的关系,正确列出一元一次不等式.24.【答案】解:(1)∵BC∥EG,∴∠E=∠1=56 °.∵AF ∥DE,∴∠AFG=∠E=56 °;(2)作 AM∥BC,∵BC ∥EG,∴AM ∥EG,∴∠FAM =∠AFG =56 °.∵AM ∥BC,∴∠QAM=∠Q=14 °,∴∠FAQ=∠FAM +∠QAM =70 °.∵AQ 均分∠FAC ,∴∠QAC=∠FAQ =70 °,∴∠MAC=∠QAC+∠QAM =84 °.∵AM ∥BC,∴∠ACB=∠MAC =84 °.【分析】(1)先依据BC∥EG 得出∠E=∠1=56°,再由 AF ∥DE 可知∠AFG=∠E=56°;(2)作AM ∥BC,由平行线的传达性可知 AM ∥EG,故∠FAM= ∠AFG,再依据 AM ∥BC 可知∠QAM= ∠Q,故∠FAQ= ∠FAM+∠QAM ,再依据 AQ 均分∠FAC 可知∠MAC= ∠QAC+ ∠QAM=84°,依据 AM ∥BC 即可得出结论.本题考察的是平行线的性质,用到的知识点为:两直线平行,同位角相等.25.【答案】x≤{x}<x+1【分析】解:(1)∵x={x}-b ,此中 0≤b< 1,∴b={x}-x ,即 0≤{x}-x< 1,∴x ≤ {x}< x+1,故答案为:x≤{x}<x+1,(2)①∵{3x+11}=6 ,∴3x+11 ≤6<(3x+11)+1,解得:-2<x≤-,第17 页,共 19页∴3.5x+2 ≤-2x<(3.5x+2)+1,且2x-为整数,解不等式组得:-<x≤-,∴-<2x-≤-3,整数2x-为-4,解得:x=-,即原方程的解为:x=-.(1)x={x}-b ,此中 0≤b<1,b={x}-x ,即0≤{x}-x<1,即可判断三者的大小关系,(2)依据(1)中的关系获得对于 x 的一元一次不等式组,解之即可,②依据(1)中的关系获得对于 x 的一元一次不等式组,且2x- 为整数,即可求解.本题考察解一元一次不等式组和解一元一次方程,依据题意找出切合要求的关系式并列出对于x 的一元一次不等式组是解题的重点.26.【答案】解:(1)∵(a+b-8)2+|a-b+2|=0.∴,解得,∴A( 1, 3), B( 5, 1);( 2)①如图 1 中,当点 C 在直线 AB 的下方时,作 AE⊥x 轴于 E,BF ⊥x 轴于 F.设 C ( c, 0).∵S△ABC=S 四边形AEFB -S△AEC -S△BCF = ×( 1+3)×4- ×3×( c-1)- ×1×( 5-c)=7-c,∴7-c=6解得 c=1 .②如图 2 中,当点 C 在直线 AB 的上方时,作 AE⊥x 轴于 E,BF⊥x 轴于 F .设 C( c,0).∵S△ABC=S△AEC -S 四边形AEFB -S△BCF = ×3×( c-1) - ×(1+3 )×4- ×1×( c-5)=c-7,∴c-7=6 ,解得 c=13,∴知足条件的点 C 坐标为( 1, 0)或( 13, 0).(3)由( 2)可知,当点 C 在直线 AB 下方时, S△ABC =7-c,∴4≤7-c≤ 10,∴-3≤c≤3,当点 C 在直线 AB 是上方时, S△ABC =c-7,∴4≤c-7≤ 10,∴11 ≤c≤ 17,综上所述,知足条件的 c 的取值范围为-3≤c≤3或 11≤c≤17.【分析】(1)利用非负数的性质,把问题转变为方程组解决即可;(2)分两种情况画出图形,分别建立方程即可解决问题;(3)分两种情况分别建立不等式即可解决问题;本题考察三角形的面积、非负数的性质、坐标与图形的性质等知识,解题的重点是娴熟掌握基本知识,学会用分类议论的思想思虑问题,属于中考常考题型.。
重庆市2019版七年级下学期期末数学试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 点P的横坐标是-3,且到x轴的距离为5,则P点的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-5)2 . 不等式3x≥﹣6的解集在数轴上表示为()A.B.C.D.3 . 如果,那么m的取值范围是()A.B.C.D.4 . 若,则的值为()A.-4B.4C.-2D.5 . 已知a,b,c均为实数,若a>b,c≠0.下列结论不一定正确的是()D.c﹣a<c﹣b A.a+c>b+c B.a2>abC.6 . 下列说法正确的是()A.有理数包括正有理数和负有理数B.﹣a2一定是负数C.34.37°=34°22′12″D.两个有理数的和一定大于每一个加数7 . 在下列调查中,适宜采用全面调查的是()A.了解我省中学生视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全民新闻》栏目的收视率8 . 七年级学生计划乘客车去春游,如果减少一辆客车,每辆车正好坐60人.如果增加一辆客车,每辆正好坐45人,则七年级共有学生()A.240人B.300人C.360人D.420人9 . 在平面直角坐标系中,把点A(3,5)向下平移3个单位长度,再向左平移2个单位长度后,得对应点A1的坐标是()A.(1,2)B.(2,1)C.(﹣1,2)D.(﹣1,﹣2)10 . 如图,AB∥CD,BC平分∠ABD,∠1=50°,则∠2的度数是()A.B.C.D.二、填空题11 . 如图,木工师傅在工件上作平行线时,只要用角尺画出工件(长方形ABCD)边缘的两条垂线即可,则a∥b,理由是_____________________.12 . 如图,AB∥CD,EP平分∠BEF,FP平分∠DFE,则∠P=______.13 . 如图,以边长为4+4的等边三角形AOB的顶点O为坐标原点,边OA所在直线为x轴建立平面直角坐标系,点B在第一象限,在边OB上有一点P为OB的黄金分割点(PO>PB),那么点P的坐标是__.14 . 如图,两个完全相同的正五边形ABCDE,AFGHM的边DE,MH在同一直线上,且有一个公共顶点A,若正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,则x的最小值为_____.15 . “如果两个角相等,那么这两个角是对顶角.”这个命题的条件_________________________________,结论是_________________________________.16 . 定义:是不为1的有理数,我们把称为的衍生数.如:2的衍生数是,的衍生数是.已知,是的衍生数,是的衍生数,是的衍生数,……,依此类推,则.17 . 若等腰三角形的两边长分别为 4 和 8,则周长为_________.18 . 若关于x的方程3x-2a=0和2x+3a-13=0的解相同,则a=_____.三、解答题19 . 先化简,再从不等式组的整数解中选一个合适的的值代入求值.20 . 如图,长方形ABCD中放置9个形状、大小都相同的小长方形,相关数据图中所示,则图中阴影部分的面积为多少.21 . 计算:﹣4sin60°﹣|3﹣2|22 . 如图所示,AB,CD相交于点O,OE平分∠AOD,∠AOC=120°,求∠BOD,∠AOE的度数.23 . 某市民营经济持续发展,2017年城镇民营企业就业人数突破20万.为了解城镇民营企业员工每月的收入状况,统计局对全市城镇民营企业员工2017年月平均收入随机抽样调查,将抽样的数据按“2000元以内”、“2000元~4000元”、“4000元~6000元”和“6000元以上”分为四组,进行整理,分别用A,B,C,D表示,得到下列两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)本次抽样调查的员工有.人,在扇形统计图中x 的值为.,表示“月平均收入在2000元以内”的部分所对应扇形的圆心角的度数是.;(2)将不完整的条形图补充完整,并估计该市2017年城镇民营企业20万员工中,每月的收入在“2000元~4000元”的约多少人?24 . 用加减法解方程组其解题过程如下:,得,解得.把号代入①,得,解得.所以这个方程组的解为.上述解题过程是否正确?若不正确,请写出正确的解题过程.25 . 某书店老板去图书批发市场购买某种图书,第一次用500元购书若干本,很快售完由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用900元所购该书的数量比第一次的数量多了10本.(1)求第一次购书每本多少元?(2)如果这两次所购图书的售价相同,且全部售完后总利润不低于25%,那么每本图书的售价至少是多少元?26 . 某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,求:(1)此时轮船与小岛P的距离BP是多少海里;(2)小岛点P方圆3海里内有暗礁,如果轮船继续向东行使,请问轮船有没有触焦的危险?请说明理由.27 . 如图所示,在平面直角坐标系中有四边形ABCA.(1)写出四边形ABCD的顶点坐标;(2)求线段AB的长;(3)求四边形ABCD的面积.28 . 在如图所示的方格中,每个小正方形的边长为1,点在方格纸中小正方形的顶点上.(1)按下列要求画图;①过点画的平行线AD;②过点画的垂线;(2)计算的面积.。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.不等式6﹣4x ≥3x ﹣8的非负整数解为( )A .2个B .3个C .4个D .5个【答案】B【解析】移项得,﹣4x ﹣3x≥﹣8﹣6,合并同类项得,﹣7x≥﹣14,系数化为1得,x≤1.故其非负整数解为:0,1,1,共3个.故选B .2.在平面直角坐标系中,点M (﹣2,1)在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】∵点P 的横坐标为负,纵坐标为正,∴该点在第二象限.故选B .3.8的立方根是( )A .2B .±2C .2D .±2 【答案】A【解析】根据立方根的定义进行选择即可.【详解】8的立方根是2.故选:A .【点睛】本题考查了立方根的定义,掌握立方根的定义是解题的关键.4.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价( )A .40%B .20%C .25%D .15% 【答案】B【解析】不妨把原价看做单位“1”,设应降价,则提价25%后为1+25%,再降价后价格为. 欲恢复原价,则可列方程为,解得,故选B . 5.如图,在五边形ABCDE 中,A B E α∠+∠+∠=,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度教是( )A.1902α-B.1902α︒+C.12αD.15402α︒-【答案】A【解析】根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【详解】∵五边形的内角和等于540°,∠A+∠B+∠E=α,∴∠BCD+∠CDE=540°-α,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=12(∠BCD+∠CDE)=270°-12α,∴∠P=180°-(270°-12α)=12α-90°.故选:A.【点睛】此题考查多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.6.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是()A.某市5万名初中毕业生的中考数学成绩B.被抽取500名学生C.被抽取500名学生的数学成绩D.5万名初中毕业生【答案】C【解析】解:样本是从总体中所抽取的一部分个体,故选C7.点M(m+3,m+1)在x轴上,则点M坐标为()A.(0,﹣4)B.(2,0)C.(﹣2,0)D.(0,﹣2)【答案】B【解析】直接利用x轴上点的坐标特点得出m的值,进而得出答案.【详解】∵点M(m+3,m+1)在x轴上,∴m+1=0,解得:m=-1,故m+3=2,则点M坐标为:(2,0).故选B.【点睛】此题主要考查了点的坐标,正确得出m的值是解题关键.8.如图,直线AB与直线CD相交于点O,OE⊥AB,垂足为O,若∠EOD=13∠AOC,则∠BOC=()A.112.5°B.135°C.140°D.157.5°【答案】A【解析】根据平角、直角及角的和差关系可求出∠AOC+∠EOD=90°,再与已知∠EOD=13∠AOC联立,求出∠AOC,利用互补关系求∠BOC.【详解】解:∵∠COD=180°,OE⊥AB,∴∠AOC+∠AOE+∠EOD=180°,∠AOE=90°,∴∠AOC+∠EOD=90°,①又∵∠EOD=13∠AOC,②由①、②得,∠AOC=67.5°,∵∠BOC与∠AOC是邻补角,∴∠BOC=180°-∠AOC=112.5°.故选:A.【点睛】此题主要考查了对顶角、余角、补角的关系.解题时注意运用邻补角的性质:邻补角互补,即和为180°.9.如图,在△ABC中,AB=10,AC=6,BC=8,将△ABC折叠,使点C落在AB边上的点E处,AD是折痕,则△BDE的周长为()A.6 B.8 C.12 D.14【答案】C【解析】利用勾股定理求出AB=10,利用翻折不变性可得AE=AC=6,推出BE=4即可解决问题.【详解】在Rt △ABC 中,∵AC=6,BC=8,∠C=90°,∴AB 2268=+=10,由翻折的性质可知:AE=AC=6,CD=DE ,∴BE=4,∴△BDE 的周长=DE+BD+BE=CD+BD+E=BC+BE=8+4=1.故选:C . 【点睛】本题考查翻折变换,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 10.已知方格纸中的每个小方格是边长为1的正方形,A B ,两点在小方格的格点上,位置如图所示,在小方格的格点上确定一点C ,连接AB AC BC ,,,使ABC △的面积为3个平方单位,则这样的点C 共有( )个A .2B .4C .5D .6【答案】D 【解析】首先在AB 的两侧各找一个点,使得三角形的面积是1.再根据两条平行线间的距离相等,过两侧的点作AB 的平行线,交了几个格点就有几个点.【详解】如图,符合条件的点有6个.【点睛】本题考查三角形的面积和坐标与图形的性质,解题的关键是掌握坐标与图形的性质.二、填空题题11.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为______万元.【答案】65.410⨯【解析】试题分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.解:5 400 000=5.4×1万元.故答案为5.4×1.考点:科学记数法—表示较大的数.12.如图,直线a∥b,Rt△ABC的直角顶点C在直线b上,∠1=20°,则∠2=_____°.【答案】2【解析】根据题中条件列式计算得到∠3,根据两直线平行,同位角相等可得∠3=∠1.【详解】解:∵∠1=10°,∴∠3=90°﹣∠1=2°,∵直线a∥b,∴∠1=∠3=2°,故答案是:2.【点睛】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.13.若方程组24221x y kx y k+=⎧⎨+=+⎩的解满足0<y﹣x<1,则k的取值范围是_______.【答案】12<k<1.【解析】本题有两种方法:(1)解方程组求出x、y的值,代入0<y﹣x<1进行计算;(2)①﹣②可得y ﹣x=2k﹣1,将y﹣x看做一个整体来计算.【详解】①﹣②可得y﹣x=2k﹣1,于是:0<2k﹣1<1,解得12<k<1.故答案为:12<k<1【点睛】采用整体思想,虽然在认识上有一定难度,但计算量较小,建议同学们提高认识,以提高解题的效率.14.“微信”已成为人们日常交流的一种重要工具,前不久在“微信群”中看到如下一幅图片,被群友们所热议.请你运用初中所学数学知识求出桌子的高度应是__________.【答案】130 cm【解析】设桌子高xcm,坐猫为acm,卧猫为bcm。
2018-2019学年重庆市九龙坡区七年级(下)期末数学试卷(考试时间:120分钟 满分:150分)一选择题:本大题共12小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的代号填涂在答题卡上. 1.在实数,0,﹣,﹣33,﹣中,最小的实数是( )A .B .0C .﹣.﹣3 3D .﹣2.在平面直角坐标系中,点(﹣.在平面直角坐标系中,点(﹣11,2)在( )A .第一象限B .第二象限C .第三象限D .第四象限3.已知a <b ,则下列不等式中不正确的是( )A .B .ac ac<<bcC .﹣.﹣4a 4a 4a>﹣>﹣>﹣4b 4bD .a ﹣4<b ﹣44.下列调查中,最适合全面调查的是( )A .了解重庆电视台新闻频道的收视率B .了解九龙坡区所有初一学生的视力情况C .重庆市食品安全监察局对某品牌的粽子进行质量检测D .对乘坐重庆到北京川航3U8829的乘客所携带的物品5.如图,下列条件中能判定直线l 1∥l 2的是( )A .∠.∠11=∠=∠2 2B .∠.∠1+1+1+∠∠3=180180°°C .∠.∠11=∠=∠5 5D .∠.∠33=∠=∠5 56.下列说法中,正确的是( )A .如果两条直线被第三条直线所截,那么所得同位角相等.如果两条直线被第三条直线所截,那么所得同位角相等B .联结直线外一点到直线上各点的所有连线中,垂线最短.联结直线外一点到直线上各点的所有连线中,垂线最短C .经过平面上一点,有且只有一条直线与已知直线平行D .经过平面上一点,有且只有一条直线与已知直线垂直7.关于x 的不等式组的解集为x <3,则m 的取值范围为( )A .m ≤3B .m <3C .m >3D .m ≥3 8.关于x 、y 的方程组的解是,则的平方根是( ) A .﹣.﹣3 3 B .±.±3 3 C .± D .9.已知两点A (﹣(﹣33,m ),B (n ,4),AB AB⊥⊥y 轴,轴,AB AB AB==9,则m ﹣n 的值为( )A .﹣.﹣2 2B .﹣.﹣16 16C .﹣.﹣22或﹣或﹣16 16D .﹣.﹣22或161010.某单位在一快餐店订了.某单位在一快餐店订了22盒盒饭,共花费280元,盒饭共有甲、乙、丙三种,它们的单价分别为16元、元、1010元、元、88元,那么可能的不同订餐方案有( )A .4种B .3种C .2种D .1种 1111.已知.已知a ﹣b =2,a ﹣c =,则(,则(b b ﹣c )3﹣3(b ﹣c )+的值为( )A .B .0C .D .﹣1212.已知关于.已知关于x 的不等式组有且只有7个整数解,则a 的取值范围是( ) A .﹣.﹣44≤a <﹣<﹣3 3 B .﹣.﹣44<a <﹣<﹣3 3C .﹣.﹣44<a ≤﹣≤﹣3 3D .﹣.﹣44≤a <﹣<﹣3 3 二.填空题:本大题6个小题,每小题4分,共24分.请把答案填写在答题卡相应的位置上.1313.计算:.计算:(﹣(﹣22)2+|1+|1﹣﹣﹣= .1414.命题“如果.命题“如果.命题“如果|x+1||x+1||x+1|==1+x 1+x,那么,那么x ≥0”是 命题.(选填“真”或“假”) 1515.如图,.如图,.如图,AB AB AB∥∥CD CD,,CB 平分∠平分∠ABD ABD ABD,若∠,若∠,若∠C C =5050°,则∠°,则∠°,则∠D D = 度.1616.一种饮料有两种包装,.一种饮料有两种包装,.一种饮料有两种包装,66大盒,大盒,44小盒共装104瓶:瓶:44大盒,大盒,99小盒共装120瓶;大盒和小盒每盒各装多少瓶?设一个大盒装x 瓶,一个小盒装y 瓶,则可列方程组为 .1717.如图,两个直角三角形重叠在一起,将△.如图,两个直角三角形重叠在一起,将△.如图,两个直角三角形重叠在一起,将△ABC ABC 沿点B 到点C 的方向平移到△的方向平移到△DEF DEF 的位置,的位置,AB AB AB==1212,,DH DH==5,平移距离为6,则图中阴影部分的面积为 .1818.如图,.如图,.如图,AC AC AC⊥⊥BD 于点C ,E 是AB 上一点,上一点,CE CE CE⊥⊥CF CF,,DF DF∥∥AB AB,,EH 平分∠平分∠BEC BEC BEC,,DH 平分∠平分∠BDG BDG BDG,若∠,若∠,若∠H H =5555°,°,则∠则∠ACF ACF 的度数为 .三.解答题:本大题7个小题,每小题10分,共70分.解答时应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应的位置上.1919..(10分)解方程组: (1); ((2);2020..(10分)解不等式组,并把解集在数轴上表示出来.2121..(10分)在如图所示的正方形网格中,每个小正方形的边长均为1. (1)在所给的平面直角坐标系中描出点A (﹣(﹣33,4),B (﹣(﹣11,1),C (1,3),并画出△,并画出△ABC ABC ABC;;(2)将△)将△ABC ABC 向右平移4个单位长度,再向下平移6个单位长度,得到△个单位长度,得到△A A 1B 1C 1请画出△请画出△A A 1B 1C 1并分别写出点A 1,B 1,C 1的坐标;(3)求△)求△ABC ABC 的面积.2222..(10分)在平面直角坐标系中,有A (0,a ),B (b ,0)两点,且a ,b 满足b = (1)求A ,B 两点的坐标;(2)若点P 在x 轴上,且△轴上,且△PAB PAB 的面积为6,求点P 的坐标.2323..(10分)某校七年级的大课间活动,有四类活动项目:分)某校七年级的大课间活动,有四类活动项目:A A .跑步;.跑步;B B .跳绳;.跳绳;C C .健身操;.健身操;D D .踢毽.学校规定:每位学生都必须参加大课间活动且只能选择一类活动项目七年级的张老师随机抽取了本年级部分学生选择大课间的活动项目进行了调查统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)请求出张老师随机抽取调查的学生人数,并将条形统计图补充完整;(2)扇形统计图中B 对应的圆心角是 度;(3)若该年级共有1000名学生,请估计该年级参加跑步活动项目的学生人数比参加跳绳活动项目的学生人数多多少人?2424..(10分)如图,已知CD CD⊥⊥AB 于点D ,DE DE∥∥AC 交BC 点E ,EF EF⊥⊥AB 于点F ,DG DG∥∥BC 交AC 于点G ,且∠,且∠DEF DEF =∠=∠BEF BEF BEF,求证:∠,求证:∠,求证:∠GDC GDC GDC=∠=∠=∠GCD GCD GCD..2525..(10分)某手机经销商计划同时购进一批甲、乙两种型号手机,若购进2部甲型号手机和1部乙型号手机,共需要资金8400元;若购进3部甲型号手机和2部乙型号手机,共需要资金13800元.(1)求甲、乙型号手机每部进价各为多少元?(2)该店计划购进甲乙两种型号的手机销售,预计用不多于5.52万元且不少于5.28万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若甲型号手机的售价为4500元,乙型号手机的售价为4200元,为了促销,无论采取哪种进货方案,公司决定每售出一台乙型号手机,返还顾客相同现金a 元,而甲型号手机售价不变,要使(元,而甲型号手机售价不变,要使(22)中所有方案获利相同,求a 的值.四.解答题:本大题8分•解答时应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应的位置上.2626..(10分)已知点A 在平面直角坐标系中第一象限内,将线段AO 平移至线段BC BC,其中点,其中点A 与点B 对应.(1)如图1,若A (1,3),B (3,0),连接AB AB,,AC AC,在坐标轴上存在一点,在坐标轴上存在一点D ,使得S △AOD =2S △ABC , 求点D 的坐标;(2)如图2,若∠,若∠AOB AOB AOB==6060°,点°,点P 为y 轴上一动点(点P 不与原点重合),请直接写出∠,请直接写出∠CPO CPO 与∠与∠BCP BCP 之间的数量关系(不用证明).参考答案与试题解析一.选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的代号填涂在答题卡上.>﹣33,1.【解答】解:∵>0>﹣>﹣∴所给的各数中,最小的实数是﹣33.∴所给的各数中,最小的实数是﹣故选:C C.故选:【解答】解:点(﹣11,2)在第二象限.2.【解答】解:点(﹣故选:B B.故选:【解答】解:A A、不等式的两边都除以一个正数,不等号的方向不变,故A正确;3.【解答】解:B、不等式的两边都乘以c,由于c不确定是正数或0或负数,不等号的方向不变或改变不确定,故B不正确;C、不等式的两边都乘以同一个负数,不等号的方向改变,故C正确;D、不等式的两边都加或都减同一个整式,不等号的方向不变,故D正确;故选:B B.故选:【解答】解:A A.了解重庆电视台新闻频道的收视率的调查适合抽样调查;4.【解答】解:B.了解九龙坡区所有初一学生的视力情况的调查适合抽样调查;C.重庆市食品安全监察局对某品牌的粽子进行质量检测的调查适合抽样调查;D.对乘坐重庆到北京川航3U8829的乘客所携带的物品的调查适合全面调查.故选:D D.故选:5.【解答】解:=∠22不能推出l1∥l2,故本选项错误;、根据∠11=∠【解答】解:A A、根据∠°能推出l1∥l2,故本选项正确;180°能推出∠3=180B、根据∠、根据∠1+1+1+∠=∠55不能推出l1∥l2,故本选项错误;C、根据∠、根据∠11=∠=∠55不能推出l1∥l2,故本选项错误;D、根据∠、根据∠33=∠故选:B B.故选:【解答】解:A A.如果两条平行直线被第三条直线所截,那么所得同位角相等,故本选项错误; 6.【解答】解:B.联结直线外一点到直线上各点的所有连线中,垂线段最短,故本选项错误;.经过直线外一点,有且只有一条直线与已知直线平行,故本选项错误;C.经过直线外一点,有且只有一条直线与已知直线平行,故本选项错误;D.经过平面上一点,有且只有一条直线与已知直线垂直,故本选项正确;故选:D D.故选:7.【解答】解:不等式组变形得:, 由不等式组的解集为x <3,得到m 的范围为m ≥3,故选:故选:D D .8.【解答】解:把代入方程组得:, 则==3,3的平方根是±,故选:故选:C C .9.【解答】解:∵【解答】解:∵A A (﹣(﹣33,m ),B (n ,4),AB AB⊥⊥y 轴,轴,AB AB AB==9,∴m =4,n =6或n =﹣=﹣121212,,当m =4,n =6时,时,m m ﹣n =﹣=﹣22;当m =4,n =﹣=﹣1212时,时,m m ﹣n =1616;;综上,综上,m m ﹣n =﹣=﹣22或1616,,故选:故选:D D .1010..【解答】解:设甲盒饭、乙盒饭分别有x 盒、盒、y y 盒,则丙盒饭有(盒,则丙盒饭有(222222﹣﹣x ﹣y )盒. 根据题意,得16x+10y+816x+10y+8((2222﹣﹣x ﹣y )=)=280280280,,整理,得8x+2y 8x+2y==104104,,所以所以 y y y==5252﹣﹣4x 4x..又 0 0<<x <2222,,0<y <2222,,0<2222﹣﹣x ﹣y <2222,,则7.57.5<<x <1313,且,且x 、y 为整数,则x =8,9,1010,,1111,,1212..当x =8时,时,y y =2020,,2222﹣﹣x ﹣y =﹣=﹣66,不符合题意,舍去.当x =9时,时,y y =1616,,2222﹣﹣x ﹣y =﹣=﹣33,不符合题意,舍去.当x =10时,时,y y =1212,,2222﹣﹣x ﹣y =0,不符合题意,舍去.当x =11时,时,y y =8,2222﹣﹣x ﹣y =3,符合题意.当x =12时,时,y y =4,2222﹣﹣x ﹣y =6,符合题意所以,可能的不同订餐方案有2种.故选:故选:C C .1111..【解答】解:∵【解答】解:∵a a ﹣b =2,a ﹣c =,∴(∴(a a ﹣c )﹣()﹣(a a ﹣b )=)=b b ﹣c =, ∴原式=(∴原式=(b b ﹣c )[(b ﹣c )2﹣3]+=×(﹣3)+=+=,故选:故选:C C .1212..【解答】解:解不等式x ﹣a ≥0,得x ≥a , 解不等式5﹣2x 2x>﹣>﹣>﹣33,得x <4,∵不等式组只有7个整数解,∴不等式组的整数解为3、2、1、0、﹣、﹣11、﹣、﹣22、﹣、﹣33,则﹣则﹣44<a ≤﹣≤﹣33,故选:故选:C C .二.填空题:本大题6个小题,每小题4分,共24分.请把答案填写在答题卡相应的位置上.1313..【解答】解:原式=【解答】解:原式=4+4+﹣1﹣3 =.故答案为:. 1414..【解答】解:∵【解答】解:∵|x+1||x+1||x+1|==1+x 1+x,,∴x+1x+1≥≥0,∴x ≥﹣≥﹣11,∴原命题是假命题,故答案为:假.1515..【解答】解:∵【解答】解:∵CB CB 平分∠平分∠ABD ABD ABD,,∴∠∴∠ABC ABC ABC=∠=∠=∠CBD CBD CBD,,∵AB AB∥∥CD CD,,∴∠∴∠ABC ABC ABC=∠=∠=∠C C ,∴∠∴∠CBD CBD CBD=∠=∠=∠C C =5050°,°,故答案为:故答案为:808080.. 1616..【解答】解:设一个大盒装x 瓶,一个小盒装y 瓶,则可列方程组为:.故答案为:. 1717..【解答】解:∵将△【解答】解:∵将△ABC ABC 沿点B 到点C 的方向平移到△的方向平移到△DEF DEF 的位置, ∴S △ABC =S △DEF ,∴S 阴=S 梯形ABEH =×(×(12+1212+1212+12﹣﹣5)×)×66=5757,,故答案是:故答案是:575757..1818..【解答】解:延长EC EC,交,交DH 于K ,∵∠∵∠EKD EKD EKD=∠=∠=∠HEC+HEC+HEC+∠∠H ,∠,∠ECD ECD ECD=∠=∠=∠EKD+EKD+EKD+∠∠HDC HDC,,∴∠∴∠ECD ECD ECD=∠=∠=∠HEC+HEC+HEC+∠∠HDC+HDC+∠∠H ,∵DF DF∥∥AB AB,,∴∠∴∠B B =∠=∠BDG BDG BDG,,∵EH 平分∠平分∠BEC BEC BEC,,DH 平分∠平分∠BDG BDG BDG,∠,∠,∠H H =5555°,°,∴∠∴∠HEC HEC HEC==∠BEC BEC,∠,∠,∠HDC HDC HDC==∠B ,∵∠∵∠BEC BEC BEC=∠=∠=∠A+A+A+∠∠ACE ACE,,∴∠∴∠HEC HEC HEC==∠A+∠ACE ACE,,∴∠∴∠ECD ECD ECD==∠A+∠ACE+∠B+B+∠∠H ,∵AC AC⊥⊥BD BD,,∴∠∴∠A+A+A+∠∠B =9090°,°,∴∠∴∠ECD ECD ECD==4545°°+∠ACE+55ACE+55°,°,∵AC AC⊥⊥BD BD,,∴∠∴∠ECD ECD ECD==9090°°+∠ACE ACE,,∴9090°°+∠ACE ACE==4545°°+∠ACE+55ACE+55°,°,∴∠∴∠ACE ACE ACE==2020°,°,∵CE CE⊥⊥CF CF,,∴∠∴∠ACF ACF ACF==9090°﹣∠°﹣∠°﹣∠ACE ACE ACE==7070°,°,三.解答题:本大题7个小题,每小题10分,共70分.解答时应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应的位置上.1919..【解答】解:(1),①+②得:②得:7x 7x 7x==7,解得:解得:x x =1,把x =1代入①得:代入①得:y y =﹣,则方程组的解为; (2)方程组整理得:,①×①×8+8+8+②×②×②×55得:得:47x 47x 47x=﹣=﹣=﹣141141141,,解得:解得:x x =﹣=﹣33,把x =﹣=﹣33代入②得:代入②得:y y =2,则方程组的解为. 2020..【解答】解:,由不等式①得,由不等式①得,x x <,由不等式②得,由不等式②得,x x ≥0,在数轴上表示如下:所以,不等式组的解集是0≤x <.2121..【解答】解:(1)如图所示,△)如图所示,△ABC ABC 即为所求.(2)如图所示,△)如图所示,△A A 1B 1C 1即为所求,其中A 1(1,﹣,﹣22),B 1(3,﹣,﹣55),C 1(5,﹣,﹣33);(3)△)△ABC ABC 的面积为×(×(2+32+32+3)×)×)×44﹣×2×3﹣×2×2=5.2222..【解答】解:(1)依题意,得:,解得a =﹣=﹣22;则b =﹣=﹣33.所以A (0,﹣,﹣22),B (﹣(﹣33,0);(2)设P (x ,0),由题意知,|x+3||x+3|××2=6.解得x =3或x =﹣=﹣99.所以点P 的坐标(的坐标(33,0)或(﹣)或(﹣99,0). 2323..【解答】解:(1)张老师随机抽取调查的学生人数1414÷÷35%35%==4040(人)(人), D 项目人数为4040﹣(﹣(﹣(14+12+1014+12+1014+12+10)=)=)=44(人), 补全图形如下:(2)扇形统计图中B 对应的圆心角是360360°×°×=108108°,°,故答案为:故答案为:108108108;;(3)估计该年级参加跑步活动项目的学生人数比参加跳绳活动项目的学生人数多10001000××=50(人). 2424..【解答】证明:∵【解答】证明:∵CD CD CD⊥⊥AB AB,,EF EF⊥⊥AB AB,,∴CD CD∥∥EF EF,,∴∠∴∠11=∠=∠DEF DEF DEF,∠,∠,∠22=∠=∠BEF BEF BEF,,又∵∠又∵∠DEF DEF DEF=∠=∠=∠BEF BEF BEF,,∴∠∴∠11=∠=∠22,∵DE DE∥∥AC AC,,DG DG∥∥BC BC,,∴∠∴∠11=∠=∠GCD GCD GCD,∠,∠,∠22=∠=∠GDC GDC GDC,,∴∠∴∠GDC GDC GDC=∠=∠=∠GCD GCD GCD..2525..【解答】解:(1)设甲型号手机每部进价为x 元,乙型号手机每部进价为y 元,依题意,得:,解得:. 答:甲型号手机每部进价为3000元,乙型号手机每部进价为2400元.(2)设购进甲型号手机m 部,则购进乙型号手机(部,则购进乙型号手机(202020﹣﹣m )部,依题意,得:, 解得:解得:88≤m ≤1212,,∵m 为整数,∴m =8,9,1010,,1111,,1212,,∴共有5种进货方案.(3)设获得的利润为w 元,依题意,得:依题意,得:w w =(=(450045004500﹣﹣30003000))m+m+((42004200﹣﹣24002400﹣﹣a )(2020﹣﹣m )=()=(a a ﹣300300))m+36000m+36000﹣﹣20a 20a,,∵w 的值与m 无关,∴a ﹣300300==0,解得:,解得:a a =300300..答:答:a a 的值为300300..四.解答题:本大题8分•解答时应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应的位置上.2626..【解答】解:(1)由线段平移,)由线段平移,A A (1,3)平移到B (3,0), 即向右平移2个单位,再向下平移3个单位,点O (0,0)平移后的坐标为()平移后的坐标为(22,﹣,﹣33), 可得出C (2,﹣,﹣33), 所以S △ABC =,∴S △AOD =9,而△,而△AOD AOD 的高是1,∴△∴△AOD AOD 的底为1818..∴D (6,0)或D (﹣(﹣66,0)或()或(00,﹣,﹣181818)或()或()或(00,1818)); (2)延长BC 交y 轴于E 点,利用OA OA∥∥BC 及∠及∠AOB AOB AOB==6060°,°,∴∠∴∠AOY AOY AOY=∠=∠=∠BEY BEY BEY==3030°,再用三角形的内角和为°,再用三角形的内角和为180180°,°,分三种情况可求:①当P 在y 轴的正半轴上时:∠轴的正半轴上时:∠BCP BCP BCP=∠=∠=∠CPO+30CPO+30CPO+30°.°.②当P 在y 轴的负半轴上时:ⅰ:若P 在E 点上方(含与E 点重合)时,∠点重合)时,∠BCP+BCP+BCP+∠∠CPO CPO==210210°.°.ⅱ:若P 在E 点下方时,∠点下方时,∠BCP BCP BCP=∠=∠=∠CPO+150CPO+150CPO+150°.°.综合可得:∠CPO 与∠与∠BCP BCP 的数量关系是:∠BCP BCP=∠=∠=∠CPO+30CPO+30CPO+30°或∠°或∠°或∠BCP+BCP+BCP+∠∠CPO CPO==210210°或∠°或∠°或∠BCP BCP BCP=∠=∠=∠CPO+150CPO+150CPO+150°.°.。
重庆市2019年七年级下学期期末数学试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 今年我区有近8000名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近8000名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量2 . 下列方程中,三元一次方程共有()(1)x + y + z = 3;(2) x · y · z = 3;(3) ;(4) .A.1个B.2个C.3个D.4个3 . 下列命题是真命题的是A.两个锐角的和一定是钝角B.两条平行线被第三条直线所截,同旁内角的平分线互相垂直C.两条直线被第三条直线所截,同旁内角互补D.直线外一点到这条直线的垂线段,叫做这点到该直线的距离4 . 在绘制频数分布直方图时,一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成()组;A.10B.9C.8D.不能确定5 . 在3.14,,,﹣,2π,中,无理数有()个.A.1个 B. 2个 C. 3个 D. 4个6 . 下列各式中正确的是()A.若a>b,则a﹣1<b﹣1B.若a>b,则a2>b2C.若a>b,则ac>bcD.若>,则a>b7 . 将方程3x﹣y=1变形为用x的代数式表示y()A.3x=y+1C.y=1﹣3x D.y=3x﹣1B.x=8 . 如图,O为直线AB上一点,∠DOC为直角,OE平分∠AOC,OG平分∠BOC,OF平分∠BOD,下列结论错误的是()A.∠DOG与∠BOE互补B.∠AOE-∠DOF=45°C.∠EOD与∠COG互补D.∠AOE与∠DOF互余9 . 如果甲图上的点P(-2,4)经过平移变换之后Q(-2,2),则甲图上的点M(1,-2)经过这样平移后的对应点的坐标是()A.(1,-4)B.(-4,-4)C.(1,3)D.(3,-5)10 . 下列语句中,正确的个数有()①同位角相等,两直线平行;②若两个角的和为180°,则这两个角互补;③同旁内角相等,两直线平行;④内错角相等,两直线平行.A.4个B.3个C.2个D.1个二、填空题11 . 某班男、女生人数之比是3:2,制作扇形统计图是女生对应的扇形的圆心角是____________(度).12 . 已知关于x的不等式组有且只有1个整数解,则a的取值范围是________.13 . 4的平方根等于_____.14 . 的算术平方根是_______.15 . 已知点A(-1,0)和点B(1,2),将线段AB平移至A´B´与点A对应,若点A´的坐标为(1,-3),则点B´的坐标为___________________.16 . 如图,在平面直角坐标系中,直线l:与x轴交于点,以为边长作等边三角形,过点作平行于x轴,交直线l于点,以为边长作等边三角形,过点作平行于x轴,交直线l于点,以为边长作等边三角形,,则点的坐标是______.三、解答题17 . ,,为的角平分线.(1)如图1,若,则______;若,则______;猜想:与的数量关系为______(2)当绕点按逆时针旋转至图2的位置时,(1)的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在中作射线,使,且,直接写出______.18 . 如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHA.(1)求证:AB∥CD;(2)若∠EHF=80°,∠D=40°,求∠AEM的度数。
2019年重庆市沙坪坝区七年级下期末数学真题卷一、选择题:(本大题12个小题,每小题4分,共48分)1.(4分)下列方程是一元一次方程的是()A.2x﹣3y=0 B.x﹣1=0 C.x2﹣3=x D.2.(4分)如图图形中,是轴对称图形的是()A.B.C.D.3.(4分)解方程组时,把①代入②,得()A.2(3y﹣2)﹣5x=10 B.2y﹣(3y﹣2)=10C.(3y﹣2)﹣5x=10 D.2y﹣5(3y﹣2)=104.(4分)若三角形的两边长分别为3和8,则第三边的长可能是()A.3 B.4 C.5 D.65.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(4分)若x=5是关于x的方程ax=5+2x的解,则a的值等于()A.20 B.15 C.4 D.37.(4分)由方程组可得出x与y的关系式是()A.x+y=8 B.x+y=1 C.x+y=﹣1 D.x+y=﹣8 8.(4分)某商场将A商品按进货价提高50%后标价,若按标价的八折销售可获利40元,设该商品的进货价为x元,根据题意列方程为()A.0.8×(1+50%)x=40 B.8×(1+50%)x=40C.0.8×(1+50%)x﹣x=40 D.8×(1+50%)x﹣x=409.(4分)如图,△ABC≌△DCB,∠A=80°,∠DBC=40°,则∠DCA的度数为()A.20°B.25°C.30°D.35°10.(4分)已知:|2x+y﹣3|+(x﹣3y﹣5)2=0,则y x的值为()A.1 B.﹣1 C.2 D.﹣211.(4分)如图,将一张正三角形纸片剪成四个全等的正三角形,得到4个小正三角形,称为第一次操作;然后,将其中的一个正三角形再剪成四个小正三角形,共得到7个小正三角形,称为第二次操作;再将其中的一个正三角形再剪成四个小正三角形,共得到10个小正三角形,称为第三次操作;…,以上操作n次后,共得到49个小正三角形,则n的值为()A.n=13 B.n=14 C.n=15 D.n=1612.(4分)如图,点D为△ABC边BC的延长线上一点.∠ABC的角平分线与∠ACD的角平分线交于点M,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的角平分线与∠NCB的角平分线交于点Q,若∠A=48°,则∠BQC的度数为()A.138°B.114°C.102°D.100°二、填空题:(本大题6个小题,每小题4分,共24分)13.(4分)方程3x=6的解为.14.(4分)将一副直角三角板如图放置,使两直角重合,则∠1=度.15.(4分)已知是方程组的解,则a+b=.16.(4分)方程与方程1=x+7的解相同,则m的值为.17.(4分)关于x的方程k﹣2x=3(k﹣2)的解为非负数,且关于x的不等式组有解,则符合条件的整数k的值的和为.18.(4分)假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过小时车库恰好停满.三、解答题:(本大题2个小题,每小题8分,共16分)19.(8分)(1)解方程:2+3(x﹣2)=2(3﹣x);(2)解不等式:﹣1.20.(8分)如图,格点△ABD在长方形网格中,边BD在直线l上.(1)请画出△ABD关于直线l对称的△CBD;(2)将四边形ABCD平移得到四边形A1B1C1D1,点A的对应点A1的位置如图所示,请画出平移后的四边形A1B1C1D1.四、解答题:(本大题4个小题,每小题10分,共40分)21.(10分)解不等式组,并写出不等式组的最大整数解.22.(10分)李师傅要为某单位修建正多边形花台,已知正多边形花台的一个外角的度数比一个内角度数的多12°,请你帮李师傅求出这个正多边形的一个内角的度数和它的边数.23.(10分)沙坪坝区2017年已经成功创建国家卫生城区,现在正全力争创全国文明城区(简称“创文”).某街道积极响应“创文”活动,投入一定资金用于绿化一块闲置空地,购买了甲、乙两种树木共72棵,其中甲种树木每棵90元,乙种树木每棵80元,共用去资金6160元.(1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了a%,且总费用不超过6804元,求a的最大值.24.(10分)如图,在四边形ABCD中,∠B+∠ADC=180°,CE平分∠BCD交AB于点E,连结DE.(1)若∠A=50°,∠B=85°,求∠BEC的度数;(2)若∠A=∠1,求证:∠CDE=∠DCE.五、解答题:(本大题2个小题,25小题10分,26小题12分,共22分).25.(10分)我们知道,任意一个正整数a都可以进行这样的分解:a=m×n(m,n是正整数,且m≤n),在a的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是a的最佳分解.并规定:F(a)=.例如:12可以分解成1×12,2×6,3×4,因为|1﹣12|>|2﹣6|>|3﹣4|,所以3×4是12的最佳分解,所以F(12)=.(1)求F(18)﹣F(16);(2)若正整数p是4的倍数,我们称正整数p为“四季数”.如果一个两位正整数t,t=10x+y(1≤x<y≤9,x,y为自然数),交换个位上的数字与十位上的数字得到的新两位正整数减去原来的两位正整数所得的差为“四季数”,那么我们称这个数t为“有缘数”,求所有“有缘数”中F(t)的最小值.26.(12分)在△ABC中,AD⊥BC于点D.(1)如图1,若∠BAC的角平分线交BC于点E,∠B=42°,∠DAE=7°,求∠C的度数;(2)如图2,点M、N分别在线段AB、AC上,将△ABC折叠,点B落在点F处,点C 落在点G处,折痕分别为DM和DN,且点F,点G均在直线AD上,若∠B+∠C=90°,试猜想∠AMF与∠ANG之间的数量关系,并加以证明;(3)在(2)小题的条件下,将△DMF绕点D逆时针旋转一个角度α(0°<α<360°),记旋转中的△DMF为△DM1F1(如图3).在旋转过程中,直线M1F1与直线AB交于点P,直线M1F1与直线BC交于点Q.若∠B=28°,是否存在这样的P、Q两点,使△BPQ为直角三角形?若存在,请直接写出旋转角α的度数;若不存在,请说明理由.2019年重庆市沙坪坝区七年级下期末数学真题卷参考答案与解析一、选择题:(本大题12个小题,每小题4分,共48分)1.B【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、含有两个未知数,不是一元一次方程;B、符合一元一次方程的定义;C、未知项的最高次数为2,不是一元一次方程;D、分母中含有未知数,不是一元一次方程.2.D【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;3.D【分析】根据二元一次方程组解法中的代入消元法求解.【解答】解:把①代入②得:2y﹣5(3y﹣2)=10,4.D【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,小于:3+8=11.则此三角形的第三边可能是:6.5.A【分析】先根据不等式组求出解集,然后在数轴上准确的表示出来即可.【解答】解:原不等式组可化简为:.∴在数轴上表示为:6.D【分析】把x=5代入方程ax=5+2x组成一次方程,即可解答.【解答】解:把x=5代入方程ax=5+2x,可得:5a=5+10,解得:a=3,7.A【分析】将第二个方程代入第一个方程消去m即可得.【解答】解:,将②代入①,得:x+y﹣1=7,则x+y=8,8.C【分析】首先理解题意找出题中存在的等量关系:0.8×(1+50%)x﹣x=40,根据此列方程即可.【解答】解:设这件的进价为x元,则这件衣服的标价为(1+50%)x元,打8折后售价为0.8×(1+50%)x元,可列方程为0.8×(1+50%)x﹣x=40,9.A【分析】根据全等三角形的性质得到∠D=∠A=80°,∠ACB=DBC=40°,根据三角形内角和定理求出∠DCB,计算即可.【解答】解:∵△ABC≌△DCB,∴∠D=∠A=80°,∠ACB=DBC=40°,∴∠DCB=180°﹣∠D﹣∠DBC=60°,∴∠DCA=∠DCB﹣∠ACB=20°,10.A【分析】根据几个非负数和的性质得到,利用①×3+②得6x+x﹣9﹣5=0,可解得x=2,再代入①可求出y=﹣1,然后利用乘方的意义计算y x.【解答】解:∵|2x+y﹣3|+(x﹣3y﹣5)2=0,∴,①×3+②得6x+x﹣9﹣5=0,解得x=2,把x=2代入①得4+y﹣3=0,解得y=﹣1,∴y x=(﹣1)2=1.11.D【分析】根据已知得出第n次操作后,正三角形的个数为3n+1,据此求解可得.【解答】解:∵第一次操作后得到4个小正三角形,第二次操作后得到7个小正三角形;第三次操作后得到10个小正三角形,∴第n次操作后,正三角形的个数为3n+1.则:49=3n+1,解得:n=16,故若要得到49个小正三角形,则需要操作的次数为16次.12.C【分析】依据∠ABC的角平分线与∠ACD的角平分线交于点M,即可得到∠M=∠DCM ﹣∠DBM=24°,依据∠NBC的角平分线与∠NCB的角平分线交于点Q,即可得到∠Q =180°﹣(∠CBQ+∠BCQ)=102°.【解答】解:∵∠ABC的角平分线与∠ACD的角平分线交于点M,∴∠DCM=∠ACD,∠DBM=∠ABC,∴∠M=∠DCM﹣∠DBM=(∠ACD﹣∠ABC)=∠A=24°,由折叠可得,∠N=∠M=24°,又∵∠NBC的角平分线与∠NCB的角平分线交于点Q,∴∠CBQ=∠CBN,∠BCQ=∠BCN,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(∠CBN+∠BCN)=180°﹣×(180°﹣∠N)=90°+∠N=102°,二、填空题:(本大题6个小题,每小题4分,共24分)13.x=2【分析】直接将原方程系数化1,即可求得答案.【解答】解:3x=6,系数化1得:x=2.14.165【分析】由题意得出∠CAD=60°、∠B=45°、∠CAB=120°,根据∠1=∠B+∠CAB可得答案.【解答】解:如图,由题意知,∠CAD=60°,∠B=45°,∴∠CAB=120°,∴∠1=∠B+∠CAB=45°+120°=165°,15.﹣2【分析】解题关键是把方程组的解代入原方程组,使方程组转化为关于a和b的二元一次方程组,再解方程组.【解答】解:把代入方程组中,可得:,解得:,所以a+b=﹣2,16.﹣21【分析】求出方程1=x+7的解,把x的值代入方程得出一个关于m的方程,求出m即可.【解答】解:1=x+7,x=﹣6,∵方程与方程1=x+7的解相同,∴把x=﹣6代入方程得:﹣3+=﹣6﹣4,=﹣7,m=﹣21,17.5【分析】先求出方程的解与不等式组的解集,再根据题目中的要求求出相应的k的值即可解答本题.【解答】解:解方程k﹣2x=3(k﹣2),得:x=3﹣k,由题意得3﹣k≥0,解得:k≤3,解不等式x﹣2(x﹣1)≤3,得:x≥﹣1,解不等式≥x,得:x≤k,∵不等式组有解,∴k≥﹣1,则﹣1≤k≤3,∴符合条件的整数k的值的和为﹣1+0+1+2+3=5,18.【分析】设1个进口1小时开进x辆车,1个出口1小时开出y辆,根据题意列出方程组求得x、y,进一步代入求得答案即可.【解答】解:设1个进口1小时开进x辆车,1个出口1小时开出y辆,车位总数为a,由题意得解得:,则60%a÷(2×﹣)a=小时答:从早晨6点开始经过小时车库恰好停满.三、解答题:(本大题2个小题,每小题8分,共16分)19.(8分)(1)x=2 (2)x<0.【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)2+3(x﹣2)=2(3﹣x),2+3x﹣6=6﹣2x,3x+2x=6+6﹣2,5x=10,x=2;(2)去分母得:2x+3﹣6>3(x﹣1),2x+3﹣6>3x﹣3,2x﹣3x>﹣3+6﹣3,﹣x>0,x<0.20.(8分)【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△CBD即为所求;(2)如图所示:四边形A1B1C1D1,即为所求.四、解答题:(本大题4个小题,每小题10分,共40分)21.(10分)【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式2x﹣4≤3(x+1)得:x≥﹣7,解不等式得:x<﹣,∴不等式组的解集是﹣7≤x<﹣,∴该不等式组的最大整数解为﹣4.22.(10分)【分析】设这个多边形的一个内角的度数是x°,则相邻的外角度数是x°+12°,得出方程x+x+12=180,求出x,再根据多边形的外角和等于360°求出边数即可.【解答】解:设这个多边形的一个内角的度数是x°,则相邻的外角度数是x°+12°,则x+x+12=180,解得:x=140,这个正多边形的一个内角度数是140°,180°﹣140°=40°,所以这个正多边形的边数是=9.23.(10分)【分析】(1)设甲种树苗购买了x棵,乙种树苗购买了y棵,根据总费用=单价×数量结合“购买了甲、乙两种树木共72棵,共用去资金6160元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总费用=单价×数量结合总费用不超过6804元,即可得出关于a的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设甲种树苗购买了x棵,乙种树苗购买了y棵,根据题意得:,解得:.答:甲种树苗购买了40棵,乙种树苗购买了32棵.(2)根据题意得:90×(1+a%)×40+80×(1﹣a%)×32≤6804,解得:a≤25.答:a的最大值为25.24.(10分)【分析】(1)求出∠A+∠BCD=180°,求出∠BCD,求出∠BCE,根据三角形内角和定理求出即可;(2)根据三角形内角和定理和∠A+∠BCD=180°求出∠CDE=∠BCE,即可得出答案.【解答】(1)解:∵∠B+∠ADC=180°,∠A+∠B+∠BCD+∠ADC=360°,∴∠A+∠BCD=180°,∵∠A=50°,∴∠BCD=130°,∵CE平分∠BCD,∴∠BCE=∠BCD=65°,∵∠B=85°,∴∠BEC=180°﹣∠BCE﹣∠B=180°﹣65°﹣85°=30°;(2)证明:∵由(1)知:∠A+∠BCD=180°,∴∠A+∠BCE+∠DCE=180°,∵∠CDE+∠DCE+∠1=180°,∠1=∠A,∴∠BCE=∠CDE,∵CE平分∠BCE,∴∠DCE=∠BCE,∴∠CDE=∠DCE.五、解答题:(本大题2个小题,25小题10分,26小题12分,共22分)25.(10分)【分析】(1)根据题意求出F(18),F(16)的值代入即可.(2)根据题意列出二元一次方程,解的所有可能性,求出F(t)最小值.【解答】解:(1)∵F(18)=2,F(16)=1∴F(18)﹣F(16)=1(2)根据题意得:10y+x﹣(10x+y)=4k(k为正整数)∴9(y﹣x)=4k∴y﹣x=4,或y﹣x=8且1≤x<y≤9∴y=5,x=1y=6,x=2,y=7,x=3y=8,x=4y=9,x=5y=9,x=1∴两位正整数为15,26,37,48,59,19∴F(15)=,F(26)=,F(37)=37,F(48)=,F(59)=59,F(19)=19∴F(t)的最小值为26.(12分)【分析】(1)利用三角形的内角和定理即可解决问题;(2)结论:∠AMF=∠ANG.由翻折可知:∠B=∠F,∠C=∠DGN,由∠B+∠C=90°,推出∠BAC=90°,∠F+∠DGN=90°,推出∠BAD+∠CAD=90°,由∠BAD=∠F+∠AMF,∠CAD=∠DGN﹣∠ANG,推出∠F+∠AMF+∠DGN﹣∠ANG=90°,可得∠AMF=∠ANG;(3)分两种情形分别求解即可解决问题;【解答】解:(1)如图1中,∵AD⊥BC,∴∠ADB=∠ADC=90°在Rt△AED中,∵∠EAD=7°,∴∠AED=83°,∵∠AED=∠B+∠BAE,∠B=42°,∴∠BAE=∠CAE=41°,∴∠BAC=82°,∴∠C=180°﹣42°﹣82°=56°.(2)结论:∠AMF=∠ANG.理由:如图2中,由翻折可知:∠B=∠F,∠C=∠DGN,∵∠B+∠C=90°,∴∠BAC=90°,∠F+∠DGN=90°,∴∠BAD+∠CAD=90°,∵∠BAD=∠F+∠AMF,∠CAD=∠DGN﹣∠ANG,∴∠F+∠AMF+∠DGN﹣∠ANG=90°,∴∠AMF=∠ANG.(3)①当∠PQB=90°时,∵∠B=∠F′=28°,∴∠F′DQ=90°﹣28°=62°,∵∠FDB=90°,∴∠FDF′=90°﹣62°=28°,∴旋转角为28°.②当∠BPQ=90°时,∠B=∠F′=28°,∴∠PQB=90°﹣28°=62°,∵∠PQB=∠F′+∠F′DB,∴∠F′DB=62°﹣28°=34°,∴∠FDF′=90°﹣34°=56°,∴旋转角为56°,同法可得当旋转角为208°或236°时,也满足条件,综上所述,满足条件的旋转角为28°或56°.和208°或236°.。
2019年重庆一中七年级下期末数学真题卷一、选择题:(本大题共12个小题,每小题4分,共48分)1.(4分)﹣的相反数是()A.B.﹣C.5 D.﹣52.(4分)下列几何图形中不是轴对称图形的是()A.B.C.D.3.(4分)下列计算正确的是()A.(﹣a3)2=a5B.a6×a4=a24C.a4÷a3=a D.a4﹣a4=a0 4.(4分)下列事件是必然事件的是()A.打开电视,正在播放《大国工匠》B.袋中只有10个球,且都是红球,任意摸出一个球是红球C.5年后数学课代表会考上清华大学D.2015年全年由367天5.(4分)下列给定的三条线段中,不能组成直角三角形的是()A.9,12,15 B.0.5,1.2,1.3C.7,8,9 D.7,24,256.(4分)若x+y=3,则(x﹣y)2+4xy+1的值为()A.3 B.7 C.9 D.107.(4分)将一把直尺与一块直角三角板如图放置,如果∠1=58°,那么∠2的度数为()A.32°B.58°C.138°D.148°8.(4分)如图,将△ABC沿直线DE折叠后,使得点B与点A重合,已知AC=5cm,△ADC 的周长为12cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm9.(4分)如图,在△ABC中,AD和BE是角平分线,其交点为O,若∠BOD=70°,则∠ACB 的度数为()A.10°B.20°C.30°D.40°10.(4分)如图,在矩形ABCD中,AB=2,BC=3,点P在矩形的边上沿B→C→D→A 运动.设点P运动的路程为x,△ABP的面积为y,则y关于x的函数图象大致是()A.B.C.D.11.(4分)将一些完全相同的梅花按如图所示的规律摆放,第1个图形有5朵梅花,第2个图形有8朵梅花,第3个图形有13朵梅花,…,按此规律,则第11个图形中共有梅花的朵数是()A.121 B.125 C.144 D.14812.(4分)如图,∠ABC=30°,点D、E分别在射线BC、BA上,且BD=2,BE=4,点M、N分别是射线BA、BC上的动点,当DM+MN+NE最小时,(DM+MN+NE)2的值为()A.20 B.26 C.32 D.36二、填空题:(本题共8个小题,每小题3分,共24分)13.(3分)我国计划2023年建成全球低轨卫星星座﹣﹣鸿雁星座系统,该系统将为手机网络用户提供无死角全覆盖的网络服务.2017年12月,我国手机网民规模已达753 000 000,将753 000 000用科学记数法表示为.14.(3分)若M(y2﹣3x)=y4﹣9x2,则多项式M应是.15.(3分)一个角的余角比这个角少20°,则这个角的补角为度.16.(3分)从长度分别为lcm、2cm、5cm、7cm、9cm的5根木棒中随机抽取一根,能与长度分别为3cm和5cm的木棒围成三角形的概率为.17.(3分)如果多项式x2﹣(m﹣1)xy+25y2是个完全平方式,那么常数m的值为.18.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.19.(3分)某日小明步行,小颖骑车,他们同时从小颖家出发,以各自的速度匀速到公园去,小颖先到并停留了8分钟,发现相机忘在了家里,于是沿原路以同样的速度回家去取,已知小明的步行速度为180米/分钟,他们各自距离出发点的路程y与出发时间x之间的关系图象如图所示,则当小明到达公园的时候小颖离家米.20.(3分)如图,在△ABC中,BD为△ABC的中线,F为BD上一点,连接AF并延长,交BC于点E,BE:EC=1:2,连接CF,当FD=4,AF=6,CF=10时,△ABC的面积为.三、解答题:(本题共8个小题,共78分)21.(12分)计算:(1)|﹣18|+(﹣1)2019×(3.14﹣π)0﹣4+(﹣2)﹣3(2)﹣2x(x﹣5)﹣(x+2)(x﹣3)22.(6分)已知:∠α,∠β,线段c.求作:△ABC,使∠A=α,∠B=∠β,AB=c(不写作法,保留作图痕迹)23.(8分)2018年3月16日,重庆大学图书馆与重庆市第一中学校签署了战略合作协议,重庆大学图书馆对我校师生免费开放.5月底,八年级(1)班学生小颖对全班同学这一个多月来去重庆大学图书馆的次数做了调查统计,将结果分为A、B、C、D、E五类,其中A类表示“0次”B类表示“1次”、C类表示“2次”、D类表示“3次”,E类表示“4次及以上“.并制成了如下不完整的条形统计图和扇形统计图(如图所示).请你根据统计图表中的信息,解答下列问题:(1)填空:a=;(2)补全条形统计图,并求出扇形统计图中D类的扇形所占圆心角的度数;(3)从全班去过该图书馆的同学中随机抽取1人,谈谈对新图书馆的印象和感受求恰好抽中去过“4次及以上”的同学的概率.24.(10分)先化简,再求值:[(3x﹣y)2﹣(5x﹣y)(x+y)﹣(2x﹣y)(2x+y)]÷,其中x、y满足x2﹣2x+y2+12y+37=0.25.(10分)有A、B、C三地依次在一条直线上,甲车从B地出发以某一速度匀速开往C地,同时乙车从B地出发以某一速度习速开往A地,到达A地后立即以另一速度匀速开往C地,甲乙两车与C地的距离y(千米)与行驶时间x小时之间的关系图象如图所示.(1)填空:A、B两地的距离是千米;分别求出乙车从B地到A地速度以及乙车从A地往C地的速度.(2)在乙车到达C地前,乙车从出发后经过多少时间两车的距离恰好为10千米?26.(10分)如图所示,在△ABC中,∠ABC=90°,AB=BC,D是BC边上的任意一点,作CE⊥AD交AD的延长线于点E,BF⊥AD于点F.(1)若∠ACE=75°,BF=3.求S△ABC.(2)求证:AE=CE+2EF.27.(10分)阅读理解:材料1:把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除.如果数字仍然太大不能直接观察出来,就重复此过程.如:判断96057能否被13整除过程如下:9605+4×7=9633,963+4×3=975,97+4×5=117,11+4×7=39,39÷13=3.所以96057能被13整除.材料2:一个三位正整数,若其百位数字恰好等于十位数字与个位数字的和,则我们称这个三位数为“元友数”例如,321,734,110等皆为“元友数”将一个“元友数”的百位数字放在其十位数字与个位数字组成的两位数的右边得到一个新的三位数,我们把这个新的三位数叫做这个“元友数”的“位移数”.如“元友数”734的“位移数”是347(1)77831能否被13整除?答:(填“能”或“否”).猜想一个“元友数”减去其个位数字的2倍所得的差能否被11整除,并说明理由.(2)已知一个“元友数“减去它的“位移数”所得的差能被13整除,试求出符合此条件的所有“元友数”.28.(12分)已知:AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°.(1)如图1,若∠ABE=65°,∠ACF=75°,求∠BAC的度数.(2)如图1,求证:EF=2AD.(3)如图2,设EF交AB于点G,交AC于点R,FC与EB交于点M,若点G为EF中点,且∠BAE=60°,请探究∠GAF和∠CAF的数量关系,并证明你的结论.2019年重庆一中七年级下期末数学真题卷参考答案与解析一、选择题:(本大题共12个小题,每小题4分,共48分)1.A【分析】求一个数的相反数,即在这个数的前面加负号.【解答】解:﹣的相反数是.2.C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意.3.C【分析】根据积的乘方、同类项、同底数幂的乘法和除法、合并同类项的计算法则判断即可.【解答】解:A、(﹣a3)2=a6,故选项错误;B、a6×a4=a10,故选项错误;C、a4÷a3=a,故选项正确;D、a4﹣a4=0,故选项错误.4.B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、打开电视,正在播放《大国工匠》是随机事件,故A错误;B、袋中只有10个球,且都是红球,任意摸出一个球是红球,是必然事件,故B正确;C、5年后数学课代表会考上清华大学,是随机事件,故C错误;D、2015年全年由367天是不可能事件,故D错误5.C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、92+122=152,故是直角三角形,故不符合题意;B、(0.5)2+(1.2)2=(1.3)2,故是直角三角形,故不符合题意;C、72+82≠92,故不是直角三角形,故符合题意;D、72+242=252,故是直角三角形,故不符合题意.6.D【分析】根据完全平方公式把原式变形,代入计算即可.【解答】解:(x﹣y)2+4xy+1=x2﹣2xy+y2+4xy+1=x2+2xy+y2+1=(x+y)2+1,当x+y=3时,原式=32+1=10,7.D【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:如图,由三角形的外角性质得,∠3=90°+∠1=90°+58°=148°,∵直尺的两边互相平行,∴∠2=∠3=148°.8.A【分析】首先根据折叠可得AD=BD,再由△ADC的周长为12cm可以得到AD+DC的长,利用等量代换可得BC的长.【解答】解:根据折叠可得:AD=BD,∵△ADC的周长为12cm,AC=5cm,∴AD+DC=12﹣5=7(cm),∵AD=BD,∴BD+CD=7cm.9.D【分析】依据三角形外角性质,即可得到∠ABO+∠BAO=∠BOD=70°,再根据角平分线的定义,即可得到∠ABC+∠BAC=140°,进而得出∠C的度数.【解答】解:∵∠BOD是△ABO的外角,∴∠ABO+∠BAO=∠BOD=70°,又∵AD和BE是角平分线,∴∠ABC+∠BAC=2(∠ABO+∠BAO)=2×70°=140°,∴∠ACB=180°﹣140°=40°,10.B【分析】要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.【解答】解:根据题意和图形可知:点P按B→C→D→A的顺序在边长为1的正方形边上运动,△APB的面积分为3段;当点P在BC上移动时,底边不变高逐渐变大,故面积逐渐变大;当点P在CD上移动时,底边不变,高不变,故面积不变;当点P在AD上时,高不变,底边变小,故面积越来越小直到0为止.11.B【分析】由题意可知:第1个图形有1+45朵梅花,第2个图形有1+2+1+4=8朵梅花,第3个图形有1+2+3+2+1+4=13朵梅花,…由此得出第n个图形中共有梅花的朵数是1+2+3+4+…+n+n﹣1+…+4+3+2+1+4=n2+4,由此代入求得答案即可.【解答】解:∵第1个图形有1+4=5朵梅花,第2个图形有1+2+1+4=8朵梅花,第3个图形有1+2+3+2+1+4=13朵梅花,…∴第n个图形中共有梅花的朵数是1+2+3+4+…+n+n﹣1+…+4+3+2+1+4=n2+4,则第11个图形中共有梅花的朵数是112+4=125.12.A【分析】如图,作点D关于BA的对称点G,作点E关于BC的对称点H,连接GH交AB有M,交BC有N,连接DM、EN,此时DM+MN+NE的值最小.再证明∠HBG=90°,利用勾股定理即可解决问题;【解答】解:如图,作点D关于BA的对称点G,作点E关于BC的对称点H,连接GH 交AB有M,交BC有N,连接DM、EN,此时DM+MN+NE的值最小.根据对称的性质可知:BD=BG=2,BE=BH=4,DM=GM,EN=NH,∴DM+MN+NE的最小值为线段GH的长,∵∠ABC=∠GBM=∠HBC=30°,∴∠HBG=90°,∴GH2=BG2+BH2=20,∴当DM+MN+NE最小时,(DM+MN+NE)2的值为20,二、填空题:(本题共8个小题,每小题3分,共24分)13.7.53×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:753 000 000=7.53×108.14.y2+3x【分析】根据因式分解﹣公式法即可得到结论.【解答】解:∵y4﹣9x2=(y2﹣3x)(y2+3x),∴M=y2+3x,15.125【分析】设这个角的度数为x度,先根据“一个角的余角比这个角少20°”求出x,再根据补角的定义求解可得.【解答】解:设这个角的度数为x度,则x﹣(90﹣x)=20,解得:x=55,即这个角的度数为55°,所以这个角的补角为180°﹣55°=125°,16.【分析】根据三角形的三边关系得出第三根木棒的长度的取值范围,再根据概率公式即可得出答案.【解答】解:∵两根木棒的长分别是3cm和5cm,∴第三根木棒的长度大于2cm,小于8cm,∴能围成三角形的是:5cm、7cm的木棒,∴能围成三角形的概率为,17.11或﹣9【分析】直接利用完全平方公式的一般形式进而分析得出答案.【解答】解:∵x2﹣(m﹣1)xy+25y2是个完全平方式,∴﹣(m﹣1)=±2×1×5,解得:m=11或﹣9.18.【分析】由题意可得AB=10,根据S△ABC=AB×EC=AC×BC,可得CE=4.8,根据勾股定理可求BE=6.4,由折叠可求∠ECF=45°,可得EC=CF=4.8,即可求B'F的长.【解答】解:∵Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴BA=10,∵将边AC沿CE翻折,使点A落在AB上的点D处,∴∠AEC=∠CED,∠ACE=∠DCE,∵∠AED=180°,∴∠CED=90°,即CE⊥AB,∵S△ABC=AB×EC=AC×BC,∴EC=4.8在Rt△BCE中,BE==6.4∵将边BC沿CF翻折,使点B落在CD的延长线上的点B′处∴BF=B'F,∠BCF=∠B'CF,∵∠BCF+∠B'CF+∠ACE+∠DCE=∠ACB=90°∴∠ECF=45°且CE⊥AB∴∠EFC=∠ECF=45°∴CE=EF=4.8∵BF=BE﹣EF=6.4﹣4.8=1.6∴B'F=1.6=19.1350【分析】先根据题意求得两人在第20分钟相遇时小明的路程为3600米,再根据小颖先到并停留了8分钟且往返速度相等得出小颖的速度及公园距离小颖家的距离,进一步求解可得.【解答】解:由题意知,小颖去往公园耗时10分钟,且停留8分钟,∴小颖原路返回时间为第18分钟,∵小颖往返速度相等,∴小颖返回到达时刻为第28分钟,由小明的速度为180米/分钟知,两人在第20分钟相遇时,小明的路程为20×180=3600(米),∴小颖的速度为3600÷(28﹣20)=450(米/分钟),则公园距离小颖家的距离为450×10=4500(米),∴小明到达公园的时刻为第4500÷180=25(分钟),则当小明到达公园的时候小颖离家450×(28﹣25)=1350(米),20.48【分析】延长FD到K,使得DK=DF,连接AK,CK,作DH∥AE交BC于点H.首先证明四边形AFCK是平行四边形,再证明∠FKC=90°,根据平行线等分线段定理,证明BF=DF即可解决问题;【解答】解:延长FD到K,使得DK=DF,连接AK,CK,作DH∥AE交BC于点H.∵AD=DC,DF=DK,∴四边形AFCK 是平行四边形,∴CK =AF =6,∵FK =8,CF =10,∴CF 2=CK 2+FK 2,∴∠FKC =90°,∴S △ADF =S △DFC =×4×6=12,∵DH ∥AEAD =DC ,∴EH =CH ,∵BE :CE =1:2,∴BE =EH ,∵EF ∥DH ,∴BF =DF ,∴S △ABF =S △ADF =12,∴S △ABD =24,∵AD =DC ,∴S △ABC =2S △ABD =48,三、解答题:(本题共8个小题,共78分)21.(12分)(1)=8712 (2)=﹣3x 2+11x +6 【分析】(1)先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.(2)依据单项式与多项式相乘的运算法则,多项式与多项式相乘的法则进行计算,即可得到计算结果.【解答】解:(1)|﹣18|+(﹣1)2019×(3.14﹣π)0﹣4+(﹣2)﹣3 =18+(﹣1)×1﹣4+(﹣)=18﹣1﹣4﹣=12;(2)﹣2x (x ﹣5)﹣(x +2)(x ﹣3)=﹣2x 2+10x ﹣(x 2﹣3x +2x ﹣6)=﹣2x2+10x﹣x2+3x﹣2x+6=﹣3x2+11x+6.22.(6分)如图所示:【分析】①先作∠MAN=∠α,②在AM上截取AB=a,③在AB的同侧作∠ABD=∠β,AN与BD交于点C,即可得出△ABC.【解答】解:如图所示:△ABC即为所求.23.(8分)【分析】(1)先利用B类人数和它所占的百分比计算出调查的总人数,然后计算出D类人数所占的百分比即可得到a的值;(2)先计算出C类人数,再补全条形统计图,然后用D类人数所占百分比乘以360°得到扇形统计图中D类的扇形所占圆心角的度数;(3)利用E类人数除以总人数得到恰好抽中去过“4次及以上”的同学的概率.【解答】解:(1)调查的总人数为12÷24%=50(人),所以a%==20%,即a=20;故答案为20;(2)C类人数为50﹣8﹣12﹣10﹣4=16(人),条形统计图为:扇形统计图中D类的扇形所占圆心角的度数为360°×20%=72°;(3)恰好抽中去过“4次及以上”的同学的概率==.24.(10分)【分析】利用非负数的性质求出x、y的值,化简后代入计算即可;【解答】解:原式=[(9x2﹣6xy+y2)﹣(5x2+4xy﹣y2)﹣(4x2﹣y2)]×=(﹣10xy+3y2)×=﹣20x+6y.∵x2﹣2x+y2+12y+37=0.∴(x﹣1)2+(y+6)2=0,∴x=1,y=﹣6,∴原式=﹣20﹣36=﹣56.25.(10分)【分析】(1)根据题意和函数图象中的数据可以解答本题;(2)根据函数图象中的数据可以分别求得甲乙两车对应的函数解析式,从而可以解答本题.【解答】解:(1)由图可得,A、B两地的距离是:210﹣180=30(千米),故答案为:30,乙车从B地到A地速度为:30÷=30×=45千米/时,乙车从A地往C地的速度是:210÷(3﹣)=90千米/时;(2)设甲车对应的函数解析式为y=kx+b,,得,即甲车对应的函数解析式为y=﹣40x+180,当时,设乙车对应的函数解析式为y=mx+n,,得,即当时,乙车对应的函数解析式为y=﹣90x+270,∴|(﹣40x+180)﹣(﹣90x+270)|=10,解得,x1=1.6,x2=2,答:在乙车到达C地前,乙车从出发后经过1.6小时或2小时时两车的距离恰好为10千米.26.(10分)【分析】(1)由∠ABC=90°、AB=BC知∠BCA=45°,根据∠ACE=75°得∠BCE=30°,再证∠BAD=∠ECD=30°,从而得AB=2BF=6,根据三角形面积公式可得;(2)在AF上截取AP=CE,连接BP、BE,先证△ABP≌△CBE得BP=BE,结合BF⊥AE 知PE=2EF,根据AE=AP+PE即可得证.【解答】解:(1)∵∠ABC=90°,AB=BC,∴∠BAC=∠BCA=45°,∵∠ACE=75°,∴∠BCE=30°,∵CE⊥AE,∴∠DEC=∠ABC=90°,∵∠ADB=∠CDE,∴∠BAD=∠ECD=30°,∵BF=3,且BF⊥AE,∴AB=2BF=6,则S△ABC=AB•BC=×6×6=18;(2)如图,在AF上截取AP=CE,连接BP、BE,∵CE⊥AE,∴∠DEC=∠ABC=90°,∵∠ADB=∠CDE,∴∠BAD=∠ECD,在△ABP和△CBE中,∵,∴△ABP≌△CBE(SAS),∴BP=BE,∵BF⊥AE,∴PE=2EF,则AE=AP+PE=CE+2EF.27.(10分)【分析】(1)理解材料1的判断方法即可进行判断问题1,再按材料2对“元友数”的定义正确表示即可进行说明;(2)理解材料2对“元友数”和“位移数”的定义正确表示它们的差,得到结果为9(a+10b),判断出(a+10b)是13的倍数,再列举得到答案.【解答】解:(1)7783+4=7787,778+28=806,80+24=104,10+16=26,26÷13=2,所以77831能被13整除;一个“元友数”减去其个位数字的2倍所得的差能被11整除,理由:设这个“元友数”的十位数字为a,个位数字为b,则它的百位数字为(a+b),∴这个“元友数”可以表示为100(a+b)+10a+b,则100(a+b)+10a+b﹣2b=100a+100b+10a+b﹣2b=110a+99b=11(10a+9b),∴一个“元友数”减去其个位数字的2倍所得的差能被11整除;故答案为:能;(2)设这个“元友数”的十位数字为a,个位数字为b,则它的百位数字为(a+b),所以这个“元友数”可以表示为100(a+b)+10a+b,它的位移数为100a+10b+a+b,∵一个“元友数“减去它的“位移数”所得的差能被13整除,∴100(a+b)+10a+b﹣(100a+10b+a+b)是13的倍数,即9(a+10b)是13的倍数,∴a+10b是13的倍数.∵0≤a≤9,0≤b≤9,∴符合条件的“元友数”为431和862.28.(12分)【分析】(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解决问题;(2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题;(3)结论:∠GAF﹣∠CAF=60°.想办法证明△ACD≌△F AG,推出∠ACD=∠F AG,再证明∠BCF=150°即可;【解答】(1)解:∵AE=AB,∴∠AEB=∠ABE=65°,∴∠EAB=50°,∵AC=AF,∴∠ACF=∠AFC=75°,∴∠CAF=30°,∵∠EAF+∠BAC=180°,∴∠EAB+2∠ABC+∠F AC=180°,∴50°+2∠BAC+30°=180°,∴∠BAC=50°.(2)证明:延长AD至H,使DH=AD,连接BH,∵EF=2AD,∴AH=EF,在△BDH和△CDA中,,∴△BDH≌△CDA,∴HB=AC=AF,∠BHD=∠CAD,∴AC∥BH,∴∠ABH+∠BAC=180°,∵∠EAF+∠BAC=180°,∴∠EAF=∠ABH,在△ABH和△EAF中,,∴△ABH≌△EAF,∴∠AEF=∠ABH,EF=AH=2AD,(3)结论:∠GAF﹣∠CAF=60°.理由:由(1)得,AD=EF,又点G为EF中点,∴EG=AD,在△EAG和△ABD中,,∴△EAG≌△ABD,∴∠EAG=∠ABC=60°,∴△AEB是等边三角形,∴∠ABE=60°,∴∠CBM=60°,在△ACD和△F AG中,,∴△ACD≌△F AG,∴∠ACD=∠F AG,∵AC=AF,∴∠ACF=∠AFC,在四边形ABCF中,∠ABC+∠BCF+∠CF A+∠BAF=360°,∴60°+2∠BCF=360°,∴∠BCF=150°,∴∠BCA+∠ACF=150°,∴∠GAF+(180°﹣∠CAF)=150°,∴∠GAF﹣∠CAF=60°.。