80C196MC单片机波形发生器原理及其在逆变电源中的应用
- 格式:pdf
- 大小:269.15 KB
- 文档页数:3
概述MCS196系列单片机是Intel公司继8X9X之后推出的16位嵌入式微控制器。
它除了保留8X9X全部功能外,在功能部件和指令支持上又有很大改进,性能上也有了显著提高,使得它适用于更复杂的实时控制场合。
MCS196单片机有多种型号,不同型号配置有不同的功能部件,且具有不同存储器空间和寻址能力,可满足不同场合的要求。
MCS196系列单片机都有1个基于寄存器到寄存器结构的内核。
这种结构消除了累加器的瓶颈现象,加快了数据传输。
另有多种功能部件,在不同型号中进行不同配置。
这些功能部件除包括在8X9X中就有的I/O口、10位A/D转换器、PWM(脉宽调制器)、SIO(全双工串行I/O口)、中断源、看门狗定时器、16位定时/计数器、HSI/O(高速输入/输出口)等以外,还包括在MCS196中出现的PTS(外围事务服务器)、EPA(事件处理器阵列)、WG(波形发生器)等。
与其他系列(如MCS51系列、PIC系列等)相比,HSI/O、PTS、EPA、WG是MCS196最具特色的功能部件。
HSI/O(High Speed Inputs and Outputs):其中HSI用于记录某一外部事件相对于时间基准(如定时器1)的发生时刻。
此功能部件在检测到引脚上规定的跳变事件(包括正跳变、负跳变、每次正跳变、8个正跳变)后,将发生事件的类型与时刻记录下来,并产生相关中断。
此部件适用于信号的时间参数测量。
HSO则用于按程序规定的时间去触发某一事件(如置位/清零口线、启动A/D转换等),要求CPU的开销极小,速度极高。
此部件便于实时输出控制,可用来产生多种信号波形。
EPA(Event Processor Array):实质上是捕捉/比较模块。
所谓“捕捉”就是捕获产生于引脚上的跳变事件(有正跳变、负跳变、正负跳变等),记载这些输入事件相对于时基定时器发生的时刻;“比较”则是和预先规定好的时间作比较,预定时间一到就去执行某种输出功能(比如输出置为高、输出置为低、输出翻转、启动A/D转换、复位定时器等等)。
80C196MC在中频感应电源中的应用80C196MC在中频感应电源中的应用摘要:针对晶闸管中频电源,提出了一种基于80C196MC的逆变控制电路,给出了该构思的硬件和软件设计。
通过对试验结果进行了分析,证明该电路很好地实现了电源的扫频式零电压软启动和正常工作时槽路谐振频率的跟踪,而且简单实用,启动成功率高,可靠性和通用性得到改善。
关键词:晶闸管中频电源;逆变电路;微控制器;扫频式零压软启动;槽路谐振频率1 概述随着工业的发展,中频电源的应用也日益广泛,如在金属熔炼、透热、热处理、焊接等方面,其工作方式多采用并联逆变,结构如图1所示。
其工作原理为采用三相桥式全控整流电路将交流电整流为直流电,经电抗器平波后,成为一个恒定的直流电流源,再经单相逆变桥,把直流电流逆变成一定频率的单相中频电流。
负载是由感应线圈和补偿电容器组成的,连接成并联谐振电路。
目前市场上的中频电源,其逆变部分控制电路多采用模拟元器件,电路复杂,控制参数难以调整,因而通用性差。
本文采用Intel公司80C196MC微控制器构成逆变控制电路,较好地克服了以上弊端,简化了电路,控制参数可以调节并显示,大大提高了中频电源的可靠性和通用性。
(范文先生网收集整理)2 80C196MC微控制器简介80C196MC微控制器具有适合于PWM逆变器、变频器及电机高速控制所需的许多特性。
它由一个C196核心、一个三相波形发生器WFG、一个多通道A/D转换器及其他片内外设(如两个定时器、一个事件处理门阵列EPA、两个通用PWM模块)等构成。
其C196核心包含512字节的寄存器RAM,其中的绝大部分可为用户程序所用。
80C196MC对片内外设的操作全部是通过存取相应的专用寄存器(SFR)来完成的。
中频电源逆变控制的核心任务就是跟踪槽路的谐振频率,不断地调整逆变脉冲的频率。
80C196MC内置的波形发生器使之能高效、可靠地完成逆变脉冲变频任务。
WFG具有3个同步的PWM模块,能产生3对同载波、同操作方式、等死区时间,但脉宽相互独立的`PWM 波形。
第一章绪论第一节电力电子技术概述一、电力电子技术的形成与发展电力电子技术是应用于电力领域的电子技术。
具体来说,就是使用电力电子器件对电能进行变换和控制的技术。
电力电子技术的诞生是以20世纪50年代美国通用电气公司研制出第一个晶闸管为标志的,是20世纪后半叶诞生并发展起来的一门崭新的技术。
可以预见,在21世纪电力电子技术将以更迅猛的速度发展。
其实,早在晶闸管出现以前,用于电力变换的电子技术就已经存在了。
晶闸管出现前的时期可称为电力电子技术的史前期或黎明期。
1904年出现了电子管,它能在真空中对电子流进行控制,并应用于通信和无线电,从而开了电子技术之先河。
后来,出现了水银整流器,在30年代到五十年代,是水银整流器发展迅速并大量应用的时期。
它广泛应用于电化学工业、电气铁道直流变电所以及轧钢用直流电动机的传动,甚至用于直流输电。
1947年,美国著名的贝尔实验发明了晶体管,引发了电子技术的一场革命。
最先用于电力领域的半导体器件是硅二极管。
电力电子技术的概念和基础就是由于晶闸管及晶闸管变流技术的发展而确立的。
70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。
二、电力电子器件的分类按照电力电子器件能被控制电路信号所控制的程度,可以将电力电子器件分为以下三类:(一) 不可控器件不能用控制信号来控制其通断的电力电子器件,这类器件不需要驱动电路,如电力二极管。
这类器件只有两个端子,器件的导通和关断完全是由其在主电路中承受的电压和电流决定的。
(二) 半控型器件通过控制信号可以控制其导通而不能控制其关断的电力电子器件,这类器件主要是晶闸管(Thyristor)及其大部分派生器件,器件的关断完全是由其在主电路中承受的电压和电流决定的。
(三) 全控型器件通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件称为全控型器件,由于和半控型器件相比,可以由控制信号控制其关断,因此又称自关断器件。
阐述三相电流型逆变器的PWM控制方法前言:就当前的现状来看,关于三相电流型逆变器PWM控制方法的文献研究甚少,因而基于此,为了提升PWM变频电路整体运行效率,要求当代专家学者应注重深化对此项课题的研究,并全面掌控到PWM变频电路运行特点,且将PWM控制技术应用于电力系统中,形成稳定的运行目标。
以下就是对三相电流逆变器PWM控制方法的详细阐述,望其能为当代电力行业系统控制模式的进一步创新与发展提供有利的文字参考。
一、PWM变频电路运行特点分析就当前的现状来看,PWM变频电路运行特点主要体现在以下几个方面:第一,从电压型PWM交-直-交变频角度来看,其电路特点主要体现在输出电压呈现出与正弦波形较为接近的特点,因而在此基础上,相关技术人员在对变频电路进行操控的过程中必须强化与其运行特点的有效结合。
另外,强调对二极管的应用也是PWM变频电路呈现出的主要特点之一;第二,基于电流型PWM交-直-交变频特点研究中可以看出,其在运行过程中逐渐呈现出高阻抗的运行特性,同时也由此形成了矩形波样式的运行模式,因而为实现对PWM控制技术的应用,必须注重结合其电路特点。
二、PWM控制技术发展现状变压变频设备的应用在一定程度上缓解了传统电力系统运行过程中凸显出的问题,因而其应用现状逐渐引起了人们的关注,但是就当前的现状来看,其在应用的过程中仍然存在着某些不足之处,即未实现变頻装置的合理化设置,继而对其的推广行为受到了一定的阻碍。
随着现代化科学技术的不断发展,变频装置在应用的过程中得到了逐步完善,且逐渐将现代化通信技术应用于装置运行中,带动了装置整体运行水平的提升。
此外,随着变频装置的不断完善,PWM技术开始被广泛应用于电气公司实际生产中,且以正弦波脉宽调制方式、磁通SPWM 等途径提升了电压的整体利用效率,并就此减少了电路功效的损害。
同时在使用的过程中也逐渐凸显出噪声较小等优势,因而在此背景下,相关技术人员在系统操控过程中应强化对PWM控制技术的应用。
波形发生器波形发生器是一种能够产生各种形式波形的仪器,通常用于电子测试与测量、通信等领域。
它能够产生各种波形,如正弦波、方波、脉冲波、锯齿波、三角波等,并可调节波形的频率、幅度、相位等参数。
在电子测试与测量中,波形发生器是一种非常重要的仪器。
本文将从波形发生器的原理、种类、应用等角度进行介绍。
一、波形发生器的原理波形发生器的原理是利用放大器和反馈电路实现的。
当输入稳定的DC偏置电压时,电路输出一个稳定的幅值和频率的信号波形。
根据不同的反馈电路,波形发生器的输出波形也会不同。
例如,正弦波的反馈路径为RC电路,三角波的反馈路径为反向绝缘栅极场效应晶体管,方波的反馈路径则为比较器等等。
二、波形发生器的种类1. 标准波形发生器标准波形发生器是目前最常见的一种波形发生器。
它能够产生多种波形,例如正弦波、方波、三角波、脉冲波等,并可调节波形的频率、幅度和相位等参数。
2. 函数波形发生器函数波形发生器不仅能够产生标准波形,还能够产生各种复杂的波形。
它通常配备了一个键盘和一块屏幕,可以通过键盘输入各种复杂的波形公式,通过程序控制产生相应的波形。
3. 数字波形发生器数字波形发生器是一种数模混合波形发生器,它采用数字方式产生波形,并将数字信号转换成模拟信号输出。
与传统的模拟波形发生器相比,数字波形发生器具有高精度、高稳定性、高精度等优点。
三、波形发生器的应用波形发生器广泛应用于电子测试与测量、通信、自动化等领域。
以下是波形发生器的主要应用:1. 信号发生器:波形发生器能够产生各种形式的信号波形,如正弦波、方波、脉冲波、锯齿波、三角波等。
这些信号波形可以用于信号生成器,如用于测试、调制解调等。
2. 测试系统:波形发生器可以与其他测量仪器一起组成测试系统。
例如,它可以与示波器或频谱仪等一起使用,用于测试和分析信号波形的性质和特征。
3. 通信系统:波形发生器能够产生各种信号波形,如数字信号、模拟信号、调制信号等,这些信号波形可以用于通信系统中。
80C196MC单片机波形发生器原理及其在逆变电源中的应用摘要: 80C196MC波形发生器的SPWM波形产生原理和软件设计要点。
使逆变控制电路实现了全数字操作,改进了传统的控制方法。
试验表明,该方案结构紧凑、动态特性好、可靠性高。
关键词: 80C196MC 正弦脉宽调制波形发生器逆变器控制电路PWM技术从最初采用分离元件的模拟电路完成三角波载波和正弦调制波的比较,产生SPWM控制信号,到目前采取全数字化方案,完成实时在线的PWM(SPWM)信号输出。
PWM控制电路经历了由初级到越来越完善的演化。
由专用集成芯片ASIC(Application specific integrated circuit)生成SPWM波的技术近几年来被广泛采用,这些集成电路有HFE4752、SLE4520、MA8X8/SA8X8、SAXXXX等。
其中多数要与单片机连接才能完成SPWM控制功能,对于要求较高的逆变系统来说仍然不够简捷。
INTEL公司推出的16位单片机8XC196MC片内集成了三相SPWM波形发生器WFG(Wave Form Generator,以下简称WFG)[1],为逆变控制电路的全数字化设计提供了强有力的硬件支持,它的软件指令丰富,与其它196XX单片机基本兼容。
本文重点介绍80C196MC中WFG的工作原理及软件的设计要点。
1 WFG工作原理内藏WFG是80C196MC/MD的一大特色。
这一功能大大简化了用于产生PWM波形的硬件和软件,特别适用于交流感应电动机和无刷直流电机的速度控制以及变频电源的SPWM控制。
1.1 WFG的组成WFG有三个相同的PWM模块。
每个模块都包含一个相同的比较寄存器、死区时间(deadtime)发生器和一对可编程输出控制器。
从功能上可把WFG划分为三大部分:时基发生器、相位比较通道和输出控制电路。
共有八个特殊功能寄存器(SFR)。
各寄存器的地址、控制位的功能、参数填写格式等可参阅文献[1]。
80C196MC 的外设事务服务器及其应用 摘要介绍利用专用于电机控制的 16 位单片机 80196 的外设事务服务 器在变频器中实现异步串行通信的方法。
重点介绍和普通中断的差别及程序设计中应注意的问题,同时给出通 用变频器通信协议及程序框图。
关键词单片机变频器通信 引言 变频器在工业现场中应用越来越广泛。
为了能实现整个自动化系统的协调控制,同时能监视多台变频器的运 行状况,方便地对单一变频器或多台变频器实行启停、正反转、升降速、 参数设置等操作是非常必要的。
本文介绍利用变频器的主控芯片 80196 内的外设事务服务器在变频器 中实现异步串行通信的方法。
1 关于外设事务服务器 11 和普通中断 90196 高性能 16 位单片机内部嵌入了各种以往被认为是外围设备的 电路。
外设事务服务器就是一种被嵌入的外设。
它是一种微代码硬件中断处理器,对中断可提供一种类似于直接存储器访问的响应,其的开销比普通中断系统基于上是一种软件中断服务系统 要少得多。
为便于理解的工作过程,图 1 示出了和普通中断流程的主要差别。
从图 1 可以看出 ①的执行是靠硬件微代码来完成的; 而普通中断是靠中断正常的程序, 由入栈、现场保护、用户服务程序、恢复现场与出栈来完成。
显然后者对的开支要比前者多得多。
②通常中断所做的是相同的工作, 如不断的连续转换、 数据组的传递、 通信的多字节传递等。
正利用这点,由一个程序启动,让之在计数器单元控制下不中断正常 程序靠硬件微代码即类似的插入来分时完成,在计数单元完成后转化为一 次普通中断,通过普通中断进行一系列完成后的结果处理。
③在 80196 中,优先级总是比普通中断优先级要高,并且有近 16 个 中断源, 对应用 16 位的允许位和响应位的字寄存器进行各自控制; 同时, 和普通中断是各位相对应的,这样使得完成后转化为一次普通中断就变得 很简单。
④在 80196 中,与有关的控制有总允许位 10 以及各中断源的选择位 寄存器。
波形发生器原理波形发生器是一种能够产生各种波形信号的电子设备,它在许多电子领域中都有着广泛的应用,比如在通信、测试仪器、医疗设备等领域。
波形发生器的原理是基于信号发生器的基本原理,通过不同的电路结构和控制方式,可以产生不同类型的波形信号,如正弦波、方波、三角波和锯齿波等。
波形发生器的基本原理是利用振荡电路产生一定频率和幅度的周期性信号。
振荡电路是由放大器、反馈网络和反馈元件组成的。
当反馈网络和反馈元件满足一定的条件时,放大器就会产生自激振荡,输出一定频率和幅度的信号。
波形发生器可以通过调节反馈网络和反馈元件的参数,来改变输出信号的频率和幅度,从而实现不同类型的波形信号的产生。
在波形发生器中,常用的振荡电路包括晶体振荡器、RC振荡器和LC振荡器等。
晶体振荡器是利用晶体谐振的特性产生稳定的高频信号,适用于需要高频率和稳定性的场合。
RC振荡器是利用电容和电阻构成的振荡网络产生信号,适用于低频和中频范围。
LC振荡器则是利用电感和电容构成的振荡网络产生信号,适用于需要较高频率和较高稳定性的场合。
除了振荡电路,波形发生器还需要一些控制电路来实现对输出波形的调节和控制。
比如,通过控制电压控制振荡电路的频率和幅度,通过数字控制接口实现对波形发生器的编程控制等。
这些控制电路可以使波形发生器具有更灵活的功能,满足不同应用场合的需求。
总的来说,波形发生器是一种能够产生各种波形信号的电子设备,它的原理是基于振荡电路产生一定频率和幅度的信号,通过控制电路实现对输出波形的调节和控制。
波形发生器在电子领域中有着广泛的应用,是许多电子设备中不可或缺的部分。
希望本文对波形发生器的原理有所帮助,谢谢阅读!。