初中数学竞赛《排列与组合问题》练习题及答案 (7)
- 格式:docx
- 大小:12.93 KB
- 文档页数:1
排列组合一、选择题1、公共汽车上有4位乘客,其中任何两人都不在同一车站下车,汽车沿途停靠6个站,那么这4位乘客不同的下车方式共有A、15种B、24种C、360种D、480种2、把10个相同的球放入三个不同的盒子中,使得每个盒子中的球数不少于2,则不同的放法有A、81种B、15种C、10种D、4种3、12辆警卫车护送三位高级领导人,这三位领导人分别坐在其中的三辆车中,要求在开行后12辆车一字排开,车距相同,车的颜色相同,每辆车内的警卫的工作能力是一样的,三位领导人所坐的车不能相邻,且不能在首尾位置。
则共()种安排出行的办法A、A99×A310B、A99×A38C、A38D、C384、在正方体的8个顶点、12条棱的中点、6个面的中心及正方体的中心共27个点中,不共线的三点组的个数是A、2898B、2877C、2876D、28725、有两个同心圆,在外圆上有相异的6个点,内圆上有相异的3个点,由这9个点所确定的直线最少可有A、15条B、21条C、36条D、3条6、已知两个实数集A={a1,a2,…,a60}与B={b1,b2,…b25},若从A到B的映射f使得B中每个元素都有原象,且f(a1)≥f(a2)≥…≥f(a60),则这样的映射共有A、C60B、C2459C、C2560D、C2559二、填空题7、4410共有个不同的正约数。
8、有7个人站成一排,其中A、B不能相邻,C、D必须挨在一起,且C要求在A的右侧,则共有站队方法数是。
9、如图,两圆相交于A、B两点,在两圆周上另有六点C、D、E、F、G、H,其中仅E、B、G共线,共他无三点共线,这八点紧多可以确不同圆的个数是。
10、一个圆周上有5个红点,7个白点,要求任两个红点不得相邻,那么共有种排列方法。
11、平面上给定5点,这些点两两间的连线互不平行,又不垂直,也不重合,现从任一点向其余四点两两之间的连线作垂线,则所有这些垂线间的交点数最多是。
排列组合练习试题和答案解析《排列组合》⼀、排列与组合1.从9⼈中选派2⼈参加某⼀活动,有多少种不同选法2.从9⼈中选派2⼈参加⽂艺活动,1⼈下乡演出,1⼈在本地演出,有多少种不同选派⽅法3. 现从男、⼥8名学⽣⼲部中选出2名男同学和1名⼥同学分别参加全校“资源”、“⽣态”和“环保”三个夏令营活动,已知共有90种不同的⽅案,那么男、⼥同学的⼈数是A.男同学2⼈,⼥同学6⼈B.男同学3⼈,⼥同学5⼈C. 男同学5⼈,⼥同学3⼈D. 男同学6⼈,⼥同学2⼈4.⼀条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到⼄站与⼄站到甲站需要两种不同车票),那么原有的车站有个个个个5.⽤0,1,2,3,4,5这六个数字,(1)可以组成多少个数字不重复的三位数(2)可以组成多少个数字允许重复的三位数(3)可以组成多少个数字不允许重复的三位数的奇数(4)可以组成多少个数字不重复的⼩于1000的⾃然数(5)可以组成多少个⼤于3000,⼩于5421的数字不重复的四位数⼆、注意附加条件⼈排成⼀列(1)甲⼄必须站两端,有多少种不同排法(2)甲⼄必须站两端,丙站中间,有多少种不同排法2.由1、2、3、4、5、6六个数字可组成多少个⽆重复数字且是6的倍数的五位数3.由数字1,2,3,4,5,6,7所组成的没有重复数字的四位数,按从⼩到⼤的顺序排列起来,第379个数是4. 设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,⾄少有两个杯盖和茶杯的编号相同的盖法有种种种种5.从编号为1,2,…,10,11的11个球中取5个,使这5个球中既有编号为偶数的球⼜有编号为奇数的球,且它们的编号之和为奇数,其取法总数是种种种种6.从6双不同颜⾊的⼿套中任取4只,其中恰好有1双同⾊的取法有种种种种7. ⽤0,1,2,3,4,5这六个数组成没有重复数字的四位偶数,将这些四位数从⼩到⼤排列起来,第71个数是。
排列与组合基础知识:1.排列:从n个对象中选出m(不超过n)个并进行排序,共有的方法数称为排列数,写成。
2.排列数的计算:约定:0!=1排列数是由乘法原理得到的,因此排列可以看成是乘法原理的一种应用。
3.组合:从n个对象中选出m(不超过n)个,不进行排序,共有的方法数称为组合数,写成。
4.排列与组合的关系:。
5.组合数的计算:6.排列数与组合数的一些性质:例1.4名男生和3名女生站成一排:(1)一共有多少种不同的站法?(2)甲,乙二人必须站在两端的排法有多少种?(3)甲,乙二人不能站在两端的排法有多少种?(4)甲不排头,也不排尾,有多少种排法?(5)甲只能排头或排尾,有多少种排法?[答疑编号5721060101]【答案】(1)5040;(2)240;(3)2400;(4)3600;(5)略【解答】例2.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共多少种?[答疑编号5721060102]【答案】 4186种【解答】至少有3件是次品,分两种情况第一种情况:3件是次品的抽法:从4件次品中中抽出3件是种,其中,,然后,从46件正常品中抽2件,总共种。
其中,所以,3件是次品的抽法共种。
第二种情况:4件是次品的抽法共:种。
任意抽出5件产品,至少有3件是次品的抽法,是将上述两种情况加在一起,所以,总共是4×23×45+46=23×182=4186种。
总结:有序是排列,无序是组合。
例3.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种?[答疑编号5721060103]【答案】 540种【解答】可设三所学校为甲、乙、丙,三位医生去3所学校的分配方案:用排列数表示为=3×2×1=6。
用乘法原理表示为3!=6。
六名护士去学校甲有种选法,剩下4名护士去乙学校,有种选法,剩下两名自然去学校丙。
所以,不同的分配方法共有种。
排列与组合的应用练习题及解析# 排列与组合的应用练习题及解析在数学中,排列与组合是两个重要的概念,它们的应用广泛而且深入。
本文将通过一些实际问题的练习题,来展示排列与组合在解决实际问题中的应用,并提供相应的解析。
## 1. 组合问题### 问题描述:有7本不同的书,小明想要选取其中的3本带去旅行。
问有多少种不同的选法?### 解析:这是一个组合问题,即从7本不同的书中选取3本的组合数目。
根据组合的计算公式,可以得到解答。
解答步骤:1. 使用组合公式 C(n,m) = n! / (m!(n-m)!),其中 n 是总共的物品数,m 是选取的物品数。
2. 将题目中的数值代入公式,计算得到 C(7,3) = 7! / (3!(7-3)!) = 7! / (3!4!) = (7 × 6 × 5) / (3 × 2 × 1) = 35。
所以,小明有35种不同的选法。
## 2. 排列问题### 问题描述:某班有8个学生,要从中选取3个学生进行演讲比赛。
问有多少种不同的选法?### 解析:这是一个排列问题,即从8个学生中选取3个进行排列的数目。
根据排列的计算公式,可以得到解答。
解答步骤:1. 使用排列公式 P(n,m) = n! / (n-m)!,其中 n 是总共的物品数,m 是选取的物品数。
2. 将题目中的数值代入公式,计算得到 P(8,3) = 8! / (8-3)! = 8! / 5! = (8 × 7 × 6) / (3 × 2 × 1) = 56。
所以,有56种不同的选法。
## 3. 组合与排列综合问题### 问题描述:有6个小球,其中3个红色,3个蓝色。
将它们排成一列,要求相邻的小球颜色不能相同,问有多少种不同的排列方式?### 解析:这是一个组合与排列综合问题,需要结合排列与组合的思想来解决。
首先确定红、蓝小球的位置组合方式,然后对确定的位置进行排列。
2020年初中数学竞赛《排列与组合问题》复习题一.解答题(共20小题)1.用1、2、3、4组成6位数,可以重复,但每一个数都必须用到,问一共有多少个这样的六位数?2.在m(m≥2)个不同数的排列P1P2P3…P m中,若1≤i<j≤m时,P i>P j(即前面某数大于后面某数),则称P i与P j构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数.记排列(n+1)n(n﹣1)…321的逆序数为a n,如排列21的逆序数a1=1,排列4321的逆序数a3=6.(1)求a4、a5,并写出a n的表达式(用n表示,不要求证明);(2)令b n =+﹣2,求b1+b2+…b n并证明b1+b2+…b n<3,n=1,2,….3.5个人站成一排照相.(1)若甲、乙两人必须相邻,则有多少不同的站队方法?(2)若甲、乙两人必不相邻,则有多少不同的站队方法?4.从1,2,…,16中,最多能选出多少个数,使得被选出的数中,任意三个数都不是两两互质.5.从数1,2,3,…,1995中任意取出n个不同的数(1≤n≤1995)形成一组叫做一个n 元数组,如(1,2,3,4)就是一个四元数组,(4,8,12,20,32)就是一个五元数组.现要给出一个自然数k,使得每一个k元数组中总能找到三个不同的数,此三数能构成一个三角形的三边长,则给出的k至少是多少时才能满足要求?证明你的结论.6.试将7个数字:3、4、5、6、7、8、9分成两组,分别排成一个三位数和一个四位数,并且使这两个数的乘积最大,试问应该如何排列?证明你的结论?7.8分和15分的邮票可以无限制地取用,某些邮资额数,例如7分、29分,不能够刚好凑成,求不能凑成的最大额数n,即大于n的额数都能够凑成(证明你的答案).8.平面上给定了2n个点,其中任意三点不共线,并且n个点染成了红色,n个点染成了蓝色,证明:总可以找到两两没有公共点的n条直线段,使得其中每条线段的两个端点具有不同的颜色.9.如图,是一个计算装置的示意图,A、B是数据入口,C是计算结果的出口,计算过程是第1 页共18 页。
排列组合习题精选一、纯排列与组合问题:1. 从 9 人中选派 2 人参加某一活动,有多少种不同选法?2. 从 9 人中选派 2 人参加文艺活动, 1 人下乡演出, 1 人在本地演出,有多少种不同选派方法?3. 现从男、女 8 名学生干部中选出 2 名男同学和 1 名女同学分别参加全校“资源”、“生态” 和“环保”三个夏令营活动,已知共有 90 种不同的方案,那么男、女同学的人数是( )A. 男同学2 人,女同学6 人B.男同学3 人,女同学5 人C. 男同学5 人,女同学3 人D.男同学6 人,女同学2 人4. 一条铁路原有 m 个车站,为了适应客运需要新增加 n 个车站( n>1),则客运车票增加了 58 种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有 ( )个个个个答案:1、2 272 3 、选B. 设男生 n 2 1 3 2299n8n 3。
、 m nmC362、A人,则有 C C A 90 4 AA 58选 C.二、相邻问题:1. A 、B 、C 、D 、E 五个人并排站成一列,若 A 、B 必相邻,则有多少种不同排法?2. 有 8 本不同的书, 其中 3 本不同的科技书, 2 本不同的文艺书, 3 本不同的体育书,将这 些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( )答案: 1.2 432524325A A48(2) 选B AAA 1440三、不相邻问题:1. 要排一个有 4 个歌唱节目和 3 个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?2、1 到 7 七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个?名男生和 4 名女生站成一排,若要求男女相间,则不同的排法数有()4. 排成一排的 8 个空位上,坐 3 人,使每人两边都有空位,有多少种不同坐法?张椅子放成一排, 4 人就坐,恰有连续三个空位的坐法有多少种?6. 排成一排的 9 个空位上,坐 3 人,使三处有连续二个空位,有多少种不同坐法?7. 排成一排的 9 个空位上,坐 3 人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?8. 在一次文艺演出中, 需给舞台上方安装一排彩灯共 15 只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有 6 只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必 须点亮的要求进行设计,那么不同的点亮方式是( )种种种 种答案:1. A 44 A 53 1440 ( 2) A 33 A 44 144 ( )选 B 2A 44 A 44 1152 ( 4) A 43 24 (5) A 44 A 52 480 333( ) 3 3 ( )选 6(6) 3424 3 4144 A C 828A C7 A A8四、定序问题:1. 有 4 名男生, 3 名女生。
排列与组合练习题1.如图,三行三列的方阵中有9个数(1,2,3;1,2,3)ij a i j ==,从中任取三个数,则至少有两个数位于同行或同列的概率是(A )37 (B )47 (C )114 (D )1314 答案:D解析:若取出3个数,任意两个不同行也不同列,则只有6种取法;而从9个数中任意取3个的方法是39C .所以39613114C -=. 2.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有(A )6种 (B )9种 (C )11种 (D )13种答案:B解析:设四人分别是甲、乙、丙、丁,他们写的卡片分别为,,,a b c d ,则甲有三种拿卡片的方法,甲可以拿,,b c d 之一.当甲拿b 卡片时,其余三人有三种拿法,分别为,,badc bcda bdac .类似地,当甲拿c 或d 时,其余三人各有三种拿法.故共有9种拿法.3.在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴上有3个点,将x 轴正半轴上这5个点和y 轴正半轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有(A )30个 (B )20个 (C )35个 (D )15个答案:A解析:设想x 轴上任意两个点和y 轴上任意两个点可以构成一个四边形,则这个四边形唯一的对角线交点,即在第一象限,适合题意.而这样的四边形共有302325=⋅C C 个,于是最多有30个交点.推广1:.在平面直角坐标系中,x 轴正半轴上有m 个点,y 轴正半轴上有n 个点,将x 轴正半轴上这m 个点和y 轴正半轴上这n 个点连成15条线段,这15条线段在第一象限内的交点最多有22m n C C ⋅个变式题:一个圆周上共有12个点,由这些点所连的弦最多有__个交点.答案:412C4.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是(A )15 (B )25 (C )35 (D ) 45答案:B111213212223313233a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭解析:由古典概型的概率公式得522155222233232222=+-=A A A A A A A P . 5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34答案:A解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=. 6.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则(|)P B A =A .18B .14C .25D .12答案:B 解析:2()5P A =,1()10P AB =,()1(|)()4P AB P B A P A ==. 7.甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为A .12 B .35 C .23 D .34 答案:D解析:由题得甲队获得冠军有两种情况,第一局胜或第一局输第二局胜,所以甲队获得冠军的概率11132224P =+⋅=.所以选D . 8.如图,用K 、A 1、A 2三类不同的元件连成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为KA 2A 1A .0.960B .0.864C .0.720D .0.576答案:B解析:系统正常工作概率为120.90.8(10.8)0.90.80.80.864C ⨯⨯⨯-+⨯⨯=,所以选B.9.甲乙两人一起去“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是(A )136 (B )19 (C )536 (D )16 答案:D解析:各自独立地从1到6号景点中任选4个进行游览有1111111166554433C C C C C C C C 种,且等可能,最后一小时他们同在一个景点有11111116554433C C C C C C C 种,则最后一小时他们同在一个景点的概率是11111116554433111111116655443316C C C C C C C p C C C C C C C C ==,故选D . 10.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n =( ) (A )415 (B )13 (C )25 (D )23答案:B解析:基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3)23515n C ==⨯=从选取个,.其中面积为2的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1);其中面积为4的平行四边形的为(2,3)(2,5);(2,1)(2,3); m=3+2=5故51153m n ==. 11.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A .14B .13C .12D .23答案:C解析:显然ABE ∆面积为矩形ABCD 面积的一半,故选C .12.在204(3)x y +展开式中,系数为有理数的项共有 项.答案:6解析:二项式展开式的通项公式为20204412020(3)(3)(020)r r r r r r r r T C x y C x y r --+==≤≤要使系数为有理数,则r 必为4的倍数,所以r 可为0.、4、8、12、16、20共6种,故系数为有理数的项共有6项.13.集合{1,2,3,4,5,6,7,8,9,10}M =,从集合M 中取出4个元素构成集合P ,并且集合P 中任意两个元素,x y 满足||2x y -≥,则这样的集合P 的个数为____.答案:35解析:其实就是从1到10这十个自然数中取出不相邻的四个数,共有多少方法的问题.因此这样的集合P 共有4735C =个.14.在一个正六边形的六个区域栽种观赏植物,如右图所示,要求同一块中种同一种植物,相邻的两块种不同的植物,现有4种不同的植物可供选择,则有___种栽种方案.答案:732解析:共分三类:(1)A 、C 、E 三块种同一种植物;(2)A 、B 、C 三块种两种植物(三块中有两块种相同植物,而与另一块所种植物不同);(3)A 、B 、C 三块种三种不同的植物.将三类相加得732.15.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(I)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X 的期望()E X .解:(I )设A 表示事件“购买甲种保险”,B 表示购买乙种保险. ()A B A A B =并且A 与A B 是互斥事件,所以()()()0.50.30.8P A B P A P A B =+=+=答:该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8. (II )由(I )得任意1位车主两种保险都不购买的概率为()10.80.2p p A B ==-=. 又(3,0.2)XB ,所以()20E X =.所以X 的期望()20E X =.。
数学竞赛组合试题及答案试题一:排列组合问题题目:某班级有30名学生,需要选出5名代表参加校际数学竞赛。
如果不考虑性别和成绩,仅考虑组合方式,问有多少种不同的选法?答案:这是一个组合问题,可以用组合公式C(n, k) = n! / (k! *(n-k)!)来计算,其中n为总人数,k为选出的人数。
将数值代入公式,得到C(30, 5) = 30! / (5! * 25!) = 142506。
试题二:概率问题题目:一个袋子里有10个红球和20个蓝球,随机抽取3个球,求至少有1个红球的概率。
答案:首先计算没有红球的概率,即抽到3个蓝球的概率。
用组合公式计算,P(3蓝) = C(20, 3) / (C(30, 3)) = (20! / (3! * 17!)) / (30! / (3! * 27!))。
然后,用1减去这个概率得到至少有1个红球的概率,P(至少1红) = 1 - P(3蓝)。
试题三:几何问题题目:在一个半径为10的圆内,随机选择两个点,连接这两点形成弦。
求这条弦的长度小于8的概率。
答案:首先,弦的长度小于8意味着弦所对的圆心角小于某个特定角度。
通过几何关系和圆的性质,可以计算出这个特定角度。
然后,利用面积比来计算概率。
圆的面积为πr²,而弦所对的扇形面积可以通过角度来计算。
最后,将扇形面积除以圆的面积得到概率。
试题四:数列问题题目:给定一个等差数列,其首项为3,公差为2,求前10项的和。
答案:等差数列的前n项和公式为S_n = n/2 * (2a + (n-1)d),其中a为首项,d为公差,n为项数。
将数值代入公式,得到S_10 = 10/2* (2*3 + (10-1)*2) = 10 * 13 = 130。
试题五:逻辑推理问题题目:有5个盒子,每个盒子里都有不同数量的球,分别是1个,2个,3个,4个和5个。
现在有5个人,每个人随机选择一个盒子,每个人只能拿一个盒子。
问至少有一个人拿到的盒子里球的数量与他选择的顺序号相同的概率。
2020年初中数学竞赛复习资料:排列与组合问题
一.选择题(共19小题)
1.某学校从三楼到四楼的楼梯共9级,上楼可以一步上一级,也可以一步上两级,若规定从三楼到四楼用7步走完,则方法有()
A.21B.28C.35D.36
2.某校九年级6名学生和1位老师共7人在毕业前合影留念(站成一行),若老师站在中间,则不同的站位方法有()
A.6种B.120种C.240种D.720种
3.仪表板上有四个开关,每个开关只能处于开或者关状态,如果相邻的两个开关不能同时是开的,那么所有不同的状态有()
A.6种B.7种C.8种D.9种
4.两本不同的语文书、两本不同的数学书和一本英语书排放在书架上,若同类书不相邻,英语书不放在最左边,则排法的种数为()
A.32B.36C.40D.44
5.甲乙丙丁四位同学站成一横排照相,如果任意安排四位同学的顺序,那么恰好甲乙相临且甲在乙左边的概率是()
A .
B .
C .
D .
6.设(2x﹣1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5.则a0﹣a1+a2﹣a3+a4﹣a5=()A.﹣1B.1C.﹣243D.243
7.现有1、2、3、4、5共五个数,从中取若干个数分给A、B两组,两组都不能放空,要使得B组中最小的数比A组中最大的数都大,则有()种分配方法.
A.44B.49C.51D.32
8.将1,2,3,4,5,6,7,8这8个数排成一行,使8的两边各数的和相等,则不同的排列方法有()
A.1152种B.576种C.288种D.144种
9.如图所示,韩梅家的左右两侧各摆了3盆花,韩梅每次按照以下规则往家中搬一盆花,
第1 页共35 页。
1.从甲地到乙地每天有直达班车4班,从甲地到丙地,每天有5个班车,从丙地到乙地,每天有3个班车,则从甲地到乙地,不同的乘车法有()A.12种B.19种C.32种D.60种2.若x∈{1,2,3},y∈{5,7,9},则x·y的不同值有()A.2个B.6个C.9个D.3个3.有4部车床,需加工3个不同的零件,其不同的安排方法有()A.34B.43C.A3D.4444. 五名同学去听同时进行的4个课外知识讲座,每个同学可自由选择,则不同的选择种数A.54B.45C.5×4×3×2D.5×45.集合M={}3,2,1的子集共有()A.8B.7C.6D.56.设集合A={}4,3,2,1,B={}7,6,5,则从A集到B集所有不同映射的个数是()A.81B.64C.12D.以上都不正确7.某班三好学生中有男生6人,女生4人,从中选一名学生去领奖,共有________种不同的选派方法;从中选一名男生一名女生去领奖,则共有_________种不同的选派方法.8.从1到10的所有自然数中任取两个相加,所得的和为奇数的不同情形有___种.9. 4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有种报名方法.10. 4名同学争夺跑步、跳高、跳远三项冠军,共有种可能的结果.11. 乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)展开后共有项.12.某校信息中心大楼共5层,一楼和二楼都有4条通道上楼,三楼有3条通道上楼,四楼有2条通道上楼,那么一人从一楼去五楼,共有种不同的走法.13.某车间生产一个零件,该零件需经车、钳、铣三道工序。
该车间有车工5人,钳工8人,铣工6人,加工这个零件有种不同的派工方式;技术改造后,生产这种零件只需冲压一道工序,且任何一人均可加工,这时不同的派工方式有种。
1.将5封信投入3个邮箱,不同的投法共有( )种.A.53B.35C.3D.2.用1,2,3,4,四个数字组成没有重复数字的四位数,所有四位数的数字之和是( )A. 10B.24C.240D.603.三边长均为整数,且最大边长为11的三角形的个数为( )A.25B.26C.36D.374.某城市的电话号码由六位升为七位(首位数字均不为零),则该城市可增加的电话门数是A. 9×8×7×6×5×4×3B.8×96C.9×108D.81×1055.将3名大学生分配到4个不同的工厂去实习,每厂接受的名额不限,总的分配方案数是A.3+4B.3×4C.34D.436.已知集合A={a,b,c,d},B={x,y,z},则从集合A 到集合B 的不同映射个数最多有( )A.3+4B.3×4C.34D.437.有不同的中文书9本,不同的英文书7本,不同的日文书5本,从中取出不是同一国文字的书2本,共有 种不同的取法.8.集合{1,2,3}A =-,{1,2,3,4}B =--,从,A B 中各取一个元素作为点(,)P x y 的坐标,(1)可以得到 个不同的点.(2)这些点中,位于第一象限的有 个. 9.有三个车队分别有5辆、6辆、7辆车,现欲从其中两个车队各抽调一辆车外出执行任务,共有 种不同的抽调方案.10.某巡洋舰上有一排四根信号旗杆,每根旗杆上可以挂红色、绿色、黄色三种信号旗中的一面(每根旗杆必须挂一面),则这种信号旗杆上共可发出 种不同的信号.11.四名学生争夺三项比赛的冠军,获得冠军的可能性有 种.12.用0,1,2,3,4,5可组成 个三位偶数.可组成 个无重复数字的三位偶数.1.四支足球队争夺冠、亚军,不同的结果有 ( )A .8种B .10种C .12种D .16种2.信号兵用3种不同颜色的旗子各一面,每次打出3面,最多能打出不同的信号有( )A .3种B .6种C .1种D .27种3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----L 用排列数符号表示为( )A .5079k k A --B .2979k A -C .3079k A -D .3050k A -4.5人站成一排照相,甲不站在排头(左)的排法有 ( )A .24种B .72种C .96种D .120种5. 4·5·6·7·…·(n-1)·n等于 ( )A.4-n n AB.3-n n AC.n!-4!D.!4!n7.给出下列问题:属于排列问题的是 (填写问题的编号)。
初中数学竞赛《排列与组合问题》练习题
1.把7本不同的书分给甲、乙两人,甲至少要分到2本,乙至少要分到1本,两人的本数不能只相差1,则不同的分法共有49种.
【分析】可以分为三类分法:①甲2本、乙5本;②甲5本、乙2本;③甲6本、乙1本;然后求三类分法的总和即为所求.
【解答】解:合要求的分法有:
①甲2本、乙5本,共有=21(种);
②甲5本、乙2本,共有=21(种);
③甲6本、乙1本,共有1×7=7(种);
所以,一共有21+21+7=49(种);
故答案为:49.
【点评】本题考查了排列组合的问题.解答此题的关键的地方是分清排列与组合的区别.排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合.。