铸钢与铸铁
- 格式:ppt
- 大小:2.90 MB
- 文档页数:39
铸铁和铸钢的组织结构教学目的及其要求通过本章学习,使学生掌握铸铁牌号和应用范围,了解常用铸铁组织结构和热处理工艺。
主要内容1.铸铁的石墨化2.常用铸铁和铸钢的牌号与性能3.铸铁的热处理学时安排讲课1学时。
教学重点1.铸铁的石墨化2.常用铸铁和铸钢的牌号和性能特点教学难点铸铁的石墨化。
教学过程一、铸铁概述同钢一样,铸铁也是Fe、C元素为主的铁基材料。
它是含碳量大于2.11%的铁碳合金。
铸铁是历史上使用得较早的材料,价格便宜,具有很多优点。
在汽车发动机中,铸铁约占80%。
铸铁成型制成零件毛坯只能用铸造方法,不能用锻造或轧制方法。
(一)铸铁的分类1.按碳在铸铁中存在形式分为两大类白口铸铁:碳以渗碳体的形式存在,断口呈现银白色,硬而脆;作为零件工业上很少用(农业上制作犁铧);可作为冶炼钢铁的原料。
灰口铸铁:碳以游离态石墨存在,断口呈现黑灰色,灰口铸铁在机械制造业有广泛的应用,在我国,铸铁与钢用量比约为0.46:1。
2.以石墨形态分类(灰口铸铁的分类):灰铸铁(普通灰口铸铁):石墨为片状;可锻铸铁:石墨为团絮状;球墨铸铁:石墨为球状;蠕墨铸铁:石墨呈蠕虫状。
(二)灰口铸铁的成分和性能特点1.成分Wc :2.5—5.0%;Si、Mn、S、P 等元素。
铸铁种Si的含量较多,一般在1.0~2.8%之间。
所以,铸铁可以看成是Fe-Si -C 三元铁基合金。
2.性能特点:抗拉强度、塑性、韧性比钢低;抗压强度高,耐蚀性好;良好的铸造性能和切削加工性能;良好的减震性和耐磨性;成本低。
生产灰口铸铁的关键是让碳以石墨的形式结晶,此过程称为石墨化。
(三)铸铁的石墨化石墨化:铸铁中石墨的形成过程称为石墨化。
1.石墨化过程Fe-- Fe3C / Fe—G 双重相图。
石墨化的三个阶段:(1)第一阶段(高温)石墨化从液相中直接结晶出石墨:L →G I(Wc >4.26%)通过共晶反应形成的石墨:在11540C,Lc’ → A E’+ G共晶(2)第二阶段(中间)石墨化11540C ~7380C冷却过程中从A相中析出的石墨:,A →G II(3)低温石墨化阶段在7380C通过共析反应形成的石墨,As’→Fp + G共析2.铸铁石墨化过程对室温组织的影响三个阶段石墨化都进行彻底 F + G ;第三阶段石墨化不彻底 F + P + G ;第三个阶段石墨化未进行P + G 。
铸铁和铸钢的区别
一、本质的区别:铸铁和铸钢所含碳、硅、锰、磷、硫等化学元素的百分比不同。
二、内部结构的区别:在铸造过程中,结晶后具有不同的组织结构,因而机械性能和工艺性能产生不同。
三、物理性能的区别:在铸造状态下,铸铁的延伸率、断面收缩率、冲击韧性都比铸钢低;但是铸铁的抗压强度和消震性能比铸钢好;
四、适用范围的区别:铸铁更适于铸造结构复杂的薄壁铸件;
五、力学性能区别:在弯曲试验时,铸铁为脆性断裂,铸钢为弯曲变形。
铸钢技术对于强度、塑性和韧性要求更高的机器零件,需要采用铸钢件。
铸钢件的产量仅次于铸铁,约占铸件总产量的15%。
一、按照化学成分铸钢可分为碳素铸钢和合金铸钢两大类。
其中以碳素铸钢应用最广,占铸钢总产量的80%以上。
1、碳素铸钢一般的,低碳钢ZG15的熔点较高、铸造性能差,仅用于制造电机零件或渗碳零件;中碳钢ZG25~ZG45,具有高于各类铸铁的综合性能,即强度高、有优良的塑性和韧性,因此适于制造形状复杂、强度和韧性要求高的零件,如火车车轮、锻锤机架和砧座、轧辊和高压阀门等,是碳素铸钢中应用最多的一类;高碳钢ZG55的熔点低,其铸造性能较中碳钢的好,但其塑性和韧性较差,仅用于制造少数的耐磨件。
2、合金铸钢根据合金元素总量的多少,合金铸钢可分为两低合金钢和高合金钢大类。
1)低合金铸钢,我国主要应用锰系、锰硅系及铬系等。
如ZG40Mn、ZG30MnSi1、ZG30Cr1MnSi1等。
用来制造齿轮、水压机工作缸和水轮机转子等零件,而ZG40Cr1常用来制造高强度齿轮和高强度轴等重要受力零件。
2)高合金铸钢,具有耐磨、耐热或耐腐蚀等特殊性能。
如高锰钢ZGMn13,是一种抗磨钢,主要用于制造在干磨擦工作条件下使用的零件,如挖掘机的抓斗前壁和抓斗齿、拖拉机和坦克的履带等;铬镍不锈钢ZG1Cr18Ni9和铬不锈钢ZG1Cr13和ZGCr28等,对硝酸的耐腐蚀性很高,主要用于制造化工、石油、化纤和食品等设备上的零件。
二、铸钢的铸造工艺特点铸钢的机械性能比铸铁高,但其铸造性能却比铸铁差。
因为铸钢的熔点较高,钢液易氧化、钢水的流动性差、收缩大,其体收缩率为10~14%,线收缩为1.8~2.5%。
为防止铸钢件产生浇不足、冷隔、缩孔和缩松、裂纹及粘砂等缺陷,必须采取比铸铁复杂的工艺措施:1、由于钢液的流动性差,为防止铸钢件产生冷隔和浇不足,铸钢件的壁厚不能小于8mm;浇注系统的结构力求简单、且截面尺寸比铸铁的大;采用干铸型或热铸型;适当提高浇注温度,一般为1520°~1600℃,因为浇注温度高,钢水的过热度大、保持液态的时间长,流动性可得到改善。
铸钢铸铁件基本性能数据铸钢件冲击机构的工作压力是影响冲击能与冲击频率的决定性因素。
试验确认,铸钢件冲击工作压力的建立,应当以一定的工作流量为保证,流量不足以建立起某一工作压力时,增加流量可以提高工作压力,从而提高冲击能与冲击频率;当流量能满足冲击机构建立起某一工作压力时,增加流量不会提高冲击性能。
产品结构确定后,冲击活塞行程一定,冲击活塞的运动速度越高,冲击频率越高,因而冲击频率高低可直接反映铸钢件冲击能的高低,用铸钢件冲击机构的工作压力—冲击频率—工作流量的对应关系可以判断产品冲击性能是否符合要求。
1、铸钢件回转性能参数铸钢件的回转性能是重要性能,铸钢件与传统的气动机械配件相比,铸铁件提高的幅度大大超过了冲击能提高的幅度。
适于钻凿孔径φ30~60mm的铸钢件中,冲击能多在100~250j,比气动的独立回转式机械配件提高不多,但转矩达200~300n.m,提高1倍以上。
经试验研究,铸钢件凿岩效率高于气动机械配件,除因冲击功率增加外,铸铁件的提高起了明显的作用。
北京科技大学的研究人员提出了液压凿岩“冲击—扭切综合破岩作用”的观点;我们在大量凿岩试验研究中也发现,在冲击性能参数不变的情况下,调整铸钢件回转性能参数,凿孔速度往往可以提高20%~30%。
根据试验,钻凿φ55mm以下岩孔时,平均转矩为100~150n.m,但峰值常达150~250n.m,成为凿岩过程中的回转“超载”阻力,这是由岩石性质的规律性变化、岩层裂隙以及钻进推进系统的不平稳等因素造成的。
如采用性能良好的伺服推进系统,及时调整推进力大小,使铸钢件回转阻力及时下调,则回转机构的转矩可稍低一些。
在铸钢件回转性能中,转速是另一重要参数,它影响冲击破碎每次破岩量的大小,又影响“回转扭切”破岩量的大小,从而使凿速发生变化。
铸铁件的回转机构几乎都独立于冲击机构,它的性能参数对凿孔速度的影响,主要是因为可以使推进力变化。
我们总结的试验规律是:(1)冲击性能参数、回转转速一定时,推进力增大,回转转矩加大,在一定范围内,凿孔速度提高,但最佳推进力上升至某一最高点以后,推进力再增加会使凿孔速度下降。
铸钢与铸铁的区别关于铸钢与铸铁的铸造问题铸钢与铸铁的铸造都是铸造铁合金——铸造铁与碳组成的铁碳合金,属黑色金属铸造。
一、铸钢与铸铁化学成分的区别钢铁均是含有少量合金元素和杂质的铁碳合金,按含碳量不同可分为:熟铁――含C小于0.05%钢――含C为0.05~2.0%铸铁是含碳量在2%以上的铁碳合金。
工业用铸铁一般含碳量为2%~4%。
碳在铸铁中多以石墨形态存在,有时也以渗碳体形态存在。
除碳外,铸铁中还含有1%~3%的硅,以及锰、磷、硫等元素。
合金铸铁还含有镍、铬、钼、铝、铜、硼、钒等元素。
碳、硅是影响铸铁显微组织和性能的主要元素。
铸铁可分为:①灰口铸铁。
含碳量较高(2.7%~4.0%),碳主要以片状石墨形态存在,断口呈灰色,简称灰铁。
熔点低(1145~1250℃),凝固时收缩量小,抗压强度和硬度接近碳素钢,减震性好。
用于制造机床床身、汽缸、箱体等结构件。
②白口铸铁。
碳、硅含量较低,碳主要以渗碳体形态存在,断口呈银白色。
凝固时收缩大,易产生缩孔、裂纹。
硬度高,脆性大,不能承受冲击载荷。
多用作可锻铸铁的坯件和制作耐磨损的零部件。
③可锻铸铁。
由白口铸铁退火处理后获得,石墨呈团絮状分布,简称韧铁。
其组织性能均匀,耐磨损,有良好的塑性和韧性。
用于制造形状复杂、能承受强动载荷的零件。
④球墨铸铁。
将灰口铸铁铁水经球化处理后获得,析出的石墨呈球状,简称球铁。
比普通灰口铸铁有较高强度、较好韧性和塑性。
用于制造内燃机、汽车零部件及农机具等。
⑤蠕墨铸铁。
将灰口铸铁铁水经蠕化处理后获得,析出的石墨呈蠕虫状。
力学性能与球墨铸铁相近,铸造性能介于灰口铸铁与球墨铸铁之间。
用于制造汽车的零部件。
⑥合金铸铁。
普通铸铁加入适量合金元素(如硅、锰、磷、镍、铬、钼、铜、铝、硼、钒、锡等)获得。
合金元素使铸铁的基体组织发生变化,从而具有相应的耐热、耐磨、耐蚀、耐低温或无磁等特性。
用于制造矿山、化工机械和仪器、仪表等的零部件。
铸钢用以浇注铸件的钢。