【全国省级联考word】广东省2018届高三第一次模拟考试理数试题
- 格式:doc
- 大小:2.90 MB
- 文档页数:21
广州市2018届高三上学期第一次调研测试理科数学2017.12本试卷共5页,23小题, 满分150分。
考试用时120分钟。
注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用2B 铅笔在答题卡的相应位置填涂考生号。
2.作答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
写在本试卷上无效。
3.第Ⅱ卷必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,0,1,2,3A =-,{}230B x x x =->,则A B =IA .{}1-B .{}1,0-C .{}1,3-D .{}1,0,3-2.若复数z 满足()12i 1i z +=-,则z =A .25B .35CD3.在等差数列{}n a 中,已知22a =,前7项和756S =,则公差d =A .2B .3C .2-D .3-4.已知变量x ,y 满足202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,,,则2z x y =+的最大值为A .0B .4C .5D .65.912x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数为22226.在如图的程序框图中,()i f x '为()i f x 的导函数,若0()sin f x x =,则输出的结果是 A .sin x -B .cos xC .sin xD .cos x -7.正方体1111ABCD A B C D -的棱长为2,点M 为1CC 的中点,点N 为线段1DD 上靠近1D 的三等分点,平面BMN 交1AA 于点Q ,则AQ 的长为 A .23B .12C .16D .138.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为A .ln 2B .1C .1ln 2-D .1ln 2+9.某学校获得5个高校自主招生推荐名额,其中甲大学2名,乙大学2名,丙大学1名,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有 A .36种B .24种C .22种D .20种10.()0ϕϕ>个单位,所得图象对应的函数恰为奇函数,则ϕ的最小值为 A .6πB .12πC .4π D .3π 11.在直角坐标系xOy 中,设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,P 为双曲线C 的右支上一点,且△OPF 为正三角形,则双曲线C 的离心率为12.对于定义域为R 的函数()f x ,若满足① ()00f =;② 当x ∈R ,且0x ≠时,都有()0xf x '>;③ 当120x x <<,且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.现给出四个函数:()32132f x x x =-+;()2e 1x f x x =--;()()3ln 1,0,0;2,x x f x x x ⎧-+≤⎪= ⎨>⎪⎩ ()411,0,2120,0.x x x f x x ⎛⎫+≠ ⎪-⎝⎭=⎧⎪=⎨⎪⎩则其中是“偏对称函数”的函数个数为 A .0B .1C .2D .3二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(),2x x =-a ,()3,4=b ,若a b P ,则向量a 的模为________. 14.在各项都为正数的等比数列{}n a 中,若201822a =,则2017201912a a +的最小值为________. 15.过抛物线C :22(0)y px p => 的焦点F 的直线交抛物线C 于A ,B 两点.若6AF =,3BF =,则p 的值为________.16.如图,格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的表面积为________.三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答.(一)必考题:共60分. 17.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足2a =,cos (2)cos a B c b A =-. (1)求角A 的大小;(2)求△ABC 周长的最大值.18.(本小题满分12分)如图,已知多面体PABCDE 的底面ABCD 是边长为2的菱形,PA ⊥底面ABCD ,ED PA P ,且22PA ED ==.(1)证明:平面PAC ⊥平面PCE ;(2)若直线 PC 与平面ABCD 所成的角为o45,求二面角D CE P --的余弦值.19.(本小题满分12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该EDBCAP台光照控制仪周亏损1000元.以过去50周的周光照量的频率作为周光照量发生的概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?附:相关系数公式∑∑∑===----=ni i ni i ni iiy y x x y yx x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20.(本小题满分12分)如图,在直角坐标系xOy 中,椭圆C :22221y x a b+=()0a b >>的上焦点为1F ,椭圆C 的离心率为12 ,且过点261,⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设过椭圆C 的上顶点A 的直线l 与椭圆C 交于点B (B 不在y 轴上),垂直于l 的直线与l交于点M ,与x 轴交于点H ,若110F B F H •=u u u r u u u u r,且MO MA =,求直线l 的方程.21.(本小题满分12分)已知函数()ln bf x a x x=+()0a ≠.(1)当2b =时,若函数()f x 恰有一个零点,求实数a 的取值范围;(2)当0a b +=,0b >时,对任意121,,e e x x ⎡⎤∈⎢⎥⎣⎦,有()()12e 2f x f x -≤-成立,求实数b的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为cos 2sin x y αα=⎧⎨=⎩,(α为参数),将曲线1C 经过伸缩变换2x x y y'=⎧⎨'=⎩,后得到曲线2C .在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为cos sin 100ρθρθ--=.(1)说明曲线2C 是哪一种曲线,并将曲线2C 的方程化为极坐标方程;(2)已知点M 是曲线2C 上的任意一点,求点M 到直线l 的距离的最大值和最小值. 23.(本小题满分10分)选修4-5:不等式选讲已知函数()||f x x a =+. (1)当1=a 时,求不等式()211f x x ≤+-的解集;(2)若函数()()3g x f x x =-+的值域为A ,且[]2,1A -⊆,求a 的取值范围.2018届广州市高三年级调研测试 理科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一.选择题二.填空题13.10 14.4 15.4 16.11π三、解答题 17.(1)解法1:由已知,得cos cos 2cos a B b A c A +=.由正弦定理,得sin cos sin cos 2sin cos A B B A C A +=,…………………………………………1分即sin()2sin cos A B C A +=.…………………………………………………………………………2分因为sin()sin()sin A B C C π+=-=,…………………………………………………………………3分所以sin 2sin cos C C A =.………………………………………………………………………………4分因为sin 0C ≠,所以1cos 2A =.………………………………………………………………………5分因为0A <<π,所以3A π=.…………………………………………………………………………6分解法2:由已知根据余弦定理,得()222222222a c b b c a a c b ac bc+-+-⨯=-⨯.……………………1分即222b c a bc +-=.……………………………………………………………………………………3分所以2221cos 22b c a A bc +-==.…………………………………………………………………………5分 因为0A <<π, 所以3A π=.…………………………………………………………………………6分(2)解法1:由余弦定理2222cos a b c bc A =+-,得224bc b c +=+,………………………………………………………………………………………7分即2()34b c bc +=+.……………………………………………………………………………………8分因为22b c bc +⎛⎫≤ ⎪⎝⎭,………………………………………………………………………………………9分所以223()()44b c b c +≤++. 即4b c +≤(当且仅当2b c == 时等号成立).……………………………………………………11分所以6a b c ++≤.故△ABC 周长a b c ++的最大值为6.………………………………………………………………12分解法2:因为2sin sin sin a b c R A B C ===,且2a =,3A π=,所以b B =,c C =.…………………………………………………………………8分所以)2sin sin a b c B C ++=+22sin sin 33B B ⎡π⎤⎛⎫=++- ⎪⎢⎥⎝⎭⎣⎦………………………9分 24sin 6B π⎛⎫=++ ⎪⎝⎭.……………………………………………………………………10分因为203B π<<,所以当3B π=时,a b c ++取得最大值6. 故△ABC 周长a b c ++的最大值为6.………………………………………………………………12分18.(1)证明:连接 BD ,交 AC 于点O ,设PC 中点为F , 连接OF ,EF .因为O ,F 分别为AC ,PC 的中点, 所以OF PA P ,且12OF PA =, 因为DE PA P ,且12DE PA =,所以OF DE P ,且OF DE =.………………………………………………………………………1分所以四边形OFED 为平行四边形,所以OD EF P ,即BD EF P .………………………………2分因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA BD ⊥. 因为ABCD 是菱形,所以BD AC ⊥.因为PA AC A =I ,所以BD ⊥平面PAC .…………………………………………………………4分因为BD EF P ,所以EF ⊥平面PAC .………………………………………………………………5分因为FE ⊂平面PCE ,所以平面PAC ⊥平面PCE . ………………………………………………6分(2)解法1:因为直线 PC 与平面ABCD 所成角为o45,所以ο45=∠PCA ,所以2AC PA ==.………………………………………………………………7分所以AC AB =,故△ABC 为等边三角形. 设BC 的中点为M ,连接AM ,则AM BC ⊥.以A 为原点,AM ,AD ,AP 分别为x y z ,,轴,建立空间直角坐标系xyz A -(如图).则()20,0,P ,()01,3,C ,()12,0,E ,()02,0,D , ()21,3-=,PC ,()11,3,-=CE ,()10,0,=DE .…………………………9分设平面PCE 的法向量为{}111,,x y z n =,则0,0,PC CE ⎧=⎪⎨=⎪⎩u u u r g u u u r g n n即11111120,0.y z y z +-=++=⎪⎩ 11,y =令则11 2.x z ⎧=⎪⎨=⎪⎩所以)=n .……………………………………………………………10分设平面CDE 的法向量为()222,,x y z =m ,则0,0,DE CE ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r m m即22220,0.z y z =⎧⎪⎨++=⎪⎩令21,x =则220.y z ⎧=⎪⎨=⎪⎩所以()=m .…………11分设二面角D CE P --的大小为θ,由于θ为钝角,所以cos cos ,4θ⋅=-=-==-⋅n m n m n m.所以二面角D CE P --的余弦值为46-.…………………………………………………………12分解法2:因为直线PC 与平面ABCD 所成角为45o,且⊥PA 平面ABCD ,所以45PCA ∠=o,所以2==AC PA .………………………………………………………………7分因为2AB BC ==,所以∆ABC 为等边三角形. 因为⊥PA 平面ABCD ,由(1)知//PA OF , 所以⊥OF 平面ABCD .因为⊂OB 平面ABCD ,⊂OC 平面ABCD ,所以⊥OF OB 且⊥OF OC . 在菱形ABCD 中,⊥OB OC .以点O 为原点,OB ,OC ,OF 分别为x ,y ,z 轴,建立空间直角坐标系-O xyz (如图).则(0,0,0),(0,1,2),(0,1,0),((-O P C D E ,则(0,2,2),(1,1),(1,0)=-=-=-u u u r u u u r u u u rCP CE CD .……………………………………………9分设平面PCE 的法向量为111(,,)x y z =n ,则0,0,CP CE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n即11111220,0.y z y z -+=⎧⎪⎨-+=⎪⎩ 令11=y ,则111,1.y z =⎧⎨=⎩,则法向量()0,1,1=n .……………10分设平面CDE 的法向量为222(,,)x y z =m ,则0,0,CE CD ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r m m即222220,0.y z y ⎧-+=⎪⎨-=⎪⎩ 令21=x,则220.y z ⎧=⎪⎨=⎪⎩则法向量()1,=m .………………………………………………z OyxPACBDE11分设二面角--P CE D 的大小为θ,由于θ为钝角,则cos cos ,θ⋅=-=-==⋅n m n m n m.所以二面角--P CE D的余弦值为.…………………………………………………………12分19.解:(1)由已知数据可得24568344455,455x y ++++++++====.……………………1分因为51()()(3)(1)000316ii i xx y y =--=-⨯-++++⨯=∑,………………………………………2分,52310)1()3()(22222512=+++-+-=-∑=i ix x ………………………………………………3分==…………………………………………………4分所以相关系数()()0.95nii xx y y r --===≈∑.………………5分因为0.75r >,所以可用线性回归模型拟合y 与x 的关系. …………………………………………6分(2)记商家周总利润为Y 元,由条件可知至少需安装1台,最多安装3台光照控制仪.①安装1台光照控制仪可获得周总利润3000元.………………………………………………………7分②安装2台光照控制仪的情形:当X >70时,只有1台光照控制仪运行,此时周总利润Y=3000-1000=2000元,当30<X≤70时,2台光照控制仪都运行,此时周总利润Y=2×3000=6000元,故Y的分布列为所以20000.260000.85200EY=⨯+⨯=元.………………………………………………………9分③安装3台光照控制仪的情形:当X >70时,只有1台光照控制仪运行,此时周总利润Y=1×3000-2×1000=1000元,当50≤X≤70时,有2台光照控制仪运行,此时周总利润Y=2×3000-1×1000=5000元,当30<X≤70时,3台光照控制仪都运行,周总利润Y=3×3000=9000元,故Y的分布列为所以10000.250000.790000.14600EY=⨯+⨯+⨯=元.………………………………………11分综上可知,为使商家周总利润的均值达到最大应该安装2台光照控制仪.…………………………12分20.解:(1)因为椭圆C的离心率为12,所以12ca=,即2a c=.……………………………………1分又222+a b c=,得22=3b c,即2234b a=,所以椭圆C的方程为2222134y xa a+=.把点⎛⎝⎭代人C中,解得24a=.………………………………………………………………2分所以椭圆C的方程为22143y x+=.……………………………………………………………………3分(2)解法1:设直线l 的斜率为k ,则直线l 的方程为+2y kx =,由222,1,34y kx x y ⎧=++=⎪⎨⎪⎩得()2234120k x kx ++=.…………………………………………………………4分设(),A A A x y , (),B B B x y ,则有0A x =,21234B kx k -=+,…………………………………………5分所以226834B k y k -+=+.所以2221268,3434k k B k k ⎛⎫--+ ⎪++⎝⎭……………………………………………………………………………6分因为MO MA =,所以M 在线段OA 的中垂线上, 所以1M y =,因为2M M y kx =+,所以1M x k =-,即1,1M k ⎛⎫- ⎪⎝⎭.………………………………7分设(,0)H H x ,又直线HM 垂直l ,所以1MH k k =-,即111H k x k=---.…………………………8分所以1H x k k =-,即1,0H k k ⎛⎫- ⎪⎝⎭.……………………………………………………………………9分又()10,1F ,所以21221249,3434k k F B k k ⎛⎫--= ⎪++⎝⎭u u u r ,11,1F H k k ⎛⎫=-- ⎪⎝⎭u u u u r . 因为110F B F H ⋅=u u u r u u u u r ,所以2221249034341k k k k k k --⎛⎫⋅-= ⎪+⎝⎭-+,………………………………………10分解得283k =.……………………………………………………………………………………………11分12分解法2:设直线l 的斜率为k ,则直线l 方程+2y kx =,由222,1,34y kx x y ⎧=++=⎪⎨⎪⎩得()2234120k x kx ++=,…………………………………………………………4分设(),A A A x y ,(),B B B x y ,则有0A x =,21234B kx k -=+.…………………………………………5分所以226834B k y k -+=+. 所以21221249,3434k k F B k k ⎛⎫--= ⎪++⎝⎭u u u r ,()1,1H F H x =-u u u u r.…………………………………………………6分因为110F B F H ⋅=u u u r u u u u r ,所以21234H kx k -⋅+2249034k k --=+,解得29412H k x k -=.………………………7分因为MO MA =u u u u r u u u r ,所以()22222M M M M x y x y +=+-,解得1M y =.………………………………8分 所以直线MH 的方程为219412k y x k k ⎛⎫-=-- ⎪⎝⎭.………………………………………………………9分联立22,194,12y kx k y x k k =+⎛⎫-=--⎧ ⎪⎝⎭⎪⎨⎪⎩解得()22920121M k y k +=+.……………………………………………10分由()229201121M k y k+==+,解得283k =.………………………………………………………………11分12分21.解:(1)函数()f x 的定义域为()0,+∞.当2b =时,()2ln f x a x x =+,所以()222a x af x x x x+'=+=.………………………………1分① 当0a >时,()0f x '>,所以()f x 在()0,+∞上单调递增, (2)分取10e ax -=,则211e 1e 0a af --⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,…………………………………………………………3分(或:因为00x <<01e x <时,所以()200001ln ln ln 0ef x a x x a x a a a =+<+<+=.) 因为()11f =,所以()()010f x f <g ,此时函数()f x 有一个零点.………………………………4分②当0a <时,令()0f x '=,解得x =当0x <<()0f x '<,所以()f x 在⎛ ⎝上单调递减;当x >()0f x '>,所以()f x 在⎫+∞⎪⎪⎭上单调递增.要使函数()f x 有一个零点,则ln 02af a ==即2e a =-.………………………5分综上所述,若函数()f x 恰有一个零点,则2e a =-或0a >.………………………………………6分(2)因为对任意121,,e ex x ⎡⎤∈⎢⎥⎣⎦,有()()12e 2f x f x -≤-成立,因为()()()()12max min f x f x f x f x -≤-⎡⎤⎡⎤⎣⎦⎣⎦,所以()()max min e 2f x f x -≤-⎡⎤⎡⎤⎣⎦⎣⎦.…………………………………………………………………7分因为0a b +=,则a b =-.所以()ln b f x b x x =-+,所以()()11bb b x b f x bx x x---'=+=. 当01x <<时,()0f x '<,当1x >时,()0f x '>,所以函数()f x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增,()()min 11f x f ==⎡⎤⎣⎦,………………8分因为1e e bf b -⎛⎫=+ ⎪⎝⎭与()e e bf b =-+,所以()()max 1max ,e e f x f f ⎧⎫⎛⎫=⎡⎤⎨⎬ ⎪⎣⎦⎝⎭⎩⎭. (9)分设()()1e e e2e bbg b f f b -⎛⎫=-=-- ⎪⎝⎭()0b >,则()e e220bbg b -'=+->=.所以()g b 在()0,+∞上单调递增,故()()00g b g >=,所以()1e e f f ⎛⎫> ⎪⎝⎭.从而()maxf x =⎡⎤⎣⎦()e e bf b =-+.………………………………………………………………………10分所以e 1e 2b b -+-≤-即e e 10bb --+≤,设()=e e 1bb b ϕ--+()0b >,则()=e 1bb ϕ'-.当0b >时,()0b ϕ'>,所以()b ϕ在()0,+∞上单调递增.又()10ϕ=,所以e e 10bb --+≤,即为()()1b ϕϕ≤,解得1b ≤.……………………………11分因为0b >,所以b 的取值范围为(]0,1.………………………………………………………………12分22.解:(1)因为曲线1C 的参数方程为cos 2sin x y αα=⎧⎨=⎩(α为参数),因为2.x x y y '=⎧⎨'=⎩,,则曲线2C 的参数方程2cos 2sin .x y αα'=⎧⎨'=⎩,.………………………………………………2分所以2C 的普通方程为224x y ''+=.……………………………………………………………………3分所以2C 为圆心在原点,半径为2的圆.…………………………………………………………………4分所以2C 的极坐标方程为24ρ=,即2ρ=.…………………………………………………………5分(2)解法1:直线l 的普通方程为100x y --=.…………………………………………………………6分曲线2C 上的点M 到直线l的距离+)10|d απ-==8分 当cos +=14απ⎛⎫ ⎪⎝⎭即()=24k k αππ-∈Z 时,d2-.……………9分当cos +=14απ⎛⎫- ⎪⎝⎭即()3=24k k απ+π∈Z 时,d+10分解法2:直线l 的普通方程为100x y --=.…………………………………………………………6分因为圆2C 的半径为2,且圆心到直线l 的距离252|1000|=--=d ,…………………………7分因为225>,所以圆2C 与直线l 相离.………………………………………………………………8分所以圆2C 上的点M 到直线l 的距离最大值为225+=+r d ,最小值为225-=-r d .…10分23.解:(1)当1=a 时,()|1|=+f x x .…………………………………………………………………1分①当1x ≤-时,原不等式可化为122x x --≤--,解得1≤-x .…………………………………2分②当112x -<<-时,原不等式可化为122+≤--x x ,解得1≤-x ,此时原不等式无解.……3分③当12x ≥-时,原不等式可化为12+≤x x ,解得1≥x .…………………………………………4分综上可知,原不等式的解集为{1x x ≤-或}1≥x .…………………………………………………5分(2)解法1:①当3a ≤时,()3,3,23,3,3,.a x g x x a x a a x a -≤-⎧⎪=----<<-⎨⎪-≥-⎩ (6)分所以函数()g x 的值域[]3,3A a a =--, 因为[2,1]-⊆A ,所以3231a a -≤-⎧⎨-≥⎩,,解得1a ≤.………………………………………………………7分②当3a >时,()3,,23,3,3, 3.a x a g x x a a x a x -≤-⎧⎪=++-<<-⎨⎪-≥-⎩…………………………………………………8分所以函数()g x 的值域[]3,3A a a =--, 因为[2,1]-⊆A ,所以3231a a -≤-⎧⎨-≥⎩,,解得5a ≥.………………………………………………………9分综上可知,a 的取值范围是(][),15,-∞+∞U .………………………………………………………10分解法2:因为|+||+3|x a x -≤()+(+3)3x a x a -=-,…………………………………7分 所以()g x =()|+3||+||+3|[|3|,|3|]-=-∈---f x x x a x a a . 所以函数()g x 的值域[|3|,|3|]A a a =---.…………………………………………………………8分因为[2,1]-⊆A ,所以|3|2|3|1a a --≤-⎧⎨-≥⎩,,解得1a ≤或5a ≥.所以a 的取值范围是(][),15,-∞+∞U .…………………………………………………10分。
全国省级联考⼴东省2018届⾼三第⼀次模拟考试数学(理)试题及答案解析2018年普通⾼等学校招⽣试卷全国统⼀考试⼴东省理科数学模拟考试(⼆)第Ⅰ卷(共60分)⼀、选择题:本⼤题共12个⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.已知,x y R ∈,集合{}32,log A x =,集合{},B x y =,若{}0A B ?=,则x y +=() A.13B. 0C. 1D. 3【答案】C 【解析】分析:⾸先应⽤{0}A B =I 确定出3log 0x =,从⽽求出x 的值,再进⼀步确定出y 的值,最后求得结果即可.详解:因为{0}A B =I ,所以3log 0x =,解得1x =,所以0y =,所以101x y +=+=,故选C.点睛:该题考查的是有关集合的知识点,涉及到集合的交集中元素的特征,从⽽找到等量关系式,最后求得结果.2.若复数11z i =+,21z i =-,则下列结论错误的是() A. 12z z ?是实数 B.12z z 是纯虚数 C. 24122z z =D. 22124z z i +=【答案】D 【解析】分析:根据题中所给的条件,将两个复数进⾏相应的运算,对选项中的结果⼀⼀对照,从⽽选出满⾜条件的项.详解:212(1)(1)12z z i i i ?=+-=-=,是实数,故A 正确,21211212z i i i i z i +++===-,是纯虚数,故B 正确, 442221(1)[(1)](2)4z i i i =+=+==,22222(1)224z i i =-=-=,故C 正确,222212(1)(1)220z z i i i i +=++-=-=,所以D 项不正确,故选D.点睛:该题考查的是复数的有关概念和运算,在做题的时候,需要对选项中的问题⼀⼀检验,从⽽找到正确的结果.3.已知()1,3a =-v ,(),4b m m =-v ,()2,3c m =v ,若a b v P v,则b c ?=v v ()A. -7B. -2C. 5D. 8【答案】A 【解析】分析:利⽤向量平⾏列⽅程求出m 的值,然后直接利⽤向量数量积的坐标表⽰求解即可. 详解:因()1,3a v =-,(),4b m m =-v ,()2,3c m =v,所以由//a b r r,可得()340m m +-=,则1,m =()()1,3,2,3b c ∴=-=v ,12337b c ?=?-?=-v v,故选A.点睛:利⽤向量的位置关系求参数是出题的热点,主要命题⽅式有两个:(1)两向量平⾏,利⽤12210x y x y -=解答;(2)两向量垂直,利⽤12120x x y y +=解答.4.如图,?AD 是以正⽅形的边AD 为直径的半圆,向正⽅形内随机投⼊⼀点,则该点落在阴影区域内的概率为()A.16πB.316C.4π D.14【答案】D 【解析】分析:先由圆的对称性得到图中阴影部分的⾯积,再⽤⼏何概型的概率公式进⾏求解. 详解:连接AE ,由圆的对称性得阴影部分的⾯积等于ABE ?的⾯积,易知1=4ABE ABCDS S ?正⽅形,由⼏何概型的概率公式,得该点落在阴影区域内的概率为14P =.故选D. .点睛:本题的难点是求阴影部分的⾯积,本解法利⽤了圆和正⽅形的对称性,将阴影部分的⾯积转化为求三⾓形的⾯积.5.已知等⽐数列{}n a 的⾸项为1,公⽐1q ≠-,且()54323a a a a +=+91239a a a a =L () A. 9- B. 9C. 81-D. 81【答案】B 【解析】分析:⾸先利⽤等⽐数列的项之间的关系,求得公⽐q 的值,之后判断根式的特征,化简求得是有关数列的第⼏项,再结合题中所给的数列的⾸项得出结果.详解:根据题意可知254323a a q a a +==+,942991239551139a a a a a a a q ?===?=?=,故选B.点睛:该题考查的是等⽐数列的有关问题,涉及到项与项之间的关系,还有就是数列的性质,两项的脚码和相等,则数列的两项的积相等,将式⼦化简,利⽤⾸项和公⽐求出结果.6.已知双曲线2222:1(0,0)x y C a b a b-=>>的⼀个焦点坐标为(4,0),且双曲线的两条渐近线互相垂直,则该双曲线的⽅程为( )A. 22188x y -=B. 2211616x y -=C. 22188y x -=D. 22188x y -=或22188y x -= 【答案】A 【解析】分析:先利⽤双曲线的渐近线相互垂直得出该双曲线为等轴双曲线,再利⽤焦点位置确定双曲线的类型,最后利⽤⼏何元素间的等量关系进⾏求解. 详解:因为该双曲线的两条渐近线互相垂直,所以该双曲线为等轴双曲线,即a b =,⼜双曲线2222:x y C a b-=的⼀个焦点坐标为()4,0,所以2216a =,即228a b ==,即该双曲线的⽅程为22188x y -=.故选D.点睛:本题考查了双曲线的⼏何性质,要注意以下等价关系的应⽤:等轴双曲线的离⼼率为2,其两条渐近线相互垂直. 7.已知某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A. 86π+B. 66π+C. 812π+D. 612π+【答案】B 【解析】由三视图可得该⼏何体是由圆柱的⼀半(沿轴截⾯截得,底⾯半径为1,母线长为3)和⼀个半径为1的半球组合⽽成(部分底⾯重合),则该⼏何体的表⾯积为12π+π2π3236π62S =+??+?=+. 【名师点睛】先利⽤三视图得到该组合体的结构特征,再分别利⽤球的表⾯积公式、圆柱的侧⾯积公式求出各部分⾯积,最后求和即可.处理⼏何体的三视图和表⾯积、体积问题时,往往先由三视图判定⼏何体的结构特征,再利⽤相关公式进⾏求解. 8.设x ,y 满⾜约束条件0,2,xy x y ≥??+≤?则2z x y =+的取值范围是()A. []22-,B. []4,4-C. []0,4D. []0,2【答案】B 【解析】分析:⾸先根据题中所给的约束条件画出相应的可⾏域,是两个三⾓形区域,结合⽬标函数的属性,可知其为截距型的,从⽽确定出在哪个点处取得最⼩值,哪个点处取得最⼤值,从⽽确定出⽬标函数的范围. 详解:直线2x y +=-与x 轴交于(2,0)A -点,与y 轴交于(0,2)B -点,直线2x y +=与x 轴交于(2,0)C 点,与y 交于(0,2)D 点,题中约束条件对应的可⾏域为,AOB COD ??两个三⾓形区域,移动直线2y x z =-+,可知直线过点A 时截距取得最⼩值,过点C 时截距取得最⼤值,从⽽得到min max 2(2)04,2204z z =?-+=-=?+=,从⽽确定出⽬标函数的取值范围是[4,4]-,故选B.点睛:该题属于线性规划的问题,需要⾸先根据题中所给的约束条件画出相应的可⾏域,判断⽬标函数的类型,属于截距型的,从⽽判断出动直线过哪个点时取得最⼩值,过哪个点时取得最⼤值,最后求得对应的范围,在求解的时候,判断最优解最关键.9.在印度有⼀个古⽼的传说:舍罕王打算奖赏国际象棋的发明⼈——宰相宰相西萨?班?达依尔.国王问他想要什么,他对国王说:“陛下,请您在这张棋盘的第1个⼩格⾥,赏给我1粒麦⼦,在第2个⼩格⾥给2粒,第3⼩格给4粒,以后每⼀⼩格都⽐前⼀⼩格加⼀倍.请您把这样摆满棋盘上所有的64格的麦粒,都赏给您的仆⼈吧!”国王觉得这要求太容易满⾜了,就命令给他这些麦粒.当⼈们把⼀袋⼀袋的麦⼦搬来开始计数时,国王才发现:就是把全印度甚⾄全世界的麦粒全拿来,也满⾜不了那位宰相的要求.那么,宰相要求得到的麦粒到底有多少粒?下⾯是四位同学为了计算上⾯这个问题⽽设计的程序框图,其中正确的是()A. B. C. D.【答案】C 【解析】分析:先分析这个传说中涉及的等⽐数列的前64项的和,再对照每个选项对应的程序框图进⾏验证. 详解:由题意,得每个格⼦所放麦粒数⽬形成等⽐数列{}n a ,且⾸项11a =,公⽐2q =,所设计程序框图的功能应是计算2641222S =++++,经验证,得选项B 符合要求.故选B . 点睛:本题以数学⽂化为载体考查程序框图的功能,属于基础题.10.已知数列{}n a 的前n 项和为n S ,115a =,且满⾜()()21252341615n n n a n a n n +-=-+-+,已知*,n m N ∈,n m >,则n m S S -的最⼩值为()A. 494-B. 498-C. 14-D. 28-【答案】C 【解析】分析:⾸先对题中所给的数列的递推公式进⾏变形,整理得出数列25n a n ??-为等差数列,确定⾸项和公差,从⽽得到新数列的通项公式,接着得到{}n a 的通项公式,利⽤其通项公式,可以得出哪些项是正的,哪些项是负的,哪些项等于零,从⽽能够判断出n m S S -在什么情况下取得最⼩值,并求出最⼩值的结果. 详解:根据题意可知1(25)(23)(25)(23)n n n a n a n n +-=-+--,式⼦的每⼀项都除以(25)(23)n n --,可得112325n na a n n +=+--,即112(1)525n na a n n +-=+--,所以数列25n a n ??-??是以15525=--为⾸项,以1为公差的等差数列,所以5(1)1625na n n n =-+-?=--,即(6)(25)n a n n =--,由此可以判断出345,,a a a 这三项是负数,从⽽得到当5,2n m ==时,n m S S -取得最⼩值,且5234536514n m S S S a a S a -=-=++=---=-,故选C.点睛:该题考查的是数列的有关问题,需要对题中所给的递推公式变形,构造出新的等差数列,从⽽借助于等差数列求出{}n a 的通项公式,⽽题中要求的n m S S -的值表⽰的是连续若⼲项的和,根据通项公式判断出项的符号,从⽽确定出哪些项,最后求得结果.11.已知菱形ABCD 的边长为060BAD ∠=,沿对⾓线BD 将菱形ABCD 折起,使得⼆⾯⾓A BD C --的余弦值为13-,则该四⾯体ABCD 外接球的体积为( )A.B.C.D. 36π【答案】B 【解析】【分析】⾸先根据题中所给的菱形的特征,结合⼆⾯⾓的平⾯⾓的定义,先找出⼆⾯⾓的平⾯⾓,之后结合⼆⾯⾓的余弦值,利⽤余弦定理求出翻折后AC 的长,借助勾股定理,得到该⼏何体的两个侧⾯是共⽤斜边的两个直⾓三⾓形,从⽽得到该四⾯体的外接球的球⼼的位置,从⽽求得结果. 【详解】取BD 中点M ,连结,AM CM ,根据⼆⾯⾓平⾯⾓的概念,可知AMC ∠是⼆⾯⾓A BD C --的平⾯⾓,根据图形的特征,结合余弦定理,可以求得32AM CM ===,此时满⾜ 2199233()243AC =+--=,从⽽求得AC =,22222AB BC AD CD AC +=+=,所以,ABC ADC ??是共斜边的两个直⾓三⾓形,所以该四⾯体的外接球的球⼼落在AC 中点,半径2ACR ==所以其体积为34433V R ππ==?=,故选B. 【点睛】该题所考查的是有关⼏何体的外接球的问题,解决该题的关键是弄明⽩外接球的球⼼的位置,这就要求对特殊⼏何体的外接球的球⼼的位置以及对应的半径的⼤⼩都有所认识,并且归类记忆即可. 12.已知函数()()ln 3xf x e x =-+,则下⾯对函数()f x 的描述正确的是()A. ()3,x ?∈-+∞,()13f x ≥B. ()3,x ?∈-+∞,()12f x >- C. ()03,x ?∈-+∞,()01f x =- D. ()()min 0,1f x ∈【答案】B 【解析】分析:⾸先应⽤导数研究函数的单调性,借助于⼆阶导来完成,在求函数的极值点的时候,发现对应的⽅程,在中学阶段是解不出来的,所以⽤估算的办法求出来,之后进⾏⽐较,对题中各项的结果进⾏对⽐,排除不正确的,最后得到正确答案.详解:根据题意,可以求得函数的定义域为(3,)-+∞,1'()3x f x e x =-+,21''()(3)xf x e x =++,可以确定''()0f x >恒成⽴,所以'()f x 在(3,)-+∞上是增函数,⼜11'(1)02f e -=-<,11'()0522f -=->,所以01(1,)2x ?∈--,满⾜0'()0f x =,所以函数()f x 在0(3,)x -上是减函数,在0(+)x ∞,上是增函数,0()f x 是最⼩值,满⾜00103xe x -=+,000()ln(3)x f x e x =-+00x e x =+在1(1,)2--上是增函数,从⽽有01()()(1)1f x f x f e ≥>-=-,结合该值的⼤⼩,可知最⼩值是负数,可排除A,D ,且111e->-,从⽽排除C 项,从⽽求得结果,故选B.点睛:该题考查的是利⽤导数研究函数的性质,本题借着⼆阶导来得到⼀阶导函数是增函数,从⽽利⽤零点存在性定理对极值点进⾏估算,最后不是求出的确切值,⽽是利⽤估算值对选项进⾏排除,从⽽求得最后的结果.第Ⅱ卷(共90分)⼆、填空题(每题5分,满分20分,将答案填在答题纸上)13.将函数()()()2sin 20f x x ??=+<的图象向左平移π3个单位长度,得到偶函数()g x 的图象,则?的最⼤值是________________.【答案】6π- 【解析】分析:先利⽤三⾓函数的变换得到()g x 的解析式,再利⽤诱导公式和余弦函数为偶函数进⾏求解. 详解:函数()()()2sin 20f x x =+<的图象向左平移3π个单位长度,得到π2π2sin[2()]2sin(2)33y x x ??=++=++,即2π()2sin(2)3g x x ?=++,⼜()g x 为偶函数,所以2πππ,32k k Z ?+=+∈,即ππ,6k k Z ?=-+∈,⼜因为0?<,所以的最⼤值为π6-. 点睛:本题的易错点是:函数()()()2sin 20f x x ??=+<的图象向左平移3π个单位长度得到 ()g x 的解析式时出现错误,要注意平移的单位仅对于⾃变量""x ⽽⾔,不要得到错误答案“π()2sin(2)3g x x ?=++”. 14.已知0a >,0b >,6b ax x ??+ ??展开式的常数项为52,则2+a b 的最⼩值为__________.【答案】2 【解析】分析:由题意在⼆项展开式的通项公式中,令x 的幂指数等于零,求得r 的值,可得展开式的常数项,再根据展开式的常数项为52,确定出12ab =,再利⽤基本不等式求得2+a b 的最⼩值.详解:6()bax x+展开式的通项公式为666166()()rrr r r r r r r b T C ax a b C x x----+==,令620r -=,得3r =,从⽽求的333652C a b =,整理得12ab =,⽽22a b +≥==,故答案是2. 点睛:该题考查的是有关⼆项式定理以及基本不等式的问题,解题的关键是要清楚⼆项展开式的通项公式以及确定项的求法,之后是有关利⽤基本不等式求最值的问题,注意其条件是⼀正⼆定三相等.15.已知函数()()2log 41xf x mx =++,当0m =时,关于x 的不等式()3log 1f x <的解集为__________.【答案】()0,1 【解析】分析:⾸先应⽤条件将函数解析式化简,通过解析式形式确定函数的单调性,解出函数值1所对应的⾃变量,从⽽将不等式转化为3(log )(0)f x f <,进⼀步转化为3log 0x <,求解即可,要注意对数式中真数的条件即可得结果.详解:当0m =时,2()log (41)xf x =+是R 上的增函数,且2(0)log (11)1f =+=,所以()3log 1f x <可以转化为3(log )(0)f x f <,结合函数的单调性,可以将不等式转化为3log 0x <,解得01x <<,从⽽得答案为(0,1).点睛:解决该题的关键是将不等式转化,得到x 所满⾜的不等式,从⽽求得结果,挖掘题中的条件就显得尤为重要.16.设过抛物线()220y px p =>上任意⼀点P (异于原点O )的直线与抛物线()280y px p =>交于A ,B两点,直线OP 与抛物线()280y px p =>的另⼀个交点为Q ,则ABQ ABOS S ??=__________.【答案】3 【解析】分析:画出图形,将三⾓形的⾯积⽐转化为线段的长度⽐,之后转化为坐标⽐,设出点的坐标,写出直线的⽅程,联⽴⽅程组,求得交点的坐标,最后将坐标代⼊,求得⽐值,详解:画出对应的图就可以发现,1ABQ Q P Q ABOP PS x x y PQ S OP x y ??-===-设211(,)2y P y p ,则直线121:2y OP y x y p=,即12p y x y =,与28y px =联⽴,可求得14Q y y =,从⽽得到⾯积⽐为11413y y -=,故答案是3. 点睛:解决该题的关键不是求三⾓形的⾯积,⽽是应⽤⾯积公式将⾯积⽐转化为线段的长度⽐,之后将长度⽐转化为坐标⽐,从⽽将问题简化,求得结果.三、解答题(本⼤题共6⼩题,共70分.解答应写出⽂字说明、证明过程或演算步骤.)17.在ABC ?中,内⾓A ,B ,C 所对的边分别为a ,b ,c ,已知60B =o ,8c =. (1)若点M ,N 是线段BC 的两个三等分点,13BM BC =,ANBM =,求AM 的值;(2)若12b =,求ABC ?的⾯积.【答案】(1)213(2)24283+. 【解析】分析:第⼀问根据题意得出两个点的位置,从⽽设出对应的边长,在三⾓形中,应⽤余弦定理求得x所满⾜的等量关系式,求得对应的值,再放在三⾓形中应⽤余弦定理求得对应的边长,第⼆问根据正弦定理找出⾓所满⾜的条件,最后利⽤⾯积公式求得三⾓形的⾯积.详解:(1)由题意得M,N是线段BC的两个三等分点,设BM x=,则2BN x=,23AN x=,⼜60B=o,8AB=,在ABN中,由余弦定理得22 12644282cos60x x x=+-??o,解得2x=(负值舍去),则2 BM=.在ABN中,22182282522132AM=+-==.(2)在ABC中,由正弦定理sin sinb cB C=,得38sin32sin12c BCb===.⼜b c>,所以B C>,则C为锐⾓,所以6cos C=.则()3613323sin sin sin cos cos sin2A B C B C B C+=+=+=?+?=,所以ABC的⾯积1323sin48242832S bc A+==?=+.点睛:该题所考查的是有关利⽤正余弦定理解三⾓形的问题,在解题的过程中,需要时刻关注正余弦定理的内容,在求解的过程中,注意边长所满⾜的条件,对解出的结果进⾏相应的取舍,将⾯积公式要⽤活.18.如图,在五⾯体ABCDEF中,四边形EDCF是正⽅形,AD DE=,090ADE∠=,120ADC DCB∠=∠=.(1)证明:平⾯ABCD ⊥平⾯EDCF ; (2)求直线AF 与平⾯BDF 所成⾓的正弦值.【答案】(1)见解析(2【解析】分析:第⼀问证明⾯⾯垂直,在证明的过程中,利⽤常规⽅法,抓住⾯⾯垂直的判定定理,找出相应的垂直关系证得结果,第⼆问求的是线⾯⾓的正弦值,利⽤空间向量,将其转化为直线的⽅向向量与平⾯的法向量所成⾓的余弦值的绝对值,从⽽求得结果.详解:(1)证明:因为AD DE ⊥,DC DE ⊥,AD ,CD ?平⾯ABCD ,且AD CD D =I ,所以DE ⊥平⾯ABCD .⼜DE ?平⾯EDCF ,故平⾯ABCD ⊥平⾯EDCF . (2)解:由已知//DC EF ,所以//DC 平⾯ABFE . ⼜平⾯ABCD ?平⾯ABFE AB =,故//AB CD . 所以四边形ABCD 为等腰梯形.⼜AD DE =,所以AD CD =,易得AD BD ⊥,令1AD =,如图,以D 为原点,以DA u u u v的⽅向为x 轴正⽅向,建⽴空间直⾓坐标系D xyz -,则()0,0,0D ,()1,0,0A,12F ??- ? ???,()B ,所以3,12FA ??=- ? ???u u u v,()DB =u u u v,12DF ??=- ? ???u u u v . 设平⾯BDF的法向量为(),,n x y z =,由0,0,n DB n DF ??=??=?u u u v u u u v 所以0,10,22x y z ?=??-++=??取2x =,则0y =,1z =,得()2,0,1n =, cos ,FA n FA n FA n ?===u u u vu u u v u u u v .设直线与平⾯BDF 所成的⾓为θ,则sin θ=. 所以直线AF 与平⾯BDF点睛:该题在解题的过程中,第⼀问⽤的是常规法,第⼆问⽤的是空间向量法,既然第⼆问要⽤空间向量,则第⼀问也可以⽤空间向量的数量积等于零来达到证明垂直的条件,所以解题⽅法是不唯⼀的.19.经销商第⼀年购买某⼯⼚商品的单价为a (单位:元),在下⼀年购买时,购买单价与其上年度销售额(单位:万元)相联系,销售额越多,得到的优惠⼒度越⼤,具体情况如下表:上⼀年度销售额/万元[)0,100[)100,200[)200,300[)300,400[)400,500[)500,+∞商品单价/元 a0.9a 0.85a 0.8a 0.75a 0.7a为了研究该商品购买单价的情况,为此调查并整理了50个经销商⼀年的销售额,得到下⾯的柱状图.已知某经销商下⼀年购买该商品的单价为X (单位:元),且以经销商在各段销售额的频率作为概率. (1)求X 的平均估计值.(2)该⼯⼚针对此次的调查制定了如下奖励⽅案:经销商购买单价不⾼于平均估计单价的获得两次抽奖活动,⾼于平均估计单价的获得⼀次抽奖活动.每次获奖的⾦额和对应的概率为记Y (单位:元)表⽰某经销商参加这次活动获得的资⾦,求Y 的分布及数学期望. 【答案】(1)0.873a (2)见解析【解析】分析:第⼀问根据题意,列出对应的变量的分布列,利⽤离散型随机变量的期望公式求得对应的平均值;第⼆问也是分析题的条件,将事件对应的情况找全,对应的概率值算对,最后列出分布列,利⽤公式求得其数学期望.详解:(1)由题可知:X 的平均估计值为:0.20.90.30.850.240.80.120.750.10.70.040.873a a a a a a a ?+?+?+?+?+?=.(2)购买单价不⾼于平均估计单价的概率为10.240.120.10.040.52+++==. Y 的取值为5000,10000,15000,20000. ()1335000248P Y ==?=,()1113313100002424432P Y ==?+??=,()2111331500024416P Y C ===,()11112000024432P Y ==??=.所以Y 的分布列为()31331500010000150002000093758321632E Y =?+?+?+?=(元).点睛:该题属于离散型随机变量的分布列及其期望值的运算,在解题的过程中,⼀定要对题的条件加以分析,正确理解,那些量有⽤,会提⽰我们得到什么样的结果,还有就是关于离散型随机变量的期望公式⼀定要熟记并能灵活应⽤.20.已知椭圆1C :2221(0)8x y b b+=>的左、右焦点分别为1F ,2F ,点2F 也为抛物线2C :28y x =的焦点.(1)若M ,N 为椭圆1C 上两点,且线段MN 的中点为(1,1),求直线MN 的斜率;(2)若过椭圆1C 的右焦点2F 作两条互相垂直的直线分别交椭圆于A ,B 和C ,D ,设线段AB ,CD 的长分别为m ,n ,证明11m n+是定值.【答案】(1)1 2-(2解:因为抛物线22:8C y x =的焦点为(2,0),所以284b -=,故2b =.所以椭圆222:184x y C +=.(1)设1122(,),(,)M x y N x y ,则221122221,84{1,84x y x y +=+= 两式相减得1212()()8x x x x +-+1212()()04y y y y +-=,⼜MN 的中点为(1,1),所以12122,2x x y y +=+=.所以21211 2y y x x -=--. 显然,点(1,1)在椭圆内部,所以直线MN 的斜率为12-. (2)椭圆右焦点2(2,0)?F .当直线AB 的斜率不存在或者为0时,11 m n +=+8=. 当直线AB 的斜率存在且不为0时,设直线AB 的⽅程为(2)y k x =-,设1122(,),(,)A x y B x y ,联⽴⽅程得22(2),{28,y k x x y =-+=消去y 并化简得222(12)8k x k x +-2880k +-=,因为222(8)4(12)k k ?=--+22(88)32(1)0k k -=+>,所以2122812k x x k +=+,21228(1)12k x x k -=+.所以m =22)12k k+=+同理可得22)2k n k +=+.所以11 m n +=2222122()118k k k k +++=++为定值. 【解析】分析:(1)先利⽤抛物线的焦点是椭圆的焦点求出284b -=,进⽽确定椭圆的标准⽅程,再利⽤点差法求直线的斜率;(2)设出直线的⽅程,联⽴直线和椭圆的⽅程,得到关于x 的⼀元⼆次⽅程,利⽤根与系数的关系进⾏求解.详解:因为抛物线22:8C y x =的焦点为()2,0,所以284b -=,故2b =.所以椭圆221:184x y C +=.(1)设()11,M x y ,()22,N x y ,则221122221,841,84x y x y ?+=+=?? 两式相减得()()()()12121212084x x x x y y y y +-+-+=,⼜MN 的中点为()1,1,所以122x x +=,122y y +=.所以212112y y x x -=--.显然,点()1,1在椭圆内部,所以直线MN 的斜率为12-.(2)椭圆右焦点()22,0F .当直线AB 的斜率不存在或者为0时,11m n +==当直线AB 的斜率存在且不为0时,设直线AB 的⽅程为()2y k x =-,设()11,A x y ,()22,B x y ,联⽴⽅程得()222,28,y k x x y ?=-?+=?消去y 并化简得()2222128880k xk x k +-+-=,因为()()()()222228412883210k k k k ?=--+-=+>,所以2122812k x x k +=+,()21228112k x x k-=+.所以)22112k m k +==+,同理可得)2212k n k +=+.所以222211122118k k m n k k ??+++=+=?++?为定值. 点睛:在处理直线与椭圆相交的中点弦问题,往往利⽤点差法进⾏求解,⽐联⽴⽅程的运算量⼩,另设直线⽅程时,要注意该直线的斜率不存在的特殊情况,以免漏解. 21.已知()'fx 为函数()f x 的导函数,()()()2'200x x f x e f e f x =+-.(1)求()f x 的单调区间;(2)当0x >时,()xaf x e x <-恒成⽴,求a 的取值范围.【答案】(1)见解析(2)[]1,0- 【解析】分析:第⼀问给⾃变量赋值求得解析式,利⽤导数研究函数的单调性即可,第⼆问关于恒成⽴问题可以转化为求函数最值问题来解决,最值也离不开函数图像的⾛向,所以离不开求导确定函数的单调区间. 详解:(1)由()()0120f f =+,得()01f =-. 因为() ()2220xx f x ee f =-'-',所以()()0220f f =-'-',解得()00f '=.所以()22xx f x ee =-,()()22221x x x xf x e e e e ='=--,当(),0x ∈-∞时,()0f x '<,则函数()f x 在(),0-∞上单调递减;当()0,x ∈+∞时,()0f x '>,则函数()f x 在()0,+∞上单调递增. (2)令()()()221xxx g x af x e x aea e x =-+=-++,根据题意,当()0,x ∈+∞时,()0g x <恒成⽴.()()()()222211211x x x x g x ae a e ae e '=-++=--.①当102a <<,()ln2,x a ∈-+∞时,()0g x '>恒成⽴,所以()g x 在()ln2,a -+∞上是增函数,且()()()ln2,g x g a ∈-+∞,所以不符合题意;②当12a ≥,()0,x ∈+∞时,()0g x '>恒成⽴,所以()g x 在()0,+∞上是增函数,且()()()0,g x g ∈+∞,所以不符合题意;③当0a ≤时,因为()0,x ∈+∞,所有恒有()0g x '<,故()g x 在()0,+∞上是减函数,于是“()0g x <对任意()0,x ∈+∞都成⽴”的充要条件是()00g ≤,即()210a a -+≤,解得1a ≥-,故10a -≤≤. 综上,a 的取值范围是[]1,0-.点睛:该题属于导数的综合应⽤问题,在解题的过程中,确定函数解析式就显得尤为重要,在这⼀步必须保持头脑清醒,第⼆问在证明不等式恒成⽴的时候,可以构造新函数,恒成⽴问题转化为最值来处理即可,需要注意对参数进⾏讨论.请考⽣在22、23两题中任选⼀题作答,如果多做,则按所做的第⼀题记分.22.选修4-4:坐标系与参数⽅程在直⾓坐标系xOy 中,直线l的参数⽅程为34x y a ?=?=?,(t 为参数),圆C 的标准⽅程为22(3)(3)4x y -+-=.以坐标原点为极点, x 轴正半轴为极轴建⽴极坐标系.(1)求直线l 和圆C 的极坐标⽅程; (2)若射线(0)3πθρ=>与直线l 的交点为M ,与圆C 的交点为,A B ,且点M 恰好为线段AB 的中点,求a 的值.【答案】(1)cos sin ρθρθ-304a -+=.26cos 6sin 140ρρθρθ--+=(2)94a = 【解析】分析:(1)将直线l 的参数⽅程利⽤代⼊法消去参数,可得直线l 的直⾓坐标⽅程,利⽤cos x ρθ=,sin y ρθ=可得直线l 的极坐标⽅程,圆的标准⽅程转化为⼀般⽅程,两边同乘以ρ利⽤利⽤互化公式可得圆C 的极坐标⽅程;(2)联⽴2,366140,cos sin πθρρρθ?=-∞-+=?可得(23140ρρ-++=,根据韦达定理,结合中点坐标公式可得3,23M π??+ ? ???,将323M π??+ ? ???代⼊3cos sin 04a ρθρθ--+=,解⽅程即可得结果.详解:(1)在直线l 的参数⽅程中消去t 可得,304x y a --+=,将cos x ρθ=,sin y ρθ=代⼊以上⽅程中,所以,直线l 的极坐标⽅程为3cos sin 04a ρθρθ--+=. 同理,圆C 的极坐标⽅程为26cos 6sin 140ρρθρθ--+=. (2)在极坐标系中,由已知可设1,3M πρ??,2,3A πρ??,3,3B πρ??. 联⽴2,366140,cos sin πθρρρθ?=-∞-+=?可得(23140ρρ-++=,所以233ρρ+=+因为点M 恰好为AB 的中点,所以1ρ=,即3M π.把3M π代⼊3cos sin 04a ρθρθ--+=,得(313024a ++=,所以94 a =.。
2018年普通高等学校招生全国统一考试广东省理科数学模拟试卷(一)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2|111,|1A x x B x x =-<-<=<,则AB =( )A .{}|1x 1x -<<B .{}|01x x <<C .{}|1x x <D .{}|02x x << 2.设复数()4z a i a R =+∈,且()2i z -为纯虚数,则a = ( ) A .-1 B . 1 C . 2 D .-23. 下图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是( )A .320 B .325π C .325 D .20π4. 已知函数()f x 满足332x f x x ⎛⎫=- ⎪⎝⎭,则函数()f x 的图象在1x =处的切线斜率为( )A .0B . 9 C. 18 D .275. 已知F 是双曲线()2222:10,0x y C a b a b-=>>的一个焦点,点F 到C 的一条渐近线的距离为2a ,则双曲线C 的离心率为( )A ..2 6. ()5112x x x ⎛⎫++ ⎪⎝⎭的展开式中,3x 的系数为( ) A . 120 B .160 C. 100 D .807. 如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .488π+B .968π+ C. 9616π+ D .4816π+ 8.已知曲线:sin 23C y x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是 ( ) A .把C 向左平移512π个单位长度,得到的曲线关于原点对称 B .把C 向右平移6π个单位长度,得到的曲线关于y 轴对称 C. 把C 向左平移3π个单位长度,得到的曲线关于原点对称D .把C 向右平移12π个单位长度,得到的曲线关于y 轴对称9. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入( )A .n 是偶数,100n ≥B .n 是奇数,100n ≥ C. n 是偶数,100n > D .n 是奇数,100n > 10.在ABC ∆中,角,,C A B 所对的边分别为,,a b c ,若3A π=,且2sin 2sin b B c C bc +=,则ABC ∆的面积的最大值为( )A11.已知抛物线2:,C y x M =为x 轴负半轴上的动点,,MA MB 为抛物线的切线,,A B 分别为切点,则MA MB 的最小值为 ( ) A .116-B .18- C. 14- D .12- 12.设函数()1222,21130,2x x f x x x x +⎧-≤⎪=⎨-+>⎪⎩,若互不相等的实数,,,a b c d 满足()()()()f a f b f c f d ===,则2222a b c d +++的取值范围是 ( )A.()2,146 B .()98,146C. ()2,266 D .()98,266 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知单位向量12,e e 的夹角为30°,则123e e -= .14.设,x y 满足约束条件6456543x y x y x y -≤⎧⎪+≤⎨⎪+≥⎩,则z x y =+的最大值为 .15.已知000sin10cos102cos140m +=,则m = .16.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为,,,,O E F G H 为圆O 上的点,,,,ABE BCF CDG ADH ∆∆∆∆分别是以,,,AB BC CD DA 为底边的等腰三角形.沿虚线剪开后,分别以,,,AB BC CD DA 为折痕折起,,CDG,ADH ABE BCF ∆∆∆∆,使得,,,E F G H 重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知公差不为零的等差数列{}n a 满足15a =,且3611,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)设13n n n b a -=,求数列{}n b 的前n 项和n S .18.“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下: 3000 6000800010000 1规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”. (1)以这50人这一天行走的步数的频率代替1人一天行走的步数发生的概率,记X 表示随机抽取3人中被系统评为“积极性”的人数,求()2P X ≤和X 的数学期望.(2)为调查评定系统的合理性,拟从这50人中先抽取10人(男性6人,女性4人).其中男性中被系统评定为“积极性”的有4人,“懈怠性”的有2人,从中任意选取3人,记选到“积极性”的人数为x ;其中女性中被系统评定为“积极性”和“懈怠性”的各有2人,从中任意选取2人,记选到“积极性”的人数为y ;求x y >的概率.19.如图,在直角梯形ABCD 中,//,AD BC AB BC ⊥,且24,,B C A D E F==分别为线段,AB DC 的中点,沿EF 把AEFD 折起,使AE CF ⊥,得到如下的立体图形.(1)证明:平面AEFD ⊥平面EBCF ;(2)若BD EC ⊥,求二面角F BD C --的余弦值.20.已知椭圆()2222:10x y C a b a b +=>>的离心率为2,且C过点⎛ ⎝⎭. (1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于,P Q 两点(点,P Q 均在第一象限),l 与x 轴,y 轴分别交于,M N 两点,且满足2222PMO QMOPNO QNOPMO QMOPNO QNOS S S S S S S S ∆∆∆∆∆∆∆∆++=(其中O 为坐标原点).证明:直线l 的斜率为定值.21. 已知函数()()()2ln 1xf x x e a x x =-+-+.(1)讨论()f x 的导函数()f x '零点的个数; (2)若函数()f x 的最小值为e -,求a 的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆()()221:2420C x y -+-=,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,()2:3C R πθρ=∈.(1)求1C 的极坐标方程和2C 的平面直角坐标系方程; (2)若直线3C 的极坐标方程为()6R πθρ=∈,设2C 与1C 的交点为O M 、,3C 与1C 的交点为O N 、,求OMN ∆的面积. 23.【选修4-5:不等式选讲】已知函数()()331,412f x x a x g x x x =-++=--+. (1)求不等式()6g x <的解集;(2)若存在13,x x R ∈,使得()1f x 和()2g x 互为相反数,求a 的取值范围.试卷答案一、选择题1-5:BDACC 6-10: ABDDC 11、12:AB 二、填空题13. 1 14. 2 15.三、解答题17.解:(1)设等差数列{}n a 的公差为d ,因为3611,,a a a 成等比数列,所以26311a a a =,即()()()21115210a d a d a d +=++,化简得1520d a -=,又15a =,所以2d =,从而23n a n =+. (2)因为()1233n n b n -=+,所以()0121537393233n n S n -=⨯+⨯+⨯+++, 所以()1233537393233n n S n =⨯+⨯+⨯+++, 以上两个等式相减得()()133********n n n S n ---=+⨯-+,化简得()131nn S n =+-.18.解:(1)被系统评为“积极性”的概率为3033,3,5055X B ⎛⎫= ⎪⎝⎭.故()3398215125P X ⎛⎫≤=-= ⎪⎝⎭,X 的数学期望()39355E X =⨯=; (2)“x y >”包含“3,2x y ==”,“ 3,1x y ==”,“ 3,0x y ==”,“ 2,1x y ==”,“ 2,0x y ==”,“ 1,0x y ==”,()3242326413,y 230C C P x C C ===⨯=,()311422326423,115C C C P x y C C ===⨯=,()3042326413,130C C P x y C C ===⨯=,()210422326412,110C C C P x y C C ===⨯=,()210422326412,010C C C P x y C C ===⨯=,()122422326411,030C C C P x y C C ===⨯=,所以()121211113015305103015P x y >=+++++=. 19.(1)证明:由题可得//EF AD ,则AE EF ⊥, 又AE CF ⊥,且EFCF F =,所以AE ⊥平面EBCF .因为AE ⊂平面AEFD ,所以平面AEFD ⊥平面EBCF ; (2)解:过点D 作//DG AE 交EF 于点G ,连结BG ,则DG ⊥平面EBCF ,DG EC ⊥, 又,BD EC BD DG D ⊥=,所以EC ⊥平面,BDG EC BG ⊥,易证EGBBEC ∆∆,则EG EBEB BC=,得EB = 以E 为坐标原点,EB 的方向为x 轴的正方向,建立如图所示的空间直角坐标系E xyz -,,则()(()(()0,3,0,,,A ,F D C B .故()()()(22,2,22,0,1,22,0,4,0,22,BD FD BCCD =-=-==--,设(),,n x y z =是平面FBD 的法向量,则22200n BD x y n FD y ⎧=-++=⎪⎨=-+=⎪⎩,令1z =,得()3,22,1n =,设(),,m a b c =是平面BCD 的法向量,则40220m BC b m CD b ⎧==⎪⎨=--+=⎪⎩,令1a =,则()1,0,1m =, 因为2cos ,318n m n m n m===,所以二面角F BD C --的余弦值为23.20.解:(1)由题意可得2221314c a a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得21a b =⎧⎨=⎩,故椭圆C 的方程为2214x y +=; (2)由题意可知直线l 的斜率存在且不为0,故可设直线l 的方程为()0y kx m m =+≠,点,P Q 的坐标分别为()()1122,,,x y x y , 由12121111,,,2222PMO QMO PNO QNO S MO y S MO y S NO x S NO x ∆∆∆∆====, 化简得222212121212y y x x y y x x ++=,()()222222121212121212121222,y y x x y y x x y y x x y y x x --++-=-=,即21212y yk x x =, 由2214y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 得()()222148410k x kmx m +++-=,则()()()222222641614116410k m kmk m ∆=-+-=-+>,且()2121222418,1414m kmx x x x k k--+==++, 故()()()2212121212y y kx m kx m k x x km x x m =++=+++,因此()2212122121212k x x km x x m y y k x x x x +++==,即22228014k m m k -+=+, 又0m ≠,所以214k =,又结合图象可知,12k =-,所以直线l 的斜率为定值.21.解:(1)()()()()()11110xxx xe a f x x e a x x x --⎛⎫'=-+-=> ⎪⎝⎭,令()()()()0,10xxg x xe a x g x x e '=->=+>,故()g x 在()0,+∞上单调递增,则()()0g x g a >=-,因此,当0a ≤或a e =时,()f x '只有一个零点; 当0a e <<或a e >时,()f x '有两个零点;(2)当0a ≤时,0x xe a ->,则函数()f x 在1x =处取得最小值()1f e =-, 当0a >时,则函数x y xe a =-在()0,+∞上单调递增,则必存在正数0x , 使得000x x e a -=,若a e >,则01x >,函数()f x 在()0,1与()0,x +∞上单调递增,在()01,x 上单调递减, 又()1f e =-,故不符合题意.若a e =,则()01,0x f x '=≥,函数()f x 在()0,+∞上单调递增, 又()1f e =-,故不符合题意.若0a e <<,则001x <<,设正数()10,1eab e--=∈,则()()()12ln 1ln 1e ba e fb b e a b b a e b a b e ab e a --⎛⎫⎛⎫=-+-+<-+=--=--<- ⎪ ⎪⎝⎭⎝⎭,与函数()f x 的最小值为e -矛盾, 综上所述,0a ≤,即(],0a ∈-∞.22.解:(1)因为圆1C 的普通方程为22480x y x y +--=, 把cos ,sin x y ρθρθ==代入方程得24cos 8sin 0ρρθρθ--=, 所以1C 的极坐标方程为4cos 8sin ρθθ=+,2C 的平面直角坐标系方程为y ;(2)分别将,36ππθθ==代入4cos 8sin ρθθ=+,得1224ρρ=+=+则OMN ∆的面积为((124sin 8236ππ⎛⎫⨯+⨯+⨯-=+ ⎪⎝⎭23.解:(1)由题意可得()33,2151,24133,4x x g x x x x x ⎧⎪-+≤-⎪⎪=---<<⎨⎪⎪-≥⎪⎩,当2x ≤-时,336x -+<,得1x >-,无解;当124x -<<时,516x --<,得75x >-,即7154x -<<; 当14x ≥时,336x -<,得134x ≤<,综上,()6g x <的解集为7|35x x ⎧⎫-<<⎨⎬⎩⎭. (2)因为存在12,x x R ∈,使得()()12f x g x =-成立, 所以(){}(){}|,|y g ,y y f x x Ry x x R =∈=-∈≠∅,又()()()331333131f x x a x x a x a =-++≥--+=+, 由(1)可知()9,4g x ⎡⎫∈-+∞⎪⎢⎣⎭,则()9,4g x ⎛⎤-∈-∞ ⎥⎝⎦,所以9314a +≤,解得1351212a -≤≤. 故a 的取值范围为135,1212⎡⎤-⎢⎥⎣⎦.。
广东省六校2018届高三第一次联考数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合(){}10A x x x =-<,{}e 1x B x =>,则=B A C R )(( ) A .[)1,+∞ B .()0,+∞ C .()0,1 D .[]0,12.欧拉公式cos sin ixe x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,2ie 表示的复数在复平面中位于( )A .第一象限B .第二象限C .第三象限D .第四象限321==,且⊥+为( )A B C .2 D .4.执行如图所示的程序框图,输出的S 值为( ) A .2 B .4 C .8 D .165.函数2ln x x y x=的图象大致是( )6.下列选项中,说法正确的是( ) A .若0a b >>,则ln ln a b <B .向量))(12,(),,1(R m m m b m a ∈-==,垂直的充要条件是1m =C .命题“*n ∀∈N ,()1322n n n ->+⋅”的否定是“*n ∀∈N ,()1322n n n -≥+⋅”D .已知函数()f x 在区间[],a b 上的图象是连续不断的,则命题“若()()0f a f b ⋅<,则()f x 在区间(),a b 内至少有一个零点”的逆命题为假命题7.已知m ,n 为异面直线,α,β为平面,m ⊥α,n ⊥β.直线l 满足l m ⊥,l n ⊥,l ⊄α,l ⊄β,则( )A .∥αβ,且l ∥αB .⊥αβ,且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l8.若x ,y 满足1203220x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩则3z x y =-的最大值为( )A .13 B .23C .1D .2 9.某公司为激励创新,计划逐年加大研发奖金投入。
试卷类型:A广东省广州市2018届高三第一次模拟考试数学(理科)2018.3 本试卷共4页,21小题, 满分150分. 考试用时120分钟. 参考公式:球的体积公式343V R π=,其中R 是球的半径.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数()3i 1i - 的共轭复数....是 A .3i -+ B .3i -- C .3i + D .3i -2.设一地球仪的球心为空间直角坐标系的原点O ﹐球面上有两个点A ,B 的坐标分别为()1,2,2A ,()2,2,1B -,则AB =A .18B .12C.D.3.已知集合{}1,1A =-,{}10B x ax =+=,若B A ⊆,则实数a 的所有可能取值的集合为A .{}1-B .{}1C .{}1,1-D .{}1,0,1-4.若关于x 的不等式1x a -<的解集为()1,3,则实数a 的值为A .2B .1C .1-D .2- 5.已知p :直线a 与平面α内无数条直线垂直,q :直线a 与平面α垂直.则p 是q 的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 6.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20—80mg/100ml (不含80)之间,属于酒后驾车,处暂扣一个月以上三个月以下驾驶证,并处200元以上500元以下罚款;血液酒精浓度在80mg/100ml (含80)以上时,属醉酒驾车,处十五日以下拘留和暂扣三个月以上六个月以下驾驶证,并处500元以上2000元以下罚款.据《法制晚报》报道,2018年8月15日至 8月28日,全国查处酒后驾车和醉酒驾车共28800人,如图1是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为A .2160B .2880C .4320D .86407.在ABC △中,点P 在BC 上,且2BP PC =,点Q 是AC 的中点,若()4,3PA =,()1,5PQ =,则BC =A .()2,7-B .()6,21-C .()2,7-D .()6,21-8.如图2所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n()2n ≥,每个数是它下一行左右相邻两数 的和,如111122=+,111236=+,1113412=+,…,则第10行第4个数(从左往右数)为A .11260B .1840 C .1504D .1360二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.在等比数列{}n a 中,11a =,公比2q =,若{}n a 前n 项和127n S =,则n 的值为 .10.某算法的程序框如图3所示,若输出结果为12,则输入的实数x 的值 是________.(注:框图中的赋值符号“=”也可以写成 “←”或“:=”)11.有一个底面半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为 .12.已知函数()()21,1,log , 1.aa x x f x x x --⎧⎪=⎨>⎪⎩≤若()f x 在(),-∞+∞上单调递增,则实数a 的取值范围为 .13.如图4,点O 为正方体ABCD A B C D ''''-的中心,点E 为面B BCC ''的中心,点F 为B C ''的中点,则空间四边形D OEF '在该正方体的面上的正投影可能是 (填出所有可能的序号).1112 1213 16 1314 112 112 1415 120 130 120 15图2(二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图5,AB 是半圆O 的直径,点C 在半圆上,CD AB ⊥,垂足为D ,且5AD DB =,设COD θ∠=, 则tan θ的值为 .15.(坐标系与参数方程选做题)在极坐标系中,已知两点A 、B 的极坐标分别为3,3π⎛⎫ ⎪⎝⎭,4,6π⎛⎫⎪⎝⎭,则△AOB (其中O 为极点)的面积 为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()sin cos cos sin f x x x ϕϕ=+(其中x ∈R ,0ϕπ<<). (1)求函数()f x 的最小正周期; (2)若函数24y f x π⎛⎫=+⎪⎝⎭的图像关于直线6x π=对称,求ϕ的值.17.(本小题满分12分)某公司为庆祝元旦举办了一个抽奖活动,现场准备的抽奖箱里放置了分别标有数字1000、800﹑600、0的四个球(球的大小相同).参与者随机从抽奖箱里摸取一球(取后即放回),公司即赠送与此球上所标数字等额的奖金(元),并规定摸到标有数字0的球时可以再摸一次﹐但是所得奖金减半(若再摸到标有数字0的球就没有第三次摸球机会),求一个参与抽奖活动的人可得奖金的期望值是多少元.18.(本小题满分14分)如图6,正方形ABCD 所在平面与圆O 所在平面相交于CD ,线段CD 为圆O 的弦,AE 垂直于圆O 所在平面,垂足E 是圆O 上异于C 、D 的点,3AE =,圆O 的直径为9. (1)求证:平面ABCD ⊥平面ADE ;(2)求二面角D BC E --的平面角的正切值.图5AB CDO ① ② ③ ④图4BCDE FOA 'B 'C 'D '19.(本小题满分14分)已知a ∈R ,函数()ln 1af x x x=+-,()()ln 1x g x x e x =-+(其中e 为自然对数的底数).(1)求函数()f x 在区间(]0,e 上的最小值;(2)是否存在实数(]00,x e ∈,使曲线()y g x =在点0x x =处的切线与y 轴垂直? 若存在,求出0x 的值;若不存在,请说明理由.20.(本小题满分14分)已知点()0,1F ,直线l :1y =-,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且QP QF FP FQ =. (1)求动点P 的轨迹C 的方程;(2)已知圆M 过定点()0,2D ,圆心M 在轨迹C 上运动,且圆M 与x 轴交于A 、B两点,设1DA l =,2DB l =,求1221l l l l +的最大值.21.(本小题满分14分)设数列{}n a 的前n 项和为n S ,且对任意的*n ∈N ,都有0n a >,n S =(1)求1a ,2a 的值;(2)求数列{}n a 的通项公式n a ;(3)证明:21221n n nn n n a a a +-+≥.2018年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.7 10 11.2312.(]2,3 13.①②③14.215.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查三角函数性质和三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:∵()()sin f x x ϕ=+,∴函数()f x 的最小正周期为2π. (2)解:∵函数2sin 244y f x x ππϕ⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭, 又sin y x =的图像的对称轴为2x k ππ=+(k ∈Z ),令242x k ππϕπ++=+,将6x π=代入,得12k πϕπ=-(k ∈Z ).∵0ϕπ<<,∴1112πϕ=. 17.(本小题满分12分)(本小题主要考查随机变量的分布列、数学期望等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)解:设ξ表示摸球后所得的奖金数,由于参与者摸取的球上标有数字1000,800,600,0,当摸到球上标有数字0时,可以再摸一次,但奖金数减半,即分别为500,400,300,0.则ξ的所有可能取值为1000,800,600,500,400,300,0. 依题意得()()()110008006004P P P ξξξ======, ()()()()1500400300016P P P P ξξξξ========, 则ξ的分布列为所以所求期望值为()()1110008006005004003000416E ξ=++++++ 675=元.答:一个参与抽奖活动的人可得奖金的期望值是675元. 18.(本小题满分14分)(本小题主要考查空间线面关系、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明:∵AE 垂直于圆O 所在平面,CD 在圆O 所在平面上,∴AE ⊥CD .在正方形ABCD 中,CD AD ⊥,∵AD AE A =,∴CD ⊥平面ADE . ∵CD ⊂平面ABCD ,∴平面ABCD ⊥平面ADE .(2)解法1:∵CD ⊥平面ADE ,DE ⊂平面ADE ,∴CD DE ⊥.∴CE 为圆O 的直径,即9CE =. 设正方形ABCD 的边长为a ,在Rt △CDE 中,222281DE CE CD a =-=-,在Rt △ADE 中,22229DE AD AE a =-=-,由22819a a -=-,解得,a =∴6DE ==.过点E 作EF AD ⊥于点F ,作FG AB 交BC 于点G ,连结GE ,由于AB ⊥平面ADE ,EF ⊂平面ADE , ∴EF AB ⊥. ∵AD AB A =,∴EF ⊥平面ABCD . ∵BC ⊂平面ABCD , ∴BC EF ⊥.∵BC FG ⊥,EF FG F =,∴BC ⊥平面EFG . ∵EG ⊂平面EFG , ∴BC EG ⊥.∴FGE ∠是二面角D BC E --的平面角.在Rt △ADE中,AD =3AE =,6DE =, ∵AD EF AE DE ⋅=⋅,∴AE DE EF AD ⋅===. 在Rt △EFG中,FG AB == ∴2tan 5EF EGF FG ∠==. 故二面角D BC E --的平面角的正切值为25. 解法2:∵CD ⊥平面ADE ,DE ⊂平面ADE , ∴CD DE ⊥.∴CE 为圆O 的直径,即9CE =. 设正方形ABCD 的边长为a ,在Rt △CDE 中,222281DE CE CD a =-=-,在Rt △ADE 中,22229DE AD AE a =-=-,由22819a a -=-,解得,a =∴6DE ==.以D 为坐标原点,分别以ED 、CD 所在的直线为x 轴、y轴建立如图所示的空间直角坐标系,则()0,0,0D ,()6,0,0E -,()0,C -,()6,0,3A -,[来源:]()6,B --.设平面ABCD 的法向量为()1111,,x y z =n ,GFxyz则110,0.DA DC ⎧=⎪⎨=⎪⎩n n即111630,0.x z -+=⎧⎪⎨-=⎪⎩ 取11x =,则()11,0,2=n 是平面ABCD 的一个法向量. 设平面BCE 的法向量为()2222,,x y z =n ,则220,0.EB EC ⎧=⎪⎨=⎪⎩n n即222230,60.z x ⎧-+=⎪⎨-=⎪⎩ 取22y =,则22,=n 是平面ABCD 的一个法向量.∵()(1212121,0,25,2,2cos ,===⋅n n n n n n , ∴12sin ,=n n . ∴122tan ,5=n n . 故二面角D BC E --的平面角的正切值为25.19.(本小题满分14分)(本小题主要考查函数与导数等知识,考查分类讨论,化归与转化的数学思想方法,以及推理论证能力和运算求解能力) (1)解:∵()ln 1a f x x x =+-,∴221()a x a f x x x x-'=-+=. 令()0f x '=,得x a =.①若a ≤0,则()0f x '>,()f x 在区间(]0,e 上单调递增,此时函数()f x 无最小值. ②若0a e <<,当()0,x a ∈时,()0f x '<,函数()f x 在区间()0,a 上单调递减, 当(],x a e ∈时,()0f x '>,函数()f x 在区间(],a e 上单调递增,所以当x a =时,函数()f x 取得最小值ln a .③若a e ≥,则()0f x '≤,函数()f x 在区间(]0,e 上单调递减, 所以当x e =时,函数()f x 取得最小值ae. 综上可知,当a ≤0时,函数()f x 在区间(]0,e 上无最小值;当0a e <<时,函数()f x 在区间(]0,e 上的最小值为ln a ; 当a e ≥时,函数()f x 在区间(]0,e 上的最小值为a e. (2)解:∵()()ln 1xg x x e x =-+,(]0,x e ∈,∴ ()()()()ln 1ln 11x xg x x e x e '''=-+-+()1ln 11ln 11x x x e x e x e x x ⎛⎫=+-+=+-+ ⎪⎝⎭. 由(1)可知,当1a =时,1()ln 1f x x x=+-. 此时()f x 在区间(]0,e 上的最小值为ln10=,即1ln 10x x+-≥. 当(]00,x e ∈,00x e>,001ln 10x x +-≥, ∴00001()ln 1110x g x x e x ⎛⎫'=+-+>⎪⎝⎭≥. 曲线()y g x =在点0x x =处的切线与y 轴垂直等价于方程0()0g x '=有实数解. 而()00g x '>,即方程0()0g x '=无实数解.故不存在(]00,x e ∈,使曲线()y g x =在点0x x =处的切线与y 轴垂直.20.(本小题满分14分)(本小题主要考查圆、抛物线、基本不等式等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力) (1)解:设(),P x y ,则(),1Q x -,∵QP QF FP FQ =,∴()()()()0,1,2,1,2y x x y x +-=--. 即()()22121y x y +=--,即24x y =,所以动点P 的轨迹C 的方程24x y =.(2)解:设圆M 的圆心坐标为(),M a b ,则24a b =. ①圆M 的半径为MD =.圆M 的方程为()()()22222x a y b a b -+-=+-. 令0y =,则()()22222x a b a b -+=+-,整理得,22440x ax b -+-=. ② 由①、②解得,2x a =±. 不妨设()2,0A a -,()2,0B a +,∴1l =2l =∴22212122112l l l l l l l l ++==== ③当0a ≠时,由③得,1221l l l l +==.当且仅当a =± 当0a =时,由③得,12212l l l l +=. 故当a =±1221l l ll +的最大值为21.(本小题满分14分)(本小题主要考查数列、不等式、二项式定理等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识) (1)解:当1n =时,有11a S ==由于0n a >,所以11a =. 当2n =时,有2S=12a a +=,将11a =代入上式,由于0n a >,所以22a =.(2)解:由n S =得()23331212n n a a a a a a +++=+++, ①则有()23333121121n n n n a a a a a a a a ++++++=++++. ②②-①,得()()223112112n n n n a a a a a a a a ++=++++-+++,由于0n a >,所以()211212n n n a a a a a ++=++++. ③同样有()21212n n n a a a a a -=++++()2n ≥, ④③-④,得2211n n n n a a a a ++-=+.所以11n n a a +-=.由于211a a -=,即当n ≥1时都有11n n a a +-=,所以数列{}n a 是首项为1,公差为1的等差数列.故n a n =.(3)证明1:由于()0122331C C C C nn n n n x x x x +=++++, ()0122331C C C C nn n n n x x x x -=-+-+, 所以()()13355112C 2C 2C nnn n n x x x x x +--=+++.即()()33551122C 2C nnn n x x nx x x +---=++.令12x n =,则有11111022n nn n ⎛⎫⎛⎫+--- ⎪ ⎪⎝⎭⎝⎭≥.即1111122n nn n ⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭≥, 即()()()21221nnnn n n ++-≥故21221n n n n n n a a a +-+≥.证明2:要证21221n n n n n n a a a +-+≥,只需证()()()21221n n nn n n ++-≥,只需证1111122nnn n ⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭≥,只需证1111122n nn n ⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭≥.由于111122n nn n ⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭23231230123111111C C C C C C C C 222222n n n n n n n n n n n n n n ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-++⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦-- 351351112C C C 222n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫=+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦35351112C C 122n n n n ⎡⎤⎛⎫⎛⎫=+++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦≥. 因此原不等式成立.。
2018届广东省高三第一次模拟考试数学(理)试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2|111,|1A x x B x x =-<-<=<,则AB =( )A .{}|1x 1x -<<B .{}|01x x <<C .{}|1x x <D .{}|02x x << 2.设复数()4z a i a R =+∈,且()2i z -为纯虚数,则a = ( ) A .-1 B . 1 C . 2 D .-23. 下图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是( )A .320 B .325π C .325 D .20π 4. 已知函数()f x 满足332x f x x ⎛⎫=-⎪⎝⎭,则函数()f x 的图象在1x =处的切线斜率为( ) A .0 B . 9 C. 18 D .275. 已知F 是双曲线()2222:10,0x y C a b a b-=>>的一个焦点,点F 到C 的一条渐近线的距离为2a ,则双曲线C 的离心率为( )A .22B 35.2 6. ()5112x x x ⎛⎫++ ⎪⎝⎭的展开式中,3x 的系数为( ) A . 120 B .160 C. 100 D .807. 如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .488π+B .968π+ C. 9616π+ D .4816π+ 8.已知曲线:sin 23C y x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是 ( ) A .把C 向左平移512π个单位长度,得到的曲线关于原点对称 B .把C 向右平移6π个单位长度,得到的曲线关于y 轴对称C. 把C 向左平移3π个单位长度,得到的曲线关于原点对称D .把C 向右平移12π个单位长度,得到的曲线关于y 轴对称 9. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入( )A .n 是偶数,100n ≥B .n 是奇数,100n ≥ C. n 是偶数,100n > D .n 是奇数,100n > 10.在ABC ∆中,角,,C A B 所对的边分别为,,a b c ,若3A π=,且2sin 2sin 3b B c C bc a +=,则ABC ∆的面积的最大值为( )A 33B .3233.3411.已知抛物线2:,C y x M =为x 轴负半轴上的动点,,MA MB 为抛物线的切线,,A B 分别为切点,则MA MB 的最小值为 ( )A .116-B .18- C. 14- D .12- 12.设函数()1222,21130,2x x f x x x x +⎧-≤⎪=⎨-+>⎪⎩,若互不相等的实数,,,a b c d 满足()()()()f a f b f c f d ===,则2222a b c d +++的取值范围是 ( )A .()6422,146+B .()98,146 C. ()6422,266+ D .()98,266二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知单位向量12,e e 的夹角为30°,则123e e -= .14.设,x y 满足约束条件6456543x y x y x y -≤⎧⎪+≤⎨⎪+≥⎩,则z x y =+的最大值为 .15.已知0sin10cos102cos140m +=,则m = .16.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为,,,,O E F G H 为圆O 上的点,,,,ABE BCF CDG ADH ∆∆∆∆分别是以,,,AB BC CD DA 为底边的等腰三角形.沿虚线剪开后,分别以,,,AB BC CD DA 为折痕折起,,CDG,ADH ABE BCF ∆∆∆∆,使得,,,E F G H 重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知公差不为零的等差数列{}n a 满足15a =,且3611,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)设13n n n b a -=,求数列{}n b 的前n 项和n S .18.“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下: 步数/步 030003001600060018000800110000 10000以上男生人数/人 1 2 7 15 5 女性人数/人3791规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)以这50人这一天行走的步数的频率代替1人一天行走的步数发生的概率,记X 表示随机抽取3人中被系统评为“积极性”的人数,求()2P X ≤和X 的数学期望.(2)为调查评定系统的合理性,拟从这50人中先抽取10人(男性6人,女性4人).其中男性中被系统评定为“积极性”的有4人,“懈怠性”的有2人,从中任意选取3人,记选到“积极性”的人数为x ; 其中女性中被系统评定为“积极性”和“懈怠性”的各有2人,从中任意选取2人,记选到“积极性”的人数为y ;求x y >的概率.19.如图,在直角梯形ABCD 中,//,AD BC AB BC ⊥,且24,,BC AD E F ==分别为线段,AB DC 的中点,沿EF 把AEFD 折起,使AE CF ⊥,得到如下的立体图形. (1)证明:平面AEFD ⊥平面EBCF ;(2)若BD EC ⊥,求二面角F BD C --的余弦值.20.已知椭圆()2222:10x y C a b a b +=>>的离心率为32,且C 过点31,2⎛ ⎝⎭. (1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于,P Q 两点(点,P Q 均在第一象限),l 与x 轴,y 轴分别交于,M N 两点,且满足2222PMO QMOPNO QNOPMO QMOPNO QNOS S S S S S S S ∆∆∆∆∆∆∆∆++=(其中O 为坐标原点).证明:直线l 的斜率为定值.21. 已知函数()()()2ln 1xf x x e a x x =-+-+. (1)讨论()f x 的导函数()f x '零点的个数; (2)若函数()f x 的最小值为e -,求a 的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆()()221:2420C x y -+-=,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,()2:3C R πθρ=∈.(1)求1C 的极坐标方程和2C 的平面直角坐标系方程; (2)若直线3C 的极坐标方程为()6R πθρ=∈,设2C 与1C 的交点为O M 、,3C 与1C 的交点为O N 、,求OMN ∆的面积.23.【选修4-5:不等式选讲】已知函数()()331,412f x x a x g x x x =-++=--+. (1)求不等式()6g x <的解集;(2)若存在13,x x R ∈,使得()1f x 和()2g x 互为相反数,求a 的取值范围.试卷答案一、选择题1-5:BDACC 6-10: ABDDC 11、12:AB二、填空题13. 1 14. 2 15. 27三、解答题17.解:(1)设等差数列{}n a 的公差为d ,因为3611,,a a a 成等比数列,所以26311a a a =,即()()()21115210a d a d a d +=++,化简得1520d a -=,又15a =,所以2d =,从而23n a n =+. (2)因为()1233n n b n -=+, 所以()0121537393233n n S n -=⨯+⨯+⨯+++, 所以()1233537393233n n S n =⨯+⨯+⨯+++, 以上两个等式相减得()()133********n n n S n ---=+⨯-+,化简得()131nn S n =+-.18.解:(1)被系统评为“积极性”的概率为3033,3,5055X B ⎛⎫= ⎪⎝⎭. 故()3398215125P X ⎛⎫≤=-= ⎪⎝⎭,X 的数学期望()39355E X =⨯=;(2)“x y >”包含“3,2x y ==”,“ 3,1x y ==”,“ 3,0x y ==”,“ 2,1x y ==”,“ 2,0x y ==”,“ 1,0x y ==”,()3242326413,y 230C C P x C C ===⨯=,()311422326423,115C C C P x y C C ===⨯=,()3042326413,130C C P x y C C ===⨯=,()210422326412,110C C C P x y C C ===⨯=,()210422326412,010C C C P x y C C ===⨯=,()122422326411,030C C C P x y C C ===⨯=,所以()121211113015305103015P x y >=+++++=. 19.(1)证明:由题可得//EF AD ,则AE EF ⊥, 又AE CF ⊥,且EFCF F =,所以AE ⊥平面EBCF .因为AE ⊂平面AEFD ,所以平面AEFD ⊥平面EBCF ;(2)解:过点D 作//DG AE 交EF 于点G ,连结BG ,则DG ⊥平面EBCF ,DG EC ⊥, 又,BD EC BD DG D ⊥=,所以EC ⊥平面,BDG EC BG ⊥,易证EGBBEC ∆∆,则EG EBEB BC=,得22EB = 以E 为坐标原点,EB 的方向为x 轴的正方向,建立如图所示的空间直角坐标系E xyz -,,则()(()(()0,3,0,0,2,22,22,4,0,A 2,22,0,0F D C B .故()()()(22,2,22,0,1,22,0,4,0,22,2,22BD FD BC CD =-=-==--,设(),,n x y z =是平面FBD 的法向量,则22222020n BD x y z n FD y z ⎧=-++=⎪⎨=-+=⎪⎩,令1z =,得()3,22,1n =,设(),,m a b c =是平面BCD 的法向量,则4022220m BC b m CD a b c ⎧==⎪⎨=--+=⎪⎩,令1a =,则()1,0,1m =, 因为42cos ,3182n m n m n m===⨯,所以二面角F BD C --的余弦值为23.20.解:(1)由题意可得2231314c a a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得21a b =⎧⎨=⎩,故椭圆C 的方程为2214x y +=; (2)由题意可知直线l 的斜率存在且不为0,故可设直线l 的方程为()0y kx m m =+≠,点,P Q 的坐标分别为()()1122,,,x y x y , 由12121111,,,2222PMO QMO PNO QNO S MO y S MO y S NO x S NO x ∆∆∆∆====, 化简得222212121212y y x x y y x x ++=,()()222222121212121212121222,y y x x y y x x y y x x y y x x --++-=-=,即21212y y k x x =,由2214y kx m x y =+⎧⎪⎨+=⎪⎩,消去y 得()()222148410k x kmx m +++-=,则()()()222222641614116410k m k m k m ∆=-+-=-+>,且()2121222418,1414m km x x x x k k--+==++, 故()()()2212121212y y kx m kx m k x x km x x m =++=+++,因此()2212122121212k x x km x x m y y k x x x x +++==,即22228014k m m k -+=+, 又0m ≠,所以214k =,又结合图象可知,12k =-,所以直线l 的斜率为定值. 21.解:(1)()()()()()11110xxx xe a f x x e a x x x --⎛⎫'=-+-=> ⎪⎝⎭,令()()()()0,10xxg x xe a x g x x e '=->=+>,故()g x 在()0,+∞上单调递增,则()()0g x g a >=-,因此,当0a ≤或a e =时,()f x '只有一个零点; 当0a e <<或a e >时,()f x '有两个零点;(2)当0a ≤时,0xxe a ->,则函数()f x 在1x =处取得最小值()1f e =-,当0a >时,则函数xy xe a =-在()0,+∞上单调递增,则必存在正数0x ,使得000xx e a -=,若a e >,则01x >,函数()f x 在()0,1与()0,x +∞上单调递增,在()01,x 上单调递减, 又()1f e =-,故不符合题意.若a e =,则()01,0x f x '=≥,函数()f x 在()0,+∞上单调递增, 又()1f e =-,故不符合题意.若0a e <<,则001x <<,设正数()10,1eab e--=∈,则()()()12ln 1ln 1e bae f b b e a b b a eb a b e ab e a --⎛⎫⎛⎫=-+-+<-+=--=--<- ⎪ ⎪⎝⎭⎝⎭, 与函数()f x 的最小值为e -矛盾,综上所述,0a ≤,即(],0a ∈-∞.22.解:(1)因为圆1C 的普通方程为22480x y x y +--=, 把cos ,sin x y ρθρθ==代入方程得24cos 8sin 0ρρθρθ--=, 所以1C 的极坐标方程为4cos 8sin ρθθ=+,2C的平面直角坐标系方程为y =;(2)分别将,36ππθθ==代入4cos 8sin ρθθ=+,得1224ρρ=+=+,则OMN ∆的面积为((124sin 8236ππ⎛⎫⨯+⨯+⨯-=+ ⎪⎝⎭23.解:(1)由题意可得()33,2151,24133,4x x g x x x x x ⎧⎪-+≤-⎪⎪=---<<⎨⎪⎪-≥⎪⎩,当2x ≤-时,336x -+<,得1x >-,无解;当124x -<<时,516x --<,得75x >-,即7154x -<<; 当14x ≥时,336x -<,得134x ≤<,综上,()6g x <的解集为7|35x x ⎧⎫-<<⎨⎬⎩⎭. (2)因为存在12,x x R ∈,使得()()12f x g x =-成立, 所以(){}(){}|,|y g ,y y f x x Ry x x R =∈=-∈≠∅,又()()()331333131f x x a x x a x a =-++≥--+=+, 由(1)可知()9,4g x ⎡⎫∈-+∞⎪⎢⎣⎭,则()9,4g x ⎛⎤-∈-∞ ⎥⎝⎦,所以9314a +≤,解得1351212a -≤≤. 故a 的取值范围为135,1212⎡⎤-⎢⎥⎣⎦.。
广雅、华东中学、河南名校2018届高三阶段性联考(一)数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|560},{|2}A x x x B x x =--≤=≥,则()R A C B =I ( ) A .[]1,2- B .[1,2)- C .(2,6] D .[2,6]2. 双曲线22221(0)4x y a a a-=≠ 的渐近线方程为( )A .2y x =±B .12y x =±C .4y x =±D .y = 3. 已知()(47)5m ni i ++=,其中,m n 是实数,则咋复平面内,复数z m ni =+所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.曲线3xy e =在点(0,3)处的切线方程为 ( ) A .3y = B .3y x = C .33y x =+ D .33y x =- 5. 已知公比不为1的等比数列{}n a 的前n 项和为123451,1024n S a a a a a =,且243,,a a a 成等差数列, 则5S = ( ) A .3316B .3116C .23D .11166.设,m n 是两条不同的直线,,αβ是两个不同的平面,则 ( ) A .若,,m n n ββα⊥⊥⊥,则m α⊥ B .若,,m n αββα⊂⊂⊥,则m n ⊥C .“直线m 与平面α内的无数条直线垂直”上“直线m 与平面α垂直”的充分不必要条件D .若,,m n n m βα⊥⊥⊥,则αβ⊥7. 已知随机变量~(7,4)X N ,且(59),(311)P X a P X b <<=<<=,则(39)P X <<=( ) A .2b a - B .2b a+ C .22b a - D .22a b -8. 已知抛物线2:2(0)C y px p =>的焦点为F ,准线3:2l x =-,点M 在抛物线C 上,点A 在左准线l 上,若MA l ⊥,且直线AF 的斜率3AF k =-,则AFM ∆的面积为( ) A .33 B .63 C .93 D .1239. 如图,格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A .2483π+ B .88π+ C .3283π+ D .32243π+10.运行如图所示的程序框图,若输出的S 的值为480,则判断框中可以填 ( ) A .60i > B .70i > C .80i > D .90i >11. 已知函数()22cos 38f x x m x m m =-++-有唯一的零点,则实数m 的值为( )A .2B .4-C .4-或2D .2-或4 12. 已知函数()23(12cos )sin()2sin cos()()222f x x x πππθθθ=-+--≤,在3[,]86ππ--上单调递增,若()8f m π≤恒成立,则实数m 的取值范围为( )A.)2+∞ B .1[,)2+∞ C .[1,)+∞ D.)2+∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知在长方形ABCD 中,24AB AD ==,点E 是边AB 上的中点,则BD CE ⋅=u u u r u u u r.14.《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱,欲以钱数多少衰出之,问各几何?”其意为:“仅有甲带了560钱,乙带了350钱,丙带了180钱,三人一起出关,共需要交关税100钱,依照钱的多少按比例出钱”,则丙应出钱(所得结果四舍五入,保留整数).15.已知实数,x y 满足22222x yx y x y +≥⎧⎪-≤⎨⎪+≤⎩,若(0)z x my m =->的最大值为4,则(0)z x my m =->的最小值为 .16.设等差数列{}n a 的前n 项和n S ,若124,0,14(2m m m S S S m -+=-==≥且)m N +∈,则m = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在ABC ∆中,内角,,A B C 的对边分别为,,a b c,已知cos (1)2C a +=. (1)求C ; (2)若c =ABC ∆的面积S 取到最大值时a 的值.18. 为了调查观众对某电视剧的喜爱程度,某电视台在甲乙两地随机抽取了8名观众做问卷调查,得分结果如图所示:(1)计算甲地被抽取的观众问卷得分的中位数和乙地被抽取的观众问卷得分的平均数;(2)用频率估计概率,若从乙地的所有观众中再随机抽取4人进行问卷调查,记问卷分数不低于80分的人数为X ,求X 的分布列与期望.19.如图,在三棱柱111ABC A B C -中,011,90,BA BC BB ABC BB ==∠=⊥ 平面ABC ,点E 是1A B 与1AB 的交点,点D 在线段AC 上,1//B C 平面1A BD .(1)求证:1BD A C ⊥;(2)求直线1A C 与平面11A B D 所成的角的正弦值.20. 已知椭圆2222:1(0)x y C a b a b+=>>35倍,A 是椭圆C 的左顶点,F 是椭圆C 的右焦点,点0000(,)(0,0),M x y x y N >>都在椭圆C 上. (1)若点210(D -在椭圆C 上,求的最大值; (2)若2(OM AN O =u u u u r u u u r为坐标原点),求直线AN 的斜率.21.已知函数()xf x e ax =-.(1)当2a =时,求函数()f x 的单调区间;(2)若存在,[0,2]m n ∈,且1m n -≥,使得()1()f m f n =,求证:11ae e ≤≤-. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在平面直角坐标系xOy 中,曲线221:20C x y y +-=,倾斜角为6π的直线l 过点(2,0)M -,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程cos()4πρθ-=(1)求1C 和2C 焦点的直角坐标;(2)若直线l 与1C 交于,A B 两点,求MA MB +的值. 23.已知函数()414f x x x a =+-+ .(1)若2a =,解关于x 的不等式()0f x x +<; (2)若x R ∃∈,使()5f x ≤-,求a 的取值范围.试卷答案一、选择题1-5: BADCD 6-10: DBCAB 11、A 12:C二、填空题13. 4 14. 17 15. 6- 16. 5三、解答题17.解:(1)因为cos cos (1)sin (1)22C C a A +=⇒+=,在ABC ∆中,sin 0A >1cos 12C C -=,从而sin()16C π-=, 因为0C π<<,所以5666C πππ-<-<,所以2623C C πππ-=⇒=.(2)由(1)知23C π=,所以sin C =1sin 2S ab C ==, 因为22222cos 62a b c C a b ab ab+-=⇒+=-, 因为222a b ab +≥,所以2ab ≤,所以3342S ab =≤,当且仅当2a b ==时等号成立. 18.(1)由茎叶图可知,甲地被抽取的观众问卷得分的中位数是8383832+=, 乙地被抽取的观众问卷得分的平均数是1(70280490269036907)858⨯+⨯+⨯++++++++=. (2)记“从乙地抽取1人进行问卷调查不低于80分”为事件A ,则63()84P A ==. 随机变量X 的可能取值为0,1,2,3,4,且3(4,)4X B :,所以4431()()(),0,1,2,3,444kk k P X k C k -===,所以变量X 的分布列为:()3434E X =⨯=. 19.解:(1)如图,连接ED ,因为1AB C I 平面11,//A BD ED B C =平面1A BD ,所以1//B C ED . 因为E 为1AB 的中点,所以D 为AC 的中点. 因为AB BC =,,由1A A ⊥平面,ABC BD ⊂平面ABC ,得1A A BD ⊥, 又1,A A AC 是平面11A ACC 所以内的两条相交直线,得BD ⊥平面11A ACC ,因为1AC ⊂平面11A ACC ,所以1BD A C ⊥.(2)令1AB =,则11BC BB ==,如图,以B 为坐标原点,建立空间直角坐标系B xyz -,则1111(1,0,1),(0,0,1),(0,1,0),(,,0)22A B C D ,得11111(1,0,0),(,,1)22B A B D ==-u u u u r u u u u r ,设(,,)m x y z =u r是平面11A B D 的一个法向量,则11111111011022m B A x m B A m B D x y z m B D ⎧⋅==⎧⊥⎪⎪⇒⎨⎨⋅=+-=⊥⎪⎪⎩⎩u r u u u u u u u u u u u u r u r u u u u r u r u u u u r u r u u u u r , 令1z =,得(0,2,1)m =u r,又1(1,1,1)AC =--u u u r ,设直线1A C 与平面11A B D 所成的角为θ, 则15sin 553θ==⋅.20.解:(1)依题意,35a b =,则2222159x y a a +=,将210(D -代入, 解得29a =,故(2,0)F ,设11(,)N x y ,则2222111111449(2)49(),[3,3]992NF x y x x x x =-+=-+=-∈-, 故当13x =-时,NF 有最大值为5.(2)由(1)知, 355a b =,所以椭圆的方程为2222159x y a a +=,即222595x y a +=, 设直线OM 的方程为11(0),(,)x my m N x y =>,由222595x my x y a=⎧⎨+=⎩,得2222222559559a m y y a y m +=⇒=+,因为00y >,所以0y =,因为2//OM AN AN OM =⇒u u u u r u u u r,所以直线AN 的方程为x my a =-,由222595x my a x y a=-⎧⎨+=⎩,得22(59)100m y amy +-=, 所以0y =或21059am y m =+,得121059amy m =+, 因为2OM AN =u u u u r u u u r,所以0011(,)(22,2)x y x a y =+,于是012y y =,220(0)59amm m =>+,所以m =,所以直线AN 的斜率为13m =. 21.解:(1)当2a =时,()()22xxf x e x f x e '=-⇒=-, 又()0ln 2f x x '>⇒>,由()0ln 2f x x '<⇒<,所以函数()f x 的单调递增区间为(ln 2,)+∞,单调递减区间为(,ln 2)-∞. (2)由()xf x e a '=-,当0a ≤时,()0f x '>,此时()f x 在R 上单调递增;由()()1f m f n =可得m n =,与1m n -≥相矛盾, 所以0a >,且()f x 的单调递增区间为(ln ,)a +∞,单调递减区间为(,ln )a -∞. 若,(,ln )m n a ∈-∞,则由12()()f x f x =可得12x x =,与121x x -≥相矛盾, 同样不能有,(ln ,)m n a ∈+∞,不妨设02m n ≤<≤,则由0ln 2m a n ≤<<≤,因为()f x 在(,ln )m a 上单调递减,在(ln ,)a n 上单调递增,且()()1f m f n =, 所以当m x n ≤≤时,()()()f x f m f n ≤=.由02m n ≤<≤,1m n -≥,可得1[,]m n ∈,故()()()1f f m f n ≤=, 又()f x 在(,ln )a -∞上单调递减,且0ln m a ≤<,所以()()0f m f ≤,所以()()10f f ≤,同理()()12f f ≤,即212e a e a e a-≤⎧⎨-≤-⎩,解得21e a e e -≤≤-, 所以11ae e ≤≤-. 22.解:(1)曲线2C的极坐标方程为cos()4πρθ-=化为直角坐标系的方程为20x y +-=,联立222020x y x y y +-=⎧⎨+-=⎩, 解得交点的坐标为(0,2),(1,1).(2)把直线的参数方程2(12x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩为参数)代入2220x y y +-=,得221212t ⎛⎫⎛⎫-++= ⎪ ⎪ ⎪⎝⎭⎝⎭,即2121)40,1t t t t -+=+=, 易知点M 在圆2220x y y +-=外,所以121MA MB t t +=+=. 23.解:(1)若2a =,则不等式化为()41420f x x x x =+--+<,若14x <-,则41420x x x --+-+<,解得3x <,故14x <-; 若1142x -≤≤,则41420x x x ++-+<,解得19x <,故1149x -≤≤;若12x >,则41420x x x +-++<,解得3x <-,故无解,综上所述,关于x 的不等式()0f x x +<的解集为1(,)9-∞,(2)x R ∃∈,使()5f x ≤-等价于()min []5f x ≤-,因为()414(41)(4)1f x x x a x x a a =+--≤+--=-, 所以()11a f x a --≤≤-,所以()f x 的最小值为1a --, 所以15a --≤-,得4a ≥或6a ≤-所以a 的取值范围是(,6][4,)-∞-+∞U .。
广雅、华东中学、河南名校2018届高三阶段性联考(一)数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|560},{|2}A x x x B x x =--≤=≥,则()R A C B =I ( ) A .[]1,2- B .[1,2)- C .(2,6] D .[2,6]2. 双曲线22221(0)4x y a a a-=≠ 的渐近线方程为( )A .2y x =±B .12y x =±C .4y x =±D .y = 3. 已知()(47)5m ni i ++=,其中,m n 是实数,则咋复平面内,复数z m ni =+所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.曲线3xy e =在点(0,3)处的切线方程为 ( ) A .3y = B .3y x = C .33y x =+ D .33y x =- 5. 已知公比不为1的等比数列{}n a 的前n 项和为123451,1024n S a a a a a =,且243,,a a a 成等差数列, 则5S = ( ) A .3316B .3116C .23D .11166.设,m n 是两条不同的直线,,αβ是两个不同的平面,则 ( ) A .若,,m n n ββα⊥⊥⊥,则m α⊥ B .若,,m n αββα⊂⊂⊥,则m n ⊥C .“直线m 与平面α内的无数条直线垂直”上“直线m 与平面α垂直”的充分不必要条件D .若,,m n n m βα⊥⊥⊥,则αβ⊥7. 已知随机变量~(7,4)X N ,且(59),(311)P X a P X b <<=<<=,则(39)P X <<=( ) A .2b a - B .2b a+ C .22b a - D .22a b -8. 已知抛物线2:2(0)C y px p =>的焦点为F ,准线3:2l x =-,点M 在抛物线C 上,点A 在左准线l 上,若MA l ⊥,且直线AF 的斜率3AF k =-,则AFM ∆的面积为( ) A .33 B .63 C .93 D .1239. 如图,格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A .2483π+ B .88π+ C .3283π+ D .32243π+10.运行如图所示的程序框图,若输出的S 的值为480,则判断框中可以填 ( ) A .60i > B .70i > C .80i > D .90i >11. 已知函数()22cos 38f x x m x m m =-++-有唯一的零点,则实数m 的值为( )A .2B .4-C .4-或2D .2-或4 12. 已知函数()23(12cos )sin()2sin cos()()222f x x x πππθθθ=-+--≤,在3[,]86ππ--上单调递增,若()8f m π≤恒成立,则实数m 的取值范围为( )A.)2+∞ B .1[,)2+∞ C .[1,)+∞ D.)2+∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知在长方形ABCD 中,24AB AD ==,点E 是边AB 上的中点,则BD CE ⋅=u u u r u u u r.14.《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱,欲以钱数多少衰出之,问各几何?”其意为:“仅有甲带了560钱,乙带了350钱,丙带了180钱,三人一起出关,共需要交关税100钱,依照钱的多少按比例出钱”,则丙应出钱(所得结果四舍五入,保留整数).15.已知实数,x y 满足22222x yx y x y +≥⎧⎪-≤⎨⎪+≤⎩,若(0)z x my m =->的最大值为4,则(0)z x my m =->的最小值为 .16.设等差数列{}n a 的前n 项和n S ,若124,0,14(2m m m S S S m -+=-==≥且)m N +∈,则m = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在ABC ∆中,内角,,A B C 的对边分别为,,a b c,已知cos (1)2C a +=. (1)求C ; (2)若c =ABC ∆的面积S 取到最大值时a 的值.18. 为了调查观众对某电视剧的喜爱程度,某电视台在甲乙两地随机抽取了8名观众做问卷调查,得分结果如图所示:(1)计算甲地被抽取的观众问卷得分的中位数和乙地被抽取的观众问卷得分的平均数;(2)用频率估计概率,若从乙地的所有观众中再随机抽取4人进行问卷调查,记问卷分数不低于80分的人数为X ,求X 的分布列与期望.19.如图,在三棱柱111ABC A B C -中,011,90,BA BC BB ABC BB ==∠=⊥ 平面ABC ,点E 是1A B 与1AB 的交点,点D 在线段AC 上,1//B C 平面1A BD .(1)求证:1BD A C ⊥;(2)求直线1A C 与平面11A B D 所成的角的正弦值.20. 已知椭圆2222:1(0)x y C a b a b+=>>35倍,A 是椭圆C 的左顶点,F 是椭圆C 的右焦点,点0000(,)(0,0),M x y x y N >>都在椭圆C 上. (1)若点210(D -在椭圆C 上,求的最大值; (2)若2(OM AN O =u u u u r u u u r为坐标原点),求直线AN 的斜率.21.已知函数()xf x e ax =-.(1)当2a =时,求函数()f x 的单调区间;(2)若存在,[0,2]m n ∈,且1m n -≥,使得()1()f m f n =,求证:11ae e ≤≤-. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在平面直角坐标系xOy 中,曲线221:20C x y y +-=,倾斜角为6π的直线l 过点(2,0)M -,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程cos()4πρθ-=(1)求1C 和2C 焦点的直角坐标;(2)若直线l 与1C 交于,A B 两点,求MA MB +的值. 23.已知函数()414f x x x a =+-+ .(1)若2a =,解关于x 的不等式()0f x x +<; (2)若x R ∃∈,使()5f x ≤-,求a 的取值范围.试卷答案一、选择题1-5: BADCD 6-10: DBCAB 11、A 12:C二、填空题13. 4 14. 17 15. 6- 16. 5三、解答题17.解:(1)因为cos cos (1)sin (1)22C C a A +=⇒+=,在ABC ∆中,sin 0A >1cos 12C C -=,从而sin()16C π-=, 因为0C π<<,所以5666C πππ-<-<,所以2623C C πππ-=⇒=.(2)由(1)知23C π=,所以sin C =1sin 2S ab C ==, 因为22222cos 62a b c C a b ab ab+-=⇒+=-, 因为222a b ab +≥,所以2ab ≤,所以3342S ab =≤,当且仅当2a b ==时等号成立. 18.(1)由茎叶图可知,甲地被抽取的观众问卷得分的中位数是8383832+=, 乙地被抽取的观众问卷得分的平均数是1(70280490269036907)858⨯+⨯+⨯++++++++=. (2)记“从乙地抽取1人进行问卷调查不低于80分”为事件A ,则63()84P A ==. 随机变量X 的可能取值为0,1,2,3,4,且3(4,)4X B :,所以4431()()(),0,1,2,3,444kk k P X k C k -===,所以变量X 的分布列为:()3434E X =⨯=. 19.解:(1)如图,连接ED ,因为1AB C I 平面11,//A BD ED B C =平面1A BD ,所以1//B C ED . 因为E 为1AB 的中点,所以D 为AC 的中点. 因为AB BC =,,由1A A ⊥平面,ABC BD ⊂平面ABC ,得1A A BD ⊥, 又1,A A AC 是平面11A ACC 所以内的两条相交直线,得BD ⊥平面11A ACC ,因为1AC ⊂平面11A ACC ,所以1BD A C ⊥.(2)令1AB =,则11BC BB ==,如图,以B 为坐标原点,建立空间直角坐标系B xyz -,则1111(1,0,1),(0,0,1),(0,1,0),(,,0)22A B C D ,得11111(1,0,0),(,,1)22B A B D ==-u u u u r u u u u r ,设(,,)m x y z =u r是平面11A B D 的一个法向量,则11111111011022m B A x m B A m B D x y z m B D ⎧⋅==⎧⊥⎪⎪⇒⎨⎨⋅=+-=⊥⎪⎪⎩⎩u r u u u u u u u u u u u u r u r u u u u r u r u u u u r u r u u u u r , 令1z =,得(0,2,1)m =u r,又1(1,1,1)AC =--u u u r ,设直线1A C 与平面11A B D 所成的角为θ, 则15sin 553θ==⋅.20.解:(1)依题意,35a b =,则2222159x y a a +=,将210(D -代入, 解得29a =,故(2,0)F ,设11(,)N x y ,则2222111111449(2)49(),[3,3]992NF x y x x x x =-+=-+=-∈-, 故当13x =-时,NF 有最大值为5.(2)由(1)知, 355a b =,所以椭圆的方程为2222159x y a a +=,即222595x y a +=, 设直线OM 的方程为11(0),(,)x my m N x y =>,由222595x my x y a=⎧⎨+=⎩,得2222222559559a m y y a y m +=⇒=+,因为00y >,所以0y =,因为2//OM AN AN OM =⇒u u u u r u u u r,所以直线AN 的方程为x my a =-,由222595x my a x y a=-⎧⎨+=⎩,得22(59)100m y amy +-=, 所以0y =或21059am y m =+,得121059amy m =+, 因为2OM AN =u u u u r u u u r,所以0011(,)(22,2)x y x a y =+,于是012y y =,220(0)59amm m =>+,所以m =,所以直线AN 的斜率为13m =. 21.解:(1)当2a =时,()()22xxf x e x f x e '=-⇒=-, 又()0ln 2f x x '>⇒>,由()0ln 2f x x '<⇒<,所以函数()f x 的单调递增区间为(ln 2,)+∞,单调递减区间为(,ln 2)-∞. (2)由()xf x e a '=-,当0a ≤时,()0f x '>,此时()f x 在R 上单调递增;由()()1f m f n =可得m n =,与1m n -≥相矛盾, 所以0a >,且()f x 的单调递增区间为(ln ,)a +∞,单调递减区间为(,ln )a -∞. 若,(,ln )m n a ∈-∞,则由12()()f x f x =可得12x x =,与121x x -≥相矛盾, 同样不能有,(ln ,)m n a ∈+∞,不妨设02m n ≤<≤,则由0ln 2m a n ≤<<≤,因为()f x 在(,ln )m a 上单调递减,在(ln ,)a n 上单调递增,且()()1f m f n =, 所以当m x n ≤≤时,()()()f x f m f n ≤=.由02m n ≤<≤,1m n -≥,可得1[,]m n ∈,故()()()1f f m f n ≤=, 又()f x 在(,ln )a -∞上单调递减,且0ln m a ≤<,所以()()0f m f ≤,所以()()10f f ≤,同理()()12f f ≤,即212e a e a e a-≤⎧⎨-≤-⎩,解得21e a e e -≤≤-, 所以11ae e ≤≤-. 22.解:(1)曲线2C的极坐标方程为cos()4πρθ-=化为直角坐标系的方程为20x y +-=,联立222020x y x y y +-=⎧⎨+-=⎩, 解得交点的坐标为(0,2),(1,1).(2)把直线的参数方程2(12x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩为参数)代入2220x y y +-=,得221212t ⎛⎫⎛⎫-++= ⎪ ⎪ ⎪⎝⎭⎝⎭,即2121)40,1t t t t -+=+=, 易知点M 在圆2220x y y +-=外,所以121MA MB t t +=+=. 23.解:(1)若2a =,则不等式化为()41420f x x x x =+--+<,若14x <-,则41420x x x --+-+<,解得3x <,故14x <-; 若1142x -≤≤,则41420x x x ++-+<,解得19x <,故1149x -≤≤;若12x >,则41420x x x +-++<,解得3x <-,故无解,综上所述,关于x 的不等式()0f x x +<的解集为1(,)9-∞,(2)x R ∃∈,使()5f x ≤-等价于()min []5f x ≤-,因为()414(41)(4)1f x x x a x x a a =+--≤+--=-, 所以()11a f x a --≤≤-,所以()f x 的最小值为1a --, 所以15a --≤-,得4a ≥或6a ≤-所以a 的取值范围是(,6][4,)-∞-+∞U .。
广东省五校协作体2018届高三第一次联考试卷(1月)数学(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,集合,则图中的阴影部分表示的集合为()A. B. C. D.【答案】B【解析】阴影部分表示的集合为 ,选B.2. 已知是虚数单位,复数满足,则的虚部是()A. B. C. D.【答案】D【解析】因为,所以,所以的虚部是,选D.3. 已知是抛物线上一点,是抛物线的焦点,若,是抛物线的准线与轴的交点,则()A. 45°B. 30°C. 15°D. 60°【答案】A【解析】因为,所以,所以 ,选A.4. 在区间上任选两个数和,则的概率为()A. B. C. D.【答案】C【解析】在区间上任选两个数x和y,区域的面积为,满足y<sinx的区域的面积为,∴所求概率为.故选C.5. 已知,函数的图象关于直线对称,则的值可以是()A. B. C. D.【答案】D【解析】因为,所以因为函数的图象关于直线对称,所以的值可以是,选 D.6. 一块硬质材料的三视图如图所示,正视图和俯视图都是边长为的正方形,将该木料切削、打磨,加工成球,则能得到的最大球的半径最接近()A. B. C. D.【答案】A【解析】由题意,该几何体为三棱柱,所以最大球的半径为侧视图直角三角形内切圆的半径r,则,∴r=10﹣5≈3cm.故选:A.7. 执行如图所示的程序框图,若输入,则输出的的值为()A. B. C. D.【答案】D【解析】执行程序框图,输入,,所以,,;所以,,;所以,,.输出y的值为﹣.故选:D.8. 若平面截三棱锥所得截面为平行四边形,则该三棱锥与平面平行的棱有()A. 0 条B. 1 条C. 2 条D. 1 条或 2 条【答案】C【解析】如图所示:平面截得平行四边形为EFGH,因为∥,可证明∥平面,由线面平行的性质可知∥,所以∥,同理可得∥,所以有两条棱和平面平行,故选C.9. 已知实数满足,则的最小值是()。
广东省2018届高三七校第一次联考数学(理科)本试卷共4页,23小题,满分150分.考试用时120分钟.参考公式: 24S R π=球表,其中R 表示球的半径第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.{}2|450A x x x =--≤,{}|||2B x x =≤,则()R AB =( )A .[]2,5 B.(2,5] C.[]1,2- D.[)1,2-2.如果复数21m imi++是纯虚数,那么实数m 等于( )A .1-B .0C .0或1D .0或1-3.设,x y 满足约束条件2602600x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩,则目标函数z x y =+最大值是( )A .3;B .4;C .6; D.84.已知某批零件的长度误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为( ) (附:正态分布2(,)N μσ中,()68.26%P μσξμσ-<<+=(22)95.44%P μσξμσ-<<+=)A .4.56% B.13.59% C .27.18% D.31.74%5.下列函数中,在其定义域内是增函数而且又是奇函数的是( )A .2xy = B .2xy = C .22x x y -=- D .22x xy -=+ 6.下列有关命题的说法正确的是( )A . 命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”. B . “1x =-”是“2560x x --=”的必要不充分条件.C . 命题“x ∃∈R ,使得210x x ++<”的否定是:“x ∀∈R ,均有210x x ++<”. D . 命题“若x y =,则sin sin x y =”的逆否命题为真命题. 7.已知函数sin(2)y x ϕ=+在6x π=处取得最大值,则函数cos(2)y x ϕ=+的图象( )A .关于点(0)6π,对称 B .关于点(0)3π,对称 C .关于直线6x π=对称 D .关于直线3x π=对称8.函数()cos f x x x =的导函数()f x '在区间[],ππ-上的图像大致是( )n = 2n S ≥ 3.10?n 360°12S =n sin n = 6开始是否9.二项式291(2)x x -展开式中,除常数项外,各项系数的和为( ) A. 671-B. 671C. 672D. 67310.某一简单几何体的三视图如图1所示,该几何体的外接球的表面积是( )A . 13πB . 16πC . 25πD . 27π11.已知双曲线C :22221(0,0)x y a b a b-=>>的右焦点为F ,以F 为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M ,且MF 与双曲线的实轴垂直,则双曲线C 的离心率为( )5 5 2 D .212. 已知函数2y x =的图象在点()200,x x 处的切线为l ,若l 也与函数ln y x =,)1,0(∈x 的图象相切,则0x 必满足( )A .012x <<0 B .012x <<1 C .2220<<x D 023x <<第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.13.设向量a 、b 满足:1=a ,2=b ,()⊥-a a b ,则a 与b 的夹角是____. 14.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增 加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割 圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著 名的“徽率”.如图2是利用刘徽的“割圆术”思想设计的一个程序框 图,则输出的值为____.(参考数据:sin150.2588︒=,sin7.50.1305︒=15.过抛物线24y x =的焦点F 的直线交该抛物线于,A B 两点,若||3AF =,则||BF =______.16.在△ABC 中,点D 在边AB 上,CD BC ⊥,AC =,5CD =,2BD AD =,则AD 的长为 .三、解答题:本大题共7小题,共70分,解答须写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是递增数列,其前n 项和为n S ,11a >,且10(21)(2)n n n S a a =++,*n ∈N .(Ⅰ)求数列{}n a 的通项n a ;(Ⅱ)是否存在*, , m n k N ∈,使得2()m n k a a a +=成立?若存在,写出一组符合条件的,,m n k的值;若不存在,请说明理由;18.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒.点E 是棱PC 的中点,平 面ABE 与棱PD 交于点F . (Ⅰ)求证://AB EF ;(Ⅱ)若2PA PD AD ===,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余弦值.19.(本小题满分12分)某中药种植基地有两处种植区的药材需在下周一、下周二两天内采摘完毕,基地员工一天可以20万元;有雨时,收益为10万元.额外聘请工人的成本为a 万元.已知下周一和下周二有雨的概率相同,两天是否下雨互不影响,基地收益为20万元的概率为0.36.(Ⅰ)若不额外聘请工人,写出基地收益X 的分布列及基地的预期收益; (Ⅱ)该基地是否应该外聘工人,请说明理由.20.(本小题满分12分)已知动点M 到定点(1,0)F 的距离比M 到定直线2x =-的距离小1.(Ⅰ)求点M 的轨迹C 的方程;(Ⅱ)过点F 任意作互相垂直的两条直线12,l l ,分别交曲线C 于点,A B 和,M N .设线段AB ,MN 的中点分别为,P Q ,求证:直线PQ 恒过一个定点; (Ⅲ)在(Ⅱ)的条件下,求FPQ ∆面积的最小值.21.(本小题满分12分)已知函数()ln f x x =,()()h x a x a R =∈.(Ⅰ)函数()f x 与()h x 的图象无公共点,试求实数a 的取值范围;(Ⅱ)是否存在实数m ,使得对任意的1(,)2x ∈+∞,都有函数()my f x x=+的图象在()xe g x x=的图象的下方?若存在,请求出最大整数m 的值;若不存在,请说理由.(参考数据:ln 20.6931=,,ln3 1.0986=1.3956==).请考生在第22,23题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号. 22.(本小题满分10分)选修44-:坐标系与参数方程选讲已知曲线C的参数方程为21x y αα⎧=+⎪⎨=⎪⎩(α为参数),以直角坐标系原点O 为极点,x 轴正半轴为极轴建立极坐标系.(Ⅰ)求曲线C 的极坐标方程;(Ⅱ)设12::63l l ππθθ==,,若l 1 、l 2与曲线C 相交于异于原点的两点 A 、B ,求△AOB 的面积.23. (本小题满分10分)选修45-:不等式选讲已知函数12)(---=x a x x f . (Ⅰ)当2=a 时,求03)(≥+x f 的解集;(Ⅱ)当]3,1[∈x 时,3)(≤x f 恒成立,求a 的取值范围.数学(理科)参考答案一、选择题:本题共12小题,每小题5分,共60分12.【解析】D ;画出图像,显然可以排除A 、B 选项.由题x x f 2)(=',200)(x x f =,所以l 的方程为2000)(2x x x x y +-=2002x x x -=,因为l 也与函数ln y x =的图象相切,令切点坐标为)ln ,(11x x ,所以l 的方程为y 1ln 111-+=x x x ,这样有⎪⎩⎪⎨⎧=-=2011ln 112x x x x ,所以202ln 1xx =+,()01,x ∈+∞,令12ln )(2--=x x x g ,()1,x ∈+∞,又因为xx x g 12)(-='x x 122-=,所以)(x g 在()1,+∞上单调增,又02ln )1(<-=g ,022ln 1)2(<-=g ,2ln 0g =-0x <<D .二、填空题:本大题共4小题,每小题5分,满分20分.13.60︒ 14. 24; 15. 32; 16. 5;16.【解析】5;在△ABC 中,因为2BD AD =,设AD x =()0x >,则2BD x =.在△BCD 中,因为CD BC ⊥,5CD =,2BD x =,所以cos CD CDB BD ∠=52x=. 在△ACD 中,因为AD x =,5CD =,AC =由余弦定理得222cos 2AD CD AC ADC AD CD +-∠==⨯⨯因为CDB ADC ∠+∠=π,所以cos cos ADC CDB ∠=-∠52x=-.解得5x =.所以AD 的长为5. 三、解答题:本大题共6小题,共70分,解答须写出必要的文字说明、证明过程或演算步骤.17.【解析】(Ⅰ)11110(21)(2)a a a =++,得2112520a a -+=,解得12a =,或112a =.由于11a >,所以12a =..…………1分因为10(21)(3)n n n S a a =++,所以210252n n n S a a =++.故221111101010252252n n n n n n n a S S a a a a ++++=-=++---,.…………3分 整理,得22112()5()0n n n n a a a a ++--+=,即11()[2()5]0n n n n a a a a +++--=..因为{}n a 是递增数列,且12a =,故10n n a a ++≠,因此152n n a a +-=.…………5分 则数列{}n a 是以2为首项,52为公差的等差数列.所以512(1)(51)22n a n n =+-=-.……………………………6分 (Ⅱ)满足条件的正整数, , m n k 不存在,证明如下:假设存在*, , m n k N ∈,使得2()m n k a a a +=,…………………8分则15151(51)2m n k -+-=-.…………………9分 整理,得3225m n k +-=, ①显然,左边为整数,所以①式不成立.故满足条件的正整数, , m n k 不存在.…………………12分18.【解析】(Ⅰ)∵底面ABCD 是菱形,∴//AB CD ,又∵AB ⊄面PCD ,CD ⊂面PCD , ∴//AB 面PCD ,…………2分又∵A ,B ,E ,F 四点共面,且平面ABEF 平面PCD EF =∴//AB EF ;…………4分(Ⅱ) 取AD 中点G ,连接PG ,GB ,∵PA PD =,∴PG AD ⊥,又∵平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD AD =∴PG ⊥平面ABCD ,∴PG GB ⊥, 在菱形ABCD 中,∵AB AD =,60DAB ∠=︒,G 是AD ∴AD GB ⊥, (6)分如图,建立空间直角坐标系G xyz -,设2PA PD AD ===,则(0,0,0)G ,(1,0,0)A,B (C -,(1,0,0)D -,P ,又∵//AB EF ,点E 是棱PC 中点, ∴点F 是棱PD 中点,∴(1,22E -,1(,0,)22F-,3(,0,22AF =-,1(,,0)22EF =-,…………8分 设平面AFE 的法向量为(,,)n x yz =,则有00n AF n EF ⎧⋅=⎪⎨⋅=⎪⎩,∴3z y x ⎧=⎪⎨=⎪⎩,不妨令3x =,则平面AFE的一个法向量为(3,3,3n =,…………………10分 ∵BG ⊥平面PAD ,∴GB=是平面PAF 的一个法向量, ∵cos ,1339n GB <n GB>n GB⋅===⋅, ∴平面PAF 与平面AFE .………………12分 19.【解析】(Ⅰ)设下周一无雨的概率为p ,由题意,20.36,0.6p p ==,…………2分基地收益X 的可能取值为20,15,10,7.5,则(20)0.36P X ==,(15)0.24P X ==, (10)0.24P X ==,(7.5)0.16P X ==………………………………………4分 ∴基地收益X 的分布列为:()200.36150.24E X =⨯+⨯,…………………………5分 ∴基地的预期收益为14.4万元.……………………………………………6分(Ⅱ)设基地额外聘请工人时的收益为Y 万元,则其预期收益()200.6100.416E Y a a =⨯+⨯-=-(万元),…………………8分()() 1.6E Y E X a -=-,…………………9分综上,当额外聘请工人的成本高于1.6万元时,不外聘工人;成本低于1.6万元时,外聘工人;成本恰为1.6万元时,是否外聘工人均可以.……………………12分20.【解析】(Ⅰ)由题意可知:动点M 到定点(1,0)F 的距离等于M 到定直线1x =-的距离,根据抛物线的定义可知,点M 的轨迹C 是抛物线。
2018年普通高等学校招生全国统一考试广东省理科数学模拟试卷(一)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2|111,|1A x x B x x =-<-<=<,则A B = ( )A .{}|1x 1x -<<B .{}|01x x <<C .{}|1x x <D .{}|02x x << 2.设复数()4z a i a R =+∈,且()2i z -为纯虚数,则a = ( ) A .-1 B . 1 C . 2 D .-23. 下图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是( )A .320 B .325π C .325D .20π4. 已知函数()f x 满足332x f x x ⎛⎫=-⎪⎝⎭,则函数()f x 的图象在1x =处的切线斜率为( ) A .0 B . 9 C. 18 D .275. 已知F 是双曲线()2222:10,0x y C a b a b-=>>的一个焦点,点F 到C 的一条渐近线的距离为2a ,则双曲线C 的离心率为( )A ..2 6. ()5112x x x ⎛⎫++ ⎪⎝⎭的展开式中,3x 的系数为( ) A . 120 B .160 C. 100 D .807. 如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .488π+B .968π+ C. 9616π+ D .4816π+ 8.已知曲线:sin 23C y x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是 ( ) A .把C 向左平移512π个单位长度,得到的曲线关于原点对称 B .把C 向右平移6π个单位长度,得到的曲线关于y 轴对称 C. 把C 向左平移3π个单位长度,得到的曲线关于原点对称D .把C 向右平移12π个单位长度,得到的曲线关于y 轴对称9. 大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“ ”中,可以先后填入( )A .n 是偶数,100n ≥B .n 是奇数,100n ≥ C. n 是偶数,100n > D .n 是奇数,100n >10.在ABC ∆中,角,,C A B 所对的边分别为,,a b c ,若3A π=,且2s i n 2s i n 3b B c C b c a +=+,则ABC∆的面积的最大值为( )A11.已知抛物线2:,C y x M =为x 轴负半轴上的动点,,MA MB 为抛物线的切线,,A B 分别为切点,则MA MB的最小值为 ( )A .116-B .18- C. 14- D .12-12.设函数()1222,21130,2x x f x x x x +⎧-≤⎪=⎨-+>⎪⎩,若互不相等的实数,,,a b c d 满足()()()()f a f b f c f d ===,则2222a b c d+++的取值范围是 ( )A.()2,146 B .()98,146C. ()2,266 D .()98,266二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知单位向量12,e e的夹角为30°,则12e -= .14.设,x y 满足约束条件6456543x y x y x y -≤⎧⎪+≤⎨⎪+≥⎩,则z x y =+的最大值为 .15.已知0sin10cos102cos140m +=,则m = .16.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为,,,,O E F G H 为圆O 上的点,,,,ABE BCF CDG ADH ∆∆∆∆分别是以,,,AB BC CD DA 为底边的等腰三角形.沿虚线剪开后,分别以,,,AB BC CD DA 为折痕折起,,CDG,ADH ABE BCF ∆∆∆∆,使得,,,E F G H 重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知公差不为零的等差数列{}n a 满足15a =,且3611,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)设13n n n b a -= ,求数列{}n b 的前n 项和n S .18.“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)以这50人这一天行走的步数的频率代替1人一天行走的步数发生的概率,记X 表示随机抽取3人中被系统评为“积极性”的人数,求()2P X ≤和X 的数学期望.(2)为调查评定系统的合理性,拟从这50人中先抽取10人(男性6人,女性4人).其中男性中被系统评定为“积极性”的有4人,“懈怠性”的有2人,从中任意选取3人,记选到“积极性”的人数为x ; 其中女性中被系统评定为“积极性”和“懈怠性”的各有2人,从中任意选取2人,记选到“积极性”的人数为y ;求x y >的概率.19.如图,在直角梯形ABCD 中,//,AD BC AB BC ⊥,且24,,BC AD E F ==分别为线段,AB DC 的中点,沿EF 把AEFD 折起,使AE CF ⊥,得到如下的立体图形. (1)证明:平面AEFD ⊥平面EBCF ;(2)若BD EC ⊥,求二面角F BD C --的余弦值.20.已知椭圆()2222:10x y C a b a b +=>>C 过点⎛ ⎝⎭. (1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于,P Q 两点(点,P Q 均在第一象限),l 与x 轴,y 轴分别交于,M N 两点,且满足2222PMO QMOPNO QNOPMO QMOPNO QNOS S S S S S S S ∆∆∆∆∆∆∆∆++=(其中O 为坐标原点).证明:直线l 的斜率为定值.21. 已知函数()()()2ln 1x f x x e a x x =-+-+. (1)讨论()f x 的导函数()f x '零点的个数; (2)若函数()f x 的最小值为e -,求a 的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆()()221:2420C x y -+-=,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,()2:3C R πθρ=∈.(1)求1C 的极坐标方程和2C 的平面直角坐标系方程; (2)若直线3C 的极坐标方程为()6R πθρ=∈,设2C 与1C 的交点为O M 、,3C 与1C 的交点为O N 、,求OMN ∆的面积.23.【选修4-5:不等式选讲】已知函数()()331,412f x x a x g x x x =-++=--+. (1)求不等式()6g x <的解集;(2)若存在13,x x R ∈,使得()1f x 和()2g x 互为相反数,求a 的取值范围.试卷答案一、选择题1-5:BDACC 6-10: ABDDC 11、12:AB二、填空题13. 1 14. 2 15.三、解答题17.解:(1)设等差数列{}n a 的公差为d ,因为3611,,a a a 成等比数列,所以26311a a a =,即()()()21115210a d a d a d +=++,化简得1520d a -=,又15a =,所以2d =,从而23n a n =+. (2)因为()1233n n b n -=+ ,所以()0121537393233n n S n -=⨯+⨯+⨯+++ , 所以()1233537393233n n S n =⨯+⨯+⨯+++ ,以上两个等式相减得()()133********n n n S n ---=+⨯-+,化简得()131nn S n =+-.18.解:(1)被系统评为“积极性”的概率为3033,3,5055X B ⎛⎫= ⎪⎝⎭. 故()3398215125P X ⎛⎫≤=-= ⎪⎝⎭,X 的数学期望()39355E X =⨯=; (2)“x y >”包含“3,2x y ==”,“ 3,1x y ==”,“ 3,0x y ==”,“ 2,1x y ==”,“ 2,0x y ==”,“ 1,0x y ==”,()3242326413,y 230C C P x C C ===⨯=,()311422326423,115C C C P x y C C ===⨯=,()3042326413,130C C P x y C C ===⨯=,()210422326412,110C C C P x y C C ===⨯=,()210422326412,010C C C P x y C C ===⨯=,()122422326411,030C C C P x y C C ===⨯=,所以()121211113015305103015P x y >=+++++=. 19.(1)证明:由题可得//EF AD ,则AE EF ⊥, 又AE CF ⊥,且EF CF F = ,所以AE ⊥平面EBCF . 因为AE ⊂平面AEFD ,所以平面AEFD ⊥平面EBCF ; (2)解:过点D 作//DG AE 交EF 于点G ,连结BG ,则DG ⊥平面EBCF ,DG EC ⊥, 又,BD EC BD DG D ⊥= ,所以EC ⊥平面,BDG EC BG ⊥, 易证EGB BEC ∆∆ ,则EG EBEB BC=,得EB = 以E 为坐标原点,EB的方向为x 轴的正方向,建立如图所示的空间直角坐标系E xyz -,,则()(()(()0,3,0,,,A ,F D C B .故((()(,0,,0,4,0,BD FD BC CD =-=-==--,设(),,n x y z = 是平面FBD的法向量,则200n BD y n FD y ⎧=-++=⎪⎨=-+=⎪⎩, 令1z =,得()3,n =,设(),,m a b c = 是平面BCD的法向量,则4020m BC b m CD b ⎧==⎪⎨=--+=⎪⎩, 令1a =,则()1,0,1m =,因为2cos ,3n m n m n m===,所以二面角F BD C --的余弦值为23.20.解:(1)由题意可得221314c a a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得21a b =⎧⎨=⎩,故椭圆C 的方程为2214x y +=; (2)由题意可知直线l 的斜率存在且不为0,故可设直线l 的方程为()0y kx m m =+≠,点,P Q 的坐标分别为()()1122,,,x y x y , 由12121111,,,2222PMO QMO PNO QNO S MO y S MO y S NO x S NO x ∆∆∆∆====, 化简得222212121212y y x x y y x x ++=,()()222222121212121212121222,y y x x y y x x y y x x y y x x --++-=-=,即21212y y k x x =, 由2214y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 得()()222148410k x kmx m +++-=, 则()()()222222641614116410k m k m k m ∆=-+-=-+>,且()2121222418,1414m kmx x x x k k --+==++, 故()()()2212121212y y kx m kx m k x x km x x m =++=+++,因此()2212122121212k x x km x x m y y k x x x x +++==,即22228014k m m k -+=+, 又0m ≠,所以214k =,又结合图象可知,12k =-,所以直线l 的斜率为定值. 21.解:(1)()()()()()11110xxx xe a f x x e a x x x --⎛⎫'=-+-=> ⎪⎝⎭,令()()()()0,10xxg x xe a x g x x e '=->=+>,故()g x 在()0,+∞上单调递增,则()()0g x g a >=-,因此,当0a ≤或a e =时,()f x '只有一个零点; 当0a e <<或a e >时,()f x '有两个零点;(2)当0a ≤时,0xxe a ->,则函数()f x 在1x =处取得最小值()1f e =-,当0a >时,则函数xy xe a =-在()0,+∞上单调递增,则必存在正数0x ,使得000xx e a -=,若a e >,则01x >,函数()f x 在()0,1与()0,x +∞上单调递增,在()01,x 上单调递减, 又()1f e =-,故不符合题意.若a e =,则()01,0x f x '=≥,函数()f x 在()0,+∞上单调递增, 又()1f e =-,故不符合题意.若0a e <<,则001x <<,设正数()10,1e ab e--=∈,则()()()12ln 1ln 1e b a e f b b e a b b a e b a b e ab e a --⎛⎫⎛⎫=-+-+<-+=--=--<- ⎪ ⎪⎝⎭⎝⎭,与函数()f x 的最小值为e -矛盾, 综上所述,0a ≤,即(],0a ∈-∞.22.解:(1)因为圆1C 的普通方程为22480x y x y +--=, 把cos ,sin x y ρθρθ==代入方程得24cos 8sin 0ρρθρθ--=, 所以1C 的极坐标方程为4cos 8sin ρθθ=+,2C的平面直角坐标系方程为y =;(2)分别将,36ππθθ==代入4cos 8sin ρθθ=+,得1224ρρ=+=+则OMN ∆的面积为((124sin 8236ππ⎛⎫⨯+⨯+⨯-=+ ⎪⎝⎭23.解:(1)由题意可得()33,2151,24133,4x x g x x x x x ⎧⎪-+≤-⎪⎪=---<<⎨⎪⎪-≥⎪⎩,当2x ≤-时,336x -+<,得1x >-,无解;当124x -<<时,516x --<,得75x >-,即7154x -<<; 当14x ≥时,336x -<,得134x ≤<,综上,()6g x <的解集为7|35x x ⎧⎫-<<⎨⎬⎩⎭. (2)因为存在12,x x R ∈,使得()()12f x g x =-成立, 所以(){}(){}|,|y g ,y y f x x R y x x R =∈=-∈≠∅ , 又()()()331333131f x x a x x a x a =-++≥--+=+, 由(1)可知()9,4g x ⎡⎫∈-+∞⎪⎢⎣⎭,则()9,4g x ⎛⎤-∈-∞ ⎥⎝⎦,所以9314a +≤,解得1351212a -≤≤. 故a 的取值范围为135,1212⎡⎤-⎢⎥⎣⎦.。