学案14 导数在研究函数中的应用
- 格式:doc
- 大小:386.50 KB
- 文档页数:10
函数与导数14 导数及其应用 恒成立及存在性问题一、具体目标: 1.导数在研究函数中的应用:①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(对多项式函数一般不超过三次)。
②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数一般不超过三次). 2.生活中的优化问题:会利用导数解决某些实际问题。
考点透析:1.以研究函数的单调性、单调区间、极值(最值)等问题为主,与不等式、函数与方程、函数的图象相结合;2.单独考查利用导数研究函数的某一性质以小题呈现,综合研究函数的性质以大题呈现;3.适度关注生活中的优化问题. 3.备考重点:(1) 熟练掌握导数公式及导数的四则运算法则是基础;(2) 熟练掌握利用导数研究函数的单调性、极值(最值)的基本方法,灵活运用数形结合思想、分类讨论思想、函数方程思想等,分析问题解决问题. 二、知识概述: 一)函数的单调性:1.设函数y =f (x )在某个区间内可导,如果0)(>'x f ,则函数y =f (x )为增函数;如果f ' (x )<0,则函数y =f (x )为减函数;如果恒有f ' ( x )=0,则y =f (x )为常函数.2.应当理解函数的单调性与可导性并无本质的联系,甚至具有单调性的函数并不一定连续.我们只是利用可导来研究单调性,这样就将研究的范围局限于可导函数.3.f (x )在区间I 上可导,那么0)(>'x f 是f (x )为增函数的充分条件,例如f (x )=x 3是定义于R 的增函数, 但 f '(0)=0,这说明f '(x )>0非必要条件.)(x f 为增函数,一定可以推出0)(≥'x f ,但反之不一定.4. 讨论可导函数的单调性的步骤: (1)确定)(x f 的定义域;【考点讲解】(2)求)(x f ',令0)(='x f ,解方程求分界点; (3)用分界点将定义域分成若干个开区间;(4)判断)(x f '在每个开区间内的符号,即可确定)(x f 的单调性.5.我们也可利用导数来证明一些不等式.如f (x )、g (x )均在[a 、b ]上连续,(a ,b )上可导,那么令h (x )=f (x )-g (x ),则h (x )也在[a ,b ]上连续,且在(a ,b )上可导,若对任何x ∈(a ,b )有h '(x )>0且 h (a )≥0,则当x ∈(a ,b )时 h (x )>h (a )=0,从而f (x )>g (x )对所有x ∈(a ,b )成立. 二)函数的极、最值: 1.函数的极值 (1)函数的极小值:函数y =f(x)在点x =a 的函数值f(a)比它在点x =a 附近其它点的函数值都小,f′(a)=0,而且在点x =a 附近的左侧f′(x)<0,右侧f′(x)>0,则点a 叫做函数y =f(x)的极小值点,f(a)叫做函数y =f(x )的极小值. (2)函数的极大值:函数y =f(x)在点x =b 的函数值f(b)比它在点x =b 附近的其他点的函数值都大,f′(b)=0,而且在点x =b 附近的左侧f′(x)>0,右侧f′(x)<0,则点b 叫做函数y =f(x)的极大值点,f(b)叫做函数y =f(x)的极大值. 极小值点,极大值点统称为极值点,极大值和极小值统称为极值. 2.函数的最值(1)在闭区间[a ,b ]上连续的函数f(x)在[a ,b ]上必有最大值与最小值.(2)若函数f(x)在[a ,b ]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a ,b ]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.三)高考中全称命题和存在性命题与导数的结合是近年高考的一大亮点,下面结合高考试题对此类问题进行归纳探究相关结论:结论1:1212min max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∀∈>⇔>; 结论2:1212max min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∃∈>⇔>; 结论3:1212min min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∃∈>⇔>; 结论4:1212max max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∀∈>⇔>;结论5:1212[,],[,],()()()x a b x c d f x g x f x ∃∈∃∈=⇔的值域和()g x 的值域交集不为空.1. 【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥【真题分析】在R 上恒成立,则a 的取值范围为( ) A .[]0,1B .[]0,2C .[]0,eD .[]1,e【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭,当111x x-=-,即0x =时取等号,∴max 2()0a g x ≥=,则0a >. 当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤恒成立,令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增,当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =,∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 【答案】C2.【优选题】设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数t ,使得()0f t <,则a的取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭【解析】本题考点是函数的单调性、存在性问题的综合应用.令()()()21,xg x e x h x ax a =-=-.由题意知存在唯一整数t ,使得()g t 在直线()h x 的下方.()()21'=+xg x ex ,当12x <-时,函数单调递减,当12x >-,函数单调递增,当12x =-时,函数取得最小值为122e --.当0x =时,(0)1g =-,当1x =时,(1)0g e =>,直线()h x ax a =-过定点()1,0,斜率为a ,故()0a g ->且()113g e a a --=-≥--,解得3,12⎡⎫∈⎪⎢⎣⎭a e . 【答案】D3.【2019年高考北京】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞. 【答案】(]1,0--∞4.【优选题】已知函数f (x )=mx 2-x +ln x ,若在函数f (x )的定义域内存在区间D ,使得该函数在区间D 上为减函数,则实数m 的取值范围为________.【解析】f ′(x )=2mx -1+1x =2mx 2-x +1x ,即2mx 2-x +1<0在(0,+∞)上有解.当m ≤0时,显然成立;当m >0时,由于函数y =2mx 2-x +1的图象的对称轴x =14m >0,故只需Δ>0,即1-8m >0,解得m <18.故实数m 的取值范围为⎝⎛⎭⎫-∞,18. 【答案】⎝⎛⎭⎫-∞,18 5.【优选题】若曲线3()ln f x ax x =+存在垂直于y 轴的切线,则实数a 取值范围是_____________. 【解析】 由题意可知'21()2f x ax x=+,又因为存在垂直于y 轴的切线, 所以231120(0)(,0)2ax a x a x x+=⇒=->⇒∈-∞. 【答案 】 (,0)-∞ 6.【2018年江苏卷】若函数()()R a ax x x f ∈+-=1223在()∞+,0内有且只有一个零点,则()x f 在[]11,-上的最大值与最小值的和为________.【解析】本题考点是函数的零点、函数的单调性与最值的综合应用. 由题意可求得原函数的导函数为()0262=-='ax x x f 解得3,0ax x ==,因为函数在()∞+,0上有且只有一个零点,且有()10=f ,所以有03,03=⎪⎭⎫⎝⎛>a f a,因此有3,0133223==+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛a a a a ,函数()x f 在[]01,-上单调递增,在[]10,上单调递减,所以有()()10max ==f x f ,()()41min -=-=f x f ,()()3min max -=+x f x f .【答案】–37.【2018年理新课标I 卷】已知函数()x x x f 2sin sin 2+=,则()x f 的最小值是_____________.【解析】本题考点是函数的单调性、最值与三角函数的综合应用. 由题意可()()⎪⎭⎫ ⎝⎛-+=-+=+='21cos 1cos 42cos 2cos 42cos 2cos 22x x x x x x x f ,所以当21cos <x 时函数单调减,当21cos >x 时函数单调增,从而得到函数的减区间为 ()Z k k k ∈⎥⎦⎤⎢⎣⎡--32,352ππππ,函数的增区间为()Z k k k ∈⎥⎦⎤⎢⎣⎡+-32,32ππππ,所以当()Z k k x ∈-=,32ππ时,函数()x f 取得最小值,此时232sin ,23sin -=-=x x ,所以()23323232min-=-⎪⎪⎭⎫ ⎝⎛-=x f ,故答案是233-. 【答案】233-8.【优选题】已知21()ln (0)2f x a x x a =+>,若对任意两个不等的正实数12x x 、都有1212()()2f x f x x x ->-恒成立,则a 的取值范围是 . 【解析】由题意可知()'2af x x x=+≥(x >0)恒成立,∴22a x x ≥-恒成立, 令()()22211g x x x x =-=--+则()max x g a ≥,∵()22g x x x =-为开口方向向下,对称轴为x =1的抛物线,∴当x =1时,()22g x x x =-取得最大值()11=g ,∴1≥a 即a 的取值范围是[1,+∞).【答案】[)1,+∞9. 【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.【解析】(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l ]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-. (ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =或a =-或a =0,与0<a <3矛盾.综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.10.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)e x ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【解析】(1)当34a =-时,3()ln 04f x x x =->.3()4f 'x x =-+=()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得04a <≤.当04a <≤时,()f x ≤2ln 0x ≥.令1t a=,则t ≥.设()22ln ,g t tx t =≥2()2ln g t t x=-.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==. 故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =….令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫ ⎪⎝⎭„. 由(i )得,11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x .因此()0g t g =>…. 由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a „. 综上所述,所求a的取值范围是0,4⎛ ⎝⎦. 【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦.1.设函数a ax x x x f -+--=53)(23,若存在唯一的正整数0x ,使得0)(0<x f ,则a 的取值范围是( )A .)31,0( B .]45,31( C .]23,31( D .]23,45(【解析】当32a =时,3237()322f x x x x =--+,()()20,30f f <<,不符合题意,故排除C ,D.当54a =时,32515()344f x x x x =--+,()()()()10,20,30,40f f f f ><=>,故54a =符合题意.【答案】B2.设函数()(21)xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A .3[,1)2e -B .33[,)24e - C .33[,)24e D .3[,1)2e【解析】 ()0(21)xf x e x ax a <⇔-<-,记()(21)xg x e x =-,则题意说明存在唯一的整数0x ,使()g x 的图象在直线y ax a =-下方,【模拟考场】'()(21)x g x e x =+,当12x <-时,'()0g x <,当12x >-时,'()0g x >,因此当12x =-时,()g x 取得极小值也是最小值21()22g e --=-,又(0)1g =-,(1)0g e =>,直线y ax a =-过点(1,0)且斜率为a ,故1(0)1(1)3a g g e a a-->=-⎧⎨-=-≥--⎩,解得312a e≤<. 【答案】D3.若函数()()2ln 201x f x a x x a m a a =+-⋅-->≠且有两个零点,则m 的取值范围( ) A.()1,3- B.()3,1- C.()3,+∞ D.(),1-∞- 【解析】考查函数()2ln xg x a x x a m =+--,则问题转化为曲线()y g x =与直线2y =有两个公共点,则()()ln 2ln 1ln 2x x g x a a x a a a x '=+-=-+,则()00g '=, 当01a <<时,ln 0a <,当0x <时,10x a ->,()1ln 0x a a -<,20x <,则()1ln 20x a a x -+<, 当0x >,10x a -<,()1ln 0x a a ->,20x >,则()1ln 20x a a x -+>,此时,函数()2ln xg x a x x a m =+--在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,同理,当1a >时,函数()2ln xg x a x x a m =+--在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,因此函数()2ln xg x a x x a m =+--在0x =处取得极小值,亦即最小值,即()()min 01g x g m ==-,)由于函数()()2ln 201x f x a x x a m a a =+-⋅-->≠且有两个零点, 结合图象知12m -<,解得13m -<<,故选A. 【答案】A 4. (1)求函数()f x 的单调区间;(2)若当[]1,2x ∈-时()f x m <恒成立,求m 的取值范围 【解析】试题分析:(1)由原函数求出导数,通过导数的正负求出相应的单调区间(2)将不等式恒成立问题转化为求函数的最值问题,本题中需求函数()f x 的最大值,可通过导数求解.试题解析:(1)由()'2320fx x x =--> 得1x >或()1,+∞(2上递减,在区间[]1,2上递增,又,所以在区间[]1, 2-上max 7f =要使()f x m <恒成立,只需7m >即可.【答案】(1,()1,+∞ 2)7m >5.【2018年高考全国Ⅰ卷理数】已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x =或2a x =.当)x ∈+∞U 时,()0f x '<;当x ∈时,()0f x '>.所以()f x在)+∞单调递减,在单调递增. (2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >. 由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--. 6.已知函数()ln 2a xf x x x =++. (1)求函数()f x 的单调区间;(2)设函数()()ln 1g x x x f x =+-,若1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x >恒成立,求实数a 的取值范围.【解析】(1)()f x 的定义域为()0,+∞,()222112222a x x af x x x x +-'=-+=,令()0f x '=,则2220x x a +-=,480a ∆=+>时,即12a >-,方程两根为11x ==--2x =-122x x +=-,122x x a =-,①当12a ≤-时,0∆≤,()0f x '≥恒成立,()f x 的增区间为()0,+∞;②当102a -<≤时,1220x x a =-≥,10x <,20x ≤,()0,x ∈+∞时,()0f x '≥,()f x 的增区间为()0,+∞;③当0a >时,10x <,20x >,当()20,x x ∈时,()0f x '<,()f x 单调递减,当()2+x x ∈∞,时,()0f x '>,单调递增;综上,当0a ≤时,()f x 的增区间为()0,+∞; 当0a >时,()f x的减区间为(0,1-,增区间为()1-+∞.(2)1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x >恒成立,即ln ln 102a x x x x x ---+>,∴22ln ln 2x a x x x x x <--+,令()221ln ln 22x h x x x x x x x ⎛⎫=--+> ⎪⎝⎭,()2ln ln 11h x x x x x x '=+---+,()()21ln h x x x '=-,当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 单调递减;当()1+x ∈∞,时,()0h x '>,()h x 单调递减; ∴()()min 112h x h ==,∴12a <,则实数a 的取值范围时12⎛⎫-∞ ⎪⎝⎭,.【答案】(1)当0a ≤时,()f x 的增区间为()0,+∞;当0a >时,()f x的减区间为(0,1-,增区间为()1-+∞;(2)12⎛⎫-∞ ⎪⎝⎭,.7.已知函数f (xln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.【解析】(Ⅰ)函数f (x)的导函数1()f x x '=-,由12()()f x f x ''=1211x x -=-, 因为12x x ≠12+==≥ 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +=+=.设()ln g x x =,则1()4)4g x x'=, 所以所以g (x )在[256,+∞)上单调递增,故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (Ⅱ)令m =()e a k -+,n =21()1a k++,则f (m )–km –a >|a |+k –k –a ≥0, f (n )–kn –a <)a n k n --≤)n k -<0,所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a , 所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a 得k =设()h x =22ln )1)((12x ag x x x a x h '=-+--+=,其中(n )l g x x -=. 由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2,故–g (x )–1+a ≤–g (16)–1+a =–3+4ln 2+a ≤0, 所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0至多1个实根. 综上,当a ≤3–4ln 2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 8.【优选题】已知函数21()(2)2ln 2f x x a x a x =-++(0)a >. (1)若曲线()y f x =在点(1,(1))f 处的切线为2y x b =+,求2a b +的值; (2)讨论函数()f x 的单调性;(3)设函数()(2)g x a x =-+,若至少存在一个0[,4]x e ∈,使得00()()f x g x >成立,求实数a 的取值范围.【解析】本题是函数的综合问题.(1)()f x 的定义域为(0,)+∞,2()(2)'=-++a f x x a x, ∴1(1)(2)22f a b =-+=+,(1)1(2)22'=-++=f a a , 解得132,2a b ==-,∴210a b +=-.(2)2(2)2(2)()()-++--'==x a x a x x a f x x x,当2a =时,()0(0,)'≥⇒∈+∞f x x ,∴()f x 的单调增区间为(0,)+∞.当02a <<时,由'()0(0,)(2,)f x x a >⇒∈+∞U ,∴()f x 的单调增区间为(0,)a ,(2,)+∞由'()0(,2)f x x a <⇒∈,∴()f x 的单调减区间为(,2)a .当2a >时,由'()0(0,2)(,)f x x a >⇒∈+∞U ,∴()f x 的单调增区间为(0,2),(,)a +∞由'()0(2,)f x x a <⇒∈,∴()f x 的单调减区间为(2,)a .综上所述:当2a =时,'()0(0,)f x x ≥⇒∈+∞,∴()f x 的单调增区间为(0,)+∞,当02a <<时,∴()f x 的单调增区间为(0,)a ,(2,)+∞,()f x 的单调减区间为(,2)a 当2a >时,∴()f x 的单调增区间为(0,2),(,)a +∞,()f x 的单调减区间为(2,)a .(3)若至少存在一个0[,4]x e ∈,使得00()()f x g x >,∴212ln 02x a x +>, 当[,4]x e ∈时,ln 1x >,∴2122ln xa x>-有解,令212()ln x h x x=-,∴min 2()a h x >.2'22111ln (ln )22()0(ln )(ln )x x x x x x h x x x -⋅-=-=-<, ∴()h x 在[,4]e 上单调递减,min 4()(4)ln 2h x h == ∴42ln 2a >得,2ln 2a >. 9.【2018山东模拟】设函数0),(,)1(31)(223>∈-++-=m R x x m x x x f 其中 (Ⅰ)当时,1=m 曲线))(,在点(11)(f x f y =处的切线斜率.(Ⅱ)求函数的单调区间与极值;(Ⅲ)已知函数)(x f 有三个互不相同的零点0,21,x x ,且21x x <.若对任意的],[21x x x ∈,)1()(f x f > 恒成立,求m 的取值范围.【解析 】本小题主要考查导数的几何意义,导数的运算,以及函数与方程的根的关系解不等式等基础知识,考查综合分析问题和解决问题的能力. (1)当1)1(,2)(,31)(1'2/23=+=+==f x x x f x x x f m 故时, 所以曲线))(,在点(11)(f x f y =处的切线斜率为1.(2) 12)(22'-++-=m x x x f ,令0)('=x f ,得到m x m x +=-=1,1因为m m m ->+>11,0所以当x 变化时,)(),('x f x f 的变化情况如下表:x )1,(m --∞m -1)1,1(m m +-m +1),1(+∞+m)('x f+0 - 0 +)(x f极小值极大值)(x f 在)1,(m --∞和),1(+∞+m 内减函数,在)1,1(m m +-内增函数。
3.3导数在研究函数中的应用(教学设计)(1)§3.3.1函数的单调性与导数(2课时)教学目标:知识与技能目标:在观察、探索的基础上,归纳出函数的单调性与导数的关系,并用其判断函数的单调性,会求函数的单调区。
过程与方法目标:利用图象为结论提供直观支持,通过观察分析、归纳总结等方式,培养学生的数形结合意识和应用数学知识解决问题的数学思维。
情感、态度与价值观目标:通过学习本节内容,增强对数学的好奇心与求知欲;在教学过程中,培养学生勇于探索、善于发现的创新思想。
教学重点:了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间。
教学难点:利用导数的几何意义来探究函数的单调性,理解用导数研究函数单调性的实质。
教学过程:一.创设情景、新课引入:函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用. 二.师生互动,新课讲解: 1.问题1:如图,它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图 3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?通过观察图像,我们可以发现:(1) 运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<.2.函数的单调性与导数的关系问题2:分别作出下列函数的图象:(1)y=x (2)y=x 2 (3)y=x 3 (4)y=1x观察下面函数的图像,探讨函数的单调性与其导数正负的关系.如图3.3-3,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数()f x 在0x 附近单调递增;在1x x =处,'0()0f x <,切线是“左上右下”式的,这时,函数()f x 在1x 附近单调递减.结论:函数的单调性与导数的关系在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增;如果'()0f x <,那么函数()y f x =在这个区间内单调递减.说明:特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常函数. 3.求解函数()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域; (2)求导数''()y f x =;(3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 例1(课本P91例1).已知导函数'()f x 的下列信息:当14x <<时,'()0f x >; 当4x >,或1x <时,'()0f x <; 当4x =,或1x =时,'()0f x = 试画出函数()y f x =图像的大致形状.解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增; 当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减;当4x =,或1x =时,'()0f x =,这两点比较特殊,我们把它称为“临界点”. 综上,函数()y f x =图像的大致形状如图所示.例2(课本P91例2).判断下列函数的单调性,并求出单调区间. (1)3()3f x x x =+; (2)2()23f x x x =--(3)()sin (0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+解:(1)因为3()3f x x x =+,所以, '22()333(1)0f x x x =+=+>因此,3()3f x x x =+在R 上单调递增,如图3.3-5(1)所示.(2)因为2()23f x x x =--,所以, ()'()2221f x x x =-=-当'()0f x >,即1x >时,函数2()23f x x x =--单调递增; 当'()0f x <,即1x <时,函数2()23f x x x =--单调递减; 函数2()23f x x x =--的图像如图3.3-5(2)所示.(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-< 因此,函数()sin f x x x =-在(0,)π单调递减,如图3.3-5(3)所示. (4)因为32()23241f x x x x =+-+,所以 .当'()0f x >,即 时,函数2()23f x x x =-- ; 当'()0f x <,即 时,函数2()23f x x x =-- ; 函数32()23241f x x x x =+-+的图像如图3.3-5(4)所示. 注:(3)、(4)生练例3(课本P92例3).如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图像.分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A )符合上述变化情况.同理可知其它三种容器的情况.解:()()()()()()()()1,2,3,4B A D C →→→→思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些. 如图3.3-7所示,函数()y f x =在()0,b 或(),0a 内的图像“陡峭”, 在(),b +∞或(),a -∞内的图像“平缓”.例4.求证:函数3223121y x x x =+-+在区间()2,1-内是减函数.证明:因为()()()'22661262612y x x x x x x =+-=+-=-+当()2,1x ∈-即21x -<<时,'0y <,所以函数3223121y x x x =+-+在区间()2,1-内是减函数.说明:证明可导函数()f x 在(),a b 内的单调性步骤: (1)求导函数()'f x ;(2)判断()'f x 在(),a b 内的符号; (3)做出结论:()'0fx >为增函数,()'0f x <为减函数.例5.已知函数 232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的取值范围.解:'2()422f x ax x =+-,因为()f x 在区间[]1,1-上是增函数,所以'()0f x ≥对[]1,1x ∈-恒成立,即220x ax --≤对[]1,1x ∈-恒成立,解之得:11a -≤≤所以实数a 的取值范围为[]1,1-.说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则'()0f x ≥;若函数单调递减,则'()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解.例6.已知函数y =x +x1,试讨论出此函数的单调区间. 解:y ′=(x +x1)′ =1-1·x -2=222)1)(1(1x x x x x -+=-令2)1)(1(xx x -+>0. 解得x >1或x <-1. ∴y =x +x1的单调增区间是(-∞,-1)和(1,+∞). 令2)1)(1(xx x -+<0,解得-1<x <0或0<x <1. ∴y =x +x1的单调减区间是(-1,0)和(0,1) 课堂练习:(课本P93练习NO :1;2;3;4)三.课堂小结,巩固反思:(1)函数的单调性与导数的关系 (2)求解函数()y f x =单调区间(3)证明可导函数()f x 在(),a b 内的单调性四.布置作业 A 组: 1、(课本P98习题3.3 A 组:NO :1(1)(2)(3)(4)) 2、(课本P98习题3.3 A 组:NO :2(1)(2)(3)(4))3、(tb11505002)求函数y=x 3-x 2-x 的单调区间。
导数在研究函数中的应用目标认知学习目标:1. 会从几何直观了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次.2. 了解函数在某点取得极值的必要条件(导数在极值点两端异号)和充分条件();会用导数求函数的极大值、极小值,对多项式函数一般不超过三次.3.会求闭区间上函数的最大值、最小值,对多项式函数一般不超过三次.重点:利用导数判断函数单调性;函数极值与最值的区别与联系.会求一些函数的(极)最大值与(极)最小值难点:利用导数在解决函数问题时有关字母讨论的问题.知识要点梳理知识点一:函数的单调性(一) 导数的符号与函数的单调性:一般地,设函数在某个区间内有导数,则在这个区间上,若,则在这个区间上为增函数;若,则在这个区间上为减函数;若恒有,则在这一区间上为常函数.反之,若在某区间上单调递增,则在该区间上有恒成立(但不恒等于0);若在某区间上单调递减,则在该区间上有恒成立(但不恒等于0).注意:1. 若在某区间上有有限个点使,在其余点恒有,则仍为增函数(减函数的情形完全类似).即在区间(a,b)内,(或)是在(a,b)内单调递增(或减)的充分不必要条件!例如:而f(x)在R上递增.2. 学生易误认为只要有点使,则f(x)在(a,b)上是常函数,要指出个别导数为零不影响函数的单调性,同时要强调只有在这个区间内恒有,这个函数在这个区间上才为常数函数.3. 要关注导函数图象与原函数图象间关系.(二)利用导数求函数单调性的基本步骤:1. 确定函数的定义域;2. 求导数;3. 在定义域内解不等式,解出相应的x的范围;当时,在相应区间上为增函数;当时在相应区间上为减函数.4. 写出的单调区间.知识点二:函数的极值(一)函数的极值的定义一般地,设函数在点及其附近有定义,(1)若对于附近的所有点,都有,则是函数的一个极大值,记作;(2)若对附近的所有点,都有,则是函数的一个极小值,记作.极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.注意:由函数的极值定义可知:(1)在函数的极值定义中,一定要明确函数y=f(x)在x=x0及其附近有定义,否则无从比较.(2)函数的极值是就函数在某一点附近的小区间而言的,是一个局部概念;在函数的整个定义域内可能有多个极值,也可能无极值.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小.(3)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值.极小值不一定是整个定义区间上的最小值.(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.(5)可导函数在某点取得极值,则该点的导数一定为零,反之不成立.即是可导函数在点取得极值的必要非充分条件.在函数取得极值处,如果曲线有切线的话,则切线是水平的,从而有.但反过来不一定.如函数y=x3,在x=0处,曲线的切线是水平的,但这点不是函数的极值点.(二)求函数极值的的基本步骤:①确定函数的定义域;②求导数;③求方程的根;④检查在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法)知识点三:函数的最大值与最小值(一)函数的最大值与最小值定理若函数在闭区间上连续,则在上必有最大值和最小值;在开区间内连续的函数不一定有最大值与最小值.如.(二)求函数最值的的基本步骤:若函数在闭区间有定义,在开区间内有导数,则求函数在上的最大值和最小值的步骤如下:(1)求函数在内的导数(2)求在内的极值;(3)求在闭区间端点处的函数值,;(4)将的各极值与,比较,其中最大者为所求最大值,最小者为所求最小值.(三)最值理论的应用解决有关函数最值的实际问题,导数的理论是有力的工具,基本解题思路为:(1)认知、立式:分析、认知实际问题中各个变量之间的联系,引入变量,建立适当的函数关系;(2)探求最值:立足函数的定义域,探求函数的最值;(3)检验、作答:利用实际意义检查(2)的结果,并回答所提出的问题,特殊地,如果所得函数在区间内只有一个点满足,并且在点处有极大(小)值,而所给实际问题又必有最大(小)值,那么上述极大(小)值便是最大(小)值.规律方法指导(1)利用导数讨论函数的单调区间,首先要确定函数的定义域D,并且解决问题的过程中始终立足于定义域D.若由不等式确定的x的取值集合为A,由确定的x的取值范围为B,则应有.如:.(2)最值与极值的区别与联系:①函数的最大值和最小值是比较整个定义域上的函数值得出的(具有绝对性),是整个定义域上的整体性概念,最大值是函数在整个定义域上所有函数值中的最大值;最小值是函数在整个定义域上所有函数值中的最小值.函数的极大值与极小值是比较极值点附近两侧的函数值而得出的(具有相对性),是局部的概念;②极值可以有多个,最大(小)值若存在只有一个;极值只能在区间内取得,不能在区间端点取得;最大(小)值可能是某个极大(小)值,也可能是区间端点处的函数值;③有极值的函数不一定有最值,有最值的函数未必有极值,极值可能成为最值.④若在开区间内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值.典型例题例1.设f(x)=ax3+x恰有三个单调区间,试确定a的取值范围,并求其单调区间。
第二章函数与导数第12课时导数在研究函数中的应用(对应学生用书(文)、(理)30~32页)考情分析考点新知①导数与函数内容的结合命题已成为近几年高考的流行趋势,应引起足够的重视.②以导数为研究函数的重要工具来解决函数的单调性与最值问题是高考的热点,同时解答题侧重于导数的综合应用,即导数与函数、数列、不等式的综合应用.①理解函数的单调性与导数的关系,能利用导数研究函数的单调性.②掌握利用导数求函数极值与最值的方法.③会利用导数解决某些实际问题.,1. (选修22P28例1改编)函数f(x)=x3-15x2-33x+6的单调减区间为______________.答案:(-1,11)解析:f′(x)=3x2-30x-33=3(x-11)(x+1),由(x-11)(x+1)<0,得单调减区间为(-1,11).亦可填写闭区间或半开半闭区间.2. (选修22P 34习题3改编)若函数f(x)=e x -a x在x=1处取到极值,则a=________.答案:e解析:由题意,f ′(1)=0,因为f′(x)=e x -a ,所以a=e .3. (选修22P34习题8)函数y=x+s inx ,x ∈[0,2π]的值域为________.答案:[0,2π]解析:由y′=1+cos x≥0,所以函数y=x+s inx 在[0,2π]上是单调增函数,所以值域为[0,2π].4. (原创)已知函数f (x)=-12x2+b lnx 在区间[2,+∞)上是减函数,则b的取值范围是________.答案:(-∞,4]解析:f′(x )=-x +\f(b,x )≤0在[2,+∞)上恒成立,即b ≤x 2在[2,+∞)上恒成立.5. (选修22P35例1改编)用长为90cm 、宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻折90°角,再焊接而成,则该容器的高为________cm 时,容器的容积最大.答案:10解析:设容器的高为xc m,即小正方形的边长为xc m,该容器的容积为V,则V=(90-2x)(48-2x)x=4(x 3-69x 2+1080x),0<x<12,V′=12(x2-46x+360)=12(x-10)(x-36),当0<x<10时,V′>0;当10<x<12时,V′<0.所以V在(0,10]上是增函数,在[10,12)上是减函数,故当x=10时,V最大.1.函数的单调性与导数在区间(a,b)内,函数的单调性与其导数的正负有如下关系:如果f′(x)>0,那么函数y=f(x)为该区间上的增函数;如果f′(x)<0,那么函数y=f(x)为该区间上的减函数.2.函数的极值与导数(1)函数极值的定义若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都要小,f(a)叫函数的极小值.若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都要大,f(b)叫函数的极大值,极小值和极大值统称为极值.(2)求函数极值的方法解方程f′(x)=0,当f′(x0)=0时,①如果在x0附近左侧单调递增,右侧单调递减,那么f(x0)是极大值.②如果在x0附近左侧单调递减,右侧单调递增,那么f(x0)是极小值.3.函数的最值(1)最大值与最小值的概念如果在函数定义域I内存在x0,使得对任意的x∈I,总有f(x)≤f(x0),则称f(x0)为函数f(x)在定义域上的最大值.如果在函数定义域I内存在x0,使得对任意的x∈I,总有f(x)≥f(x0),则称f(x)为函数f(x)在定义域上的最小值.(2)求函数y=f(x)在[a,b]上的最大值与最小值的步骤①求函数y=f(x)在(a,b)内的极值.②将函数y=f(x)的各极值与f(a)、f(b)比较,其中值最大的一个是最大值,值最小的一个是最小值.4. 生活中的优化问题解决优化问题的基本思路是:\x(优化问题)错误!错误!错误!错误!题型1导数与函数的单调性例1已知函数f(x)=x3-ax-1.(1)若a=3时,求f(x)的单调区间;(2) 若f(x)在实数集R上单调递增,求实数a的取值范围;(3) 是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由.解:(1) 当a=3时,f(x)=x3-3x-1,∴f′(x)=3x2-3,令f′(x)>0即3x2-3>0,解得x>1或x<-1,∴f(x)的单调增区间为(-∞,-1)∪(1,+∞),同理可求f(x)的单调减区间为(-1,1).(2) f′(x)=3x2-a.∵f(x)在实数集R上单调递增,∴f′(x)≥0恒成立,即3x2-a≥0恒成立,∴a≤(3x2)min.∵3x2的最小值为0,∴a≤0.(3)假设存在实数a使f(x)在(-1,1)上单调递减,∴f′(x)≤0在(-1,1)上恒成立,即a≥3x2.又3x2∈[0,3),∴a≥3.∴存在实数a使f(x)在(-1,1)上单调递减,且a≥3.错误!(1)已知函数f(x)=错误!x2-mlnx+(m-1)x,当m≤0时,试讨论函数f(x)的单调性;(2)若函数f(x)=-错误!错误!错误!+blnx在(1,+∞)上是减函数,求实数b的取值范围.解:(1)函数的定义域为错误!,f′(x)=x-错误!+(m-1)=错误!=错误!.①当-1<m≤0时,令f′(x)>0,得0<x<-m或x>1,令f′(x)<0,得-m<x<1,∴函数f(x)的单调递增区间是错误!和错误!,单调递减区间是错误!;②当m≤-1时,同理可得,函数f(x)的单调递增区间是错误!和错误!,单调递减区间是错误!.(2)由f(x)=-错误!错误!错误!+blnx,得f′(x)=-(x-2)+\f(b,x),由题意,知f′(x)≤0即-错误!+错误!≤0在错误!上恒成立,∴b≤错误!错误!,当x∈错误!时,错误!∈错误!,∴b≤1.题型2 导数与函数的极值、最值例2设函数f(x)=(x2+ax+b)ex(x∈R).(1) 若a=2,b=-2,求函数f(x)的极大值;(2)若x=1是函数f(x)的一个极值点.①试用a表示b;②设a>0,函数g(x)=(a2+14)ex+4.若ξ1、ξ2∈[0,4],使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范围.解:(1)∵f′(x)=(2x+a)ex+(x2+ax+b)e x=[x2+(2+a)x+(a+b)]ex,当a=2,b=-2时,f(x)=(x2+2x-2)e x,则f′(x)=(x2+4x)ex,令f′(x)=0得(x2+4x)ex=0,∵e x≠0, ∴x2+4x=0,解得x=-4或x=0,列表如下:x(-∞,-4) -4 (-4,0)0 (0,+∞) f′(x) + 0 - 0+f(x)极大值极小值∴当x=-4时,函数f(x)取极大值,f(x)极大值=6 e4.(2)①由(1)知f′(x)=[x2+(2+a)x+(a+b)]ex.∵x=1是函数f(x)的一个极值点,∴f′(1)=0,即e[1+(2+a)+(a+b)]=0,解得b=-3-2a.②由①知f′(x)=e x[x2+(2+a)x+(-3-a)]=e x(x-1)[x+(3+a)],当a>0时,f(x)在区间(0,1)上的单调递减,在区间(1,4)上单调递增,∴函数f(x)在区间[0,4]上的最小值为f(1)=-(a+2)e.∵f(0)=b=-3-2a<0,f(4)=(2a+13)e4>0,∴函数f(x)在区间[0,4]上的值域是[f(1),f(4)],即[-(a+2)e,(2a+13)e4].又g(x)=(a2+14)ex+4在区间[0,4]上是增函数,且它在区间[0,4]上的值域是[(a2+14)e4,(a2+14)e8],∴(a2+14)e4-(2a+13)e4=(a2-2a+1)e4=(a-1)2e4≥0,∴存在ξ1、ξ2∈[0,4]使得|f(ξ1)-g(ξ2)|<1成立只须(a2+14)e4-(2a+13)e4<1(a-1)2e4<1(a-1)2<\f(1,e4)1-错误!<a<1+错误!.错误!已知函数f(x)=ax3+bx2-3x(a、b∈R)在点x=-1处取得极大值为2.(1) 求函数f(x)的解析式;(2)若对于区间[-2,2]上任意两个自变量的值x1、x2,都有|f(x1)-f(x2)|≤c,求实数c的最小值.解:(1) f′(x)=3ax2+2bx-3.由题意,得错误!即错误!解得错误!所以f(x)=x3-3x.(2) 令f′(x)=0,即3x2-3=0,得x=±1.因为f(-1)=2,f(1)=-2,所以当x∈[-2,2]时,f(x)max=2,f(x)min=-2.则对于区间[-2,2]上任意两个自变量的值x1、x2,都有|f(x1)-f(x2)|≤|f(x)max-f(x)min|=4,所以c≥4.所以c的最小值为4.题型3导数在实际问题中的应用例3请你设计一个包装盒,如图所示,ABCD是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.(1) 某广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2) 某厂商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.解:(1)S=602-4x2-(60-2x)2=240x-8x2(0<x<30),所以x=15 cm时侧面积最大.(2) V=(错误!x)2错误!(60-2x)=2错误!x2(30-x)(0<x<30),所以V′=6错误!x(20-x),令V′=0,得x=20,当0<x<20时,V递增;当20<x<30时,V递减.所以,当x=20时,V最大,此时,包装盒的高与底面边长的比值为错误!=错误!.错误!某地方政府在某地建一座桥,两端的桥墩相距m米,此工程只需建两端桥墩之间的桥面和桥墩(包括两端的桥墩).经预测,一个桥墩的费用为256万元,相邻两个桥墩之间的距离均为x,且相邻两个桥墩之间的桥面工程费用为(1+x)x万元,假设所有桥墩都视为点且不考虑其他因素,记工程总费用为y万元.(1)试写出y关于x的函数关系式;(2) 当m=1280米时,需要新建多少个桥墩才能使y最小?解:根据题意,需要建错误!个桥墩和错误!段桥面工程.(1) y=256错误!+错误!(1+错误!)x=m错误!+m+256错误!.(2) 当m=1 280时,y=1 280错误!+1536,y′=1 280错误!,令y′=0,得x=64,当0<x<64时,y′<0;当x>64时,y′>0.所以当x=64时,y有最小值16896,此时要建21个桥墩.答:需要建21个桥墩才能使y最小.【示例】(本题模拟高考评分标准,满分14分)已知函数f(x)=lnx-ax(a∈R).(1)求函数f(x)的单调区间;(2) 当a>0时,求函数f(x)在[1,2]上的最小值.审题引导:①知函数解析式求单调区间,实质是求f′(x)>0,f′(x)<0的解区间,并注意定义域;②先研究f(x)在[1,2]上的单调性,再确定最值是端点值还是极值;③由于解析式中含有参数a,要对参数a进行分类讨论.规范解答: 解:(1) f′(x)=1x-a(x>0).(1分)①当a≤0时,f′(x)=错误!-a≥0,即函数f(x)的单调增区间是(0,+∞).(3分)② 当a>0时,令f′(x)=\f(1,x)-a=0,得x=\f(1,a),当0<x <错误!时,f′(x)=错误!>0,当x>错误!时,f ′(x)=错误!<0,所以函数f(x)的单调增区间是错误!,单调减区间是错误!.(6分)(2) ① 当1a ≤1,即a ≥1时,函数f(x)在区间[1,2]上是减函数,所以f(x)的最小值是f(2)=ln2-2a.(8分)② 当1a ≥2,即0<a≤12时,函数f (x)在区间[1,2]上是增函数,所以f (x)的最小值是f(1)=-a .(10分)③ 当1<错误!<2,即错误!<a<1时,函数f (x)在区间错误!上是增函数,在区间错误!上是减函数,又f(2)-f (1)=ln 2-a,所以当12<a<ln2时,最小值是f(1)=-a;当l n2≤a<1时,最小值是f(2)=ln2-2a.(12分)综上可知,当0<a<ln2时,最小值是-a;当a ≥ln2时,最小值是ln2-2a .(14分)1. (2013·新课标Ⅱ)若存在正数x 使2x(x -a)<1成立,则a 的取值范围是________.答案:(-1,+∞)解析:因为2x(x-a)<1,所以a>x -12x ,令f(x)=x-\f(1,2x ),所以f′(x )=1+2-x ln2>0,所以f (x)在(0,+∞)上单调递增,所以f(x)>f(0)=0-1=-1,所以a 的取值范围是(-1,+∞).2. (2013·大纲)若函数f(x )=x 2+ax+\f(1,x )在错误!上是增函数,则a 的取值范围是________.答案:a ≥3解析:f′(x)=2x +a-\f(1,x 2)≥0在错误!上恒成立,即a ≥错误!-2x 在错误!上恒成立.令g (x)=错误!-2x ,求导可得g(x)在错误!上的最大值为3,所以a ≥3.3. (2013·扬州期末)已知函数f(x )=lnx-m x (m∈R )在区间[1,e]上取得最小值4,则m =________.答案:-3e解析:f′(x)=\f(1,x)+错误!=错误!,令f′(x)=0,则x=-m,且当x<-m 时,f′(x)<0,f(x)单调递减,当x>-m 时,f ′(x)>0,f(x)单调递增.若-m ≤1,即m ≥-1时,f(x)mi n=f(1)=-m ≤1,不可能等于4;若1<-m≤e ,即-e≤m<-1时,f(x)min =f(-m)=l n(-m)+1,令ln (-m)+1=4,得m=-e 3(-e ,-1);若-m>e ,即m<-e时,f (x )m in =f(e)=1-\f(m,e),令1-错误!=4,得m =-3e ,符合题意.综上所述,m=-3e.4. (2013·南京二模)设函数f(x)=x 2-(a-2)x-a lnx.(1) 求函数f (x )的单调区间;(2) 若函数f(x)有两个零点,求满足条件的最小正整数a 的值; (3) 若方程f(x)=c 有两个不相等的实数根x 1、x 2,求证:f′错误!>0.(1) 解:f′(x)=2x-(a-2)-错误!=错误!=错误!(x>0).当a≤0时,f′(x)>0,函数f(x)在(0,+∞)上单调递增,所以函数f(x)的单调增区间为(0,+∞).当a>0时,由f′(x)>0,得x>错误!;由f′(x)<0,得0<x<错误!.所以函数f(x)的单调增区间为错误!,单调减区间为错误!.(2) 解:由(1)得,若函数f(x)有两个零点,则a>0,且f(x)的最小值f错误!<0,即-a2+4a-4aln错误!<0.因为a>0,所以a+4ln\f(a,2)-4>0.令h(a)=a+4ln a2-4,显然h(a)在(0,+∞)上为增函数,且h(2)=-2<0,h(3)=4ln错误!-1=ln错误!-1>0,所以存在a0∈(2,3),h(a0)=0.当a>a0时,h(a)>0;当0<a<a0时,h(a)<0.所以满足条件的最小正整数a=3.又当a=3时,f(3)=3(2-ln3)>0,f(1)=0,所以a=3时,f(x)有两个零点.综上所述,满足条件的最小正整数a的值为3.(3) 证明:因为x1、x2是方程f(x)=c的两个不等实根,由(1)知a>0.不妨设0<x1<x2,则x错误!-(a-2)x1-alnx1=c,x错误!-(a-2)x2-alnx2=c.两式相减得x错误!-(a-2)x1-alnx1-x错误!+(a-2)·x2+alnx2=0,即x\o\al(2,1)+2x1-x错误!-2x2=ax1+alnx1-ax2-alnx2=a(x1+lnx1-x2-lnx2).所以a=错误!.因为f′错误!=0,当x∈错误!时,f′(x)<0,当x∈错误!时,f′(x)>0,故只要证\f(x1+x2,2)>错误!即可,即证明x1+x2>错误!,即证明x21-x22+(x1+x2)(lnx1-lnx2)<x错误!+2x1-x错误!-2x2,即证明ln\f(x1,x2)<2x1-2x2 x1+x2.设t=\f(x1,x2)(0<t<1).令g(t)=lnt-\f(2t-2,t+1),则g′(t)=\f(1,t)-错误! =\f((t-1)2,t(t+1)2).因为t>0,所以g′(t)≥0,当且仅当t=1时,g′(t)=0,所以g(t)在(0,+∞)上是增函数.又g(1)=0,所以当t∈(0,1),g(t)<0总成立.所以原题得证.1.如果关于x的方程ax+错误!=3在区间(0,+∞)上有且仅有一个解,那么实数a的取值范围为________.答案:a≤0或a=2解析:由ax+错误!=3,得a=错误!-错误!.令t=1x,则f(t)=3t-t3,t∈(0,+∞).用导数研究f(t)的图象,得f max(t)=2,当x∈(0,1)时,f(t)递增,当x∈(1,+∞)时,f(t)递减,所以a≤0或a=2.2.已知函数f(x)=lnx-\f(a(x-1),x+1),若函数f(x)在(0,+∞)上为增函数,则a的取值范围是________.答案:a≤2解析:f′(x)=错误!≥0在(0,+∞)上恒成立,易得a≤2.3. 设直线y=a分别与曲线y2=x和y=e x交于点M、N,则当线段MN取得最小值时a的值为________.答案:\f(2)2解析:由题意,M(a2,a),N(lna,a),故MN的长l=|a2-lna|=a2-lna(a>0),由l′=2a-错误!=错误!=错误!,令l′>0,得l=a2-lna在错误!上单调递增;令l′<0,得l=a2-lna在错误!上单调递减,所以当a=错误!时,线段MN的长取得极小值,也是最小值.4.已知函数f(x)=(ax2+x)ex,其中e是自然数的底数,a∈R.(1)当a<0时,解不等式f(x)>0;(2)若f(x)在[-1,1]上是单调函数,求a的取值范围;(3) 当a=0时,求整数k的所有值,使方程f(x)=x+2在[k,k +1]上有解.解:(1)因为e x>0,所以不等式f(x)>0即为ax2+x>0.又a<0,所以不等式可化为x错误!<0,所以不等式f(x)>0的解集为错误!.(2)f′(x)=(2ax+1)ex+(ax2+x)ex=[ax2+(2a+1)x+1]ex,①当a=0时,f′(x)=(x+1)e x,f′(x)≥0在[-1,1]上恒成立,当且仅当x=-1时取等号,故a=0符合要求;②当a≠0时,令g(x)=ax2+(2a+1)x+1,因为Δ=(2a+1)2-4a=4a2+1>0,所以g(x)=0有两个不相等的实数根x1、x2,不妨设x1>x2,因此f(x)有极大值又有极小值.若a>0,因为g(-1)·g(0)=-a<0,所以f(x)在(-1,1)内有极值点,故f(x)在[-1,1]上不单调.若a<0,可知x1>0>x2,因为g(x)的图象开口向下,要使f(x)在[-1,1]上单调,因为g(0)=1>0,必须满足错误!即错误!所以-错误!≤a≤0.综上可知,a的取值范围是错误!.(3) 当a=0时,方程即为xe x=x+2,由于ex>0,所以x=0不是方程的解,所以原方程等价于e x-错误!-1=0.令h(x)=ex-错误!-1,因为h′(x)=e x+错误!>0对于x∈(-∞,0)∪(0,+∞)恒成立,所以h(x)在(-∞,0)和(0,+∞)内是单调增函数,又h(1)=e-3<0,h(2)=e2-2>0,h(-3)=e-3-\f(1,3)<0,h(-2)=e-2>0,所以方程f(x)=x+2有且只有两个实数根,且分别在区间[1,2]和[-3,-2]上,所以整数k的所有值为{-3,1}.1.在已知函数f(x)是增函数(或减函数),求参数的取值范围时,应令f′(x)≥0(或f′(x)≤0)恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),然后检验参数的取值能否使f′(x)恒等于0,若能恒等于0,则参数的这个值应舍去;若f′(x)不恒为0,则参数范围确定.2.理解可导函数极值与最值的区别,极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较,故函数的最值可能是极值,也可能是区间端点的函数值.3.用导数求解实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义该极值点就是最值点.请使用课时训练(A)第12课时(见活页).[备课札记]。
最新整理高二数学教案导数在研究函数中的作用§1.3导数在研究函数中的作用§1.3.1单调性(1)目的要求:(1)弄清函数的单调性与导数之间的关系(2)函数的单调性的判别方法;注意知识建构(3)利用导数求函数单调区间的步骤(4)培养学生数形结合的能力。
识图和画图。
重点难点:函数单调性的判别方法是本节的重点,求函数的单调区间是本节的重点和难点。
教学内容:导数作为函数的变化率刻画了函数变化的趋势(上升或下降的陡峭程度),而函数的单调性也是对函数变化趋势的一种刻画,回忆:什么是增函数,减函数,增区间,减区间。
思考:导数与函数的单调性有什么联系?函数的单调性的规律:思考:试结合函数进行思考:如果在某区间上单调递增,那么在该区间上必有吗?例1.确定函数在那个区间上是增函数,哪个区间上是减函数。
例2.确定函数在那些区间上是增函数?例3.确定函数的单调减区间。
巩固:1.确定下列函数的单调区间:2.讨论函数的单调性:(1)小结:函数单调性的判定方法,函数的单调性区间的求法。
作业:1.设,则的单调减区间是2.函数的单调递增区间为3.二次函数在上单调递增,则实数a的取值范围是4.在下列结论中,正确的结论共有:()①单调增函数的导函数也是增函数②单调减函数的导函数也是减函数③单调函数的导函数也是单调函数④导函数是单调的,则原函数也是单调的A.0个B.2个C.3个D.4个5.若函数则的单调递减区间为单调递增区间为6.已知函数在区间上为减函数,则m的取值范围是7.求函数的递增区间和递减区间。
8.确定函数y=的单调区间.9.如果函数在R上递增,求a的取值范围。
§1.3.1单调性(2)目的要求:(1)巩固利用导数求函数的单调区间(2)利用导数证明函数的单调性(3)利用单调性研究参数的范围(4)培养学生数形结合、分类讨论的能力,养成良好的分析问题解决问题的能力。
高中数学《导数在研究函数中的应用》教案新人教A版选修教案章节一:导数的概念及计算1. 教学目标(1) 理解导数的定义及其几何意义。
(2) 学会计算常见函数的导数。
(3) 能够运用导数研究函数的单调性。
2. 教学重点与难点(1) 重点:导数的定义,导数的计算。
(2) 难点:导数在研究函数单调性中的应用。
3. 教学过程(1) 导入:回顾函数的图像,引导学生思考如何判断函数的单调性。
(2) 讲解:介绍导数的定义,通过几何意义解释导数表示函数在某点的瞬时变化率。
(3) 练习:计算基本函数的导数,引导学生发现导数的计算规律。
(4) 应用:利用导数判断函数的单调性,举例说明。
4. 课后作业(1) 复习导数的定义及计算方法。
(2) 练习判断给定函数的单调性。
教案章节二:导数在研究函数极值中的应用1. 教学目标(1) 理解极值的概念。
(2) 学会利用导数研究函数的极值。
(3) 能够运用极值解决实际问题。
2. 教学重点与难点(1) 重点:极值的概念,利用导数研究函数的极值。
(2) 难点:实际问题中极值的应用。
3. 教学过程(1) 导入:回顾上一节课的内容,引导学生思考如何利用导数研究函数的极值。
(2) 讲解:介绍极值的概念,讲解如何利用导数求函数的极值。
(3) 练习:举例求解函数的极值,引导学生发现求极值的规律。
(4) 应用:运用极值解决实际问题,如最优化问题。
4. 课后作业(1) 复习极值的概念及求解方法。
(2) 练习求解给定函数的极值。
教案章节三:导数在研究函数凹凸性中的应用1. 教学目标(1) 理解凹凸性的概念。
(2) 学会利用导数研究函数的凹凸性。
(3) 能够运用凹凸性解决实际问题。
2. 教学重点与难点(1) 重点:凹凸性的概念,利用导数研究函数的凹凸性。
(2) 难点:实际问题中凹凸性的应用。
3. 教学过程(1) 导入:回顾上一节课的内容,引导学生思考如何利用导数研究函数的凹凸性。
(2) 讲解:介绍凹凸性的概念,讲解如何利用导数判断函数的凹凸性。
导数在研究函数中的应用——单调性教学目标:①能探索并应用函数的单调性与导数的关系;②求一些简单的非初等函数的单调区间;③能由函数的单调性绘制函数图象.教学重点:利用导数研究函数的单调性,会求一些简单的非初等函数的单调区间.教学难点:导数与单调性之间的联系,利用导数绘制函数的大致图象.教学设计:一、问题情境问题一 求函数342+-=x x y 的单调区间.问题二 判断或证明函数的单调性常用方法有那些?问题三 你能确定函数762)(23+-=x x x f 的单调区间吗?问题四 除了单调性是对函数变化趋势(上升或下降的陡峭程度)的刻画,还有什么知识也刻画了函数变化的趋势?设计意图:以问题形式复习相关的旧知识,同时引出新问题:三次函数或非初等函数判断单调性,在用定义法、图象法很不方便时,如何思考、化未知为已知,让学生积极主动地参与到学习中来.二、数学建构问题五 能不能利用导数研究函数的单调性呢?问题六 导数与单调性有何联系?如何寻找?导数与函数的单调性的关系一般地, 对于函数y =f (x ),如果在某区间上f ′(x )>0,那么f (x )为该区间上的增函数;如果在某区间上f ′(x )<0,那么f (x )为该区间上的减函数.设计意图:通过观察、猜想到归纳、总结,让学生体验知识的发现、发生过程,变灌注知识为学生主动获取知识,从而使之成为课堂教学活动的主体.三、数学应用例1.确定下列函数的单调区间:(1)x x y ln -= (2)xx y ln =(3)x xe y =总结利用导数讨论函数单调性的步骤:①求函数的定义域;②求函数f (x )的导数f ′(x );③令f ′(x )>0解不等式,得x 的范围就是递增区间.令f ′(x )<0解不等式,得x 的范围,就是递减区间.④书写答案注意连接词.问题六 确定函数762)(23+-=x x x f 的单调区间,并作出草图.问题七 画出下列函数的草图①71862)(23++-=x x x x f ②7662)(23++-=x x x x f设计意图:通过具有开放性问题的设计,可以拓展学生思维,有利于学生对函数单调性与导数关系的更深层次的理解,进一步培养学生作函数图象与使用数形结合解决问题的意识.课后思考题 ①求函数xa x y +=)(R a ∈的单调区间. ②画出3x y =的图象,试问导函数0)(>'x f 是函数)(x f y =单调递增的 的条件.设计意图:这个问题是个难点,课上如果讲是讲不透的,课后让学生思考,可以有足够的时间去理解.另外,在给定函数下思考,可以使得问题的针对性更强,否则学生不知如何入手.对由已知单调增(减)的导数应该大于(小于)或等于零这个结论,只要让学生通过实例感受到为什么,在以后的使用中不漏解即可,而不必要做理论上的论证.四、课堂小结;通过本节课的学习,你学到了哪些新知识?能解决哪些问题?本节课我们用到了哪些数学思想方法?设计意图:通过小结,培养学生学习——总结——反思的良好习惯,使学习更上一个台阶.五、课堂练习1.确定下列函数的单调区间(1)2x x y -= (2)3x y -=2.讨论函数的单调性(1)b kx y += (2)xk y =(3))0(2≠++=a c bx ax y 3.用导数证明:(1)x e x f =)(在区间()+∞∞-,上是增函数; (2)x e x f x-=)(在区间()0,∞-上是减函数.。
教案: 函数的单调性与导数教学设计中卫市第一中学: 俞清华2月12日授课班级高二(5)班授课教师俞清华学科数学课型新课课题函数的单调性与导数( 第一课时)授课方法启发和探究教学相结合现代化教学辅助手段多媒体课件教学目的要求1、知识与技能目标:能探索并应用函数的单调性与导数的关系求单调区间;能由导数信息绘制函数大致图象。
2、过程与方法目标:经过本节的学习, 掌握用导数研究函数单调性的方法。
3、情感、态度与价值观目标:经过在教学过程中让学生多动手、多观察、勤思考、善总结, 引导学生养成自主学习的学习习惯。
教学重点难点重点:探索并应用函数单调性与导数的关系求单调区间。
难点:利用导数信息绘制函数的大致图象。
学习过程学海泛舟学海拾贝( 一) 复习引入问题1: ( 让学生思考)求下列函数的单调区间?(1) f (x) = x2-4x-5(2) f (x) = 2x3+3x2-24x+1( 引出课题)问题2:某点处导数的几何意义?这一点处的导数即为这一点处切线的斜率以问题形式复习相关的旧知识, 同时引出新问题: 三次函数判断单调性, 定义法、图象法很不方便, 有没有捷径? 经过创设问题情境, 使学生产生强烈的问题意识, 积极主动地参与到学习中来。
( 二) 讨论研究( 让学生先作图, 再根据flash动画, 归纳出定理)定理:一般地, 函数y=f( x) 在某个区间(a,b)内1) 如果恒有f′(x)>0, 那么y=f( x)在这个区间( a,b)内单调递增;2) 如果恒有f′(x)<0, 那么y=f( x) 在这个区间(a,b)内单调递减。
注意:①应正确理解” 某个区间” 的含义, 它必是定义域内的某个子区间。
教师对具体例子进行动态演示, 学生对一般情况进行实验验证。
由观察、猜想到归纳、总结, 让学生体验知识的发现、发生过程, 变灌注知识为学生主动获取知识, 从而使之成为课堂教学活动的主体。
②如果在某个区间内恒有 f /(x)=0 ,则f(x) 为常数函数.( 三) 演练反馈:例1、已知导函数 f /(x)的下列信息:当1<x<4时, f /(x)>0;当x>4,或x<1时, f /(x)<0;当x=4,或x=1时, f /(x)=0.试画出函数f(x)图象的大致形状。
学案14 导数在研究函数中的应用0导学目标: 1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(多项式函数一般不超过三次)及最大(最小)值.自主梳理1.导数和函数单调性的关系:(1)若f ′(x )>0在(a ,b )上恒成立,则f (x )在(a ,b )上是______函数,f ′(x )>0的解集与定义域的交集的对应区间为______区间;(2)若f ′(x )<0在(a ,b )上恒成立,则f (x )在(a ,b )上是______函数,f ′(x )<0的解集与定义域的交集的对应区间为______区间;(3)若在(a ,b )上,f ′(x )≥0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零⇔f (x )在(a ,b )上为______函数,若在(a ,b )上,f ′(x )≤0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零⇔f (x )在(a ,b )上为______函数.2.函数的极值(1)判断f (x 0)是极值的方法一般地,当函数f (x )在点x 0处连续时,①如果在x 0附近的左侧________,右侧________,那么f (x 0)是极大值; ②如果在x 0附近的左侧________,右侧________,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x );②求方程________的根;③检查f ′(x )在方程________的根左右值的符号.如果左正右负,那么f (x )在这个根处取得________;如果左负右正,那么f (x )在这个根处取得________.自我检测1.已知f (x )的定义域为R ,f (x )的导函数f ′(x )的图象如图所示,则 ( )A .f (x )在x =1处取得极小值B .f (x )在x =1处取得极大值C .f (x )是R 上的增函数D .f (x )是(-∞,1)上的减函数,(1,+∞)上的增函数 2.函数f (x )=(x -3)e x 的单调递增区间是 ( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞) 3.(2011·济宁模拟)已知函数y =f (x ),其导函数y =f ′(x )的图象如图所示,则y =f (x )( )A .在(-∞,0)上为减函数B .在x =0处取极小值C .在(4,+∞)上为减函数D .在x =2处取极大值4.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥43,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处取极值10,则f (2)=________.探究点一 函数的单调性例1 已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数). (1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围;(3)函数f (x )能否为R 上的单调函数,若能,求出a 的取值范围;若不能,请说明理由.变式迁移1 已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率是-3,求a ,b 的值; (2)若函数f (x )在区间(-1,1)上不单调,求a 的取值范围.探究点二 函数的极值例2 若函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数f (x )的解析式;(2)若关于x 的方程f (x )=k 有三个零点,求实数k 的取值范围.变式迁移2 设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点. (1)试确定常数a 和b 的值;(2)试判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由.探究点三 求闭区间上函数的最值例3 已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值.变式迁移3 已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值和最小值.分类讨论求函数的单调区间 例 (12分)已知函数f (x )=12x 2-ax +(a -1)ln x ,a >1.(1)讨论函数f (x )的单调性;(2)证明:若a <5,则对任意x 1,x 2∈(0,+∞),x 1≠x 2,有f (x 1)-f (x 2)x 1-x 2>-1.多角度审题 (1)先求导,根据参数a 的值进行分类讨论;(2)若x 1>x 2,结论等价于f (x 1)+x 1>f (x 2)+x 2,若x 1<x 2,问题等价于f (x 1)+x 1<f (x 2)+x 2,故问题等价于y =f (x )+x 是单调增函数.【答题模板】(1)解 f (x )的定义域为(0,+∞).f ′(x )=x -a +a -1x =x 2-ax +a -1x =(x -1)(x +1-a )x .[2分]①若a -1=1,即a =2时,f ′(x )=(x -1)2x .故f (x )在(0,+∞)上单调递增.②若a -1<1,而a >1,故1<a <2时,则当x ∈(a -1,1)时,f ′(x )<0;当x ∈(0,a -1)及x ∈(1,+∞)时,f ′(x )>0,故f (x )在(a -1,1)上单调递减,在(0,a -1),(1,+∞)上单调递增.③若a -1>1,即a >2时,同理可得f (x )在(1,a -1)上单调递减, 在(0,1),(a -1,+∞)上单调递增.[6分] (2)证明 考虑函数g (x )=f (x )+x =12x 2-ax +(a -1)ln x +x . 则g ′(x )=x -(a -1)+a -1x ≥2x ·a -1x-(a -1)=1-(a -1-1)2.由于1<a <5,故g ′(x )>0, 即g (x )在(0,+∞)上单调递增, 从而当x 1>x 2>0时,有g (x 1)-g (x 2)>0, 即f (x 1)-f (x 2)+x 1-x 2>0, 故f (x 1)-f (x 2)x 1-x 2>-1.[10分]当0<x 1<x 2时,有f (x 1)-f (x 2)x 1-x 2=f (x 2)-f (x 1)x 2-x 1>-1.综上,若a <5,对任意x 1,x 2∈(0,+∞),x 1≠x 2有f (x 1)-f (x 2)x 1-x 2>-1.[12分]【突破思维障碍】(1)讨论函数的单调区间的关键是讨论导数大于0或小于0的不等式的解集,一般就是归结为一个一元二次不等式的解集的讨论,在能够通过因式分解得到导数等于0的根的情况下,根的大小是分类的标准;(2)利用导数解决不等式问题的主要方法就是构造函数,通过函数研究函数的性质进而解决不等式问题.1.求可导函数单调区间的一般步骤和方法: (1)确定函数f (x )的定义域;(2)求f ′(x ),令f ′(x )=0,求出它在定义域内的一切实根;(3)把函数f (x )的间断点(即f (x )的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f (x )的定义区间分成若干个小区间;(4)确定f ′(x )在各个开区间内的符号,根据f ′(x )的符号判定函数f (x )在每个相应小开区间内的增减性.2.可导函数极值存在的条件:(1)可导函数的极值点x 0一定满足f ′(x 0)=0,但当f ′(x 1)=0时,x 1不一定是极值点.如f (x )=x 3,f ′(0)=0,但x =0不是极值点.(2)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同.3.函数的最大值、最小值是比较整个定义区间的函数值得出来的,函数的极值是比较极值点附近的函数值得出来的.函数的极值可以有多有少,但最值只有一个,极值只能在区间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可能成为最值,最值只要不在端点必定是极值.4.求函数的最值以导数为工具,先找到极值点,再求极值和区间端点函数值,其中最大的一个是最大值,最小的一个是最小值.(满分:75分)一、选择题(每小题5分,共25分) 1.设f (x ),g (x )是R 上的可导函数,f ′(x )、g ′(x )分别为f (x )、g (x )的导函数,且f ′(x )·g (x )+f (x )g ′(x )<0,则当a <x <b 时,有 ( )A .f (x )g (b )>f (b )g (x )B .f (x )g (a )>f (a )g (x )C .f (x )g (x )>f (b )g (b )D .f (x )g (x )>f (a )g (a )2.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点 ( )A .1个B .2个C .3个D .4个3.(2011·嘉兴模拟)若函数y =a (x 3-x )在区间⎝⎛⎭⎫-33,33上为减函数,则a 的取值范围是 ( )A .a >0B .-1<a <0C .a >1D .0<a <14.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是 ( )A .m ≥32B .m >32C .m ≤32D .m <325.设a ∈R ,若函数y =e ax +3x ,x ∈R 有大于零的极值点,则 ( ) A .a >-3 B .a <-3C .a >-13D .a <-13二、填空题(每小题4分,共12分)6.若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.7.已知函数f (x )的导函数f ′(x )的图象如右图所示,给出以下结论: ①函数f (x )在(-2,-1)和(1,2)上是单调递增函数;②函数f (x )在(-2,0)上是单调递增函数,在(0,2)上是单调递减函数; ③函数f (x )在x =-1处取得极大值,在x =1处取得极小值; ④函数f (x )在x =0处取得极大值f (0).则正确命题的序号是________.(填上所有正确命题的序号).8.已知函数f (x )=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围为________.三、解答题(共38分)9.(12分)求函数f (x )=2x +1x 2+2的极值.10.(12分)已知a 为实数,且函数f (x )=(x 2-4)(x -a ). (1)求导函数f ′(x );(2)若f ′(-1)=0,求函数f (x )在[-2,2]上的最大值、最小值.11.(14分)已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f′(x)+6x的图象关于y轴对称.(1)求m,n的值及函数y=f(x)的单调区间;(2)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.。
舜耕中学高一数学选修1—1导学案(教师版) 编号20 等级:周次上课时间月 日 周课型新授课主备人胡安涛使用人课题 3.3.1函数的单调性与导数教学目标1.会熟练用求导,求函数单调区间,证明单调性。
2.会从导数的角度解释增减及增减快慢的情况教学重点会熟练用求导,求函数单调区间,会从导数的角度解释增减及增减快慢的情况教学难点证明单调性课前准备多媒体课件一。
【复习回顾】(1)常函数:0'=C (C 为常数); (2)幂函数 :1)'(-=n nnxx (Q n ∈)(3)三角函数 :(4)对数函数的导数: 1(ln ).x x '=1(log ).ln a x x a'= (5)指数函数的导数: ().x xe e '= ()l n (0,1x x a a a a a '=>≠ 二。
【创设情境】下图(1)表示高台跳水运动员的高度 h 随时间 t 变化的函数的图象,图(2)表示高台跳水运动员的速度 v 随时间 t 变化的函数 的图象.运动员从起跳到最高点, 以及从最高点到入水这两段时间的运动状态有什么区别? ①运动员从起跳到最高点,离水面的高度h 随时间t 的增加而增加,即h(t)是增函数. 相应地, ()()0.v t h t '=>②从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即h(t)是减函数. 相应地, ()()0.v t h t '=<观察下面一些函数的图象, 探讨函数的单调性与其导函数正负的关系. 见课本P90图结论:一般地,函数的单调性与其导数的正负有如下关系在某个区间(a ,b )内,如果()0f x '> ,那么函数()y f x =在这个区间内单调递增; 如果()0f x '<,那么函数()y f x =在这个区间内单调递减. 如果恒有'()0f x =,则()f x 是常数。
学案14导数在研究函数中的应用0导学目标:1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(多项式函数一般不超过三次)及最大(最小)值.自主梳理1.导数和函数单调性的关系:(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是______函数,f′(x)>0的解集与定义域的交集的对应区间为______区间;(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是______函数,f′(x)<0的解集与定义域的交集的对应区间为______区间;(3)若在(a,b)上,f′(x)≥0,且f′(x)在(a,b)的任何子区间内都不恒等于零⇔f(x)在(a,b)上为______函数,若在(a,b)上,f′(x)≤0,且f′(x)在(a,b)的任何子区间内都不恒等于零⇔f(x)在(a,b)上为______函数.2.函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧________,右侧________,那么f(x0)是极大值;②如果在x0附近的左侧________,右侧________,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程________的根;③检查f′(x)在方程________的根左右值的符号.如果左正右负,那么f(x)在这个根处取得________;如果左负右正,那么f(x)在这个根处取得________.自我检测1.已知f(x)的定义域为R,f(x)的导函数f′(x)的图象如图所示,则()A.f(x)在x=1处取得极小值B.f(x)在x=1处取得极大值C.f(x)是R上的增函数D.f(x)是(-∞,1)上的减函数,(1,+∞)上的增函数2.(2009·广东)函数f(x)=(x-3)e x的单调递增区间是() A.(-∞,2) B.(0,3)C.(1,4) D.(2,+∞)3.(2011·济宁模拟)已知函数y=f(x),其导函数y=f′(x)的图象如图所示,则y=f(x)()A .在(-∞,0)上为减函数B .在x =0处取极小值C .在(4,+∞)上为减函数D .在x =2处取极大值4.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥43,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 5.(2011·福州模拟)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处取极值10,则f (2)=________.探究点一 函数的单调性例1 已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数). (1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围;(3)函数f (x )能否为R 上的单调函数,若能,求出a 的取值范围;若不能,请说明理由.变式迁移1 (2009·浙江)已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ). (1)若函数f (x )的图象过原点,且在原点处的切线斜率是-3,求a ,b 的值; (2)若函数f (x )在区间(-1,1)上不单调,求a 的取值范围.探究点二 函数的极值例2 若函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数f (x )的解析式;(2)若关于x 的方程f (x )=k 有三个零点,求实数k 的取值范围.变式迁移2 设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点. (1)试确定常数a 和b 的值;(2)试判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由.探究点三 求闭区间上函数的最值 例3 (2011·六安模拟)已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值.变式迁移3 已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值和最小值.分类讨论求函数的单调区间例 (12分)(2009·辽宁)已知函数f (x )=12x 2-ax +(a -1)ln x ,a >1.(1)讨论函数f (x )的单调性;(2)证明:若a <5,则对任意x 1,x 2∈(0,+∞),x 1≠x 2,有f (x 1)-f (x 2)x 1-x 2>-1.多角度审题 (1)先求导,根据参数a 的值进行分类讨论;(2)若x 1>x 2,结论等价于f (x 1)+x 1>f (x 2)+x 2,若x 1<x 2,问题等价于f (x 1)+x 1<f (x 2)+x 2,故问题等价于y =f (x )+x 是单调增函数.【答题模板】(1)解 f (x )的定义域为(0,+∞).f ′(x )=x -a +a -1x =x 2-ax +a -1x =(x -1)(x +1-a )x.[2分]①若a -1=1,即a =2时,f ′(x )=(x -1)2x.故f (x )在(0,+∞)上单调递增.②若a -1<1,而a >1,故1<a <2时,则当x ∈(a -1,1)时,f ′(x )<0;当x ∈(0,a -1)及x ∈(1,+∞)时,f ′(x )>0,故f (x )在(a -1,1)上单调递减,在(0,a -1),(1,+∞)上单调递增.③若a -1>1,即a >2时,同理可得f (x )在(1,a -1)上单调递减, 在(0,1),(a -1,+∞)上单调递增.[6分] (2)证明 考虑函数g (x )=f (x )+x =12x 2-ax +(a -1)ln x +x . 则g ′(x )=x -(a -1)+a -1x ≥2x ·a -1x-(a -1)=1-(a -1-1)2.由于1<a <5,故g ′(x )>0,即g (x )在(0,+∞)上单调递增,从而当x 1>x 2>0时,有g (x 1)-g (x 2)>0, 即f (x 1)-f (x 2)+x 1-x 2>0, 故f (x 1)-f (x 2)x 1-x 2>-1.[10分]当0<x 1<x 2时,有f (x 1)-f (x 2)x 1-x 2=f (x 2)-f (x 1)x 2-x 1>-1.综上,若a <5,对任意x 1,x 2∈(0,+∞),x 1≠x 2有f (x 1)-f (x 2)x 1-x 2>-1.[12分]【突破思维障碍】(1)讨论函数的单调区间的关键是讨论导数大于0或小于0的不等式的解集,一般就是归结为一个一元二次不等式的解集的讨论,在能够通过因式分解得到导数等于0的根的情况下,根的大小是分类的标准;(2)利用导数解决不等式问题的主要方法就是构造函数,通过函数研究函数的性质进而解决不等式问题.1.求可导函数单调区间的一般步骤和方法: (1)确定函数f (x )的定义域;(2)求f ′(x ),令f ′(x )=0,求出它在定义域内的一切实根;(3)把函数f (x )的间断点(即f (x )的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f (x )的定义区间分成若干个小区间;(4)确定f ′(x )在各个开区间内的符号,根据f ′(x )的符号判定函数f (x )在每个相应小开区间内的增减性.2.可导函数极值存在的条件:(1)可导函数的极值点x 0一定满足f ′(x 0)=0,但当f ′(x 1)=0时,x 1不一定是极值点.如f (x )=x 3,f ′(0)=0,但x =0不是极值点.(2)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同.3.函数的最大值、最小值是比较整个定义区间的函数值得出来的,函数的极值是比较极值点附近的函数值得出来的.函数的极值可以有多有少,但最值只有一个,极值只能在区间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可能成为最值,最值只要不在端点必定是极值.4.求函数的最值以导数为工具,先找到极值点,再求极值和区间端点函数值,其中最大的一个是最大值,最小的一个是最小值.(满分:75分)一、选择题(每小题5分,共25分) 1.(2011·大连模拟)设f (x ),g (x )是R 上的可导函数,f ′(x )、g ′(x )分别为f (x )、g (x )的导函数,且f ′(x )·g (x )+f (x )g ′(x )<0,则当a <x <b 时,有 ( )A .f (x )g (b )>f (b )g (x )B .f (x )g (a )>f (a )g (x )C .f (x )g (x )>f (b )g (b )D .f (x )g (x )>f (a )g (a )2.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点 ( )A .1个B .2个C .3个D .4个3.(2011·嘉兴模拟)若函数y =a (x 3-x )在区间⎝⎛⎭⎫-33,33上为减函数,则a 的取值范围是 ( )A .a >0B .-1<a <0C .a >1D .0<a <1 4.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是()A .m ≥32B .m >32C .m ≤32D .m <325.设a ∈R ,若函数y =e ax+3x ,x ∈R 有大于零的极值点,则 ( )A .a >-3B .a <-3C .a >-1D .a <-16.(2009·辽宁)若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.7.已知函数f (x )的导函数f ′(x )的图象如右图所示,给出以下结论: ①函数f (x )在(-2,-1)和(1,2)上是单调递增函数;②函数f (x )在(-2,0)上是单调递增函数,在(0,2)上是单调递减函数; ③函数f (x )在x =-1处取得极大值,在x =1处取得极小值; ④函数f (x )在x =0处取得极大值f (0).则正确命题的序号是________.(填上所有正确命题的序号).8.已知函数f (x )=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围为________.三、解答题(共38分)9.(12分)求函数f (x )=2x +1x 2+2的极值.10.(12分)(2011·秦皇岛模拟)已知a 为实数,且函数f (x )=(x 2-4)(x -a ). (1)求导函数f ′(x );(2)若f ′(-1)=0,求函数f (x )在[-2,2]上的最大值、最小值.11.(14分)(2011·汕头模拟)已知函数f (x )=x 3+mx 2+nx -2的图象过点(-1,-6),且函数g (x )=f ′(x )+6x 的图象关于y 轴对称.(1)求m ,n 的值及函数y =f (x )的单调区间;(2)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值.答案 自主梳理1.(1)增 增 (2)减 减 (3)增 减 2.(1)①f ′(x )>0 f ′(x )<0 ②f ′(x )<0 f ′(x )>0 (2)②f ′(x )=0 ③f ′(x )=0 极大值 极小值 自我检测1.C 2.D 3.C 4.C 5.18解析 f ′(x )=3x 2+2ax +b ,由题意⎩⎪⎨⎪⎧ f (1)=10,f ′(1)=0,即⎩⎪⎨⎪⎧1+a +b +a 2=10,3+2a +b =0,得a =4,b =-11或a =-3,b =3.但当a =-3时,f ′(x )=3x 2-6x +3≥0,故不存在极值, ∴a =4,b =-11,f (2)=18. 课堂活动区例1 解题导引 (1)一般地,涉及到函数(尤其是一些非常规函数)的单调性问题,往往可以借助导数这一重要工具进行求解.函数在定义域内存在单调区间,就是不等式f ′(x )>0或f ′(x )<0在定义域内有解.这样就可以把问题转化为解不等式问题.(2)已知函数在某个区间上单调求参数问题,通常是解决一个恒成立问题,方法有①分离参数法,②利用二次函数中恒成立问题解决.(3)一般地,可导函数f (x )在(a ,b )上是增(或减)函数的充要条件是:对任意x ∈(a ,b ),都有f ′(x )≥0(或f ′(x )≤0),且f ′(x )在(a ,b )的任何子区间内都不恒等于零.特别是在已知函数的单调性求参数的取值范围时,要注意“等号”是否可以取到.解 (1)当a =2时,f (x )=(-x 2+2x )e x ,∴f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x . 令f ′(x )>0,即(-x 2+2)e x >0,∵e x >0,∴-x 2+2>0,解得-2<x < 2. ∴函数f (x )的单调递增区间是(-2,2). (2)∵函数f (x )在(-1,1)上单调递增, ∴f ′(x )≥0对x ∈(-1,1)都成立. ∵f ′(x )=[-x 2+(a -2)x +a ]e x∴[-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立. ∵e x >0,∴-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立, 即x 2-(a -2)x -a ≤0对x ∈(-1,1)恒成立. 设h (x )=x 2-(a -2)x -a只须满足⎩⎪⎨⎪⎧h (-1)≤0h (1)≤0,解得a ≥32.(3)若函数f (x )在R 上单调递减,则f ′(x )≤0对x ∈R 都成立,即[-x 2+(a -2)x +a ]e x ≤0对x ∈R 都成立. ∵e x >0,∴x 2-(a -2)x -a ≥0对x ∈R 都成立.∴Δ=(a -2)2+4a ≤0,即a 2+4≤0,这是不可能的. 故函数f (x )不可能在R 上单调递减.若函数f (x )在R 上单调递增,则f ′(x )≥0对x ∈R 都成立,即[-x 2+(a -2)x +a ]e x ≥0对x ∈R 都成立.∵e x >0,∴x 2-(a -2)x -a ≤0对x ∈R 都成立. 而x 2-(a -2)x -a ≤0不可能恒成立, 故函数f (x )不可能在R 上单调递增.综上可知函数f (x )不可能是R 上的单调函数.变式迁移1 解 (1)由题意得f ′(x )=3x 2+2(1-a )x -a (a +2),又⎩⎪⎨⎪⎧f (0)=b =0f ′(0)=-a (a +2)=-3, 解得b =0,a =-3或a =1.(2)由f ′(x )=0,得x 1=a ,x 2=-a +23.又f (x )在(-1,1)上不单调,即⎩⎪⎨⎪⎧ -1<a <1,a ≠-a +23或⎩⎨⎧-1<-a +23<1,a ≠-a +23.解得⎩⎪⎨⎪⎧-1<a <1,a ≠-12,或⎩⎪⎨⎪⎧-5<a <1,a ≠-12. 所以a 的取值范围为(-5,-12)∪(-12,1).例2 解题导引 本题研究函数的极值问题.利用待定系数法,由极值点的导数值为0,以及极大值、极小值,建立方程组求解.判断函数极值时要注意导数为0的点不一定是极值点,所以求极值时一定要判断导数为0的点左侧与右侧的单调性,然后根据极值的定义判断是极大值还是极小值.解 (1)由题意可知f ′(x )=3ax 2-b .于是⎩⎪⎨⎪⎧ f ′(2)=12a -b =0f (2)=8a -2b +4=-43,解得⎩⎪⎨⎪⎧a =13,b =4故所求的函数解析式为f (x )=13x 3-4x +4.(2)由(1)可知f ′(x )=x 2-4=(x -2)(x +2). 令f ′(x )=0得x =2或x =-2,x (-∞,-2) -2 (-2,2) 2 (2,+∞)f ′(x ) + 0 - 0 + f (x ) 单调递增 极大值 单调递减 极小值单调递增因此,当x =-2时,f (x )有极大值283,当x =2时,f (x )有极小值-43,所以函数的大致图象如图, 故实数k 的取值范围为 (-43,283). 变式迁移2 解 (1)f ′(x )=ax +2bx +1,∴⎩⎪⎨⎪⎧f ′(1)=a +2b +1=0f ′(2)=a 2+4b +1=0.解得a =-23,b =-16. (2)f ′(x )=-23x +(-x3)+1=-(x -1)(x -2)3x.例3 解题导引 设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤:(1)求函数y =f (x )在(a ,b )内的极值.(2)将函数y =f (x )的各极值与端点处的函数值f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.解 (1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b ,当x =1时,切线l 的斜率为3,可得2a +b =0;①当x =23时,y =f (x )有极值,则f ′⎝⎛⎭⎫23=0, 可得4a +3b +4=0.②由①②解得a =2,b =-4,又切点的横坐标为x =1,∴f (1)=4. ∴1+a +b +c =4.∴c =5.(2)由(1),得f (x )=x 3+2x 2-4x +5, ∴f ′(x )=3x 2+4x -4.令f ′(x )=0,得x =-2或x =23,∴f ′(x )<0的解集为⎝⎛⎭⎫-2,23,即为f (x )的减区间. [-3,-2)、⎝⎛⎦⎤23,1是函数的增区间.又f (-3)=8,f (-2)=13,f ⎝⎛⎭⎫23=9527,f (1)=4,∴y =f (x )在[-3,1]上的最大值为13,最小值为9527.变式迁移3 解 (1)由题意得f ′(x )=3ax 2+2x +b . 因此g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b . 因为函数g (x )是奇函数,所以g (-x )=-g (x ),即对任意实数x , 有a (-x )3+(3a +1)(-x )2+(b +2)(-x )+b =-[ax 3+(3a +1)x 2+(b +2)x +b ],从而3a +1=0,b =0,解得a =-13,b =0,因此f (x )的表达式为f (x )=-13x 3+x 2.(2)由(1)知g (x )=-13x 3+2x ,所以g ′(x )=-x 2+2,令g ′(x )=0, 解得x 1=-2,x 2=2,则当x <-2或x >2时,g ′(x )<0,从而g (x )在区间(-∞,-2),(2,+∞)上是减函数; 当-2<x <2时,g ′(x )>0,从而g (x )在区间(-2,2)上是增函数.由前面讨论知,g (x )在区间[1,2]上的最大值与最小值只能在x =1,2,2时取得,而g (1)=53,g (2)=423,g (2)=43.因此g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43.课后练习区1.C 2.A 3.A 4.A 5.B 6.3解析 ∵f ′(x )=(x 2+ax +1)′=(x 2+a )′·(x +1)-(x 2+a )(x +1)′(x +1)2=x 2+2x -a (x +1)2,又∵x =1为函数的极值,∴f ′(1)=0. ∴1+2×1-a =0,即a =3. 7.②④解析 观察函数f (x )的导函数f ′(x )的图象,由单调性、极值与导数值的关系直接判断. 8.(-∞,-3)∪(6,+∞)解析 f ′(x )=3x 2+2mx +m +6=0有两个不等实根,则Δ=4m 2-12×(m +6)>0,∴m >6或m <-3.9.解 f ′(x )=(2x +1x 2+2)′=-2(x +2)(x -1)(x 2+2)2,由f ′(x )=0得x =-2,1.………………(4分)当x ∈(-∞,-2)时f ′(x )<0,当x ∈(-2,1)时f ′(x )>0,故x =-2是函数的极小值点,故f (x )的极小值为f (-2)=-12;…………………………………………………………………(8分)当x ∈(-2,1)时f ′(x )>0,当x ∈(1,+∞)时f ′(x )<0, 故x =1是函数的极大值点,所以f (x )的极大值为f (1)=1.……………………………………………………………(12分)10.解 (1)由f (x )=x 3-ax 2-4x +4a ,得f ′(x )=3x 2-2ax -4.…………………………………………………………………(4分)(2)因为f ′(-1)=0,所以a =12,所以f (x )=x 3-12x 2-4x +2,f ′(x )=3x 2-x -4.又f ′(x )=0,所以x =43或x =-1.又f ⎝⎛⎭⎫43=-5027,f (-1)=92, f (-2)=0,f (2)=0,所以f (x )在[-2,2]上的最大值、最小值分别为92、-5027.………(12分)11.解 (1)由函数f (x )图象过点(-1,-6),得m -n =-3. ① 由f (x )=x 3+mx 2+nx -2, 得f ′(x )=3x 2+2mx +n ,则g (x )=f ′(x )+6x =3x 2+(2m +6)x +n .而g (x )的图象关于y 轴对称,所以-2m +62×3=0.所以m =-3,代入①,得n =0.…………………………………………………………(4分)于是f ′(x )=3x 2-6x =3x (x -2). 由f ′(x )>0,得x >2或x <0,故f (x )的单调递增区间是(-∞,0)∪(2,+∞); 由f ′(x )<0,得0<x <2,故f (x )的单调递减区间是(0,2).…………………………………………………………(8分) (2)由(1)得f ′(x )=3x (x -2), 令f ′(x )=0, 得x =0或x =2.(10分)由此可得:当0<a <1时,f (x )在(a -1,a +1)内有极大值f (0)=-2,无极小值; 当a =1时,f (x )在(a -1,a +1)内无极值;当1<a <3时,f (x )在(a -1,a +1)内有极小值f (2)=-6,无极大值;当a ≥3时,f (x )在(a -1,a +1)内无极值.……………………………………………(12分)综上得:当0<a <1时,f (x )有极大值-2,无极小值; 当1<a <3时,f (x )有极小值-6,无极大值;当a =1或a ≥3时,f (x )无极值.………………………………………………………(14分)。