常州数学中考试题
- 格式:doc
- 大小:558.00 KB
- 文档页数:12
第1页,共25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2022年江苏省常州市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、选择题(本大题共8小题,共16.0分) 1. 2022的相反数是( )A. 2022B. −2022C. 12022D. −120222. 若二次根式√x −1有意义,则实数x 的取值范围是( )A. x ≥1B. x >1C. x ≥0D. x >03. 下列图形中,为圆柱的侧面展开图的是( )A.B.C.D.4. 如图,在△ABC 中,D 、E 分别是AB 、AC 的中点.若DE =2,则BC 的长是( )A. 3B. 4C. 5第2页,共25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………D. 65. 某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( )A. y =x +50B. y =50xC. y =50xD. y =x506. 如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是( )A. 垂线段最短B. 两点确定一条直线C. 过一点有且只有一条直线与已知直线垂直D. 过直线外一点有且只有一条直线与已知直线平行7. 在平面直角坐标系xOy 中,点A 与点A 1关于x 轴对称,点A 与点A 2关于y 轴对称.已知点A 1(1,2),则点A 2的坐标是( )A. (−2,1)B. (−2,−1)C. (−1,2)D. (−1,−2)8. 某汽车评测机构对市面上多款新能源汽车的0~100km/ℎ的加速时间和满电续航里程进行了性能评测,评测结果绘制如下,每个点都对应一款新能源汽车的评测数据.已知0~100km/ℎ的加速时间的中位数是m s ,满电续航里程的中位数是n km ,相应的直线将平面分成了①、②、③、④四个区域(直线不属于任何区域).欲将最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若以上两组数据的中位数均保持不变,则这两个点可能分别落在( )第3页,共25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A. 区域①、②B. 区域①、③C. 区域①、④D. 区域③、④第II 卷(非选择题)二、填空题(本大题共10小题,共20.0分) 9. 化简:√83═ ______ . 10. 计算:m 4÷m 2=______. 11. 分解因式:x 2y +xy 2=______.12. 2022年5月22日,中国科学院生物多样性委员会发布《中国生物物种名录》2022版,共收录物种及种下单元约138000个.数据138000用科学记数法表示为______. 13. 如图,数轴上的点A 、B 分别表示实数a 、b ,则1a ______1b (填“>”、“=”或“<”).14. 如图,在△ABC 中,E 是中线AD 的中点.若△AEC 的面积是1,则△ABD 的面积是______.15. 如图,将一个边长为20cm 的正方形活动框架(边框粗细忽略不计)扭动成四边形ABCD ,对角线是两根橡皮筋,其拉伸长度达到36cm 时才会断裂.若∠BAD =60°,则橡皮筋AC ______断裂(填“会”或“不会”,参考数据:√3≈1.732).第4页,共25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………16. 如图,△ABC 是⊙O 的内接三角形.若∠ABC =45°,AC =√2,则⊙O 的半径是______.17. 如图,在四边形ABCD 中,∠A =∠ABC =90°,DB 平分∠ADC.若AD =1,CD =3,则sin∠ABD =______.18. 如图,在Rt △ABC 中,∠C =90°,AC =9,BC =12.在Rt △DEF 中,∠F =90°,DF =3,EF =4.用一条始终绷直的弹性染色线连接CF ,Rt △DEF 从起始位置(点D 与点B 重合)平移至终止位置(点E 与点A 重合),且斜边DE 始终在线段AB 上,则Rt △ABC 的外部被染色的区域面积是______.三、解答题(本大题共10小题,共84.0分)第5页,共25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………19. 计算:(1)(√2)2−(π−3)0+3−1; (2)(x +1)2−(x −1)(x +1).20. 解不等式组{5x −10≤0,x +3>−2x,并把解集在数轴上表示出来.21. 为减少传统塑料袋对生态环境的破坏,国家提倡使用可以在自然环境下(特定微生物、温度、湿度)较快完成降解的环保塑料袋.调查小组就某小区每户家庭1周内环保塑料袋的使用情况进行了抽样调查,使用情况为A(不使用)、B(1~3个)、C(4~6个)、D(7个及以上),以下是根据调查结果绘制的统计图的一部分. (1)本次调查的样本容量是______,请补全条形统计图;(2)已知该小区有1500户家庭,调查小组估计:该小区1周内使用7个及以上环保塑料袋的家庭约有225户.调查小组的估计是否合理?请说明理由.22. 在5张相同的小纸条上,分别写有语句:①函数表达式为y =x ;②函数表达式为y =x 2;③函数的图像关于原点对称;④函数的图像关于y 轴对称;⑤函数值y 随自变量x 增大而增大.将这5张小纸条做成5支签,①、②放在不透明的盒子A 中搅匀,③、④、⑤放在不透明的盒子B 中搅匀.(1)从盒子A 中任意抽出1支签,抽到①的概率是______;(2)先从盒子A 中任意抽出1支签,再从盒子B 中任意抽出1支签.求抽到的2张小纸条上的语句对函数的描述相符合的概率.23. 如图,在平面直角坐标系xOy 中,一次函数y =2x +b 的图像分别与x 轴、y 轴交于点A 、B ,与反比例函数y =kx (x >0)的图像交于点C ,连接OC.已知点B(0,4),△BOC第6页,共25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………的面积是2. (1)求b 、k 的值; (2)求△AOC 的面积.24. 如图,点A 在射线OX 上,OA =a.如果OA 绕点O 按逆时针方向旋转n°(0<n ≤360)到OA′,那么点A′的位置可以用(a,n°)表示.(1)按上述表示方法,若a =3,n =37,则点A′的位置可以表示为______; (2)在(1)的条件下,已知点B 的位置用(3,74°)表示,连接A′A 、A′B.求证:A′A =A′B .25. 第十四届国际数学教育大会(ICME −14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME −14的举办年份.(1)八进制数3746换算成十进制数是______;(2)小华设计了一个n 进制数143,换算成十进制数是120,求n 的值.第7页,共25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………26. 在四边形ABCD 中,O 是边BC 上的一点.若△OAB≌△OCD ,则点O 叫做该四边形的“等形点”.(1)正方形______“等形点”(填“存在”或“不存在”);(2)如图,在四边形ABCD 中,边BC 上的点O 是四边形ABCD 的“等形点”.已知CD =4√2,OA =5,BC =12,连接AC ,求AC 的长;(3)在四边形EFGH 中,EH//FG.若边FG 上的点O 是四边形EFGH 的“等形点”,求OFOG 的值.27. 已知二次函数y =ax 2+bx +3的自变量x 的部分取值和对应函数值y 如下表:x … −1 0 1 2 3 … y…43−5−12…(1)求二次函数y =ax 2+bx +3的表达式;(2)将二次函数y =ax 2+bx +3的图像向右平移k(k >0)个单位,得到二次函数y =mx 2+nx +q 的图像,使得当−1<x <3时,y 随x 增大而增大;当4<x <5时,y 随x 增大而减小.请写出一个符合条件的二次函数y =mx 2+nx +q 的表达式y =______,实数k 的取值范围是______;(3)A 、B 、C 是二次函数y =ax 2+bx +3的图像上互不重合的三点.已知点A 、B 的横坐标分别是m 、m +1,点C 与点A 关于该函数图像的对称轴对称,求∠ACB 的度数.28. 现有若干张相同的半圆形纸片,点O 是圆心,直径AB 的长是12cm ,C 是半圆弧上的一点(点C 与点A 、B 不重合),连接AC 、BC .(1)沿AC 、BC 剪下△ABC ,则△ABC 是______三角形(填“锐角”、“直角”或“钝角”);(2)分别取半圆弧上的点E 、F 和直径AB 上的点G 、H.已知剪下的由这四个点顺次连接构成的四边形是一个边长为6cm 的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);(3)经过数次探索,小明猜想,对于半圆弧上的任意一点C ,一定存在线段AC 上的第8页,共25页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………点M 、线段BC 上的点N 和直径AB 上的点P 、Q ,使得由这四个点顺次连接构成的四边形是一个边长为4cm 的菱形.小明的猜想是否正确?请说明理由.第9页,共25页答案和解析1.【答案】B【解析】解:2022的相反数是−2022, 故选:B .相反数的概念:只有符号不同的两个数叫做互为相反数. 本题考查了相反数,掌握相反数的定义是解答本题的关键.2.【答案】A【解析】解:∵二次根式√x −1有意义, ∴x −1≥0, 解得:x ≥1. 故选:A .根据二次根式有意义的条件,可得:x −1≥0,据此求出实数x 的取值范围即可. 此题主要考查了二次根式有意义的条件,解答此题的关键是要明确:二次根式中的被开方数是非负数.3.【答案】D【解析】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上, 得到其侧面展开图是对边平行且相等的四边形; 又有母线垂直于上下底面,故可得是长方形. 故选:D .从圆柱的侧面沿它的一条母线剪开,可以圆柱的侧面展开图的是长方形. 本题考查了几何体的展开图.解题的关键是明确圆柱的侧面展开图是长方形.4.【答案】B【解析】解:∵D 、E 分别是AB 、AC 的中点, ∴DE 是△ABC 的中位线, ∴BC =2DE , ∵DE =2, ∴BC =4, 故选:B .第10页,共25页根据三角形中位线定理解答即可.本题考查的是三角形中位线定理,掌握三角形中位线等于第三边的一半是解题的关键.5.【答案】C【解析】解:由城市市区人口x 万人,市区绿地面积50万平方米, 则平均每人拥有绿地y =50x.故选:C .根据题意列出函数关系式即可得出答案.本题主要考查了函数关系式,根据题意列出函数关系式进行求解是解决本题的关键.6.【答案】A【解析】解:小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是垂线段最短, 故选:A .根据生活经验结合数学原理解答即可.本题主要考查了垂线段最短的性质,熟练掌握数学和生活密不可分的关系是解答本题的关键.7.【答案】D【解析】解:∵点A 与点A 1关于x 轴对称,已知点A 1(1,2), ∴点A 的坐标为(1,−2), ∵点A 与点A 2关于y 轴对称, ∴点A 2的坐标为(−1,−2), 故选:D .关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.此题主要考查了关于x 轴、y 轴对称的点的坐标规律,关键是熟练掌握点的变化规律,不要混淆.8.【答案】B【解析】解:最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若这两个点分别落在区域①、②,则0~100km/ℎ的加速时间的中位数将变小,故A不符合题意;若这两个点分别落在区域①、③,则两组数据的中位数可能均保持不变,故B符合题意;若这两个点分别落在区域①,④,则满电续航里程的中位数将变小,故C不符合题意;若这两个点分别落在区域③,④,则0~100km/ℎ的加速时间的中位数将变大,故D 不符合题意;故选:B.根据中位数定义,逐项判断.本题考查数据的中位数,解题的关键是掌握中位数的概念:一组数据中,正中间的数或中间两个数的平均数是这种数据的中位数..9.【答案】2【解析】解:∵23=83=2.∴√8故填2.直接利用立方根的定义即可求解.本题主要考查立方根的概念,如果一个数x的立方等于a,那么x是a的立方根.10.【答案】m2【解析】解:m4÷m2=m4−2=m2.故答案为:m2.利用同底数幂的除法的法则进行运算即可.本题主要考查同底数幂的除法,解答的关键是熟记同底数幂的除法的法则:底数不变,指数相减.11.【答案】xy(x+y)【解析】解:x2y+xy2=xy(x+y).故答案为:xy(x+y).第12页,共25页直接提取公因式xy ,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【答案】1.38×105【解析】解:138000=1.38×105. 故答案为:1.38×105.用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a|<10,n 为整数,且n 比原来的整数位数少1,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.13.【答案】>【解析】解:令a =65,b =64. 则:1a =56,1b =46; ∵56>46; ∴1a >1b. 故答案是:>.比较两个正有理数,数大的绝对值反而小.也可以利用特殊值代入法求解. 本题考查两个有理数的大小,特殊值代入法是解填空题不错的选择.14.【答案】2【解析】解:∵E 是AD 的中点, ∴CE 是△ACD 的中线, ∴S △ACD =2S △AEC , ∵△AEC 的面积是1, ∴S △ACD =2S △AEC =2, ∵AD 是△ABC 的中线, ∴S △ABD =S △ACD =2. 故答案为:2.由题意可得CE 是△ACD 的中线,则有S △ACD =2S △AEC =2,再由AD 是△ABC 的中线,则有S △ABD =S △ACD ,即得解.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………本题主要考查三角形的面积,解答的关键是明确三角形的中线把原三角形分成面积相等的两部分.15.【答案】不会【解析】解:设AC 与BD 相交于点O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,AC =2AO ,OD =12BD ,AD =AB =20cm , ∵∠BAD =60°, ∴△ABD 是等边三角形, ∴BD =AB =20cm , ∴DO =12BD =10(cm),在Rt △ADO 中,AO =√AD 2−DO 2=√202−102=10√3(cm), ∴AC =2AO =20√3≈34.64(cm), ∵34.64cm <36cm , ∴橡皮筋AC 不会断裂, 故答案为:不会.设AC 与BD 相交于点O ,根据菱形的性质可得AC ⊥BD ,AC =2AO ,OD =12BD ,AD =AB =20cm ,从而可得△ABD 是等边三角形,进而可得BD =20cm ,然后在在Rt △ADO 中,利用勾股定理求出AO ,从而求出AC 的长,即可解答.本题考查了菱形的性质,勾股定理的应用,熟练掌握菱形的性质是解题的关键.16.【答案】1第14页,共25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解析】解:连接AO 并延长交⊙O 于点D ,连接CD ,∵AD 是⊙O 的直径, ∴∠ACD =90°, ∵∠ABC =45°, ∴∠ADC =∠ABC =45°, ∴AD =AC sin45∘=√2√22=2,∴⊙O 的半径是1, 故答案为:1.连接AO 并延长交⊙O 于点D ,连接CD ,根据直径所对的圆周角是直角可得∠ACD =90°,再利用同弧所对的圆周角相等可得∠ADC =45°,然后在Rt △ACD 中,利用锐角三角函数的定义求出AD 的长,从而求出⊙O 的半径,即可解答.本题考查了三角形的外接圆与外心,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.17.【答案】√66【解析】解:过点D 作DE ⊥BC ,垂足为E ,如图, ∵∠A =∠ABC =90°, ∴AD//BC , ∴∠ADB =∠CBD , ∵DB 平分∠ADC , ∴∠ADB =∠CDB , ∴∠CDB =∠CBD =3, ∵AD =BE =1,∴CE =BC −BE =3−1=2, 在Rt △CDE 中,……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………DE =√CD 2−CE 2=√32−22=√5, ∵DE =AB , 在Rt △ADB 中,BD =√AD 2+AB 2=√12+(√5)2=√6, ∴sin∠ABD =AD BD=1√6=√66. 故答案为:√66.过点D 作DE ⊥BC ,垂足为E ,如图,由已知∠A =∠ABC =90°,可得AD//BC ,由平行线的性质可得∠ADB =∠CBD ,根据角平分线的定义可得∠ADB =∠CDB ,则可得∠CDB =∠CBD =3,根据矩形的性质可得AD =BE ,即可得CE =BC −BE ,在Rt △CDE 中,根据勾股定理DE =√CD 2−CE 2,在Rt △ADB 中,根据勾股定理可得BD =√AD 2+AB 2,根据正弦三角函数的定义进行求解即可得出答案.本题主要考查了解直角三角形,根据题意作辅助线构造直角三角形应用解直角三角形的方法进行求解是解决本题的关键.18.【答案】21【解析】解:如图,连接CF 交AB 于点M ,连接CF′交AB 于点N ,过点F 作FG ⊥AB 于点H ,过点F′作F′H ⊥AB 于点H ,连接FF′,则四边形FGHF′是矩形,Rt △ABC 的外部被染色的区域是梯形MFF′N .在Rt △DEF 中,DF =3,EF =4, ∴DE =√DF 2+EF 2=√32+42=5, 在Rt △ABC 中,AC =9,BC =12, ∴AB =√AC 2+BC 2=√92+122=15, ∵12⋅DF ⋅EF =12⋅EF ⋅GF , ∴FG =125,第16页,共25页∴BG =√BF 2−FG 2=√32−(125)2=95, ∴GE =BE −BG =165,AH =GE =165,∴F′H =FG =125,∴FF′=GH =AB −BG −AH =15−5=10, ∵BF//AC , ∴BMAM =BFAC =13, ∴BM =14AB =154,同法可证AN =14AB =154, ∴MN =15−154−154=152,∴Rt △ABC 的外部被染色的区域的面积=12×(10+152)×125=21,故答案为:21.如图,连接CF 交AB 于点M ,连接CF′交AB 于点N ,过点F 作FG ⊥AB 于点H ,过点F′作F′H ⊥AB 于点H ,连接FF′,则四边形FGHF′是矩形,Rt △ABC 的外部被染色的区域是梯形MFF′N.求出梯形的上下底以及高,可得结论.本题考查勾股定理,梯形的面积,平行线分线段成比例定理等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题在的压轴题.19.【答案】解:(1)原式=2−1+13=43;(2)原式=(x 2+2x +1)−(x 2−1) =x 2+2x +1−x 2+1 =2x +2.【解析】(1)利用实数的运算法则、零指数幂的性质、负整数指数幂的性质分别化简得出答案;(2)利用完全平方公式,以及平方差公式化简,去括号合并即可得出答案. 此题主要考查了整式的运算、实数运算,正确掌握相关运算法则是解题的关键.20.【答案】解:由5x −10≤0,得:x ≤2,由x +3>−2x ,得:x >−1,……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………则不等式组的解集为−1<x ≤2, 将不等式组的解集表示在数轴上如下:【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【答案】100【解析】解:(1)20÷20%=100, 所以本次调查的样本容量为100; C 类户数为100×25%=25(户), B 类户数为100−20−25−15=40(户), 补全条形统计图为:故答案为:100; (2)调查小组的估计合理. 理由如下:因为1500×15100=225(户),所以根据该小区1周内使用7个及以上环保塑料袋的家庭约有225户.(1)用A 类户数除以它所占的百分比得到样本容量,然后计算出C 类和B 类户数后补全条形统计图;(2)利用样本估计作图,由于1500×15100=225(户),则可估计该小区1周内使用7个及以第18页,共25页上环保塑料袋的家庭约有225户,从而可判断调查小组的估计合理.本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体.22.【答案】12【解析】解:(1)从盒子A 中任意抽出1支签,抽到①的概率是12, 故答案为:12; (2)列表如下:由表知,共有6种等可能结果,其中抽到的2张小纸条上的语句对函数的描述相符合的①③、①⑤、②④这3个,所以2张小纸条上的语句对函数的描述相符合的概率为36=12. (1)直接根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可. 此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.23.【答案】解:(1)∵一次函数y =2x +b 的图象过点B(0,4),∴b =4,∴一次函数为y =2x +4, ∵OB =4,△BOC 的面积是2. ∴12OB ⋅x C =2,即12×4⋅x C =2, ∴x C =1,把x =1代入y =2x +4得,y =6,……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………∴C(1,6),∵点C 在反比例函数y =kx (x >0)的图象上, ∴k =1×6=6;(2)把y =0代入y =2x +4得,2x +4=0,解得x =−2, ∴A(−2,0), ∴OA =2,∴S △AOC =12×2×6=6.【解析】(1)由点B(0,4)在一次函数y =2x +b 的图象上,代入求得b =4,由△BOC 的面积是2得出C 的横坐标为1,代入直线关系式即可求出C 的坐标,从而求出k 的值; (2)根据一次函数的解析式求得A 的坐标,然后根据三角形的面积公式代入计算即可. 本题是一次函数与反比例函数的交点问题,考查了待定系数法求函数的解析式,一次函数图象上点的坐标特征,三角形的面积,求出C 的坐标是解题的关键.24.【答案】(3,37°)【解析】(1)解:由题意,得A′(a,n°), ∵a =3,n =37, ∴A′(3,37°), 故答案为:(3,37°); (2)证明:如图:∵A′(3,74°),B(3,74°),∴∠AOA′=37°,∠AOB =74°,OA =OB =3, ∴∠A′OB =∠AOB −∠AOA′=74°−37°=37°, ∵OA′=OA′,∴△AOA′≌△BOA′(SAS), ∴A′A =A′B .(1)根据点的位置定义,即可得出答案;第20页,共25页(2)画出图形,证明△AOA′≌△BOA′(SAS),即可由全等三角形的性质,得出结论. 本题考查全等三角形的判定与性质,新定义题目,旋转的性质,理解题意,熟练掌握全等三角形的判定与性质是解题的关键.25.【答案】2022【解析】解:(1)3746=3×83+7×82+4×81+6×80 =1536+448+32+6 =2022.故八进制数字3746换算成十进制是2022. 故答案为:2022;(2)依题意有:n 2+4×n 1+3×n 0=120, 解得n 1=9,n 2=−13(舍去). 故n 的值是9.(1)根据已知,从个位数字起,将二进制的每一位数分别乘以80,81,82,83,再把所得结果相加即可得解;(2)根据n 进制数和十进制数的计算方法得到关于n 的方程,解方程即可求解. 本题主要考查因式分解的应用,有理数的混合运算,解题的关键是弄清各个进制数转化为十进制数的计算方法.26.【答案】不存在【解析】解:(1)∵四边形ABCD 是正方形, ∴∠C =90°, ∵△OAB≌△OCD , ∴∠OAB =∠C =90°, ∵O 是边BC 上的一点. ∴正方形不存在“等形点”, 故答案为:不存在; (2)作AH ⊥BO 于H ,……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………∵边BC 上的点O 是四边形ABCD 的“等形点”, ∴△OAB≌△OCD ,∴AB =CD =4√2,OA =OC =5, ∵BC =12, ∴BO =7,设OH =x ,则BH =7−x ,由勾股定理得,(4√2)2−(7−x)2=52−x 2, 解得,x =3, ∴OH =3, ∴AH =4, ∴CO =8,在Rt △CHA 中,AC =√AH 2+CH 2=√42+82=4√5; (3)如图,∵边FG 上的点O 是四边形EFGH 的“等形点”,∴△OEF≌△OGH ,∴∠EOF =∠HOG ,OE =OG ,∠OGH =∠OEF , ∵EH//FG ,∴∠HEO =∠EOF ,∠EHO =∠HOG , ∴∠HEO =∠EHO , ∴OE =OH , ∴OH =OG , ∴OE =OF , ∴OFOG =1.第22页,共25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)根据“等形点”的定义可知△OAB≌△OCD ,则∠OAB =∠C =90°,而O 是边BC 上的一点.从而得出正方形不存在“等形点”;(2)作AH ⊥BO 于H ,由△OAB≌△OCD ,得AB =CD =4√2,OA =OC =5,设OH =x ,则BH =7−x ,由勾股定理得,(4√2)2−(7−x)2=52−x 2,求出x 的值,再利用勾股定理求出AC 的长即可;(3)根据“等形点”的定义可得△OEF≌△OGH ,则∠EOF =∠HOG ,OE =OG ,∠OGH =∠OEF ,再由平行线性质得OE =OH ,从而推出OE =OH =OG ,从而解决问题. 本题是新定义题,主要考查了全等三角形的性质,正方形的性质,勾股定理,平行线的性质等知识,理解新定义,并能熟练掌握全等三角形的性质是解题的关键.27.【答案】y =−x 2+6x −5(答案不唯一) 4≤k ≤5【解析】解:(1)将(−1,4),(1,0)代入y =ax 2+bx +3得: {a −b +3=4a +b +3=0, 解得{a =−1b =−2,∴二次函数的表达式为y =−x 2−2x +3; (2)如图:∵y =−x 2−2x +3=−(x +1)2+4,∴将二次函数y =−x 2−2x +3的图像向右平移k(k >0)个单位得y =−(x −k +1)2+4的图象,∴新图象的对称轴为直线x =k −1,∵当−1<x <3时,y 随x 增大而增大;当4<x <5时,y 随x 增大而减小,且抛物线开口向下,∴3≤k −1≤4, 解得4≤k ≤5,∴符合条件的二次函数y =mx 2+nx +q 的表达式可以是y =−(x −3)2+4=−x 2+6x −5,……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………故答案为:y =−x 2+6x −5(答案不唯一),4≤k ≤5; (3)如图:∵点A 、B 的横坐标分别是m 、m +1,∴y A =−m 2−2m +3,yB =−(m +1)2−2(m +1)+3=−m 2−4m , ∴A(m,−m 2−2m +3),B(m +1,m 2−m),∵点C 与点A 关于该函数图像的对称轴对称,而抛物线对称轴为直线x =−1, ∴x A +x C2=−1,AC//x 轴,∴x C =−2−m ,∴C(−2−m,−m 2−2m +3), 过B 作BH ⊥AC 于H ,∴BH =|−m 2−4m −(−m 2−2m +3)|=|−2m −3|,CH =|(−2−m)−(m +1)|=|−2m3|, ∴BH =CH ,∴△BHC 是等腰直角三角形, ∴∠HCB =45°,即∠ACB =45°.(1)用待定系数法可得二次函数的表达式为y =−x 2−2x +3;(2)将二次函数y =−x 2−2x +3的图像向右平移k(k >0)个单位得y =−(x −k +1)2+4的图象,新图象的对称轴为直线x =k −1,根据当−1<x <3时,y 随x 增大而增大;当4<x <5时,y 随x 增大而减小,且抛物线开口向下,知3≤k −1≤4,得4≤k ≤5,即可得到答案;(3)求出A(m,−m 2−2m +3),B(m +1,m 2−m),C(−2−m,−m 2−2m +3),过B 作BH ⊥AC 于H ,可得BH =|−m 2−4m −(−m 2−2m +3)|=|−2m −3|,CH =|(−2−m)−(m +1)|=|−2m3|,故△BHC 是等腰直角三角形,∠ACB =45°.本题考查二次函数综合应用,涉及待定系数法,抛物线的平移变换,等腰直角三角形的第24页,共25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………判定等知识,解题的关键是数形结合思想的应用.28.【答案】直角【解析】解:(1)∵AB 是直径,直径所对的圆周角是直角, ∴△ABC 是直角三角形, 故答案为:直角;(2)如图,四边形EFHG 或四边形EFG′H 即为所求.(3)小明的猜想正确.理由:如图2中,当点C 靠近点A 时,设CM =13CA ,AN =13CB ,∴CM CA=CNCB ,∴MN//AB , ∴NM AB=CM CA=13, ∵AB =12cm , ∴MN =4cm ,分别以M ,N 为圆心,MN 为半径作弧交AB 于点P ,Q ,则四边形MNQP 是边长为4cm 的菱形.如图3中,当点C 靠近点B 时,同法可得四边形MNQP 是菱形.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………综上所述,小明的猜想正确.(1)根据直径所对的圆周角是直角,判断即可;(2)分别以A ,B 为圆心,6cm 长为半径作弧交半圆于点E ,F ,连接EF ,AE ,OF ,OE ,FB ,四边形EFHG 或四边形EFG′H 即为所求.(3)小明的猜想正确.如图2中,当点C 靠近点A 时,设CM =13CA ,AN =13CB ,作出边长为4cm 的菱形,可得结论.如图3中,当点C 靠近点B 时,同法可得四边形MNQP 是菱形.延长可得结论.本题属于圆综合题,考查了圆周角定理,菱形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。
中考数学试题及答案常州一、选择题(每题3分,共30分)1. 下列哪个选项是实数的平方根?A. 4B. -4C. 2D. -2答案:C2. 一个等腰三角形的两边长分别为5cm和10cm,那么这个三角形的周长是多少?A. 15cmB. 20cmC. 25cmD. 30cm答案:C3. 计算下列哪个表达式的结果为0?A. 3x - 3xB. 2x + 3xC. 5x - 5xD. 4x - 4x + 1答案:C4. 下列哪个分数是最简分数?A. \(\frac{6}{8}\)B. \(\frac{9}{12}\)C. \(\frac{5}{10}\)D. \(\frac{7}{14}\)答案:A5. 一个圆的直径是10cm,那么它的半径是多少?A. 5cmB. 10cmC. 15cmD. 20cm答案:A6. 计算下列哪个表达式的结果为-1?A. \((-2)^3\)B. \((-2)^2\)C. \((-1)^3\)D. \((-1)^2\)答案:C7. 下列哪个选项是不等式 \(2x + 3 > 7\) 的解?A. \(x = 1\)B. \(x = 2\)C. \(x = 3\)D. \(x = 4\)答案:B8. 计算下列哪个表达式的结果为8?A. \(2^3\)B. \(3^2\)C. \(4^2\)D. \(5^2\)答案:B9. 一个直角三角形的两个直角边长分别为3cm和4cm,那么斜边的长度是多少?A. 5cmB. 6cmC. 7cmD. 8cm答案:A10. 下列哪个选项是方程 \(x^2 - 5x + 6 = 0\) 的解?A. \(x = 2\)B. \(x = 3\)C. \(x = 6\)D. \(x = 9\)答案:A二、填空题(每题2分,共20分)11. 一个数的相反数是-5,那么这个数是 ________。
答案:512. 一个数的绝对值是7,那么这个数可以是 ________ 或 ________。
2022年江苏省常州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.2022的相反数是()A.2022 B.﹣2022 C.D.2.若二次根式有意义,则实数x的取值范围是()A.x≥1 B.x>1 C.x≥0 D.x>03.下列图形中,为圆柱的侧面展开图的是()A.B.C.D.4.如图,在△ABC中,D、E分别是AB、AC的中点.若DE=2,则BC的长是()A.3 B.4 C.5 D.65.某城市市区人口x万人,市区绿地面积50万平方米,平均每人拥有绿地y平方米,则y 与x之间的函数表达式为()A.y=x+50 B.y=50x C.y=D.y=6.如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行7.在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点A1(1,2),则点A2的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)8.某汽车评测机构对市面上多款新能源汽车的0~100km/h的加速时间和满电续航里程进行了性能评测,评测结果绘制如下,每个点都对应一款新能源汽车的评测数据.已知0~100km/h的加速时间的中位数是ms,满电续航里程的中位数是nkm,相应的直线将平面分成了①、②、③、④四个区域(直线不属于任何区域).欲将最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若以上两组数据的中位数均保持不变,则这两个点可能分别落在()A.区域①、②B.区域①、③C.区域①、④D.区域③、④二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.化简:=.10.计算:m4÷m2=.11.分解因式:x2y+xy2=.12.2022年5月22日,中国科学院生物多样性委员会发布《中国生物物种名录》2022版,共收录物种及种下单元约138000个.数据138000用科学记数法表示为.13.如图,数轴上的点A、B分别表示实数a、b,则(填“>”、“=”或“<”).14.如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD的面积是.15.如图,将一个边长为20cm的正方形活动框架(边框粗细忽略不计)扭动成四边形ABCD,对角线是两根橡皮筋,其拉伸长度达到36cm时才会断裂.若∠BAD=60°,则橡皮筋AC 断裂(填“会”或“不会”,参考数据:≈1.732).16.如图,△ABC是⊙O的内接三角形.若∠ABC=45°,AC=,则⊙O的半径是.17.如图,在四边形ABCD中,∠A=∠ABC=90°,DB平分∠ADC.若AD=1,CD=3,则sin ∠ABD=.18.如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt△DEF中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(8分)计算:(1)()2﹣(π﹣3)0+3﹣1;(2)(x+1)2﹣(x﹣1)(x+1).20.(6分)解不等式组,并把解集在数轴上表示出来.21.(8分)为减少传统塑料袋对生态环境的破坏,国家提倡使用可以在自然环境下(特定微生物、温度、湿度)较快完成降解的环保塑料袋.调查小组就某小区每户家庭1周内环保塑料袋的使用情况进行了抽样调查,使用情况为A(不使用)、B(1~3个)、C(4~6个)、D(7个及以上),以下是根据调查结果绘制的统计图的一部分.(1)本次调查的样本容量是,请补全条形统计图;(2)已知该小区有1500户家庭,调查小组估计:该小区1周内使用7个及以上环保塑料袋的家庭约有225户.调查小组的估计是否合理?请说明理由.22.(8分)在5张相同的小纸条上,分别写有语句:①函数表达式为y=x;②函数表达式为y=x2;③函数的图像关于原点对称;④函数的图像关于y轴对称;⑤函数值y随自变量x增大而增大.将这5张小纸条做成5支签,①、②放在不透明的盒子A中搅匀,③、④、⑤放在不透明的盒子B中搅匀.(1)从盒子A中任意抽出1支签,抽到①的概率是;(2)先从盒子A中任意抽出1支签,再从盒子B中任意抽出1支签.求抽到的2张小纸条上的语句对函数的描述相符合的概率.23.(8分)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图像分别与x轴、y轴交于点A、B,与反比例函数y=(x>0)的图像交于点C,连接OC.已知点B(0,4),△BOC的面积是2.(1)求b、k的值;(2)求△AOC的面积.24.(8分)如图,点A在射线OX上,OA=a.如果OA绕点O按逆时针方向旋转n°(0<n ≤360)到OA′,那么点A′的位置可以用(a,n°)表示.(1)按上述表示方法,若a=3,n=37,则点A′的位置可以表示为;(2)在(1)的条件下,已知点B的位置用(3,74°)表示,连接A′A、A′B.求证:A′A=A′B.25.(8分)第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.26.(10分)在四边形ABCD中,O是边BC上的一点.若△OAB≌△OCD,则点O叫做该四边形的“等形点”.(1)正方形“等形点”(填“存在”或“不存在”);(2)如图,在四边形ABCD中,边BC上的点O是四边形ABCD的“等形点”.已知CD=4,OA=5,BC=12,连接AC,求AC的长;(3)在四边形EFGH中,EH∥FG.若边FG上的点O是四边形EFGH的“等形点”,求的值.27.(10分)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:x…﹣1 0 1 2 3 …y… 4 3 0 ﹣5 ﹣12 …(1)求二次函数y=ax2+bx+3的表达式;(2)将二次函数y=ax2+bx+3的图像向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q 的图像,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y=,实数k的取值范围是;(3)A、B、C是二次函数y=ax2+bx+3的图像上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图像的对称轴对称,求∠ACB的度数.28.(10分)现有若干张相同的半圆形纸片,点O是圆心,直径AB的长是12cm,C是半圆弧上的一点(点C与点A、B不重合),连接AC、BC.(1)沿AC、BC剪下△ABC,则△ABC是三角形(填“锐角”、“直角”或“钝角”);(2)分别取半圆弧上的点E、F和直径AB上的点G、H.已知剪下的由这四个点顺次连接构成的四边形是一个边长为6cm的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);(3)经过数次探索,小明猜想,对于半圆弧上的任意一点C,一定存在线段AC上的点M、线段BC上的点N和直径AB上的点P、Q,使得由这四个点顺次连接构成的四边形是一个边长为4cm的菱形.小明的猜想是否正确?请说明理由.答案解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.2022的相反数是()A.2022 B.﹣2022 C.D.【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解答】解:2022的相反数是﹣2022,故选:B.【点评】本题考查了相反数,掌握相反数的定义是解答本题的关键.2.若二次根式有意义,则实数x的取值范围是()A.x≥1 B.x>1 C.x≥0 D.x>0【分析】根据二次根式有意义的条件,可得:x﹣1≥0,据此求出实数x的取值范围即可.【解答】解:∵二次根式有意义,∴x﹣1≥0,解得:x≥1.故选:A.【点评】此题主要考查了二次根式有意义的条件,解答此题的关键是要明确:二次根式中的被开方数是非负数.3.下列图形中,为圆柱的侧面展开图的是()A.B.C.D.【分析】从圆柱的侧面沿它的一条母线剪开,可以圆柱的侧面展开图的是长方形.【解答】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,得到其侧面展开图是对边平行且相等的四边形;又有母线垂直于上下底面,故可得是长方形.故选:D.【点评】本题考查了几何体的展开图.解题的关键是明确圆柱的侧面展开图是长方形.4.如图,在△ABC中,D、E分别是AB、AC的中点.若DE=2,则BC的长是()A.3 B.4 C.5 D.6【分析】根据三角形中位线定理解答即可.【解答】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵DE=2,∴BC=4,故选:B.【点评】本题考查的是三角形中位线定理,掌握三角形中位线等于第三边的一半是解题的关键.5.某城市市区人口x万人,市区绿地面积50万平方米,平均每人拥有绿地y平方米,则y 与x之间的函数表达式为()A.y=x+50 B.y=50x C.y=D.y=【分析】根据题意列出函数关系式即可得出答案.【解答】解:由城市市区人口x万人,市区绿地面积50万平方米,则平均每人拥有绿地y=.故选:C.【点评】本题主要考查了函数关系式,根据题意列出函数关系式进行求解是解决本题的关键.6.如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行【分析】根据生活经验结合数学原理解答即可.【解答】解:小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是垂线段最短,故选:A.【点评】本题主要考查了垂线段最短的性质,熟练掌握数学和生活密不可分的关系是解答本题的关键.7.在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点A1(1,2),则点A2的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.【解答】解:∵点A与点A1关于x轴对称,已知点A1(1,2),∴点A的坐标为(1,﹣2),∵点A与点A2关于y轴对称,∴点A2的坐标为(﹣1,﹣2),故选:D.【点评】此题主要考查了关于x轴、y轴对称的点的坐标规律,关键是熟练掌握点的变化规律,不要混淆.8.某汽车评测机构对市面上多款新能源汽车的0~100km/h的加速时间和满电续航里程进行了性能评测,评测结果绘制如下,每个点都对应一款新能源汽车的评测数据.已知0~100km/h的加速时间的中位数是ms,满电续航里程的中位数是nkm,相应的直线将平面分成了①、②、③、④四个区域(直线不属于任何区域).欲将最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若以上两组数据的中位数均保持不变,则这两个点可能分别落在()A.区域①、②B.区域①、③C.区域①、④D.区域③、④【分析】根据中位数定义,逐项判断.【解答】解:最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若这两个点分别落在区域①、②,则0~100km/h的加速时间的中位数将变小,故A不符合题意;若这两个点分别落在区域①、③,则两组数据的中位数可能均保持不变,故B符合题意;若这两个点分别落在区域①,④,则满电续航里程的中位数将变小,故C不符合题意;若这两个点分别落在区域③,④,则0~100km/h的加速时间的中位数将变大,故D不符合题意;故选:B.【点评】本题考查数据的中位数,解题的关键是掌握中位数的概念:一组数据中,正中间的数或中间两个数的平均数是这种数据的中位数..二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.化简:= 2 .【分析】直接利用立方根的定义即可求解.【解答】解:∵23=8∴=2.故填2.【点评】本题主要考查立方根的概念,如果一个数x的立方等于a,那么x是a的立方根.10.计算:m4÷m2=m2.【分析】利用同底数幂的除法的法则进行运算即可.【解答】解:m4÷m2=m4﹣2=m2.故答案为:m2.【点评】本题主要考查同底数幂的除法,解答的关键是熟记同底数幂的除法的法则:底数不变,指数相减.11.分解因式:x2y+xy2=xy(x+y).【分析】直接提取公因式xy,进而分解因式得出答案.【解答】解:x2y+xy2=xy(x+y).故答案为:xy(x+y).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.2022年5月22日,中国科学院生物多样性委员会发布《中国生物物种名录》2022版,共收录物种及种下单元约138000个.数据138000用科学记数法表示为 1.38×105.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:138000=1.38×105.故答案为:1.38×105.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.13.如图,数轴上的点A、B分别表示实数a、b,则>(填“>”、“=”或“<”).【分析】比较两个正有理数,数大的绝对值反而小.也可以利用特殊值代入法求解.【解答】解:令a=,b=.则:=,=;∵>;∴>.故答案是:>.【点评】本题考查两个有理数的大小,特殊值代入法是解填空题不错的选择.14.如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD的面积是 2 .【分析】由题意可得CE是△ACD的中线,则有S△ACD=2S△AEC=2,再由AD是△ABC的中线,则有S△ABD=S△ACD,即得解.【解答】解:∵E是AD的中点,∴CE是△ACD的中线,∴S△ACD=2S△AEC,∵△AEC的面积是1,∴S△ACD=2S△AEC=2,∵AD是△ABC的中线,∴S△ABD=S△ACD=2.故答案为:2.【点评】本题主要考查三角形的面积,解答的关键是明确三角形的中线把原三角形分成面积相等的两部分.15.如图,将一个边长为20cm的正方形活动框架(边框粗细忽略不计)扭动成四边形ABCD,对角线是两根橡皮筋,其拉伸长度达到36cm时才会断裂.若∠BAD=60°,则橡皮筋AC 不会断裂(填“会”或“不会”,参考数据:≈1.732).【分析】设AC与BD相交于点O,根据菱形的性质可得AC⊥BD,AC=2AO,OD=BD,AD =AB=20cm,从而可得△ABD是等边三角形,进而可得BD=20cm,然后在在Rt△ADO中,利用勾股定理求出AO,从而求出AC的长,即可解答.【解答】解:设AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,AC=2AO,OD=BD,AD=AB=20cm,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=20cm,∴DO=BD=10(cm),在Rt△ADO中,AO===10(cm),∴AC=2AO=20≈34.64(cm),∵34.64cm<36cm,∴橡皮筋AC不会断裂,故答案为:不会.【点评】本题考查了菱形的性质,勾股定理的应用,熟练掌握菱形的性质是解题的关键.16.如图,△ABC是⊙O的内接三角形.若∠ABC=45°,AC=,则⊙O的半径是 1 .【分析】连接AO并延长交⊙O于点D,连接CD,根据直径所对的圆周角是直角可得∠ACD =90°,再利用同弧所对的圆周角相等可得∠ADC=45°,然后在Rt△ACD中,利用锐角三角函数的定义求出AD的长,从而求出⊙O的半径,即可解答.【解答】解:连接AO并延长交⊙O于点D,连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵∠ABC=45°,∴∠ADC=∠ABC=45°,∴AD===2,∴⊙O的半径是1,故答案为:1.【点评】本题考查了三角形的外接圆与外心,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.17.如图,在四边形ABCD中,∠A=∠ABC=90°,DB平分∠ADC.若AD=1,CD=3,则sin ∠ABD=.【分析】过点D作DE⊥BC,垂足为E,如图,由已知∠A=∠ABC=90°,可得AD∥BC,由平行线的性质可得∠ADB=∠CBD,根据角平分线的定义可得∠ADB=∠CDB,则可得∠CDB=∠CBD=3,根据矩形的性质可得AD=BE,即可得CE=BC﹣BE,在Rt△CDE中,根据勾股定理DE=,在Rt△ADB中,根据勾股定理可得,根据正弦三角函数的定义进行求解即可得出答案.【解答】解:过点D作DE⊥BC,垂足为E,如图,∵∠A=∠ABC=90°,∴AD∥BC,∴∠ADB=∠CBD,∵DB平分∠ADC,∴∠ADB=∠CDB,∴∠CDB=∠CBD=3,∵AD=BE=1,∴CE=BC﹣BE=3﹣1=2,在Rt△CDE中,DE===,∵DE=AB,在Rt△ADB中,==,∴sin∠ABD==.故答案为:.【点评】本题主要考查了解直角三角形,根据题意作辅助线构造直角三角形应用解直角三角形的方法进行求解是解决本题的关键.18.如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt△DEF中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是21 .【分析】如图,连接CF交AB于点M,连接CF′交AB于点N,过点F作FG⊥AB于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.求出梯形的上下底以及高,可得结论.【解答】解:如图,连接CF交AB于点M,连接CF′交AB于点N,过点F作FG⊥AB于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.在Rt△DEF中,DF=3,EF=4,∴DE===5,在Rt△ABC中,AC=9,BC=12,∴AB===15,∵•DF•EF=•EF•GF,∴FG=,∴BG===,∴GE=BE﹣BG=,AH=GE=,∴F′H=FG=,∴FF′=GH=AB﹣BG﹣AH=15﹣5=10,∵BF∥AC,∴==,∴BM=AB=,同法可证AN=AB=,∴MN=15﹣﹣=,∴Rt△ABC的外部被染色的区域的面积=×(10+)×=21,故答案为:21.【点评】本题考查勾股定理,梯形的面积,平行线分线段成比例定理等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题在的压轴题.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(8分)计算:(1)()2﹣(π﹣3)0+3﹣1;(2)(x+1)2﹣(x﹣1)(x+1).【分析】(1)利用实数的运算法则、零指数幂的性质、负整数指数幂的性质分别化简得出答案;(2)利用完全平方公式,以及平方差公式化简,去括号合并即可得出答案.【解答】解:(1)原式=2﹣1+=;(2)原式=(x2+2x+1)﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2.【点评】此题主要考查了整式的运算、实数运算,正确掌握相关运算法则是解题的关键.20.(6分)解不等式组,并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由5x﹣10≤0,得:x≤2,由x+3>﹣2x,得:x>﹣1,则不等式组的解集为﹣1<x≤2,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)为减少传统塑料袋对生态环境的破坏,国家提倡使用可以在自然环境下(特定微生物、温度、湿度)较快完成降解的环保塑料袋.调查小组就某小区每户家庭1周内环保塑料袋的使用情况进行了抽样调查,使用情况为A(不使用)、B(1~3个)、C(4~6个)、D(7个及以上),以下是根据调查结果绘制的统计图的一部分.(1)本次调查的样本容量是100 ,请补全条形统计图;(2)已知该小区有1500户家庭,调查小组估计:该小区1周内使用7个及以上环保塑料袋的家庭约有225户.调查小组的估计是否合理?请说明理由.【分析】(1)用A类户数除以它所占的百分比得到样本容量,然后计算出C类和B类户数后补全条形统计图;(2)利用样本估计作图,由于1500×=225(户),则可估计该小区1周内使用7个及以上环保塑料袋的家庭约有225户,从而可判断调查小组的估计合理.【解答】解:(1)20÷20%=100,所以本次调查的样本容量为100;C类户数为100×25%=25(户),B类户数为100﹣20﹣25﹣15=40(户),补全条形统计图为:故答案为:100;(2)调查小组的估计合理.理由如下:因为1500×=225(户),所以根据该小区1周内使用7个及以上环保塑料袋的家庭约有225户.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体.22.(8分)在5张相同的小纸条上,分别写有语句:①函数表达式为y=x;②函数表达式为y=x2;③函数的图像关于原点对称;④函数的图像关于y轴对称;⑤函数值y随自变量x增大而增大.将这5张小纸条做成5支签,①、②放在不透明的盒子A中搅匀,③、④、⑤放在不透明的盒子B中搅匀.(1)从盒子A中任意抽出1支签,抽到①的概率是;(2)先从盒子A中任意抽出1支签,再从盒子B中任意抽出1支签.求抽到的2张小纸条上的语句对函数的描述相符合的概率.【分析】(1)直接根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)从盒子A中任意抽出1支签,抽到①的概率是,故答案为:;(2)列表如下:①②③①③②③④①④②④⑤①⑤②⑤由表知,共有6种等可能结果,其中抽到的2张小纸条上的语句对函数的描述相符合的①③、①⑤、②④这3个,所以2张小纸条上的语句对函数的描述相符合的概率为=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图像分别与x轴、y轴交于点A、B,与反比例函数y=(x>0)的图像交于点C,连接OC.已知点B(0,4),△BOC的面积是2.(1)求b、k的值;(2)求△AOC的面积.【分析】(1)由点B(0,4)在一次函数y=2x+b的图象上,代入求得b=4,由△BOC 的面积是2得出C的横坐标为1,代入直线关系式即可求出C的坐标,从而求出k的值;(2)根据一次函数的解析式求得A的坐标,然后根据三角形的面积公式代入计算即可.【解答】解:(1)∵一次函数y=2x+b的图象过点B(0,4),∴b=4,∴一次函数为y=2x+4,∵OB=4,△BOC的面积是2.∴OB•x C=2,即=2,∴x C=1,把x=1代入y=2x+4得,y=6,∴C(1,6),∵点C在反比例函数y=(x>0)的图象上,∴k=1×6=6;(2)把y=0代入y=2x+4得,2x+4=0,解得x=﹣2,∴A(﹣2,0),∴OA=2,∴S△AOC==6.【点评】本题是一次函数与反比例函数的交点问题,考查了待定系数法求函数的解析式,一次函数图象上点的坐标特征,三角形的面积,求出C的坐标是解题的关键.24.(8分)如图,点A在射线OX上,OA=a.如果OA绕点O按逆时针方向旋转n°(0<n ≤360)到OA′,那么点A′的位置可以用(a,n°)表示.(1)按上述表示方法,若a=3,n=37,则点A′的位置可以表示为(3,37°);(2)在(1)的条件下,已知点B的位置用(3,74°)表示,连接A′A、A′B.求证:A′A=A′B.【分析】(1)根据点的位置定义,即可得出答案;(2)画出图形,证明△AOA′≌△BOA′(SAS),即可由全等三角形的性质,得出结论.【解答】(1)解:由题意,得A′(a,n°),∵a=3,n=37,∴A′(3,37°),故答案为:(3,37°);(2)证明:如图:∵A′(3,74°),B(3,74°),∴∠AOA′=37°,∠AOB=74°,OA=OB=3,∴∠A′OB=∠AOB﹣∠AOA′=74°﹣37°=37°,∵OA′=OA′,∴△AOA′≌△BOA′(SAS),∴A′A=A′B.【点评】本题考查全等三角形的判定与性质,新定义题目,旋转的性质,理解题意,熟练掌握全等三角形的判定与性质是解题的关键.25.(8分)第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是2022 ;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.【分析】(1)根据已知,从个位数字起,将二进制的每一位数分别乘以80,81,82,83,再把所得结果相加即可得解;(2)根据n进制数和十进制数的计算方法得到关于n的方程,解方程即可求解.【解答】解:(1)3746=3×83+7×82+4×81+6×80=1536+448+32+6=2022.故八进制数字3746换算成十进制是2022.故答案为:2022;(2)依题意有:n2+4×n1+3×n0=120,解得n1=9,n2=﹣13(舍去).故n的值是9.【点评】本题主要考查因式分解的应用,有理数的混合运算,解题的关键是弄清各个进制数转化为十进制数的计算方法.26.(10分)在四边形ABCD中,O是边BC上的一点.若△OAB≌△OCD,则点O叫做该四边形的“等形点”.(1)正方形不存在“等形点”(填“存在”或“不存在”);(2)如图,在四边形ABCD中,边BC上的点O是四边形ABCD的“等形点”.已知CD=4,OA=5,BC=12,连接AC,求AC的长;(3)在四边形EFGH中,EH∥FG.若边FG上的点O是四边形EFGH的“等形点”,求的值.【分析】(1)根据“等形点”的定义可知△OAB≌△OCD,则∠OAB=∠C=90°,而O是边BC上的一点.从而得出正方形不存在“等形点”;(2)作AH⊥BO于H,由△OAB≌△OCD,得AB=CD=4,OA=OC=5,设OH=x,则BH =7﹣x,由勾股定理得,(4)2﹣(7﹣x)2=52﹣x2,求出x的值,再利用勾股定理求出AC的长即可;(3)根据“等形点”的定义可得△OEF≌△OGH,则∠EOF=∠HOG,OE=OG,∠OGH=∠OEF,再由平行线性质得OE=OH,从而推出OE=OH=OG,从而解决问题.【解答】解:(1)∵四边形ABCD是正方形,∴∠C=90°,∵△OAB≌△OCD,∴∠OAB=∠C=90°,∵O是边BC上的一点.∴正方形不存在“等形点”,故答案为:不存在;(2)作AH⊥BO于H,∵边BC上的点O是四边形ABCD的“等形点”,∴△OAB≌△OCD,∴AB=CD=4,OA=OC=5,∵BC=12,∴BO=7,设OH=x,则BH=7﹣x,由勾股定理得,(4)2﹣(7﹣x)2=52﹣x2,解得,x=3,∴OH=3,∴AH=4,∴CO=8,在Rt△CHA中,AC===4;(3)如图,∵边FG上的点O是四边形EFGH的“等形点”,∴△OEF≌△OGH,∴∠EOF=∠HOG,OE=OG,∠OGH=∠OEF,∵EH∥FG,∴∠HEO=∠EOF,∠EHO=∠HOG,∴∠HEO=∠EHO,∴OE=OH,∴OH=OG,∴OE=OF,∴=1.【点评】本题是新定义题,主要考查了全等三角形的性质,正方形的性质,勾股定理,平行线的性质等知识,理解新定义,并能熟练掌握全等三角形的性质是解题的关键.27.(10分)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:x…﹣1 0 1 2 3 …y… 4 3 0 ﹣5 ﹣12 …(1)求二次函数y=ax2+bx+3的表达式;(2)将二次函数y=ax2+bx+3的图像向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q 的图像,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y=y=﹣x2+6x﹣5(答案不唯一),实数k的取值范围是4≤k≤5 ;(3)A、B、C是二次函数y=ax2+bx+3的图像上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图像的对称轴对称,求∠ACB的度数.【分析】(1)用待定系数法可得二次函数的表达式为y=﹣x2﹣2x+3;(2)将二次函数y=﹣x2﹣2x+3的图像向右平移k(k>0)个单位得y=﹣(x﹣k+1)2+4的图象,新图象的对称轴为直线x=k﹣1,根据当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小,且抛物线开口向下,知3≤k﹣1≤4,得4≤k≤5,即可得到答案;(3)求出A(m,﹣m2﹣2m+3),B(m+1,m2﹣m),C(﹣2﹣m,﹣m2﹣2m+3),过B作BH。
江苏省常州市中考数学试卷一.选择题(本大题共有8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一项是正确的)1.(2分)(•常州)在下列实数中,无理数是()A.2B.3.14 C.D.考点:无理数.分析:根据无理数,有理数的定义对各选项分析判断后利用排除法求解.解答:解:A、2是有理数,故本选项错误;B、3.14是有理数,故本选项错误;C 、﹣是有理数,故本选项错误;D 、是无理数,故本选项正确.故选D.点评:主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2分)(•常州)如图所示圆柱的左视图是()A.B.C.D.考点:简单几何体的三视图分析:找到从左面看所得到的图形即可.解答:解:此圆柱的左视图是一个矩形,故选C.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.(2分)(•常州)下列函数中,图象经过点(1,﹣1)的反比例函数关系式是()A.B.C.D.考点:反比例函数图象上点的坐标特征分析:设将点(1,﹣1)代入所设的反比例函数关系式y=(k≠0)即可求得k的值.解答:解:设经过点(1,﹣1)的反比例函数关系式是y=(k≠0),则﹣1=,解得,k=﹣1,所以,所求的函数关系式是y=﹣或.故选A.点评:本题主要考查反比例函数图象上点的坐标特征.所有反比例函数图象上点的坐标都满足该函数解析式.4.(2分)(•常州)下列计算中,正确的是()A.(a3b)2=a6b2B.a•a4=a4C.a6÷a2=a3D.3a+2b=5ab考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据积的乘方,等于把每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减对各选项分析判断后利用排除法求解.解答:解:A、(a3b)2=a6b2,故本选项正确;B、a•a4=a5,故本选项错误;C、a6÷a2=a6﹣2=a4,故本选项错误;D、3a与2b不是同类项,不能合并,故本选项错误.故选A.点评:本题考查了同底数幂的除法,同底数幂的乘法,积的乘方的性质,理清指数的变化是解题的关键.5.(2分)(•常州)已知:甲乙两组数据的平均数都是5,甲组数据的方差,乙组数据的方差,下列结论中正确的是()A.甲组数据比乙组数据的波动大B.乙组数据的比甲组数据的波动大C.甲组数据与乙组数据的波动一样大D.甲组数据与乙组数据的波动不能比较考点:方差.分析:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,结合选项进行判断即可.解答:解:由题意得,方差<,A、甲组数据没有乙组数据的波动大,故本选项错误;B、乙组数据的比甲组数据的波动大,说法正确,故本选项正确;C、甲组数据没有乙组数据的波动大,故本选项错误;D、甲组数据没有乙组数据的波动大,故本选项错误;故选B.点本题考查了方差的意义,解答本题的关键是理解方差的意义,方差表示的是数据波评:动性的大小,方差越大,波动性越大.6.(2分)(•常州)已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是()A.相离B.相切C.相交D.无法判断考点:直线与圆的位置关系.分析:根据圆O的半径和圆心O到直线l的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解答:解:∵⊙O的半径为6,圆心O到直线l的距离为5,∵6>5,即:d<r,∴直线L与⊙O的位置关系是相交.故选;C.点评:本题主要考查对直线与圆的位置关系的性质的理解和掌握,能熟练地运用性质进行判断是解此题的关键.7.(2分)(•常州)二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x ﹣3 ﹣2 ﹣1 0 1 2 3 4 5y 12 5 0 ﹣3 ﹣4 ﹣3 0 5 12给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.0考点:二次函数的最值;抛物线与x轴的交点.分析:根据表格数据求出二次函数的对称轴为直线x=1,然后根据二次函数的性质对各小题分析判断即可得解.解答:解;由表格数据可知,二次函数的对称轴为直线x=1,所以,当x=1时,二次函数y=ax2+bx+c有最小值,最小值为﹣4;故(1)小题错误;根据表格数据,当﹣1<x<3时,y<0,所以,﹣<x<2时,y<0正确,故(2)小题正确;二次函数y=ax2+bx+c的图象与x轴有两个交点,分别为(﹣1,0)(3,0),它们分别在y轴两侧,故(3)小题正确;综上所述,结论正确的是(2)(3)共2个.故选B.点评:本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.8.(2分)(•常州)有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为()A.a+b B.2a+b C.3a+b D.a+2b考点:完全平方公式的几何背景.分析:根据3张边长为a的正方形纸片的面积是3a2,4张边长分别为a、b(b>a)的矩形纸片的面积是4ab,5张边长为b的正方形纸片的面积是5b2,得出a2+4ab+4b2=(a+2b)2,再根据正方形的面积公式即可得出答案.解答:解;3张边长为a的正方形纸片的面积是3a2,4张边长分别为a、b(b>a)的矩形纸片的面积是4ab,5张边长为b的正方形纸片的面积是5b2,∵a2+4ab+4b2=(a+2b)2,∴拼成的正方形的边长最长可以为(a+2b),故选D.点评:此题考查了完全平方公式的几何背景,关键是根据题意得出a2+4ab+4b2=(a+2b)2,用到的知识点是完全平方公式.二.填空题(本大题共有9小题,第9小题4分,其余8小题每小题4分,共20分,)9.(4分)(•常州)计算﹣(﹣3)=3,|﹣3|=3,(﹣3)﹣1=﹣,(﹣3)2=9.考点:有理数的乘方;相反数;绝对值;有理数的减法.分析:根据相反数的定义,绝对值的性质,负整数指数幂,有理数的乘方的意义分别进行计算即可得解.解答:解:﹣(﹣3)=3,|﹣3|=3,(﹣3)﹣1=﹣,(﹣3)2=9.故答案为:3;3;﹣;9.点评:本题考查了相反数的定义,绝对值的性质,负整数指数幂,以及有理数的乘方的意义,是基础题.10.(2分)(•常州)已知点P(3,2),则点P关于y轴的对称点P1的坐标是(﹣3,2),点P关于原点O的对称点P2的坐标是(﹣3,﹣2).考点:关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称的点的横坐标互为相反数,纵坐标相同;关于原点对称的点的横坐标与纵坐标都互为相反数解答.解答:解:点P(3,2)关于y轴的对称点P1的坐标是(﹣3,2),点P关于原点O的对称点P2的坐标是(﹣3,﹣2).故答案为:(﹣3,2);(﹣3,﹣2).点评:本题考查了关于原点对称点点的坐标,关于y轴对称的点的坐标,熟记对称点的坐标特征是解题的关键.11.(2分)(•常州)已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B(1,0),则k=2,b=﹣2.考点:待定系数法求一次函数解析式.分析:把点A、B的坐标代入函数解析式,利用待定系数法求一次函数解析式解答即可.解答:解:∵一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B (1,0),∴,解得.故答案为:2,﹣2.点评:本题主要考查了待定系数法求一次函数解析式,待定系数法是求函数解析式常用的方法之一,要熟练掌握并灵活运用.12.(2分)(•常州)已知扇形的半径为6cm,圆心角为150°,则此扇形的弧长是5πcm,扇形的面积是15πcm2(结果保留π).考点:扇形面积的计算;弧长的计算.分析:根据扇形的弧长公式l=和扇形的面积=,分别进行计算即可.解答:解:∵扇形的半径为6cm,圆心角为150°,∴此扇形的弧长是:l==5π(cm),根据扇形的面积公式,得S扇==15π(cm2).故答案为:5π,15π.点评:此题主要考查了扇形弧长公式以及扇形面积公式的应用,熟练记忆运算公式进行计算是解题关键.13.(2分)(•常州)函数y=中自变量x的取值范围是x≥3;若分式的值为0,则x=.考点:分式的值为零的条件;函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解;根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣3≥0,解得x≥3;2x﹣3=0且x+1≠0,解得x=且x≠﹣1,所以,x=.故答案为:x≥3;.点评:本题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.(2分)(•常州)我市某一周的每一天的最高气温统计如下表:最高气温(℃)25 26 27 28天数 1 1 2 3则这组数据的中位数是27,众数是28.考点:众数;中位数.分析:根据中位数、众数的定义,结合表格信息即可得出答案.解答:解:将表格数据从大到小排列为:25,26,27,27,28,28,28,中位数为:27;众数为:28.故答案为:27、28.点评:本题考查了众数、中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.15.(2分)(•常州)已知x=﹣1是关于x的方程2x2+ax﹣a2=0的一个根,则a=﹣2或1.考点:一元二次方程的解.分析:方程的解就是能使方程左右两边相等的未知数的值,把x=﹣1代入方程,即可得到一个关于a的方程,即可求得a的值.解答:解:根据题意得:2﹣a﹣a2=0 解得a=﹣2或1点评:本题主要考查了方程的解得定义,是需要掌握的基本内容.16.(2分)(•常州)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC=2.考点:圆周角定理;含30度角的直角三角形;勾股定理;圆心角、弧、弦的关系.分析:根据直径所对的圆周角是直角可得∠BAD=∠BCD=90°,然后求出∠CAD=30°,利用同弧所对的圆周角相等求出∠CBD=∠CAD=30°,根据圆内接四边形对角互补求出∠BDC=60°再根据等弦所对的圆周角相等求出∠ADB=∠ADC,从而求出∠ADB=30°,解直角三角形求出BD,再根据直角三角形30°角所对的直角边等于斜边的一半解答即可.解答:解:∵BD为⊙O的直径,∴∠BAD=∠BCD=90°,∵∠BAC=120°,∴∠CAD=120°﹣90°=30°,∴∠CBD=∠CAD=30°,又∵∠BAC=120°,∴∠BDC=180°﹣∠BAC=180°﹣120°=60°,∵AB=AC,∴∠ADB=∠ADC,∴∠ADB=∠BDC=×60°=30°,∵AD=6,∴在Rt△ABD中,BD=AD÷cos60°=6÷=4,在Rt△BCD中,DC=BD=×4=2.故答案为:2.点评:本题考查了圆周角定理,直角三角形30°角所对的直角边等于斜边的一半,以及圆的相关性质,熟记各性质是解题的关键.17.(2分)(•常州)在平面直角坐标系xOy中,已知第一象限内的点A在反比例函数的图象上,第二象限内的点B在反比例函数的图象上,连接OA、OB,若OA⊥OB,OB=OA,则k=﹣.考点:反比例函数综合题.分析:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,设点A的坐标为(a,),点B的坐标为(b,),判断出△OBF∽△AOE,利用对应边成比例可求出k的值.解答:解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,设点A的坐标为(a,),点B的坐标为(b,),∵∠AOE+∠BOF=90°,∠OBF+∠BOF=90°,∴∠AOE=∠OBF,又∵∠BFO=∠OEA=90°,∴△OBF∽△AOE,∴==,即==,则=﹣b①,a=②,①×②可得:﹣2k=1,解得:k=﹣.故答案为:﹣.点评:本题考查了反比例函数的综合题,涉及了相似三角形的判定与性质,反比例函数图象上点的坐标的特点,解答本题要求同学们能将点的坐标转化为线段的长度.三、解答题(本大题共2小题,共18分)18.(8分)(•常州)化简(1)(2).考点:分式的加减法;实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:(1)分别进行二次根式的化简、零指数幂的运算,代入特殊角的三角函数值即可得出答案.(2)先通分,然后再进行分子的加减运算,最后化简即可.解答:解:(1)原式=2﹣1+2×=2.(2)原式=﹣==.点评:本题考查了分式的加减运算、特殊角的三角函数值及零指数幂的运算,属于基础题,掌握各部分的运算法则是关键.19.(10分)(•常州)解方程组和分式方程:(1)(2).考点:解分式方程;解二元一次方程组.分析:(1)利用代入消元法解方程组;(2)最简公分母为2(x﹣2),去分母,转化为整式方程求解,结果要检验.解答:解:(1),由①得x=﹣2y ③把③代入②,得3×(﹣2y)+4y=6,解得y=﹣3,把y=﹣3代入③,得x=6,所以,原方程组的解为;(2)去分母,得14=5(x﹣2),解得x=4.8,检验:当x=4.8时,2(x﹣2)≠0,所以,原方程的解为x=4.8.点评:本题考查了解分式方程,解二元一次方程组.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.四、解答题(本大题共2小题,共15分请在答题卡指定区域内作答,解答或写出文字说明及演算步骤)20.(7分)(•常州)为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2).(1)请根据所给信息在图(1)中将表示“乒乓球”项目的图形补充完整;(2)扇形统计图(2)中表示”足球”项目扇形的圆心角度数为72°.考点:条形统计图;扇形统计图.分析:(1)首先根据打篮球的人数是20人,占40%,求出总人数,再用总人数减去篮球、足球和其它人数得出乒乓球的人数,用各个爱好的人数除以总人数,即可得出所占的百分百,从而补全统计图;(2)用360°乘以足球所占的百分百,即可得出扇形的圆心角的度数.解答:解:(1)总人数是:20÷40%=50(人),则打乒乓球的人数是:50﹣20﹣10﹣15=5(人).足球的人数所占的比例是:×100%=20%,打乒乓球的人数所占的比例是:×100%=10%;其它的人数所占的比例是:×100%=30%.补图如下:(2)根据题意得:360°×=72°,则扇形统计图(2)中表示”足球”项目扇形的圆心角度数为72°;故答案为:72°.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)(•常州)一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.考点:列表法与树状图法.专题:图表型.分析:(1)根据概率的意义列式即可;(2)画出树状图,然后根据概率公式列式计算即可得解.解答:解:(1)∵共有3个球,2个白球,∴随机摸出一个球是白球的概率为;(2)根据题意画出树状图如下:一共有6种等可能的情况,两次摸出的球都是白球的情况有2种,所以,P(两次摸出的球都是白球)==.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.五.解答题(本大题共2小时,共13分,请在答题卡指定区域内作答,解答应写出证明过程)22.(6分)(•常州)如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.考点:全等三角形的判定与性质.专题:证明题.分析:根据中点定义求出AC=BC,然后利用“SSS”证明△ACD和△BCE全等,再根据全等三角形对应角相等证明即可.解答:证明:∵C是AB的中点,∴AC=BC,在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B.点评:本题考查了全等三角形的判定与性质,比较简单,主要利用了三边对应相等,两三角形全等,以及全等三角形对应角相等的性质.23.(7分)(•常州)如图,在△ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC 的两个外角,AD平分∠FAC,CD平分∠ECA.求证:四边形ABCD是菱形.考点:菱形的判定.专题:证明题.分析:根据平行四边形的判定方法得出四边形ABCD是平行四边形,再利用菱形的判定得出.解答:证明:∵∠B=60°,AB=AC,∴△ABC为等边三角形,∴AB=BC,∴∠ACB=60°,∠FAC=∠ACE=120°,∴∠BAD=∠BCD=120°,∴∠B=∠D=60°,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形.点评:此题主要考查了平行四边形的判定以及菱形的判定和角平分线的性质等内容,注意菱形与平行四边形的区别,得出AB=BC是解决问题的关键.六.解答题(本大题共2小题,请在答题卡指定区域内作答,共13分)24.(6分)(•常州)在Rt△ABC中,∠C=90°,AC=1,BC=,点O为Rt△ABC内一点,连接A0、BO、CO,且∠AOC=∠COB=BOA=120°,按下列要求画图(保留画图痕迹):以点B为旋转中心,将△AOB绕点B顺时针方向旋转60°,得到△A′O′B(得到A、O的对应点分别为点A′、O′),并回答下列问题:∠ABC=30°,∠A′BC=90°,OA+OB+OC=.考点:作图-旋转变换.专题:作图题.分析:解直角三角形求出∠ABC=30°,然后过点B作BC的垂线,在截取A′B=AB,再以点A′为圆心,以AO为半径画弧,以点B为圆心,以BO为半径画弧,两弧相交于点O′,连接A′O′、BO′,即可得到△A′O′B;根据旋转角与∠ABC的度数,相加即可得到∠A′BC;根据直角三角形30°角所对的直角边等于斜边的一半求出AB=2AC,即A′B的长,再根据旋转的性质求出△BOO′是等边三角形,根据等边三角形的三条边都相等可得BO=OO′,等边三角形三个角都是60°求出∠BOO′=∠BO′O=60°,然后求出C、O、A′、O′四点共线,再利用勾股定理列式求出A′C,从而得到OA+OB+OC=A′C.解答:解:∵∠C=90°,AC=1,BC=,∴tan∠ABC===,∴∠ABC=30°,∵△AOB绕点B顺时针方向旋转60°,∴△A′O′B如图所示;∠A′BC=∠ABC+60°=30°+60°=90°,∵∠C=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C===,∴OA+OB+OC=A′O′+OO′+OC=A′C=.故答案为:30°;90°;.点评:本题考查了利用旋转变换作图,旋转变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,等边三角形的判定与性质,综合性较强,最后一问求出C、O、A′、O′四点共线是解题的关键.25.(7分)(•常州)某饮料厂以300千克的A种果汁和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,已知每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁.饮料厂计划生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x(千克).(1)列出满足题意的关于x的不等式组,并求出x的取值范围;(2)已知该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该饮料厂生产甲、乙两种饮料各多少千克,才能使得这批饮料销售总金额最大?考点:一次函数的应用;一元一次不等式组的应用.分析:(1)表示出生产乙种饮料(650﹣x)千克,然后根据所需A种果汁和B种果汁的数量列出一元一次不等式组,求解即可得到x的取值范围;(2)根据销售总金额等于两种饮料的销售额的和列式整理,再根据一次函数的增减性求出最大销售额.解答:解:(1)设该厂生产甲种饮料x千克,则生产乙种饮料(650﹣x)千克,根据题意得,,由①得,x≤425,由②得,x≥200,所以,x的取值范围是200≤x≤425;(2)设这批饮料销售总金额为y元,根据题意得,y=3x+4(650﹣x)=3x+2600﹣4x=﹣x+2600,即y=﹣x+2600,∵k=﹣1<0,∴当x=200时,这批饮料销售总金额最大,为﹣200+2600=2400元.点评:本题考查了一次函数的应用,列一元一次不等式组解实际问题,根据A、B果汁的数量列出不等式组是解题的关键,(2)主要利用了一次函数的增减性.七.解答题(本大题共2小题,共25分,解答应写出文字说明,证明过程或演算步骤)26.(6分)(•常州)用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数和为a,内部的格点个数为b,则S=a+b﹣1(史称“皮克公式”).小明认真研究了“皮克公式”,并受此启发对正三角开形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形:根据图中提供的信息填表:格点多边形各边上格点边多边形内部格点多边形的面积的格点的个数的格点个数多边形1 8 1多边形2 7 3…………一般格点多边形 a b S则S与a、b之间的关系为S=a+2(b﹣1)(用含a、b的代数式表示).考点:规律型:图形的变化类.分析:根据8=8+2(1﹣1),11=7+2(3﹣1)得到S=a+2(b﹣1).解答:解:填表如下:格点多边形各边上的格点的个数格点边多边形内部的格点个数格点多边形的面积多边形1 8 1 8多边形2 7 3 11…………一般格点多边形 a b S则S与a、b之间的关系为S=a+2(b﹣1)(用含a、b的代数式表示).点评:考查了作图﹣应用与设计作图.此题需要根据图中表格和自己所算得的数据,总结出规律.寻找规律是一件比较困难的活动,需要仔细观察和大量的验算.27.(9分)(•常州)在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为45°或135°;(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值.(3)连接AD,当OC∥AD时,①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.考点:圆的综合题.专题:综合题.分析:(1)根据点A和点B坐标易得△OAB为等腰直角三角形,则∠OBA=45°,由于OC∥AB,所以当C点在y轴左侧时,有∠BOC=∠OBA=45°;当C点在y轴右侧时,有∠BOC=180°﹣∠OBA=135°;(2)由△OAB为等腰直角三角形得AB=OA=6,根据三角形面积公式得到当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,此时C点到AB的距离的最大值为CE的长然后利用等腰直角三角形的性质计算出OE,然后计算△ABC的面积;(3)①过C点作CF⊥x轴于F,易证Rt△OCF∽Rt△AOD,则=,即=,解得CF=,再利用勾股定理计算出OF=,则可得到C点坐标;②由于OC=3,OF=,所以∠COF=30°,则可得到∴BOC=60°,∠AOD=60°,然后根据“SAS”判断△BOC≌△AOD,所以∠BCO=∠ADC=90°,再根据切线的判定定理可确定直线BC为⊙O的切线.解答:解:(1)∵点A(6,0),点B(0,6),∴OA=OB=6,∴△OAB为等腰直角三角形,∴∠OBA=45°,∵OC∥AB,∴当C点在y轴左侧时,∠BOC=∠OBA=45°;当C点在y轴右侧时,∠BOC=180°﹣∠OBA=135°;(2)∵△OAB为等腰直角三角形,∴AB=OA=6,∴当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,如图,此时C点到AB的距离的最大值为CE的长,∵△OAB为等腰直角三角形,∴AB=OA=6,∴OE=AB=3,∴CE=OC+CE=3+3,△ABC的面积=CE•AB=×(3+3)×6=9+18.∴当点C在⊙O上运动到第三象限的角平分线与圆的交点位置时,△ABC的面积最大,最大值为9+18.(3)①如图,过C点作CF⊥x轴于F,∵OC∥AD,∴∠ADO=∠COD=90°,∴∠DOA+∠DAO=90°而∠DOA+∠COF=90°,∴∠COF=∠DAO,∴Rt△OCF∽Rt△AOD,∴=,即=,解得CF=,在Rt△OCF中,OF==,∴C点坐标为(﹣,);②直线BC是⊙O的切线.理由如下:在Rt△OCF中,OC=3,OF=,∴∠COF=30°,∴∠OAD=30°,∴∠BOC=60°,∠AOD=60°,∵在△BOC和△AOD中,∴△BOC≌△AOD(SAS),∴∠BCO=∠ADC=90°,∴OC⊥BC,∴直线BC为⊙O的切线.点评:本题考查了圆的综合题:掌握切线的判定定理、平行线的性质和等腰直角三角形的判定与性质;熟练运用勾股定理和相似比进行几何计算.28.(10分)(•常州)在平面直角坐标系xOy中,一次函数y=2x+2的图象与x轴交于A,与y轴交于点C,点B的坐标为(a,0),(其中a>0),直线l过动点M(0,m)(0<m<2),且与x轴平行,并与直线AC、BC分别相交于点D、E,P点在y轴上(P 点异于C点)满足PE=CE,直线PD与x轴交于点Q,连接PA.(1)写出A、C两点的坐标;(2)当0<m<1时,若△PAQ是以P为顶点的倍边三角形(注:若△HNK满足HN=2HK,则称△HNK为以H为顶点的倍边三角形),求出m的值;(3)当1<m<2时,是否存在实数m,使CD•AQ=PQ•DE?若能,求出m的值(用含a 的代数式表示);若不能,请说明理由.考点:一次函数综合题分析:(1)利用一次函数图象上点的坐标特征求解;(2)如答图1所示,解题关键是求出点P、点Q的坐标,然后利用PA=2PQ,列方程求解;(3)如答图2所示,利用相似三角形,将已知的比例式转化为:,据此列方程求出m的值.解答:解:(1)在直线解析式y=2x+2中,令y=0,得x=﹣1;x=0,得y=2,∴A(﹣1,0),C(0,2);(2)当0<m<1时,依题意画出图形,如答图1所示.∵PE=CE,∴直线l是线段PC的垂直平分线,∴MC=MP,又C(0,2),M(0,m),∴P(0,2m﹣2);直线l与y=2x+2交于点D,令y=m,则x=,∴D(,m),设直线DP的解析式为y=kx+b,则有,解得:k=﹣2,b=2m﹣2,∴直线DP的解析式为:y=﹣2x+2m﹣2.令y=0,得x=m﹣1,∴Q(m﹣1,0).已知△PAQ是以P为顶点的倍边三角形,由图可知,PA=2PQ,∴,即,整理得:(m﹣1)2=,解得:m=(>1,不合题意,舍去)或m=,∴m=.(3)当1<m<2时,假设存在实数m,使CD•AQ=PQ•DE.依题意画出图形,如答图2所示.由(2)可知,OQ=m﹣1,OP=2m﹣2,由勾股定理得:PQ=(m﹣1);∵A(﹣1,0),Q(m﹣1,0),B(a,0),∴AQ=m,AB=a+1;∵OA=1,OC=2,由勾股定理得:CA=.∵直线l∥x轴,∴△CDE∽△CAB,∴;又∵CD•AQ=PQ•DE,∴,∴,即,解得:m=.∵1<m<2,∴当0<a≤1时,m≥2,m不存在;当a>1时,m=.∴当1<m<2时,若a>1,则存在实数m=,使CD•AQ=PQ•DE;若0<a≤1,则m不存在.点评:本题是代数几何综合题,考查了坐标平面内一次函数的图象与性质、待定系数法、相似三角形、勾股定理、解方程等知识点.题目综合性较强,有一定的难度.第(3)问中,注意比例式的转化,这样可以简化计算.。
2022年常州市中考数学试题含答案解析一、选择题(每小题3分,共10小题,合计30分)1.-2的相反数是().A.-12B.12C.±2D.2答案:D.解析:数a的相反数是-a,所以-2的相反数是2,故选D.2.下列运算正确的是().A.m·m=2mC.(m2)3=m6答案:C.解析:m·m=2m2,(mn)3=m3n3,(m2)3=m6,m6÷a3=a4,故正确的是C,故选C.B.(mn)3=mn3D.m6÷a3=a33.右图是某个几何体的三视图,则该几何体是().A.圆锥C.圆柱答案:B.解析:由三视图确定几何体,从三视图可以确定此几何体为三棱柱,故选B.4.计算:B.三棱柱D.三棱锥某11+的结果是().某某1A.某2某12B.2某C.D.1答案:D.解析:本题考查分式的加法,同分母分式,分子相加减,原式=某11=1,故选D.某5.若3某>-3y,则下列不等式中一定成立的是().A.某+y>0B.某-y>0C.某+y<0D.某-y<0答案:A.解析:不等式的两边都除以3得某>-y,移项得某+y>0,故选A.6.如图,已知直线AB、CD被直线AE所截,AB∥CD,∠1=60°,则∠2的度数是(A.100°B.110°C.120°D.130°答案:C.解析:∵AB∥CD,∠1=60°,∴∠3=∠1=60°,所以∠2=180°-60°=120°,故选C.7.如图,已知矩形ABCD的顶点A、D分别落在某轴、y轴上,OD=2OA=6,AD:2).AB=3:1,则点C的坐标是().A.(2,7)C.(3,8)答案:A.解析:作BE⊥某轴于E,由题意知△ABE∽△DAO,因为OD=2OA=6,所以OA=3,由勾股定理得AD=35,因为AD:AB=3:1,所以AB=5,所以BE=1,AE=2,由矩形的性质知,将点D向上平移一个单位,向右平移2个单位得到点C,所以点C的坐标为(2,7),故选A.B.(3,7)D.(4,8)8.如图,已知□ABCD的四个内角的平分线分别相交于点E、F、G、H,连接AC,若EF=2,FG=GC=5,则AC的长是().A.12B.13C.65答案:B.D.83解析:作AM⊥CH交CH的延长线于H,因为四条内角平分线围成的四边形EFGH为矩形,所以3AM=FG=5,MH=AE=CG=5,所以CM=12,由勾股定理得AC=13,故选B.二、填空题:(本大题共10小题,每小题2分,共20分)9.计算:|-2|+(-2)0=.答案:3.解析:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,非零数的零次方都等于1,依此规则原式=2+1=3.10.若二次根式某2有意义,则实数某的取值范围是.答案:某≥2.解析:二次根式有意义需要满足被开方数为非负数,所以某-2≥0,解得某≥2.11.肥皂泡的泡壁厚度大约是0.0007mm,则数据0.0007用科学计数法表示为.答案:7某10-4.解析:用科学记数法表示较小的数,0.0007=7某10-4.12.分解因式:a某2-ay2=.答案:a(某+y)(某-y).解析:原式=a(某2-y2)=a(某+y)(某-y).13.已知某=1是关于某的方程a某2-2某+3=0的一个根,则a=.答案:-1.解析:将某=1代入方程a某2-2某+3=0得a-2+3=0,解得a=-1.14.已知圆锥的底面圆半径是1,母线长是3,则圆锥的侧面积是.答案:3π.解析:圆锥的侧面积=11某扇形半径某扇形弧长=某l某(2πr)=πrl=π某1某3=3π.设圆锥的母线长为l,设圆锥的底面半径为r,221某扇形半径某扇形弧长2则展开后的扇形半径为l,弧长为圆锥底面周长(2πR).我们已经知道,扇形的面积公式为:S=4=1某l某(2πr)=πrl.即圆锥的侧面积等于底面半径与母线和π的乘积.π某1某3=3π.215.(2022常州,15,2分)如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是.答案:15.解析:因为DE垂直平分BC,所以DB=DC,所以△ABD的周长=AD+AB+BD=AB+AD+CD=AB+AC=6+9=15.16.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点.若∠DAB=40°,则∠ABC=°.答案:70°.解析:连接AC,OC,因为C是弧BD的中点,∠DAB=40°,所以∠CAB=20°,所以∠COB=40°,由三角形内角和得∠B=70°.17.已知二次函数y=a某2+b某-3自变量某的部分取值和对应函数值y如下表:某y则在实数范围内能使得y-5>0成立的某的取值范围是.答案:某>4或某......-25-100-31-42-330 (5)解析:将点(-1,0)和(1,-4)代入y=a某2+b某-3得0ab3a1,解得:,所以该二次函数的解析式为y=某2-2某-3,4ab3b2若y>5,则某2-2某-3>5,某2-2某-8>0,解一元二次方程某2-2某-8=0,得某=4或某=-2.根据函数图象判断y-5>0成立的某的取值范围是某>4或某18.如图,已知点A是一次函数y=1某(某≥0)图像上一点,过点A作某轴的垂线l,B是l上一点(B在A上方),在AB的2右侧以AB为斜边作等腰直角三角形ABC,反比例函数y面积是.k(k)0)的图像过点B、C,若△OAB的面积为6,则△ABC的某答案:18.析:设点A(4a,2a),B(4a,2b),则C点的横坐标为4a+(3a-b)(a-b)=0,解得:a=b(舍去)或b=3a.S△ABC=1(2b-2a),C点的坐标为(3a+b,a+b).所以4a·2b=(3a+b)(a+b),21(2b-2a)·4a=8a2=6,k=4a·2b=24a2=18.2三、解答题:(本大题共6个小题,满分60分)19.(6分)先化简,再求值:(某+2)(某-2)-某(某-1),其中某=-2.思路分析:先化简,再代入求值.解:原式=某2-4-某2+某=某-4,当某=-2时,原式=-2-4=-6.20.(8分)解方程和不等式组:(1)2某53某3=-3某2某26(2)2某64某15思路分析:(1)解分式方程,检验方程的解是否为增根;(2)分别解两个不等式再确定不等式组的解集.解:(1)去分母得2某-5=3某-3-3(某-2),去括号移项合并同类项得,2某=-8,解得某=-4,经检验某=4是原方程的根,所以原方程的根是某=4;(2)解不等式①得某≥-3,解不等式②得某<1,所以不等式组的解集是-3≤某<1.21.(8分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”“打球”“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是.(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.思路分析:(1)利用爱好阅读的人数与占样本的百分比计算,30÷30%=100;(2)其他100某10%=10人,打球100-30-20-10=40人;(3)利用样本中的数据估计总体数据.解:(1)100;(2)其他10人,打球40人;(3)2000某740=800,所以估计该校课余兴趣爱好为“打球”的学生为数为800人.10022.(8分)一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3、4.(1)搅匀后从中任意摸出1个球,求摸出的乒乓球球面上数字为1的概率;(2)搅匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,求2次摸出的乒乓球球面上数字之和为偶数的概率.思路分析:(1)列举法求概率;(2)画树状图法求概率.解:(1)从4个球中摸出一个球,摸出的球面数字为1的概率是(2)用画树状图法求解,画树状图如下:1;4第一个球第二个球数字之和1234423134124123534356457567从树状图分析两次摸球共出现12种可能情况,其中两次摸出的乒乓球球面上数字之和为偶数的概率为:41=.12323.(8分)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.思路分析:(1)证明△ABC≌△DEC;(2)由∠EAC=45°通过等腰三角形的性质求解.解:(1)证明:∵∠BCE=∠ACD=90°,∴∠ACB=∠DCE,又∵∠BAC=∠D,BC=CE,∴△ABC≌△DEC,∴AC=CD.(2)∵∠ACD=90°,AC=CD,∴∠EAC=45°,8∵AE=AC∴∠AEC=∠ACE=1某(180°-45°)=67.5°,2∴∠DEC=180°-67.5°=112.5°.24.(8分)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种共50个,总费用不超过5500元,那么最多可购买多少个足球?思路分析:(1)根据等量关系列方程组求解;(2)根据不等关系列不等式求解.解:(1)解设每个篮球售价某元,每个足球售价y元,根据题意得:2某y320某100,解得:3某2y540y120答:每个篮球售价100元,每个足球售价120元.(2)设学校最多可购买a个足球,根据题意得100(50-a)+120a≤5500,解得:a≤25.答:学校最多可购买25个足球.25.(8分)如图,已知一次函数y=k某+b的图像与某轴交于点A,与反比例函数y=作BC⊥某轴于点C,点D(3-3n,1)是该反比例函数图像上一点.m(某<0)的图像交于点B(-2,n),过点B某(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=k某+b的表达式.思路分析:(1)将点B、D坐标代入反比例函数解析式求解m的值;(2)先求BD的解析式,再由线段垂直平分线的性质求得点A坐标,最后求AB的解析式.9解:(1)把B(-2,n),D(3-3n,1)代入反比例函数y=m得,某m62nm解得:,所以m的值为-6.n333nm(2)由(1)知B、D两点坐标分别为B(-2,3),D(-6,1),1p2pq3设BD的解析式为y=p某+q,所以,解得26pq1q4所以一次函数的解析式为y=1某+4,与某轴的交点为E(-8,0)2延长BD交某轴于E,∵∠DBC=∠ABC,BC⊥AC,∴BC垂直平分AC,∴CE=6,∴点A(4,0),将A、B点坐标代入y=k某+b得1k2kb31,解得,所以一次函数的表达式为y=-某+2.224kb0b226.(10分)如图1,在四边形ABCD中,如果对角线AC和BD相交并且相等,那么我们把这样的四边形称为等角线四边形.(1)①在“平行四边形、矩形、菱形”中,一定是等角线四边形(填写图形名称);②若M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,当对角线AC、BD还需要满足时,四边形MNPQ是正方形;⑵如图2,已知△ABC中,∠ABC=90°,AB=4,BC=3,D为平面内一点.②若四边形ABCD是等角线四边形,且AD=BD,则四边形ABCD的面积是;②设点E是以C为圆心,1为半径的圆上的动点,若四边形ABED是等角线四边形,写出四边形ABED面积的最大值,并说明理由.10思路分析:(1)①矩形是对角线相等的四边形;②四边形的中点四边形是平行四边形,等角线四边形的中点四边形是菱形,当对角线AC、BD互相垂直时四边形MNPQ是正方形;⑵①根据题意画出图形,根据图形分析确定DF垂直平分AB,从而计算面积SABED=S△ABD+S△BCD;②如图四边形ABED面积的最大值时点E在直线AC上,点D是以AE 为斜边的等腰直角三角形的直角顶点,进而求得四边形ABED面积的最大值.解:(1)①矩形;②AC⊥BD;⑵①∵∠ABC=90°,AB=4,BC=3,∴BD=AC=5,作DF⊥AB于F,∵AD=BD,∴DF垂直平分AB,∴BF=2,由勾股定理得DF=21,由题意知SABED=S△ABD+S△BCD=1111某AB某DF+某BC某BF=某4某21+某3某2=221+3;2222②如图四边形ABED面积的最大值时点E在直线AC上,点D是以AE为斜边的直角三角形的直角顶点,所以AE=6,DO=3,在△ABC中,由面积公式得点B到AC的距离为12,所以四边形ABED面积的最大值=5S△AED+S△ABE=1211某6某3+某6某=16.2.5221127.(10分)如图,在平面直角坐标系某Oy中,已知二次函数y=-(1)求二次函数的表达式;12某+b某的图像过点A(4,0),顶点为B,连接AB、BO.2(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CP的对称点为B′,当△OCB′为等边三角形时,求BQ的长度;(3)若点D在线段BO上,OD=2BD,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E的坐标.思路分析:(1)将A点坐标代入y=-12某+b某求得二次函数的表达式;2(2)根据题意画出图形,根据图形分析,若△OCB′为等边三角形,则∠OCB′=∠QCB′=∠QCB=60°,由∠B=90°,根据特殊三角函数值求得BQ的长;(3)按点F在OB上和点B在OA上进行讨论确定点E的位置,当点F在BA上,点E与点A重合时△DOF与△DEF全等;当F在OA上,DE∥AB时△DOF与△DEF全等,点O关于DF的对称点落在AB上时△DOF与△DEF 全等.解:(1)将A(4,0)代入y=-1212某+b某得,-某4+b某4=0,解得b=2,2212某+2某;2所以二次函数的表达式为y=-12(2)根据题意画出图形,二次函数y=-12某+2某的顶点坐标为B(2,2),与两坐标轴的交点坐标为O(0,0)、A(4,0).此时2OB=22,BC=,所以2,若△OCB′为等边三角形,则∠OCB′=∠QCB′=∠QCB=60°,因为∠B=90°tan∠QCB=QB:CB=3,所以QB=6;(3)①当点F在OB上时,如图,当且仅当DE∥OA,即点E与点A重合时△DOF≌△FED,此时点E的坐标为E(4,0);②点F在OA时,如图DF⊥OA,当OF=EF时△DOF≌△DEF,由于OD=2BD,所以点D坐标为(44,),点F坐33标为(48,0),点E坐标为(,0);33点F在OA时,如图,点O关于DF的对称点落在AB上时,△DOF≌△DEF,此时OD=DE=2BD=13432,BE=236,作BH⊥OA于H,EG⊥OA于G,由相似三角形的性质求得HG=233,所以点E坐标为(2+233,2-233).综上满足条件的点E的坐标为(4,0)、(82,0)、(2+333,2-233).28.(10分)如图,已知一次函数y=-(1)求线段AB的长度;4某+4的图像是直线l,设直线l分别与y轴、某轴交于点A、B.3(2)设点M在射线AB上,将点M绕点A按逆时针方向旋转90°到点N,以点N为圆心,NA的长为半径作⊙N.①当⊙N与某轴相切时,求点M的坐标;②在①的条件下,设直线AN与某轴交于点C,与⊙N的另一个交点为D,连接MD交某轴于点E.直线m过点N分别与y轴、直线l交于点P、Q,当△APQ与△CDE相似时,求点P的坐标.思路分析:(1)求A、B两点坐标,由勾股定理求得AB的长度;(2)①根据题意画出图形,根据△AOB∽△NHA,△HAN≌△FMA计算出线段FM与OF的长;②分点P位于y轴负半轴上和点P位于y轴正半轴上两种情况进行分析,借助于相似三角形的对应线段比等于相似比列方程求得交点Q坐标,再将点Q坐标代入AB及NP解析式求得交点P的坐标.解:(1)函数y=-4某+4中,令某=0得y=4,令y=0得,某=3,所以A(0,4),B(3,0).AB=3242=5.3(2)①由图1知,当⊙N与某轴相切于点E时,作NH⊥y轴于H,则四边形NHOE为矩形,HO=EN=AM=AN,14∵∠HAN+∠OAB=90°,∠HNA+∠HAN=90°,∴∠OAB=∠HAN,因为AM⊥AN,所以△AOB∽△NHA,图1∴AHHNAN==,设AH=3某,则HN=4某,AN=NE=OH=5某,∵OH=OA+AH,∴3某+4=5某,∴某=2,OBAOAB∴AH=6,HN=8,AN=AM=10.∵AM=AN,∠OAB=∠HAN,∴Rt△HAN≌Rt△FMA,∴FM=6,AF=8,OF=4,∴M(6,-4).k1b4②当点P位于y轴负半轴上时,设直线AN的解析式为y=k某+b,将A(0,4),N(8,10)代入得,解得3,b8kb104所以直线AN的解析式为y=163某+4.所以点C坐标为(-,0),过D34作某轴的垂线可得点D(16,16).设点P坐标为(0,-p),N(8,10)则直线NP解析式为y=10p某-p,作EF⊥CD于F,8CE=1640202280+8=,AC=,CD=+20=,由相似三角形性质可得EF=8,△CDE∽△APQ,则333334p点Q横坐标绝对值(34p),解得点Q的横坐标绝对值为,将点Q 横坐标绝对值代入AB及NP解析式得80108310p(34p)(34p)4·-p=·(-)+4,解得p1=-4(舍去),p2=6,所以P(0,-6).81010315。
常州市2022年初中学业水平考试数学试题一、选择题1. 2022的相反数是( )A. 2022B. 2022-C. 12022D. 12022- 【答案】B【解析】【分析】根据相反数的定义直接求解.【详解】解:实数2022的相反数是2022-,故选:B .【点睛】本题主要考查相反数的定义,解题的关键是熟练掌握相反数的定义.2. x 的取值范围是( )A. 1≥xB. 1x >C. 0x ≥D. 0x >【答案】A【解析】0)…进行计算即可.【详解】解:由题意得: 10x -…,1x ∴…,故选:A .0)…是解题的关键. 3. 下列图形中,为圆柱的侧面展开图的是( )A. B.C. D.【答案】D【解析】【分析】根据题意,注意其按圆柱的侧面沿它的一条母线剪开,分析得到图形的性质,易得答案.【详解】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,得到其侧面展开图是对边平行且相等的四边形;又有母线垂直于上下底面,故可得是矩形.故选:D .【点睛】本题考查的是圆柱的展开图,解题的关键是需要对圆柱有充分的理解;难度不大.4. 如图,在△ABC 中,D ,E 分别是AB ,AC 边的中点,若DE =2,则BC 的长度是( )A. 6B. 5C. 4D. 3 【答案】C【解析】【分析】直接利用三角形中位线定理得出答案.【详解】∵在△ABC 中,D ,E 分别是AB ,AC 边的中点,∴DE 是△ABC 的中位线,∵DE =2,∴BC 的长度是:4.故选:C .【点睛】此题主要考查了三角形的中位线,正确把握三角形中位线定理是解题关键. 5. 某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( )A. 50y x =+B. 50y x =C. 50y x =D.50=x y 【答案】C【解析】【分析】根据:平均每人拥有绿地y =总面积总人数,列式求解. 【详解】解:依题意,得:平均每人拥有绿地50y x=. 故选:C 【点睛】本题考查了反比例函数,解题的关键是掌握题目中数量之间的相互关系. 6. 如图,斑马线作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是( )A. 垂线段最短B. 两点确定一条直线C. 过一点有且只有一条直线与已知直线垂直D. 过直线外一点有且只有一条直线与已知直线平行【答案】A【解析】【分析】根据垂线段最短解答即可.【详解】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短, 故选:A .【点睛】本题考查垂线段最短,熟知垂线段最短是解答的关键.7. 在平面直角坐标系xOy 中,点A 与点1A 关于x 轴对称,点A 与点2A 关于y 轴对称.已知点1(1,2)A ,则点2A 的坐标是( )A. (2,1)-B. (2,1)--C. (1,2)-D.(1,2)-- 【答案】D【解析】的A点坐标,即可得出答案.【分析】直接利用关于x,y轴对称点的性质分别得出A,2【详解】解:∵点1A的坐标为(1,2),点A与点1A关于x轴对称,∴点A的坐标为(1,-2),A关于y轴对称,∵点A与点2A的坐标是(-1,﹣2).∴点2故选:D.【点睛】此题主要考查了关于x,y轴对称点的坐标,正确掌握关于坐标轴对称点的性质是解题关键.km的加速时间和满电续航里程8. 某汽车评测机构对市面上多款新能源汽车的0~100/h进行了性能评测,评测结果绘制如下,每个点都对应一款新能源汽车的评测数据.已知km的加速时间的中位数是s m,满电续航里程的中位数是nkm,相应的直线将0~100/h平面分成了①、②、③、④四个区域(直线不属于任何区域).欲将最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若以上两组数据的中位数均保持不变,则这两个点可能分别落在()A. 区域①、②B. 区域①、③C. 区域①、④D. 区域③、④【答案】B【解析】【分析】根据中位数的性质即可作答.【详解】在添加了两款新能源汽车的测评数据之后,0~100km/h的加速时间的中位数m s,满电续航里程的中位数n km,这两组中位数的值不变,即可知这两款新能源汽车的0~100km/h的加速时间的数值分别处于直线m的上方和下方,满电续航里程的数值分别位于直线n的左侧和右侧,据此逐项判断即可:A项,两款车的0~100km/h的加速时间均在直线m下方,不符合要求,故A项错误;B项,可知这两款新能源汽车的0~100km/h的加速时间的数值分别处于直线m的上方和下方,满电续航里程的数值分别位于直线n的左侧和右侧,符合要求;C 项,两款车的满电续航里程的数值均在直线n 的左侧,不符合要求,故C 项错误;D 项,两款车的0~100km/h 的加速时间均在直线m 上方,不符合要求,故D 项错误; 故选:B .【点睛】本题考查了中位数的概念,根据中位数的值不变可知新添加的一组数据分别处在中位数的左右两侧或刚好都等于该中位数,理解这一点是解答本题的关键.二、填空题9. ___.【答案】2【解析】【分析】根据立方根的定义进行计算.【详解】解:∵23=8,,故答案为:2.10. 计算:42÷=m m _______.【答案】2m【解析】【分析】根据同底数幂的除法运算法则即可求出.【详解】解:422m m m ÷=.故答案为:2m .【点睛】本题主要考查同底数幂的除法,掌握同底数幂的除法法则是解题的关键. 11. 分解因式:22x y xy +=______.【答案】xy (x +y )【解析】【分析】利用提公因式法即可求解.【详解】22()x y y y xy x x =++,故答案为:()xy x y +.【点睛】本题考查了用提公因式法分解因式的知识,掌握提公因式法是解答本题的关键.12. 2022年5月22日,中国科学院生物多样性委员会发布《中国生物物种名录》2022版,共收录物种及种下单元约138000个.数据138000用科学记数法表示为______.【答案】1.38×105【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值≥10时,n 是正整数数.【详解】解:由题意可知:138000=1.38×105,故答案为:1.38×105【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13. 如图,数轴上的点A 、B 分别表示实数a 、b ,则1a ______1b .(填“>”、“=”或“<”)【答案】>【解析】【分析】由图可得:1a b <<,再根据不等式的性质即可判断.【详解】解:由图可得:1a b <<, 由不等式的性质得:11a b>, 故答案为:>.【点睛】本题考查了数轴,不等式的性质,解题的关键是掌握不等式的性质.14. 如图,在ABC 中,E 是中线AD 的中点.若AEC △的面积是1,则ABD △的面积是______.【答案】2【解析】【分析】根据ACE ∆的面积DCE =∆的面积,ABD ∆的面积ACD =∆的面积计算出各部分三角形的面积.【详解】解:AD 是BC 边上的中线,E 为AD 的中点,根据等底同高可知,ACE ∆的面积DCE =∆的面积1=,ABD ∆的面积ACD =∆的面积2AEC =∆的面积2=,故答案为:2. 【点睛】本题考查了三角形的面积,解题的关键是利用三角形的中线平分三角形面积进行计算.15. 如图,将一个边长为20cm 的正方形活动框架(边框粗细忽略不计)扭动成四边形ABCD ,对角线是两根橡皮筋,其拉伸长度达到36cm 时才会断裂.若60BAD ∠=︒,则橡皮筋AC _____断裂(填“会”或“不会” 1.732≈).【答案】不会【解析】【分析】设扭动后对角线的交点为O ,根据正方形的性质,得出扭动后的四边形为菱形,利用菱形的性质及条件,得出ABD △为等边三角形,利用勾股定理算出AO =而得到AC ,再比较即可判断.【详解】解:设扭动后对角线的交点为O ,如下图:60BAD ∠=︒ ,根据正方形的性质得,得出扭动后的四边形四边相等为菱形,20AD AB ==,ABD ∴ 为等边三角形,20BD ∴=,1102BO BD ∴==,AO ∴==根据菱形的对角线的性质:234.64AC AO ==≈,34.6436< ,AC ∴不会断裂,故答案为:不会.【点睛】本题考查了正方形的性质、菱形的判定及性质、等边三角形、勾股定理,解题的关键是要掌握菱形的判定及性质.16. 如图,ABC 是O 的内接三角形.若45ABC ∠=︒,AC =O 的半径是______.【答案】1【解析】【分析】连接OA 、OC ,根据圆周角定理得到90AOC ∠=︒,根据勾股定理计算即可.详解】解:连接OA 、OC ,45ABC ∠=︒ ,290AOC ABC ∴∠=∠=︒,222OA OC AC ∴+=,即222OA =,解得:1OA =,故答案为:1.【点睛】本题考查的是三角形的外接圆与外心,掌握圆周角定理、勾股定理是解题的关键.17. 如图,在四边形ABCD 中,90A ABC ∠=∠=︒,DB 平分ADC ∠.若1AD =,3CD =,则sin ABD ∠=______.【【解析】△为等腰三角【分析】过点D作BC的垂线交于E,证明出四边形ABED为矩形,BCD形,由勾股定理算出DE=BD=,即可求解.【详解】解:过点D作BC的垂线交于E,∴∠=︒DEB90,∠=∠=︒A ABC90∴四边形ABED为矩形,//,1∴==,DE AB AD BE∴∠=∠,ABD BDE∠,Q平分ADCBD∴∠=∠,ADB CDB,AD BE//∴∠=∠,ADB CBD∴∠CDB=∠CBDCD CB∴==,3,==AD BE1∴,CE=2∴===DEBD ∴===sin BE BDE BD ∴∠===sin ABD ∴∠=【点睛】本题考查了锐角三角函数、矩形、等腰三角形形、勾股定理、平行线的性质,解题的关键是构造直角三角形求解.18. 如图,在Rt ABC △中,90C ∠=︒,9AC =,12BC =.在Rt DEF 中,90F ∠=︒,3DF =,4EF =.用一条始终绷直的弹性染色线连接CF ,Rt DEF 从起始位置(点D 与点B 重合)平移至终止位置(点E 与点A 重合),且斜边DE 始终在线段AB 上,则Rt ABC △的外部被染色的区域面积是______.【答案】28【解析】【分析】过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如图,需要知道的是Rt ABC 的被染色的区域面积是MNF F S '梯形,所以需要利用勾股定理,相似三角形、平行四边形的判定及性质,求出相应边长,即可求解.【详解】解:过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如下图:90C ∠=︒ ,9AC =,12BC =,15AB ∴==,在Rt DEF 中,90F ∠=︒,3DF =,4EF =.5DE ∴==,15510AE AB DE =-=-= ,//,EF AF EF AF ''= ,∴四边形AEFF '为平行四边形,10AE FF '∴==,11622DEF S DF EF DE GF =⋅=⋅= , 解得:125GF =, //DF AC ,,DFM ACM FDM CAM ∴∠=∠∠=∠,DFM ACM ∴ ∽,13DM DF AM AC ∴==, 1115344DM AM AB ∴===, //BC AF ' ,同理可证:ANF DNC ' ∽,13AF AN BC DN '∴==, 345344DN AN AB ∴===, 451530444MN DN DM ∴=-=-=, Rt ABC 的外部被染色的区域面积为130121028245MNF F S '⎛⎫=⨯+⨯= ⎪⎝⎭梯形, 故答案为:28.【点睛】本题考查了直角三角形,相似三角形的判定及性质、勾股定理、平行四边形的判定及性质,解题的关键是把问题转化为求梯形的面积.三、解答题19. 计算:(1)201(3)3---+π;(2)2(1)(1)(1)+--+x x x .【答案】(1)43(2)2x +2【解析】【分析】(1)利用负指数公式化简,零指数公式化简,平方根定义化简,合并后即可求出值;(2)利用完全平方,以及平方差计算,再合并即可求出值.【小问1详解】201(3)3---+π=2﹣1+13=43; 【小问2详解】2(1)(1)(1)+--+x x x=22211x x x ++-+=2x +2.【点睛】此题考查了乘法公式,以及实数的运算,实数的运算涉及的知识有:零指数公式,负指数公式,绝对值的代数意义,以及平方根的定义.20. 解不等式组510032x x x -≤⎧⎨+>-⎩,并把解集在数轴上表示出来.【答案】12x -<≤;解集表示见解析【解析】【分析】先求出每个不等式的解集,然后求出不等式组的解集,并在数轴上表示出来即可.【详解】解:原不等式组为510032x x x -≤⎧⎨+>-⎩①②, 解不等式①,得2x ≤;解不等式②,得1x >-.∴原不等式组的解集为12x -<≤ ,将不等式组的解集表示在数轴上如下:【点睛】本题主要考查解一元一次不等式组,掌握解一元一次不等式组的方法是解题的关键.21. 为减少传统塑料袋对生态环境的破坏,国家提倡使用可以在自然环境下(特定微生物、温度、湿度)较快完成降解的环保塑料袋.调查小组就某小区每户家庭1周内环保塑料袋的使用情况进行了抽样调查,使用情况为A(不使用)、B(1~3个)、C(4~6个)、D(7个及以上),以下是根据调查结果绘制的统计图的一部分.(1)本次调查的样本容量是_____,请补全条形统计图;(2)已知该小区有1500户家庭,调查小组估计:该小区1周内使用7个及以上环保塑料袋的家庭约有225户.调查小组的估计是否合理?请说明理由.【答案】(1)100,图见解析(2)合理,理由见解析【解析】【分析】(1)利用频数除以频率即可得出,结合条形统计图及扇形统计图,求出,B C涉及的户数再画图即可;(2)利用样本估计总体的思想来解释即可.【小问1详解】解:本次调查的样本容量为:201000.2=(户),C∴使用情况的户数为:10025%25⨯=,D占的比例为:1515% 100=,B∴的比例为:125%20%15%40%---=,B∴使用情况的户数为:10040%40⨯=,补全条形统计图如下:故答案为:100.【小问2详解】解:合理,理由如下:利用样本估计总体:D占的比例为:1515% 100=,150015%225∴⨯=(户),∴调查小组的估计是合理的.【点睛】本题考查了形统计图及扇形统计图,样本估计总体,解题的关键是通过数形结合对数据进行分析.22. 在5张相同的小纸条上,分别写有语句:①函数表达式为y x=;②函数表达式为2y x=;③函数的图像关于原点对称;④函数的图像关于y轴对称;⑤函数值y随自变量x增大而增大.将这5张小纸条做成5支签,①、②放在不透明的盒子A中搅匀,③、④、⑤放在不透明的盒子B中搅匀.(1)从盒子A中任意抽出1支签,抽到①概率是______;(2)先从盒子A中任意抽出1支签,再从盒子B中任意抽出1支签.求抽到的2张小纸条上的语句对函数的描述相符合的概率.【答案】(1)12(2)12【解析】【分析】(1)直接由概率公式求解即可;(2)画出树状图,再由概率计算公式求解即可.【小问1详解】解:从盒子A中任意抽出1支签,抽到①的概率是12;故答案为:12;的【小问2详解】解:画出树状图:共有6种结果,抽到的2张小纸条上的语句对函数的描述相符合的有①、③和①、⑤和②、④共3种,∴抽到的2张小纸条上的语句对函数的描述相符合的概率为3162=. 【点睛】本题主要考查了列表法或树状图求概率,一次函数与二次函数的性质,解题的关键是会列出表或树状图以及一次函数与二次函数的性质.23. 如图,在平面直角坐标系xOy 中,一次函数2y x b =+的图象分别与x 轴、y 轴交于点A 、B ,与反比例函数(0)k y x x=>的图象交于点C ,连接OC .已知点(0,4)B ,BOC 的面积是2.(1)求b 、k 的值;(2)求AOC △的面积.【答案】(1)4;6(2)6【解析】【分析】(1)由点B (0,4)在一次函数y =2x +b 的图象上,代入求得b =4,由△BOC 的面积是2得出C 的横坐标为1,代入直线关系式即可求出C 的坐标,从而求出k 的值; (2)根据一次函数的解析式求得A 的坐标,然后根据三角形的面积公式代入计算即可.【小问1详解】解:∵一次函数2y x b =+的图象y 轴交于点(0,4)B ,∴4b =,OB =4,∴一次函数解析式为24y x =+,设点C (m ,n ),∵BOC 的面积是2. ∴1422m ⨯=,解得:m =1, ∵点C 在一次函数图象上,∴246n =+=,∴点C (1,6),把点C (1,6)代入(0)k y x x =>得:k =6; 【小问2详解】当y =0时,024x =+,解得:x =-2,∴点A (-2,0),∴OA =2, ∴12662AOC S ∆=⨯⨯=. 【点睛】本题是一次函数与反比例函数的交点问题,考查了待定系数法求函数的解析式,一次函数图象上点的坐标特征,三角形的面积,求出C 的坐标是解题的关键. 24. 如图,点A 在射线OX 上,OA a =.如果OA 绕点O 按逆时针方向旋转(0360)<≤︒n n 到OA ',那么点A '的位置可以用(),︒a n 表示.(1)按上述表示方法,若3a =,37n =,则点A '的位置可以表示为______;(2)在(1)的条件下,已知点B 的位置用()3,74︒表示,连接A A '、A B '.求证:A A A B ''=.【答案】(1)(3,37°)(2)见解析【解析】【分析】(1)根据点的位置定义,即可得出答案;(2)画出图形,证明△AOA ′≌△BOA ′(SAS ),即可由全等三角形的性质,得出结论.【小问1详解】解:由题意,得A ′(a ,n °),∵a=3,n=37,∴A′(3,37°),故答案为:(3,37°);【小问2详解】证明:如图,∵()3,37A '︒,B (3,74°),∴∠AOA ′=37°,∠AOB =74°,OA = OB =3,∴∠A ′OB =∠AOB -∠AOA ′=74°-37°=37°,∵OA ′=OA ′,∴△AOA ′≌△BOA ′(SAS ),∴A ′A =A ′B .【点睛】本题考查全等三角形的判定与性质,新定义,旋转的性质,熟练掌握全等三角形的判定与性质是解题的关键.25. 第十四届国际数学教育大会(ICME -14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3210387848582021⨯+⨯+⨯+⨯=,表示ICME -14的举办年份.(1)八进制数3746换算成十进制数是_______;(2)小华设计了一个n 进制数143,换算成十进制数是120,求n 的值.【答案】(1)2022(2)9【解析】【分析】(1)根据八进制换算成十进制的方法即可作答;(2)根据n 进制换算成十进制的方法可列出关于n 的一元二次方程,解方程即可求解.【小问1详解】3210387848682022⨯+⨯+⨯+⨯=,故答案为:2022;【小问2详解】根据题意有:313233143120n n n ---⨯+⨯+⨯=,整理得:244121n n ++=,解得n =9,(负值舍去),故n 的值为9.【点睛】本题考查了有理数的运算以及一元二次方程的应用等知识,根据题意列出关于n 的一元二次方程是解答本题的关键.26. 在四边形ABCD 中,O 是边BC 上的一点.若OAB OCD V V ≌,则点O 叫做该四边形的“等形点”.(1)正方形_______“等形点”(填“存在”或“不存在”);(2)如图,在四边形ABCD 中,边BC 上的点O 是四边形ABCD 的“等形点”.已知CD =,5OA =,12BC =,连接AC ,求AC 的长;(3)在四边形EFGH 中,EH //FG .若边FG 上点O 是四边形EFGH 的“等形点”,求OF OG的值. 【答案】(1)不存在,理由见详解(2(3)1【解析】【分析】(1)根据“等形点”的概念,采用反证法即可判断;(2)过A 点作AM ⊥BC 于点M ,根据“等形点”的性质可得AB =CD=OA =OC =5,OB =7=OD ,设MO =a ,则BM =BO -MO =7-a ,在Rt △ABM 和Rt △AOM中,利的用勾股定理即可求出AM,则在Rt△AMC中利用勾股定理即可求出AC;(3)根据“等形点”的性质可得OF=OH,OE=OG,∠EOF=∠GOH,再根据∥,可得∠EOF=∠OEH,∠GOH=∠EHO,即有∠OEH=∠OHE,进而有EH FGOE=OH,可得OF=OG,则问题得解.【小问1详解】不存在,理由如下:假设正方形ABCD存在“等形点”点O,即存在△OAB≌△OCD,∵在正方形ABCD中,点O在边BC上,∴∠ABO=90°,∵△OAB≌△OCD,∴∠ABO=∠CDO=90°,∴CD⊥DO,∵CD⊥BC,∥,∴DO BC∵O点在BC上,∴DO与BC交于点O,∴假设不成立,故正方形不存在“等形点”;【小问2详解】如图,过A点作AM⊥BC于点M,如图,∵O点是四边形ABCD的“等形点”,∴△OAB≌△OCD,∴AB=CD,OA=OC,OB=OD,∠AOB=∠COD,∵CD ,OA=5,BC=12,∴AB=CD=OA=OC=5,∴OB=BC-OC=12-5=7=OD,∵AM⊥BC,∴∠AMO=90°=∠AMB,∴设MO =a ,则BM =BO -MO =7-a ,∴在Rt △ABM 和Rt △AOM 中,22222AM AB BM AO MO =-=-,∴2222AB BM AO MO -=-,即2222(7)5a a --=-, 解得:207a =,即207MO =,∴MC =MO +OC =2055577+=,AM ===∴在Rt △AMC 中,AC ===即AC ; 【小问3详解】如图,∵O 点是四边形EFGH 的“等形点”,∴△OEF ≌△OGH ,∴OF =OH ,OE =OG ,∠EOF =∠GOH ,∵EH FG ∥,∴∠EOF =∠OEH ,∠GOH =∠EHO ,∴根据∠EOF =∠GOH 有∠OEH =∠OHE ,∴OE =OH ,∵OF =OH ,OE =OG ,∴OF =OG , ∴1OF OG=. 【点睛】本题考查了全等三角形的性质、勾股定理、正方形的性质、平行的性质等知识,充分利用全等三角形的性质是解答本题的关键.27. 已知二次函数23y ax bx =++的自变量x 的部分取值和对应函数值y 如下表: x … 1- 0 1 2 3 …y… 4 3 0 5- 12- …(1)求二次函数23y ax bx =++的表达式;(2)将二次函数23y ax bx =++的图像向右平移(0)k k >个单位,得到二次函数2=++y mx nx q 的图像,使得当13x -<<时,y 随x 增大而增大;当45x <<时,y 随x 增大而减小,请写出一个符合条件的二次函数2=++y mx nx q 的表达式y =______,实数k 的取值范围是_______;(3)A 、B 、C 是二次函数23y ax bx =++的图像上互不重合的三点.已知点A 、B 的横坐标分别是m 、1m +,点C 与点A 关于该函数图像的对称轴对称,求ACB ∠的度数.【答案】(1)223y x x =--+(2)()234y x -=-+(答案不唯一),45k ≤≤(3)∠ACB =45°或135°【解析】【分析】(1)利用待定系数法求解即可;(2)先求出平移后的二次函数对称轴为直线1=-x k ,然后根据二次函数的增减性求出45k ≤≤,即可得到答案;(3)先分别求出A 、B 、C 三点的坐标,然后求出23B C x x m -=+,23B C y y m -=--,然后分四种情况讨论求解即可得到答案.【小问1详解】解:由题意得:403a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得12a b =-⎧⎨=-⎩, ∴二次函数解析式为223y x x =--+;【小问2详解】解:∵原二次函数解析式为()222314y x x x =--+=-++由题意得平移后的二次函数解析式为()214y x k =-+-+,∴平移后的二次函数对称轴为直线1=-x k ,∵二次函数2=++y mx nx q 的图像,使得当13x -<<时,y 随x 增大而增大;当45x <<时,y 随x 增大而减小,且二次函数2=++y mx nx q 的开口向下, ∴314k ≤-≤,∴45k ≤≤,∴符合题意的二次函数解析式可以为()()2214434y x x =-+-+=--+; 故答案为:()234y x -=-+(答案不唯一),45k ≤≤;【小问3详解】解:∵二次函数解析式为()222314y x x x =--+=-++,∴二次函数223y x x =--+的对称轴为直线1x =-,∵A 、C 关于对称轴对称,点A 的横坐标为m ,∴C 的横坐标为2m --,∴点A 的坐标为(m ,223m m --+),点C 的坐标为(2m --,223m m --+), ∵点B 的横坐标为m +1,∴点B 的坐标为(m +1,24m m --),∴23B C x x m -=+,23B C y y m -=--,如图1所示,当A 、B 同时在对称轴左侧时,过点B 作BE ⊥x 轴于E ,交AC 于D ,连接BC ,∵A 、C 关于对称轴对称,∴AC x ∥轴,∴BE AC ⊥,∵23B C x x m -=+,23B C y y m -=--,∴23CD m BD =--=,∴△BDC 是等腰直角三角形,∴∠ACB =45°,同理当AB 同时在对称轴右侧时,也可求得∠ACB =45°,如图2所示,当A 在对称轴左侧,B 在对称轴右侧时,过点B 作直线BD 垂直于直线AC 交直线AC 于D ,同理可证△BDC 为等腰直角三角形,∴∠BCD =45°,∴∠ACB =135°,同理当A 在对称轴右侧,B 在对称轴左侧也可求得∠ACB =135°,综上所述,∠ACB =45°或135°【点睛】本题主要考查了二次函数综合,二次函数的平移,二次函数的增减性,待定系数法求函数解析式等等,熟知二次函数的相关知识是解题的关键.28. (现有若干张相同的半圆形纸片,点O是圆心,直径AB的长是12cm,C是半圆弧上的一点(点C与点A、B不重合),连接AC、BC.(1)沿AC 、BC 剪下ABC ,则ABC 是______三角形(填“锐角”、“直角”或“钝角”);(2)分别取半圆弧上的点E 、F 和直径AB 上的点G 、H .已知剪下的由这四个点顺次连接构成的四边形是一个边长为6cm 的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);(3)经过数次探索,小明猜想,对于半圆弧上的任意一点C ,一定存在线段AC 上的点M 、线段BC 上的点N 和直径AB 上的点P 、Q ,使得由这四个点顺次连接构成的四边形是一个边长为4cm 的菱形.小明的猜想是否正确?请说明理由.【答案】(1)直角 (2)见详解(3)小明的猜想错误,理由见详解【解析】【分析】(1)AB 是圆的直径,根据圆周角定理可知∠ACB =90°,即可作答;(2)以A 为圆心,AO 为半径画弧交⊙O 于点E ,再以E 为圆心,EO 为半径画弧交于⊙O 点F 连接EF 、FO 、EA ,G 、H 点分别与A 、O 点重合,即可;(3)过C 点作CG NQ ∥,交AB 于点G ,连接CO ,根据MN PQ ∥,可得MN CN AB BC =,即有13CN BC =,则可求得23BN BC =,依据CG NQ ∥,NQ =4,可得GC =OC =6,即可判断.【小问1详解】如图,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ACB 直角,即△ABC 是直角三角形,故答案为:直角,【小问2详解】以A 为圆心,AO 为半径画弧交⊙O 于点E ,再以E 为圆心,EO 为半径画弧交于⊙O 点F 连接EF 、FO 、EA ,G 、H 点分别与A 、O 点重合,即可,作图如下:是由作图可知AE =EF =FH =HG =OA =12AB =6,即四边形EFHG 是边长为6cm 的菱形;【小问3详解】小明的猜想错误,理由如下:如图,菱形MNQP 的边长为4,过C 点作CG NQ ∥,交AB 于点G ,连接CO ,在菱形MNQP 中MN =QN =4,MN PQ ∥,∵MN PQ ∥,∴~CMN CAB , ∴MN CN AB BC=, ∵AB =12,MN =4, ∴41123MN CN AB BC ===, ∵BN =BC -CN , ∴23BN BC =, ∵CG NQ ∥,NQ =4,~BQN BGC ,∴243NQ BN GC BC GC===, ∴GC =6,∵AB =12,∴OC =6,∴OC =GC ,显然若C点靠近A点时,要满足GC=OC=6,此时的G点必在BA的延长线上,∵P点在线段AB上,∥相矛盾,∴直线GC必与直线PM相交,这与CG PM故小明的猜想错误.【点睛】本题考查了圆周角定理、尺规作图、菱形的性质、平行的性质等知识,掌握菱形的性质以及平行的性质求得GC=OC是解答本题的关键。
常州中考数学试卷真题第一部分:选择题(共10小题,每小题4分,共40分)1. 若x + y = 10,且x和y的比是3:1,则y的值是多少?A. 2B. 4C. 6D. 82. 已知2x - 10 = 6,求x的值。
A. -2B. 1C. 4D. 83. 在平面直角坐标系中,若点A的坐标为(3, 4),则点A关于x轴的对称点的坐标为?A. (3, -4)B. (-3, -4)C. (-3, 4)D. (3, 4)4. 若(a + b) ÷ (a - b) = 5,且a ≠ b,则(a² - b²)的值为多少?A. 5B. 10C. 15D. 205. 在一个边长为6cm的正方形中,画出其对角线后,形成了一个直角三角形。
求其斜边(对角线)的长度。
A. 3√2B. 6√2C. 9√2D. 12√26. 已知sinθ = 3/5,求cosθ的值。
A. 3/5B. 4/5C. √24/5D. √16/257. (81)^(1/4) - (64)^(1/3) 的值为多少?A. 3/2B. 5/3C. 7/4D. 9/58. 设直线y = kx - 2与x轴交于点A,与y轴交于点B,若AB的长度为5,求k的值。
A. 1B. 2C. 3D. 49. 若a:b = 2:3,b:c = 4:5,求a:c的值。
A. 2:3B. 4:5C. 8:15D. 16:2510. 一个三位数除以11,商是8,余数是7。
这个三位数的百位、十位和个位分别是多少?A. 2, 9, 7B. 3, 8, 7C. 4, 7, 9D. 5, 7, 8第二部分:填空题(共10小题,每小题4分,共40分)1. 3/4 = ____%2. (27)^(2/3) = ____3. sin30° + cos60° = ____4. 5x + 3 = 18,求x的值。
5. 等差数列的首项为3,公差为4,求其第5项。
2022年江苏省常州市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.sin65°与 cos26°之间的 系是( )A .sin65°<cos26°B .sin65°>cos26°C .sin65°= cos26°D .sin65°+cos26°= 1 2.把ad bc =写成比例式,错误的是( ) A .a:b=c:dB .b :d=a :cC .b:a=d:cD .b:d=c:a 3.抛物线2y ax =和22y x =的形状相同,则 a 的值是( )A .2B .-2C .2±D . 不确定 4.如图,1l ∥2l ,△ABC 为等边三角形,∠ABD=25°,则∠ACE 的度数是( )A .45°B .35°C .25°D .15°5. 一副三角板按如图方式摆放,且∠1 的度数比∠2 的度数大50°,若设∠1 =x °,∠2 = y °,则可得到方程组为( )A . 50180x y x y =-⎧⎨+=⎩B . 50180x y x y =+⎧⎨+=⎩C . 5090x y x y =-⎧⎨+=⎩D . 5090x y x y =+⎧⎨+=⎩6.以12x y =-⎧⎨=⎩为解的二元一次方程组( ) A . 有且只有一个B . 有且只有两个C . 有且只有三个D . 有无数个 7.计算23(2)a -的结果是( )A .56a -B .66a -C .58a -D .68a - 二、填空题8.一个正方体的每个面上都写一个汉字,这个正方体的平面展开图如图所示,则这个正方体中与“菏”字相对的面上的字为__________.9.一位画家把边长为1米的7个相同正方体摆成如图的形式,然后把露出的表面涂上颜色,那涂色面积为 米2. 10.当你乘坐的车沿一条平坦的路向前行驶时,你前方那些高一些的建筑物好像“沉”到了位于它们前面那些矮一些的建筑物后面去了.如图所示,当你所在的位置在 范围内时,你会看到后面那座高大的建筑物.11.已知3x=4y ,则yx =________. 12.正方形ABCD 中,对角线AC=8 cm ,点P 是AB 边上任意一点,则P 到AC ,BD 的距离之和为 .13.如果不等式2(1)3x a --≤的正整数解是 1、2、3,那么a 的取值范围是 .14.若不等式组2123x a x b -<⎧⎨->⎩的解为22x -<<,则(1)(1)a b +-的值等于 . 15. 如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,则∠C= .16.若0132=++x x 则x x312+= . 17.若=,,则b a b b a ==+-+-01222.三、解答题18.如图所示,一 个猎人在站在土丘上寻找猎物,A 处有一小白兔,一旦被猎人发现一定会被猎取,聪明的小免躲在什么范围内能逃过猎人的视线?请画图说明.19.图l 是“口子窖”酒的一个由铁皮制成的包装底盒,它是一个无盖的六棱柱形状的盒子(如图2),侧面是矩形或正方形.经测量,底面六边形有三条边的长是9cm ,有三条边的长是3cm ,每个内角都是120º,该六棱校的高为3cm .现沿它的侧棱剪开展平,得到如图3的平面展开图.(1)制作这种底盒时,可以按图4中虚线裁剪出如图3的模片.现有一块长为17.5cm、宽为16.5cm的长方形铁皮,请问能否按图4的裁剪方法制作这样的无盖底盒?并请你说明理由;(2)如果用一块正三角形铁皮按图5中虚线裁剪出如图3的模片,那么这个正三角形的边长至少应为cm.(说明:以上裁剪均不计接缝处损耗.)20.已一段铁丝长为 80 cm,把它弯成半径为160cm的一段圆弧,求铁丝两端间的距离.21.某超市销售一种商品,每件商品的成本是20元.经统计销售情况发现,当这种商品的单价定为40元时,每天售出200件.在此基础上,假设这种商品的单价每降低1元,每天就会多售出20件.(1)用代数式表示,这种商品的单价为x元(x<40)时,销售1件该商品的利润和每天销售该商品的数量;(2)当商品单价定为多少时,该超市每天销售这种商品获得的利润为4500元.22.已知:如图,矩形ABCD的对角线BD,AC相交于点0,EF⊥BD于0,交AD于点E,交BC于点F,且EF=BF.求证:OF=CF.23.如图所示,是两个正五边形,如果想密铺,还需要怎么样的多边形?24.小华家距离学校 2.4 km,某一天小华从家中出发去上学,恰好行走到一半的路程时,发现离到校时间只有 12 min 了.如果小华要按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?25.k为何值时,代数式2(1)3k-的值不大于代数式156k-的值.59k<26.请你在如图所示的方格纸中,画一个与左上角已有图形全等的图形.27.如图,已知 0是直线AD 上的一点,∠A0B 、∠BOC 、∠COD 三个角从小到大依次相差25°,求这三个角的度数.28.计算: 36464; 33128-- (3)200812316()(1)2--+-;(4)2223--结果保留 3个有效数字).29.一正方形的面积为 10cm 2,求以这个正方形的边为直径的圆的面积. (π取 3.14)30. 一位同学想利用树影测出树高,他在某时刻测得直立的标杆高1米,影长是0.9米,但他去测树影时,发现树影的上半部分落在墙CD 上,(如图所示)他测得BC =2.7米,CD=1.2米.你能帮他求出树高为多少米吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.B5.D6.D7.D二、填空题8.加9.2310.BA4312.4 cm13.13a≤<14.-1415.38.5°16.-117.2,1三、解答题18.如图所示,小兔躲在 BC区域内能逃过猎人的视线.19.(1)能.理由:由题设可知,图4中长方形的宽为63+6<16.5,长方形的长为12+33 <17.5.故长为17.5 cm、宽为16.5 cm的长方形铁皮,能按图4的裁剪方法制成这样的无盖底盒.(2)63+15.20.如图所示:圆弧所在的圆心角=1808090160oππ⨯=⨯,∵OA=OB=160cm,∠AOB=90°,∴AB=160221.(1)x-20;200+(40-x)×20;(2)(x-20)(1000-20x)=4500,x=35.22.证△AE0≌△CFO,OF=12BF,∠FCO=30°正十边形24.6 km/h25.59k<26.略27.设∠AOB=x,则∠BOC=25°+x,∠COD=25°+ 25°x.根据题意,得∠AOB +∠BOC+∠COD=180°,即x+ 25°+x + 25°+ 25°+x=180°解得x=35°.∴∠AOB=35°,∠BOC=60°,∠COD=85°28.(1)4;(2)32- (3) -14;(4) -3.5029.7. 85cm2 30.4.2m。
2022年江苏省常州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.2022的相反数是()A.2022 B.﹣2022 C.D.2.若二次根式有意义,则实数x的取值范围是()A.x≥1 B.x>1 C.x≥0 D.x>03.下列图形中,为圆柱的侧面展开图的是()A.B.C.D.4.如图,在△ABC中,D、E分别是AB、AC的中点.若DE=2,则BC的长是()A.3 B.4 C.5 D.65.某城市市区人口x万人,市区绿地面积50万平方米,平均每人拥有绿地y平方米,则y与x之间的函数表达式为()A.y=x+50 B.y=50x C.y=D.y=6.如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行7.在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点A1(1,2),则点A2的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)8.某汽车评测机构对市面上多款新能源汽车的0~100km/h的加速时间和满电续航里程进行了性能评测,评测结果绘制如下,每个点都对应一款新能源汽车的评测数据.已知0~100km/h的加速时间的中位数是ms,满电续航里程的中位数是nkm,相应的直线将平面分成了①、②、③、④四个区域(直线不属于任何区域).欲将最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若以上两组数据的中位数均保持不变,则这两个点可能分别落在()A.区域①、②B.区域①、③C.区域①、④D.区域③、④二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.化简:=.10.计算:m4÷m2=.11.分解因式:x2y+xy2=.12.2022年5月22日,中国科学院生物多样性委员会发布《中国生物物种名录》2022版,共收录物种及种下单元约138000个.数据138000用科学记数法表示为.13.如图,数轴上的点A、B分别表示实数a、b,则(填“>”、“=”或“<”).14.如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD的面积是.15.如图,将一个边长为20cm的正方形活动框架(边框粗细忽略不计)扭动成四边形ABCD,对角线是两根橡皮筋,其拉伸长度达到36cm时才会断裂.若∠BAD=60°,则橡皮筋AC断裂(填“会”或“不会”,参考数据:≈1.732).16.如图,△ABC是⊙O的内接三角形.若∠ABC=45°,AC=,则⊙O的半径是.17.如图,在四边形ABCD中,∠A=∠ABC=90°,DB平分∠ADC.若AD=1,CD=3,则sin∠ABD=.18.如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt△DEF中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(8分)计算:(1)()2﹣(π﹣3)0+3﹣1;(2)(x+1)2﹣(x﹣1)(x+1).20.(6分)解不等式组,并把解集在数轴上表示出来.21.(8分)为减少传统塑料袋对生态环境的破坏,国家提倡使用可以在自然环境下(特定微生物、温度、湿度)较快完成降解的环保塑料袋.调查小组就某小区每户家庭1周内环保塑料袋的使用情况进行了抽样调查,使用情况为A(不使用)、B(1~3个)、C(4~6个)、D(7个及以上),以下是根据调查结果绘制的统计图的一部分.(1)本次调查的样本容量是,请补全条形统计图;(2)已知该小区有1500户家庭,调查小组估计:该小区1周内使用7个及以上环保塑料袋的家庭约有225户.调查小组的估计是否合理?请说明理由.22.(8分)在5张相同的小纸条上,分别写有语句:①函数表达式为y=x;②函数表达式为y=x2;③函数的图像关于原点对称;④函数的图像关于y轴对称;⑤函数值y随自变量x增大而增大.将这5张小纸条做成5支签,①、②放在不透明的盒子A中搅匀,③、④、⑤放在不透明的盒子B中搅匀.(1)从盒子A中任意抽出1支签,抽到①的概率是;(2)先从盒子A中任意抽出1支签,再从盒子B中任意抽出1支签.求抽到的2张小纸条上的语句对函数的描述相符合的概率.23.(8分)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图像分别与x轴、y轴交于点A、B,与反比例函数y=(x>0)的图像交于点C,连接OC.已知点B(0,4),△BOC的面积是2.(1)求b、k的值;(2)求△AOC的面积.24.(8分)如图,点A在射线OX上,OA=a.如果OA绕点O按逆时针方向旋转n°(0<n≤360)到OA′,那么点A′的位置可以用(a,n°)表示.(1)按上述表示方法,若a=,n=37,则点A′的位置可以表示为;(2)在(1)的条件下,已知点B的位置用(3,74°)表示,连接A′A、A′B.求证:A′A=A′B.25.(8分)第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.26.(10分)在四边形ABCD中,O是边BC上的一点.若△OAB≌△OCD,则点O叫做该四边形的“等形点”.(1)正方形“等形点”(填“存在”或“不存在”);(2)如图,在四边形ABCD中,边BC上的点O是四边形ABCD的“等形点”.已知CD=4,OA=5,BC =12,连接AC,求AC的长;(3)在四边形EFGH中,EH∥FG.若边FG上的点O是四边形EFGH的“等形点”,求的值.27.(10分)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:(1)求二次函数y=ax2+bx+3的表达式;(2)将二次函数y=ax2+bx+3的图像向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q的图像,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y=,实数k的取值范围是;(3)A、B、C是二次函数y=ax2+bx+3的图像上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图像的对称轴对称,求∠ACB的度数.28.(10分)现有若干张相同的半圆形纸片,点O是圆心,直径AB的长是12cm,C是半圆弧上的一点(点C与点A、B不重合),连接AC、BC.(1)沿AC、BC剪下△ABC,则△ABC是三角形(填“锐角”、“直角”或“钝角”);(2)分别取半圆弧上的点E、F和直径AB上的点G、H.已知剪下的由这四个点顺次连接构成的四边形是一个边长为6cm的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);(3)经过数次探索,小明猜想,对于半圆弧上的任意一点C,一定存在线段AC上的点M、线段BC上的点N和直径AB上的点P、Q,使得由这四个点顺次连接构成的四边形是一个边长为4cm的菱形.小明的猜想是否正确?请说明理由.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.2022的相反数是()A.2022 B.﹣2022 C.D.【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解答】解:2022的相反数是﹣2022,故选:B.【点评】本题考查了相反数,掌握相反数的定义是解答本题的关键.2.若二次根式有意义,则实数x的取值范围是()A.x≥1 B.x>1 C.x≥0 D.x>0【分析】根据二次根式有意义的条件,可得:x﹣1≥0,据此求出实数x的取值范围即可.【解答】解:∵二次根式有意义,∴x﹣1≥0,解得:x≥1.故选:A.【点评】此题主要考查了二次根式有意义的条件,解答此题的关键是要明确:二次根式中的被开方数是非负数.3.下列图形中,为圆柱的侧面展开图的是()A.B.C.D.【分析】从圆柱的侧面沿它的一条母线剪开,可以圆柱的侧面展开图的是长方形.【解答】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,得到其侧面展开图是对边平行且相等的四边形;又有母线垂直于上下底面,故可得是长方形.故选:D.【点评】本题考查了几何体的展开图.解题的关键是明确圆柱的侧面展开图是长方形.4.如图,在△ABC中,D、E分别是AB、AC的中点.若DE=2,则BC的长是()A.3 B.4 C.5 D.6【分析】根据三角形中位线定理解答即可.【解答】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵DE=2,∴BC=4,故选:B.【点评】本题考查的是三角形中位线定理,掌握三角形中位线等于第三边的一半是解题的关键.5.某城市市区人口x万人,市区绿地面积50万平方米,平均每人拥有绿地y平方米,则y与x之间的函数表达式为()A.y=x+50 B.y=50x C.y=D.y=【分析】根据题意列出函数关系式即可得出答案.【解答】解:由城市市区人口x万人,市区绿地面积50万平方米,则平均每人拥有绿地y=.故选:C.【点评】本题主要考查了函数关系式,根据题意列出函数关系式进行求解是解决本题的关键.6.如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行【分析】根据生活经验结合数学原理解答即可.【解答】解:小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是垂线段最短,故选:A.【点评】本题主要考查了垂线段最短的性质,熟练掌握数学和生活密不可分的关系是解答本题的关键.7.在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点A1(1,2),则点A2的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.【解答】解:∵点A与点A1关于x轴对称,已知点A1(1,2),∴点A的坐标为(1,﹣2),∵点A与点A2关于y轴对称,∴点A2的坐标为(﹣1,﹣2),故选:D.【点评】此题主要考查了关于x轴、y轴对称的点的坐标规律,关键是熟练掌握点的变化规律,不要混淆.8.某汽车评测机构对市面上多款新能源汽车的0~100km/h的加速时间和满电续航里程进行了性能评测,评测结果绘制如下,每个点都对应一款新能源汽车的评测数据.已知0~100km/h的加速时间的中位数是ms,满电续航里程的中位数是nkm,相应的直线将平面分成了①、②、③、④四个区域(直线不属于任何区域).欲将最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若以上两组数据的中位数均保持不变,则这两个点可能分别落在()A.区域①、②B.区域①、③C.区域①、④D.区域③、④【分析】根据中位数定义,逐项判断.【解答】解:最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若这两个点分别落在区域①、②,则0~100km/h的加速时间的中位数将变小,故A不符合题意;若这两个点分别落在区域①、③,则两组数据的中位数可能均保持不变,故B符合题意;若这两个点分别落在区域①,④,则满电续航里程的中位数将变小,故C不符合题意;若这两个点分别落在区域③,④,则0~100km/h的加速时间的中位数将变大,故D不符合题意;故选:B.【点评】本题考查数据的中位数,解题的关键是掌握中位数的概念:一组数据中,正中间的数或中间两个数的平均数是这种数据的中位数..二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.化简:= 2 .【分析】直接利用立方根的定义即可求解.【解答】解:∵23=8∴=2.故填2.【点评】本题主要考查立方根的概念,如果一个数x的立方等于a,那么x是a的立方根.10.计算:m4÷m2=m2.【分析】利用同底数幂的除法的法则进行运算即可.【解答】解:m4÷m2=m4﹣2=m2.故答案为:m2.【点评】本题主要考查同底数幂的除法,解答的关键是熟记同底数幂的除法的法则:底数不变,指数相减.11.分解因式:x2y+xy2=xy(x+y).【分析】直接提取公因式xy,进而分解因式得出答案.【解答】解:x2y+xy2=xy(x+y).故答案为:xy(x+y).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.2022年5月22日,中国科学院生物多样性委员会发布《中国生物物种名录》2022版,共收录物种及种下单元约138000个.数据138000用科学记数法表示为 1.38×105.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:138000=1.38×105.故答案为:1.38×105.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.13.如图,数轴上的点A、B分别表示实数a、b,则>(填“>”、“=”或“<”).【分析】比较两个正有理数,数大的绝对值反而小.也可以利用特殊值代入法求解.【解答】解:令a=,b=.则:=,=;∵>;∴>.故答案是:>.【点评】本题考查两个有理数的大小,特殊值代入法是解填空题不错的选择.14.如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD的面积是 2 .【分析】由题意可得CE是△ACD的中线,则有S△ACD=2S△AEC=2,再由AD是△ABC的中线,则有S△ABD=S,即得解.△ACD【解答】解:∵E是AD的中点,∴CE是△ACD的中线,∴S△ACD=2S△AEC,∵△AEC的面积是1,∴S△ACD=2S△AEC=2,∵AD是△ABC的中线,∴S△ABD=S△ACD=2.故答案为:2.【点评】本题主要考查三角形的面积,解答的关键是明确三角形的中线把原三角形分成面积相等的两部分.15.如图,将一个边长为20cm ABCD,对角线是两根橡皮筋,其拉伸长度达到36cm时才会断裂.若∠BAD=60°,则橡皮筋AC不会断裂(填“会”或“不会”,参考数据:≈1.732).【分析】设AC与BD相交于点O,根据菱形的性质可得AC⊥BD,AC=2AO,OD=BD,AD=AB=20cm,从而可得△ABD是等边三角形,进而可得BD=20cm,然后在在Rt△ADO中,利用勾股定理求出AO,从而求出AC的长,即可解答.【解答】解:设AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,AC=2AO,OD=BD,AD=AB=20cm,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=20cm,∴DO=BD=10(cm),在Rt△ADO中,AO===10(cm),∴AC=2AO=20≈34.64(cm),∵34.64cm<36cm,∴橡皮筋AC不会断裂,故答案为:不会.【点评】本题考查了菱形的性质,勾股定理的应用,熟练掌握菱形的性质是解题的关键.16.如图,△ABC是⊙O ABC=45°,AC=,则⊙O的半径是 1 .【分析】连接AO并延长交⊙O于点D,连接CD,根据直径所对的圆周角是直角可得∠ACD=90°,再利用同弧所对的圆周角相等可得∠ADC=45°,然后在Rt△ACD中,利用锐角三角函数的定义求出AD的长,从而求出⊙O的半径,即可解答.【解答】解:连接AO并延长交⊙O于点D,连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ADC=∠ABC=45°,∴AD===2,∴⊙O的半径是1,故答案为:1.【点评】本题考查了三角形的外接圆与外心,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.17.如图,在四边形ABCD中,∠A=∠ABC=90°,DB平分∠ADC.若AD=1,CD=3,则sin∠ABD=.【分析】过点D作DE⊥BC,垂足为E,如图,由已知∠A=∠ABC=90°,可得AD∥BC,由平行线的性质可得∠ADB=∠CBD,根据角平分线的定义可得∠ADB=∠CDB,则可得∠CDB=∠CBD=3,根据矩形的性质可得AD=BE,即可得CE=BC﹣BE,在Rt△CDE中,根据勾股定理DE=,在Rt△ADB中,根据勾股定理可得,根据正弦三角函数的定义进行求解即可得出答案.【解答】解:过点D作DE⊥BC,垂足为E,如图,∵∠A=∠ABC=90°,∴AD∥BC,∴∠ADB=∠CBD,∵DB平分∠ADC,∴∠CDB=∠CBD=3,∵AD=BE=1,∴CE=BC﹣BE=3﹣1=2,在Rt△CDE中,DE===,∵DE=AB,在Rt△ADB中,==,∴sin∠ABD==.故答案为:.【点评】本题主要考查了解直角三角形,根据题意作辅助线构造直角三角形应用解直角三角形的方法进行求解是解决本题的关键.18.如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt△DEF中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是21 .【分析】如图,连接CF交AB于点M,连接CF′交AB于点N,过点F作FG⊥AB于点H,过点F′作F′H ⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.求出梯形的上下底以及高,可得结论.【解答】解:如图,连接CF交AB于点M,连接CF′交AB于点N,过点F作FG⊥AB于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.在Rt△DEF中,DF=3,EF=4,∴DE===5,在Rt△ABC中,AC=9,BC=12,∴AB===15,∵•DF•EF=•EF•GF,∴FG=,∴BG===,∴GE=BE﹣BG=,AH=GE=,∴F′H=FG=,∴FF′=GH=AB﹣BG﹣AH=15﹣5=10,∵BF∥AC,∴==,∴BM=AB=,同法可证AN=AB=,∴MN=15﹣﹣=,∴Rt△ABC的外部被染色的区域的面积=×(10+)×=21,故答案为:21.【点评】本题考查勾股定理,梯形的面积,平行线分线段成比例定理等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题在的压轴题.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(8分)计算:(1)()2﹣(π﹣3)0+3﹣1;(2)(x+1)2﹣(x﹣1)(x+1).【分析】(1)利用实数的运算法则、零指数幂的性质、负整数指数幂的性质分别化简得出答案;(2)利用完全平方公式,以及平方差公式化简,去括号合并即可得出答案.【解答】解:(1)原式=2﹣1+=;(2)原式=(x2+2x+1)﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2.【点评】此题主要考查了整式的运算、实数运算,正确掌握相关运算法则是解题的关键.20.(6分)解不等式组,并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由5x﹣10≤0,得:x≤2,由x+3>﹣2x,得:x>﹣1,则不等式组的解集为﹣1<x≤2,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)为减少传统塑料袋对生态环境的破坏,国家提倡使用可以在自然环境下(特定微生物、温度、湿度)较快完成降解的环保塑料袋.调查小组就某小区每户家庭1周内环保塑料袋的使用情况进行了抽样调查,使用情况为A(不使用)、B(1~3个)、C(4~6个)、D(7个及以上),以下是根据调查结果绘制的统计图的一部分.(1)本次调查的样本容量是100 ,请补全条形统计图;(2)已知该小区有1500户家庭,调查小组估计:该小区1周内使用7个及以上环保塑料袋的家庭约有225户.调查小组的估计是否合理?请说明理由.【分析】(1)用A类户数除以它所占的百分比得到样本容量,然后计算出C类和B类户数后补全条形统计图;(2)利用样本估计作图,由于1500×=225(户),则可估计该小区1周内使用7个及以上环保塑料袋的家庭约有225户,从而可判断调查小组的估计合理.【解答】解:(1)20÷20%=100,所以本次调查的样本容量为C类户数为100×25%=25(户),B类户数为100﹣20﹣25﹣15=40(户),补全条形统计图为:故答案为:100;(2)调查小组的估计合理.理由如下:因为1500×=225(户),所以根据该小区1周内使用7个及以上环保塑料袋的家庭约有225户.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体.22.(8分)在5张相同的小纸条上,分别写有语句:①函数表达式为y=x;②函数表达式为y=x2;③函数的图像关于原点对称;④函数的图像关于y轴对称;⑤函数值y随自变量x增大而增大.将这5张小纸条做成5支签,①、②放在不透明的盒子A中搅匀,③、④、⑤放在不透明的盒子B中搅匀.(1)从盒子A中任意抽出1支签,抽到①的概率是;(2)先从盒子A中任意抽出1支签,再从盒子B中任意抽出1支签.求抽到的2张小纸条上的语句对函数的描述相符合的概率.【分析】(1)直接根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)从盒子A中任意抽出1支签,抽到①的概率是,故答案为:;(2)列表如下:由表知,共有6种等可能结果,其中抽到的2张小纸条上的语句对函数的描述相符合的①③、①⑤、②④这3个,所以2张小纸条上的语句对函数的描述相符合的概率为=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图像分别与x轴、y轴交于点A、B,与反比例函数y=(x>0)的图像交于点C,连接OC.已知点B(0,4),△BOC的面积是2.(1)求b、k的值;(2)求△AOC的面积.【分析】(1)由点B(0,4)在一次函数y=2x+b的图象上,代入求得b=4,由△BOC的面积是2得出C 的横坐标为1,代入直线关系式即可求出C的坐标,从而求出k的值;(2)根据一次函数的解析式求得A的坐标,然后根据三角形的面积公式代入计算即可.【解答】解:(1)∵一次函数y=2x+b的图象过点B(0,4),∴b=4,∴一次函数为y=2x+4,∵OB=4,△BOC的面积是2.∴OB•x C=2,即=2,∴x C=1,把x=1代入y=2x+4得,y=6,∴C(1,6),∵点C在反比例函数y=(x>0)的图象上,∴k=1×6=6;(2)把y=0代入y=2x+4得,2x+4=0,解得x=﹣2,∴A(﹣2,0),∴OA=2,∴S△AOC==6.【点评】本题是一次函数与反比例函数的交点问题,考查了待定系数法求函数的解析式,一次函数图象上点的坐标特征,三角形的面积,求出C的坐标是解题的关键.24.(8分)如图,点A在射线OX上,OA=a.如果OA绕点O按逆时针方向旋转n°(0<n≤360)到OA′,那么点A′的位置可以用(a,n°)表示.(1)按上述表示方法,若a=3,n=37,则点A′的位置可以表示为(3,37°);(2)在(1)的条件下,已知点B的位置用(3,74°)表示,连接A′A、A′B.求证:A′A=A′B.【分析】(1)根据点的位置定义,即可得出答案;(2)画出图形,证明△AOA′≌△BOA′(SAS),即可由全等三角形的性质,得出结论.【解答】(1)解:由题意,得A′(a,n°),∵a=3,n=37,∴A′(3,37°),故答案为:(3,37°);(2)证明:如图:∵A′(3,74°),B(3,74°),∴∠AOA′=37°,∠AOB=74°,OA=OB=3,∴∠A′OB=∠AOB﹣∠AOA′=74°﹣37°=37°,∵OA′=OA′,∴△AOA′≌△BOA′(SAS),∴A′A=A′B.【点评】本题考查全等三角形的判定与性质,新定义题目,旋转的性质,理解题意,熟练掌握全等三角形的判定与性质是解题的关键.25.(8分)第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是2022 ;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.【分析】(1)根据已知,从个位数字起,将二进制的每一位数分别乘以80,81,82,83,再把所得结果相加即可得解;(2)根据n进制数和十进制数的计算方法得到关于n的方程,解方程即可求解.【解答】解:(1)3746=3×83+7×82+4×81+6×80=1536+448+32+6=2022.故八进制数字3746换算成十进制是2022.故答案为:2022;(2)依题意有:n2+4×n1+3×n0=120,解得n1=9,n2=﹣13(舍去).故n的值是9.【点评】本题主要考查因式分解的应用,有理数的混合运算,解题的关键是弄清各个进制数转化为十进制数的计算方法.26.(10分)在四边形ABCD中,O是边BC上的一点.若△OAB≌△OCD,则点O叫做该四边形的“等形点”.(1)正方形不存在“等形点”(填“存在”或“不存在”);(2)如图,在四边形ABCD中,边BC上的点O是四边形ABCD的“等形点”.已知CD=4,OA=5,BC =12,连接AC,求AC的长;(3)在四边形EFGH中,EH∥FG.若边FG上的点O是四边形EFGH的“等形点”,求的值.【分析】(1)根据“等形点”的定义可知△OAB≌△OCD,则∠OAB=∠C=90°,而O是边BC上的一点.从而得出正方形不存在“等形点”;(2)作AH⊥BO于H,由△OAB≌△OCD,得AB=CD=4,OA=OC=5,设OH=x,则BH=7﹣x,由勾股定理得,(4)2﹣(7﹣x)2=52﹣x2,求出x的值,再利用勾股定理求出AC的长即可;(3)根据“等形点”的定义可得△OEF≌△OGH,则∠EOF=∠HOG,OE=OG,∠OGH=∠OEF,再由平行线性质得OE=OH,从而推出OE=OH=OG,从而解决问题.【解答】解:(1)∵四边形ABCD是正方形,∴∠C=90°,∵△OAB≌△OCD,∴∠OAB=∠C=90°,∵O是边BC上的一点.∴正方形不存在“等形点”,故答案为:不存在;(2)作AH⊥BO于H,∵边BC上的点O是四边形ABCD的“等形点”,∴△OAB≌△OCD,∴AB=CD=4,OA=OC=5,∵BC=12,∴BO=7,设OH=x,则BH=7﹣x,由勾股定理得,(4)2﹣(7﹣x)2=52﹣x2,解得,x=3,∴OH=3,∴AH=4,∴CO=8,在Rt△CHA中,AC===4;(3)如图,∵边FG上的点O是四边形EFGH的“等形点”,∴△OEF≌△OGH,∴∠EOF=∠HOG,OE=OG,∠OGH=∠OEF,∵EH∥FG,∴∠HEO=∠EOF,∠EHO=∠HOG,∴∠HEO=∠EHO,∴OE=OH,∴OH=OG,∴OE=OF,∴=1.【点评】本题是新定义题,主要考查了全等三角形的性质,正方形的性质,勾股定理,平行线的性质等知识,理解新定义,并能熟练掌握全等三角形的性质是解题的关键.2(1)求二次函数y=ax2+bx+3的表达式;(2)将二次函数y=ax2+bx+3的图像向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q的图像,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y=y=﹣x2+6x﹣5(答案不唯一),实数k的取值范围是4≤k≤5 ;(3)A、B、C是二次函数y=ax2+bx+3的图像上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图像的对称轴对称,求∠ACB的度数.【分析】(1)用待定系数法可得二次函数的表达式为y=﹣x2﹣2x+3;(2)将二次函数y=﹣x2﹣2x+3的图像向右平移k(k>0)个单位得y=﹣(x﹣k+1)2+4的图象,新图象的对称轴为直线x=k﹣1,根据当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小,且抛物线开口向下,知3≤k﹣1≤4,得4≤k≤5,即可得到答案;(3)求出A(m,﹣m2﹣2m+3),B(m+1,m2﹣m),C(﹣2﹣m,﹣m2﹣2m+3),过B作BH⊥AC于H,可得。
常州市中考数学试题及答案一、选择题1. 以下哪个数是正数?A. -3B. -2C. 0D. 12. 已知a = 2,b = -3,c = 4,求a + b - c的值。
A. -5B. -1C. -9D. 53. 下列哪个分式的值最大?A. 4/5B. 3/4C. 2/3D. 1/24. 下列哪个数是无理数?A. 3.14B. √9C. -2D. 2/35. 若一个边长为x的正方形的周长等于另一个边长为8的矩形的周长,求x的值。
A. 8B. 4C. 16D. 32二、填空题6. 若a:b = 3:4,b:c = 2:5,求a:c的值。
7. 若一个正方形的边长为x,则它的面积为________。
8. 若2x + 4 = 10,求x的值。
9. 若一个等腰直角三角形的斜边长为5,求其腰长。
10. 若4x - 5 = 3x + 1,求x的值。
三、解答题11. 甲、乙两人同时从A点出发,以相同的速度沿同样的方向相向而行。
甲比乙早2小时到达B点。
如果甲以20km/h的速度行驶,则乙以多少km/h的速度行驶?12. 某商品原价为120元,现在进行打折促销,打8折后的价格为多少?13. 某座大桥全长300米,两端的桥墩高度相同,桥墩与桥面的夹角为30°,求桥墩高度。
14. 某校图书馆有1000本书,其中故事书的数量是科普书的2倍,而百科全书的数量是故事书的1.5倍。
求故事书、科普书和百科全书各有多少本。
15. 某公司员工的平均年龄为32岁,平均年龄前进了5岁。
其中,男职工平均年龄为30岁,平均年龄前进了3岁,女职工平均年龄为35岁,平均年龄前进了7岁。
求该公司男女职工各有多少人?答案解析:1. D. 12. A. -53. A. 4/54. B. √95. C. 166. 3/57. x^28. x = 39. 5√210. x = 611. 甲以20km/h的速度行驶,乙以12km/h的速度行驶。
12. 打折后的价格为96元。
常州市二00六年初中毕业、升学统一考试数 学注意事项:1、全卷共8页,满分120分,考试时间120分钟。
2、答卷前将密封线内的项目填写清楚,并将座位号填写在试卷规定的位置上。
3、用蓝色或黑色钢笔、圆珠笔将答案直接填写在试卷上。
4、考生在答题过程中,可以使用CZ1206、HY82型函数计算器,若试题计算结果没有要求取近似值,则计算结果取精确值(保留根号和π)。
一、填空题(本大题每个空格1分,共18分,把答案填写在题中横线上) 1.3的相反数是 ,5-的绝对值是 ,9的平方根是 。
2.在函数1-=x y 中,自变量x 的取值范围是 ;若分式12--x x 的值为零,则=x 。
3.若α∠的补角是120°,则α∠= °,=αcos 。
4.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,7,9,则这五次射击的平均成绩是 环,中位数 环,方差是 环2。
5.已知扇形的圆心角为120°,半径为2cm ,则扇形的弧长是 cm ,扇形的面积是 2cm 。
6.已知反比例函数()0≠=k xky 的图像经过点(1,2-),则这个函数的表达式是 。
当0 x 时,y 的值随自变量x 值的增大而 (填“增大”或“减小”)7、如图,在△ABC 中,D 、E 分别是AB 和AC 的中点,F 是BC 延长线上的一点,DF 平分CE 于点G ,1=CF ,则=BC , △ADE 与△ABC 的周长之比为 ,△CFG 与△BFD 的面积之比为 。
8.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米。
二、选择题(下列各题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后【 】内,每小题2分,共18分) 9.下列计算正确的是 【 】 A .123=-x x B .2x x x =∙ C .2222x x x =+ D .()423a a -=-第7题B 第8题10.如图,已知⊙O 的半径为5mm ,弦mm AB 8=,则圆心O 到AB 的距离是 【 】A .1 mmB .2 mmC .3 mmD .4 mm 11.小刘同学用10元钱买两种不同的贺卡共8张,单价分别是1元与2元,设1元的贺卡为x 张,2元的贺卡为y 张,那么x 、y 所适合的一个方程组是 【 】A .⎪⎩⎪⎨⎧=+=+8102y x y xB .⎪⎩⎪⎨⎧=+=+1028102y x y x C .⎩⎨⎧=+=+8210y x y x D .⎩⎨⎧=+=+1028y x y x 12.刘翔为了备战2008年奥运会,刻苦进行110米跨栏训练,为判断他的成绩是否稳定,教练对他10次训练的成绩进行统计分析,则教练需了解刘翔这10次成绩的【 】 A .众数 B .方差 C .平均数 D .频数 13、图1表示正六棱柱形状的高大建筑物,图2中的阴影部分表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在【 】A .P 区域B .Q 区域C .M 区域D .N 区域14、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 【 】224113第14题ABCD15.锐角三角形的三个内角是∠A 、∠B 、∠C ,如果B A ∠+∠=∠α,C B ∠+∠=∠β,A C ∠+∠=∠γ,那么α∠、β∠、γ∠这三个角中 【 】A .没有锐角B .有1个锐角C .有2个锐角D .有3个锐角 16、如果0,0,0 b a b a +,那么下列关系式中正确的是 【 】 A .a b b a -- B .b b a a -- C .a b a b -- D .a b b a --17.已知:如图1,点G 是BC 的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边线运动,运动路径为:H F E D C G →→→→→,相应的△ABP 的面积)(2cm y 关于运动时间)(s t 的函数图像如图2,若cm AB 6=,则下列四个结论中正确的个数有第10题第13题图2图1【 】图1F C①图1中的BC 长是8cm ②图2中的M 点表示第4秒时y 的值为242cm ③图1中的CD 长是4cm ④图2中的N 点表示第12秒时y 的值为182cm A .1个 B .2个 C .3个 D .4个三、解答题(本大题共2小题,共20分,解答应写出演算步骤) 18.(本小题满分10分)计算或化简:(1)03260tan 33⎪⎭⎫⎝⎛-+︒+ (2)2422---m m m19.(本小题满分10分)解方程或解不等式组: (1)x x 211=- (2)⎩⎨⎧-≥+≤-1)1(212x x x四、解答题(本大题共2小题,共12分,解答应写出证明过程) 20.(本小题满分5分)已知:如图,在四边形ABCD 中,AC 与BD 相交与点O ,AB ∥CD ,CO AO =, 求证:四边形ABCD 是平行四边形。
D21.(本小题满分7分)已知:如图,△ABC 和△ECD 都是等腰直角三角形,︒=∠=∠90DCE ACB ,D 为AB 边上一点,求证:(1)△ACE ≌△BCD ;(2)222DE AE AD =+五、解答题(本大题共2小题,共15分,解答应写出文字说明,画出图形或演算步骤) 22.(本小题满分7分)小刘对本班同学的业余兴趣爱好进行了一次调查,她根据采集到的数据,绘制了下面的图1和图2请你根据图中提供的信息,解答下列问题:(1)在图1中,将“书画”部分的图形补充完整;(2)在图2中,求出“球类”部分所对应的圆心角的度数,并分别写出爱好“音乐”、“书画”、“其它“的人数占本班学生数的百分数;(3)观察图1和图2,你能得出哪些结论?(只要写出一条结论)图22468101214人数兴趣爱好内容球类书籍音乐其它图123.(本小题满分8分)小颖为九年级1班毕业联欢会设计了一个“配紫色“的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,两个转盘停止转动时,若有一个转盘的指针指向蓝色,另一个转盘的指针指向红色,则”配紫色“成功,游戏者获胜,求游戏者获胜的概率。
六、画图与探究(本大题共2小题,共12分) 24.(本小题满分6分)在平面直角坐标系中描出下列各点A (2,1),B (0,1),C (3,4--),D (6,3-),并将各点用线段一次连接构成一个四边形ABCD 。
(1)四边形ABCD 时什么特殊的四边形? 答:(2)在四边形ABCD 内找一点P ,使得△APB 、△BPC 、△CPD 、△APD 都是等腰三角形,请写出P 点的坐标。
25.(本小题满分6分)将正六边形纸片按下列要求分割(每次分割,纸片均不得有剩余); 第一次分割:将正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形在分割成一个正六边形和两个全等的正三角形;第二次分割:将第一次分割后所得的正六边形纸片分割成三个全等的菱形,然后选取其中的一个菱形在分割成一个正六边形和两个全等的正三角形;按上述分割方法进行下去……(1)请你在下图中画出第一次分割的示意图;(2)若原正六边形的面积为a ,请你通过操作和观察,将第1次,第2次,第3次分割后所得的正六边形的面积填入下表:(3)观察所填表格,并结合操作,请你猜想:分割后所得的正六边形的面积S 与分割次数a 有何关系?(S 用含a 和n 的代数式表示,不需要写出推理过程)。
七、解答题(本大题共3小题,共25分,解答应写出文字说明、证明或演算步骤) 26.(本小题满分7分)春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去天水湾风景区旅游?27.(本小题满分8分) 在平面直角坐标系中,已知二次函数k x a y +-=2)1(的图像与x 轴相交于点A 、B ,顶点为C ,点D 在这个二次函数图像的对称轴上,若四边形ABCD 时一个边长为2且有一个内角为60°的菱形,求此二次函数的表达式。
28.(本小题满分10分)如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B。
(1)点P在运动时,线段AB的长度页在发生变化,请写出线段AB长度的最小值,并说明理由;(2)在⊙O上是否存在一点Q,使得以Q、O、A、P为顶点的四边形时平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由。
常州市二00六年初中毕业、升学统一考试数学试题参考答案几平分标准一、填空题(每个空格1分,共18分)1.3-,5,3±; 2.1≥x ,2; 3.60,21; 4.8,8,2; 5.π34,π34; 6.xy 2-=,增大; 7.2,1∶2,1∶6; 8.120三、解答题(本大题共2小题,共20分,解答应写出演算步骤)18.解:(1)原式03260tan 33⎪⎭⎫ ⎝⎛-+︒+=133++= …………3分 132+= …………5分(2)原式2422---=m m m mm 42-= …………2分2= …………5分19、 解:(1)去分母,得)1(2-=x x …………1分 去括号,得22-=x x 整理,得 2-=-x2=x …………3分 经检验:2=x 是原方程得根 …………4分 ∴原方程得根是 2=x (2)()⎩⎨⎧-≥+≤-②①11212x x x解:由①,得1≤x …………2分由②,得23-≥x …………4分 所以原不等式得解集为123≤≤-x …………5分四、解答题(本大题共2小题,共12分,解答应写出证明过程) 20.(本小题满分5分)证明:∵ AB ∥CD∴ CDO ABO ∠=∠ …………1分∵ COD AOB COAO ∠=∠=D∴ △ABO ≌△CDO …………3分 ∴ CD AB = …………4分 ∴ 四边形ABCD 是平行四边形 …………5分21.(本小题满分7分)证明:(1) ∵ DCE ACB ∠=∠∴ ACE ACD BCD ACD ∠+∠=∠+∠ 即 ACE BCD ∠=∠ …………2分∵ EC DC AC BC ==,∴ △BCD ≌△ACE …………4分 (2)∵ BC AC ACB =︒=∠,90,∴ ︒=∠=∠45BAC B …………5分 ∵ △BCD ≌△ACE∴ ︒=∠=∠45CAE B∴ ︒=︒+︒=∠+∠=∠904545BAC CAE DAE …………6分 ∴ 222DE AE AD =+ …………7分五、解答题(第22题7分,第23题8分,共15分) 22.解:(1)画图正确 …………3分(2)︒=⨯︒126%35360,所以“球类”部分锁对应得圆心角得度数为126°,音乐30%,书画25%,其它10%; …………6分(3)只要合理就给分。