2019上海数学初三二模静安
- 格式:doc
- 大小:391.83 KB
- 文档页数:11
上海市静安区2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A. B. C. D.2.如图,四边形ABCD内接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,则∠BDC的度数为()A.100°B.105°C.110°D.115°3.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )A.22B.4 C.32D.424.下列解方程去分母正确的是( )A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+65.学校小组5名同学的身高(单位:cm)分别为:147,156,151,152,159,则这组数据的中位数是().A.147B.151C.152D.1566.如图,函数y=()()()4022824x x xx x⎧--≤<⎪⎨-+≤≤⎪⎩的图象记为c1,它与x轴交于点O和点A1;将c1绕点A1旋转180°得c2,交x轴于点A2;将c2绕点A2旋转180°得c3,交x轴于点A3…如此进行下去,若点P(103,m)在图象上,那么m的值是()A.﹣2 B.2 C.﹣3 D.47.若2<2a-<3,则a的值可以是()A.﹣7 B.163C.132D.128.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是()A.36°B.54°C.72°D.108°9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.如图,直线a∥b,点A在直线b上,∠BAC=100°,∠BAC的两边与直线a分别交于B、C两点,若∠2=32°,则∠1的大小为()A.32°B.42°C.46°D.48°11.下列方程有实数根的是()A.420x+=B.221x-=-C.x+2x−1=0D.111 xx x=--12.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,直线y=x+1(记为l 1)与直线y=mx+n(记为l 2)相交于点P(a,2),则关于x 的不等式x+1≥mx+n 的解集为__________.14.如图,在平面直角坐标系中,点A 是抛物线y=a (x+32)2+k 与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的正方形ABCD 的周长为_____.15.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为__度.16.对于任意不相等的两个实数,a b ,定义运算※如下:a ※b =a b a b +-,如3※2=3232+-=5.那么8※4= .17.方程21x -=1的解是_____. 18.如图AB 是O e 直径,C 、D 、E 为圆周上的点,则C D ∠+∠=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AC 是⊙O 的直径,PA 切⊙O 于点A ,点B 是⊙O 上的一点,且∠BAC =30°,∠APB =60°.(1)求证:PB 是⊙O 的切线;(2)若⊙O的半径为2,求弦AB及PA,PB的长.20.(6分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC中,D为边BC的中点,AE⊥BC于E,则线段DE的长叫做边BC的中垂距.(1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是,推断的数学依据是.(2)如图②,在△ABC中,∠B=15°,AB=32,BC=8,AD为边BC的中线,求边BC的中垂距.(3)如图③,在矩形ABCD中,AB=6,AD=1.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求△ACF中边AF的中垂距.21.(6分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,点P为边AB上一动点,以P为圆心,BP为半径的圆交边BC于点Q.(1)求AB的长;(2)当BQ的长为409时,请通过计算说明圆P与直线DC的位置关系.22.(8分)如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).(1)求该二次函数的表达式;(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,请解答下列问题:①在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;②动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N13度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,△DMN的面积最大,并求出这个最大值.23.(8分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D 作DE⊥AC,垂足为E.证明:DE为⊙O的切线;连接OE,若BC=4,求△OEC的面积.24.(10分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售.(1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;(2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值.25.(10分)某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了下面两幅尚不完整的统计图.请根据有关信息解答:(1)接受测评的学生共有________人,扇形统计图中“优”部分所对应扇形的圆心角为________°,并补全条形统计图;(2)若该校共有学生1200人,请估计该校对安全知识达到“良”程度的人数;(3)测评成绩前五名的学生恰好3个女生和2个男生,现从中随机抽取2人参加市安全知识竞赛,请用树状图或列表法求出抽到1个男生和1个女生的概率.26.(12分)计算:(π﹣1)0+|﹣1|+(﹣1)﹣1.27.(12分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;故选B.点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键.2.B【解析】【分析】根据圆内接四边形的性质得出∠C的度数,进而利用平行线的性质得出∠ABC的度数,利用角平分线的定义和三角形内角和解答即可.【详解】∵四边形ABCD内接于⊙O,∠A=130°,∴∠C=180°-130°=50°,∵AD∥BC,∴∠ABC=180°-∠A=50°,∵BD平分∠ABC,∴∠DBC=25°,∴∠BDC=180°-25°-50°=105°,故选:B.【点睛】本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出∠C的度数.3.B【解析】【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.4.D【解析】【分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】A .由,得:2x ﹣6=3﹣3x ,此选项错误;B .由,得:2x ﹣4﹣x =﹣4,此选项错误;C .由,得:5y ﹣15=3y ,此选项错误;D .由,得:3( y+1)=2y+6,此选项正确.故选D .【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.5.C【解析】【分析】根据中位数的定义进行解答【详解】将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.【点睛】本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.6.C【解析】【分析】求出1C 与x 轴的交点坐标,观察图形可知第奇数号抛物线都在x 轴上方,然后求出到抛物线25C 平移的距离,再根据向右平移横坐标加表示出抛物线26C 的解析式,然后把点P 的坐标代入计算即可得解.【详解】令0y =,则()428x x x ⎧--⎨-+⎩=0, 解得120,4x x ==,()14,0A ∴,由图可知,抛物线26C 在x 轴下方,相当于抛物线1C 向右平移4×(26−1)=100个单位得到得到25C ,再将25C 绕点25A 旋转180°得26C , ∴26C 此时的解析式为y=(x−100)(x−100−4)=(x−100)(x−104),Q 103P m (,)在第26段抛物线26C 上, ∴m=(103−100)(103−104)=−3.故答案是:C.【点睛】本题考查的知识点是二次函数图象与几何变换,解题关键是根据题意得到p 点所在函数表达式. 7.C【解析】【分析】根据已知条件得到4<a-2<9,由此求得a 的取值范围,易得符合条件的选项.【详解】解:∵2<3,∴4<a-2<9,∴6<a <1.又a-2≥0,即a≥2.∴a 的取值范围是6<a <1.观察选项,只有选项C 符合题意.故选C .【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.8.C【解析】 正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是3605=72度, 故选C .9.D【解析】【分析】根据多边形的内角和=(n ﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n ,∴(n ﹣2)•180°=1080°,解得n =8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.D【解析】【分析】根据平行线的性质与对顶角的性质求解即可.【详解】∵a ∥b ,∴∠BCA=∠2,∵∠BAC=100°,∠2=32°∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.∴∠1=∠CBA=48°.故答案选D.【点睛】本题考查了平行线的性质,解题的关键是熟练的掌握平行线的性质与对顶角的性质.11.C【解析】分析:根据方程解的定义,一一判断即可解决问题;详解:A .∵x 4>0,∴x 4+2=0无解;故本选项不符合题意;B ≥0=﹣1无解,故本选项不符合题意;C .∵x 2+2x ﹣1=0,△=8=4=12>0,方程有实数根,故本选项符合题意;D .解分式方程1x x -=11x -,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意. 故选C .点睛:本题考查了无理方程、根的判别式、高次方程、分式方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.C【解析】【分析】【详解】从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≥1【解析】【详解】把y=2代入y=x+1,得x=1,∴点P的坐标为(1,2),根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n相应的函数值,因而不等式x+1≥mx+n的解集是:x≥1,故答案为x≥1.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.14.1【解析】【分析】根据题意和二次函数的性质可以求得线段AB的长度,从而可以求得正方形ABCD的周长.【详解】∵在平面直角坐标系中,点A是抛物线y=a(x+32)2+k与y轴的交点,∴点A的横坐标是0,该抛物线的对称轴为直线x=﹣32,∵点B是这条抛物线上的另一点,且AB∥x轴,∴点B的横坐标是﹣3,∴AB=|0﹣(﹣3)|=3,∴正方形ABCD的周长为:3×4=1,故答案为:1.【点睛】本题考查了二次函数图象上点的坐标特征、正方形的性质,解题的关键是找出所求问题需要的条件.15.1.根据一副直角三角板的各个角的度数,结合三角形内角和定理,即可求解.【详解】∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=1°.故答案为:1.【点睛】本题主要考查三角形的内角和定理以及对顶角的性质,掌握三角形的内角和等于180°,是解题的关键.16.【解析】【分析】根据新定义的运算法则进行计算即可得.【详解】∵a※b a ba b+-,∴8※84233284+==-3.17.x=3【解析】去分母得:x﹣1=2,解得:x=3,经检验x=3是分式方程的解,故答案为3.【点睛】本题主要考查解分式方程,解分式方程的思路是将分式方程化为整式方程,然后求解.去分母后解出的结果须代入最简公分母进行检验,结果为零,则原方程无解;结果不为零,则为原方程的解.18.90°连接OE,根据圆周角定理即可求出答案.【详解】解:连接OE,根据圆周角定理可知:∠C=12∠AOE,∠D=12∠BOE,则∠C+∠D=12(∠AOE+∠BOE)=90°,故答案为:90°.【点睛】本题主要考查了圆周角定理,解题要掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)2【解析】试题分析:(1)连接OB,证PB⊥OB.根据四边形的内角和为360°,结合已知条件可得∠OBP=90°得证;(2)连接OP,根据切线长定理得直角三角形,根据含30度角的直角三角形的性质即可求得结果.(1)连接OB.∵OA=OB,∴∠OBA=∠BAC=30°.∴∠AOB=80°-30°-30°=20°.∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°.∵四边形的内角和为360°,∴∠OBP=360°-90°-60°-20°=90°.∴OB⊥PB.又∵点B是⊙O上的一点,∴PB是⊙O的切线.(2)连接OP,∵PA、PB是⊙O的切线,∴PA=PB,∠OPA=∠OPB=,∠APB=30°.在Rt△OAP中,∠OAP=90°,∠OPA=30°,∴OP=2OA=2×2=1.∴PA=OP2-OA2=2∵PA=PB,∠APB=60°,∴PA=PB=AB=2.考点:此题考查了切线的判定、切线长定理、含30度角的直角三角形的性质点评:要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.20.(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等;(2)1;(3)9 5 .【解析】试题分析:(1)根据线段的垂直平分线的性质即可判断.(2)如图②中,作AE⊥BC于E.根据已知得出AE=BE,再求出BD的长,即可求出DE的长.(3)如图③中,作CH⊥AF于H,先证△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的长,然后证明△ADE∽△CHE,建立方程求出EH即可.解:(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等(2)解:如图②中,作AE⊥BC于E.在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3 ,∴AE=BE=3,∵AD为BC边中线,BC=8,∴BD=DC=1,∴DE=BD﹣BE=1﹣3=1,∴边BC的中垂距为1∵四边形ABCD是矩形,∴∠D=∠EHC=∠ECF=90°,AD∥BF,∵DE=EC,∠AED=∠CEF,∴△ADE≌△FCE,∴AE=EF,在Rt△ADE中,∵AD=1,DE=3,∴AE= =5,∵∠D=EHC,∠AED=∠CEH,∴△ADE∽△CHE,∴= ,∴= ,∴EH= ,∴△ACF中边AF的中垂距为21.(1)AB长为5;(2)圆P与直线DC相切,理由详见解析.【解析】【分析】(1)过A作AE⊥BC于E,根据矩形的性质得到CE=AD=1,AE=CD=3,根据勾股定理即可得到结论;(2)过P作PF⊥BQ于F,根据相似三角形的性质得到PB=259,得到PA=AB-PB=209,过P作PG⊥CD于G交AE于M,根据相似三角形的性质得到PM=169,根据切线的判定定理即可得到结论.【详解】(1)过A作AE⊥BC于E,则四边形AECD是矩形,∴CE=AD=1,AE=CD=3,∵AB=BC,∴BE=AB-1,解得:AB=5;(2)过P作PF⊥BQ于F,∴BF=12BQ=209,∴△PBF∽△ABE,∴PB BF AB BE=,∴20954 PB=,∴PB=259,∴PA=AB-PB=209,过P作PG⊥CD于G交AE于M,∴GM=AD=1,∵DC⊥BC∴PG∥BC∴△APM∽△ABE,∴AP PM AB BE=,∴20954PM=,∴PM=169,∴PG=PM+MG=259=PB,∴圆P与直线DC相切.【点睛】本题考查了直线与圆的位置关系,矩形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.22.(1)y=﹣x2+2x+3;(2)y=﹣x﹣1;(3)P(3,05)或P(﹣4.5,0);当52时,S△MDN的最大值【解析】【分析】(1)把A (-1,0),C (0,3)代入y=ax 2+2x+c 即可得到结果;(2)在y=-x 2+2x+3中,令y=0,则-x 2+2x+3=0,得到B (3,0),由已知条件得直线BC 的解析式为y=-x+3,由于AD ∥BC ,设直线AD 的解析式为y=-x+b ,即可得到结论;(3)①由BC ∥AD ,得到∠DAB=∠CBA ,全等只要当BC PB AD AB =或BC PB AB AD=时,△PBC ∽△ABD ,解方程组2231y x x y x ⎧=-++⎨=--⎩得D(4,−5),求得AD =4,AB =BC =设P 的坐标为(x ,0),代入比例式解得35x =或x=−4.5,即可得到3,05P ⎛⎫ ⎪⎝⎭或P(−4.5,0); ②过点B 作BF ⊥AD 于F ,过点N 作NE ⊥AD 于E ,在Rt △AFB 中,∠BAF=45°,于是得到sin ∠BAF BF AB =,求得4BF BD ===求得sin BF ADB BD ∠=== 由于,DM t DN ==,于是得到12MDN S DM NE =⋅V ()1225t t =⋅215t =-+21()5t =--21552t ⎛=-+ ⎝⎭,即可得到结果.【详解】(1)由题意知:023a c c =-+⎧⎨=⎩, 解得13a c =-⎧⎨=⎩,∴二次函数的表达式为223y x x =-++;(2)在2y x 2x 3=-++ 中,令y=0,则2230x x -++=,解得:121,3x x ,=-= ∴B(3,0),由已知条件得直线BC 的解析式为y=−x+3,∵AD ∥BC ,∴设直线AD 的解析式为y=−x+b ,∴直线AD 的解析式为y=−x−1;(3)①∵BC ∥AD ,∴∠DAB=∠CBA , ∴只要当:BC PB AD AB =或BC PB AB AD =时,△PBC ∽△ABD , 解2231y x x y x ⎧=-++⎨=--⎩得D(4,−5), ∴52,4,32AD AB BC ===,设P 的坐标为(x,0), 即323452x -=或32452=, 解得35x =或x=−4.5, ∴3,05P ⎛⎫ ⎪⎝⎭或P(−4.5,0), ②过点B 作BF ⊥AD 于F ,过点N 作NE ⊥AD 于E ,在Rt △AFB 中,45BAF ∠=o ,∴sin ∠BAF BF AB=, ∴242,262BF BD =⨯==, ∴22213sin 26BF ADB BD ∠=== ∵1352,DM t DN ==,又∵132132sin ,5135NE ADB NE t t DN ∠==⋅=, ∴1,2MDN S DM NE =⋅V ()125225t t =-⋅ 2125t t =-+ 21(52),5t t =-- 21525522t ⎛⎫=--+ ⎪ ⎪⎝⎭, ∴当52t =时,MDN S V 的最大值为5.2 【点睛】属于二次函数的综合题,考查待定系数法求二次函数解析式,锐角三角形函数,相似三角形的判定与性质,二次函数的最值等,综合性比较强,难度较大.23. (1)证明见解析;(2)3 【解析】试题分析:(1)首先连接OD ,CD ,由以BC 为直径的⊙O ,可得CD ⊥AB ,又由等腰三角形ABC 的底角为30°,可得AD=BD ,即可证得OD ∥AC ,继而可证得结论;(2)首先根据三角函数的性质,求得BD ,DE ,AE 的长,然后求得△BOD ,△ODE ,△ADE 以及△ABC 的面积,继而求得答案.试题解析:(1)证明:连接OD ,CD ,∵BC 为⊙O 直径,∴∠BDC=90°,∴AD=BD ,∵OB=OC ,∴OD 是△ABC 的中位线,∴OD ∥AC ,∵DE ⊥AC ,∴OD ⊥DE ,∵D 点在⊙O 上,∴DE 为⊙O 的切线;(2)解:∵∠A=∠B=30°,BC=4,∴CD=12BC=2,,∴,∴S △ABC =12AB•CD=12×× ∵DE ⊥AC ,∴DE=12AD=12×, AE=AD•cos30°=3,∴S △ODE =12OD•DE=12×S △ADE =12AE•DE=123=2,∵S △BOD =12S △BCD =12×12S △ABC =14×∴S △OEC =S △ABC -S △BOD -S △ODE -S △ADE 2 24.(1)y=﹣50x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.【解析】【分析】(1)根据题意可以得到y 关于x 的函数解析式,本题得以解决;【详解】(1)由题意可得,y=10×50(30﹣x)+3[100x﹣50(30﹣x)]=﹣50x+10500,即y与x的函数关系式为y=﹣50x+10500;(2)由题意可得,()()10050301005030200x xx x⎧≥-⎪⎨--≥⎪⎩,得x343≥,∵x是整数,y=﹣50x+10500,∴当x=12时,y取得最大值,此时,y=﹣50×12+10500=9900,30﹣x=18,答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.25.(1)80,135°,条形统计图见解析;(2)825人;(3)图表见解析,P(抽到1男1女)3 5 =.【解析】试题分析:(1)、根据“中”的人数和百分比得出总人数,然后求出优所占的百分比,得出圆心角的度数;(2)、根据题意得出“良”和“优”两种所占的百分比,从而得出全校的总数;(3)、根据题意利用列表法或者树状图法画出所有可能出现的情况,然后根据概率的计算法则求出概率.试题解析:(1)80,135°;条形统计图如图所示(2)该校对安全知识达到“良”程度的人数:30251200=82580+⨯(人)(3)解法一:列表如下:所有等可能的结果为20种,其中抽到一男一女的为12种,所以P(抽到1男1女)123 205 ==.女1女2女3男1男2女1--- 女2女1女3女1男1女1男2女1女2女1女2--- 女3女2男1女2男2女2女3女1女3女2女3--- 男1女3男2女3男1女1男1女2男1女3男1--- 男2男1男2女1男2女2男2女3男2男1男2---解法二:画树状图如下:所有等可能的结果为20种,其中抽到一男一女的为12种,所以P(抽到1男1女)123 205 ==.26.2【解析】【分析】先根据0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义化简,然后进一步计算即可. 【详解】解:原式=2+2﹣+2=2﹣2+2=2.【点睛】本题考查了0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义,熟练掌握各知识点是解答本题的关键.27.(1)甲,乙两种玩具分别是15元/件,1元/件;(2)共有四种方案.【解析】【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.【详解】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,x=15,经检验x=15是原方程的解.∴40﹣x=1.甲,乙两种玩具分别是15元/件,1元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<2.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.。
上海市静安区、青浦区2014年中考二模数 学 2014.4(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1.当2-<a 时,2)2(+a 等于(A )2+a (B )2-a (C )a -2 (D )2--a 2.如果b a <,那么下列不等式中一定正确的是(A )b b a -<-2 (B )ab a <2 (C ) 2b ab < (D )22b a <3.已知函数2)1(-+-=k x k y (k 为常数),如果y 随着x 的增大而减小,那么k 的取值范围是(A )1>k (B )1<k (C ) 2>k (D )2<k4.某校九年级200名学生在第一学期的期末考试中数学成绩(分数都是整数)分布如下表:表中每组数据含最小值和最大值,在最低分为75分与最高分为149分之间的每个分数都有学生,那么下列关于这200名学生成绩的说法中一定正确的是(A )中位数在105~119分数段 (B )中位数是119.5分 (C )中位数在120~134分数段 (D )众数在120~134分数段5.如图,将△ABC 沿直线AB 翻折后得到△1ABC ,再将△ABC 绕点A 旋转后得到△22C AB ,对于下列两个结论:①“△1ABC 能绕一点旋转后与△22C AB 重合”; ②“△1ABC 能沿一直线翻折后与△22C AB 重合”的正确性是 (A )结论①、②都正确 (B )结论①、②都错误 (C )结论①正确、②错误 (D )结论①错误、②正确 6.如果四边形ABCD 的对角线相交于点O ,且AO =CO ,那么下列条 件中 不能.. 判断四边形ABCD 为平行四边形的是 (A )OB =OD (B )AB //CD (C )AB =CD (D )∠ADB =∠DBC二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案] 7.数25的平方根是 ▲ .(第5题图)8.分解因式:=--122x x ▲ .9.如果二次根式x 23-有意义,那么x 的取值范围是 ▲ . 10.关于x 的方程0122=++-m mx x 根的情况是 ▲ .11.如果抛物线h x a y +-=2)1(经过点A (0,4)、B (2,m ),那么m 的值是 ▲ . 12.某小组8位学生一次数学测试的分数为121,123,123,124,126,127,128,128,那么这个小组测试分数的标准差是 ▲ .13.从3位男同学和2位女同学中任选2人参加志愿者活动,所选2人中恰好是一位男同学和一位女同学的概率是 ▲ .14.如图,在△ABC 中,点D 在边AC 上,AD=2CD ,如果B ==,,那么=BC ▲ .15.在Rt △ABC 中,∠C =90° ,点D 、E 分别是边AC 、AB 的中点,点F 在边BC 上,AF 与DE 相交于点G ,如果∠AFB =110° ,那么∠CGF 的度数是 ▲ .16. 将关于x 的一元二次方程02=++q px x 变形为q px x --=2,就可将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”. 已知012=--x x ,可用“降次法”求得134--x x 的值是 ▲ .17.如果⊙O 1与⊙O 2相交于点A 、B ,⊙O 1的半径是5,点O 1到AB 的距离为3,那么⊙O 2的半径r 的取值范围是 ▲ .18.如图,在等腰梯形ABCD 中,AD //BC ,点E 、F 、G 分别在边AB 、BC 、CD 上,四边形AEFG 是正方形,如果∠B= 60°, AD=1,那么BC 的长是 ▲ .三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.(本题满分10分)化简:x x x x -++--12121)1)(1(,并求当13+=x 时的值.(第18题图)(第14题图)20.(本题满分10分)解方程:411322=+++x x x x .21.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知:如图,在菱形ABCD 中,AE ⊥BC ,垂足为E ,对角线BD= 4,21tan =∠CBD . 求:(1)边AB 的长; (2)∠ABE 的正弦值.22.(本题满分10分)小丽购买了6支水笔和3本练习本,共用21元;小明购买了12支水笔和5本练习本,共用39元.已知水笔与练习本的单价分别相同,求水笔与练习本的单价.23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)已知:如图,在△ABC 中,AB =AC ,点D 、E 分别是边AC 、AB 的中点,DF ⊥AC ,DF 与CE 相交于点F ,AF 的延长线与BD 相交于点G .(1)求证:BD DG AD ⋅=2;(2)联结CG ,求证:∠ECB =∠DCG .(第21题图)ABED(第23题图)ABC DE GF24.(本题满分12分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分4分)已知⊙O 的半径为3,⊙P 与⊙O 相切于点A ,经过点A 的直线与⊙O 、⊙P 分别交于点B 、C ,31cos =∠BAO ,设⊙P 的半径为x ,线段OC 的长为y .(1)求AB 的长;(2)如图,当⊙P 与⊙O 外切时,求y 与x 之间的函数解析式,并写出函数的定义域; (3)当∠OCA =∠OPC 时,求⊙P25.(本题满分14分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分6分)如图,反比例函数的图像经过点A (–2,5)和点B (–5,p ),□ABCD 的顶点C 、D 分别在y 轴的负半轴、x 轴的正半轴上,二次函数的图像经过点A 、C 、D .(1)求直线AB 的表达式; (2)求点C 、D 的坐标;(3)如果点E 且∠DCE =∠BDO ,求点E(第25题图)(第24题图)上海市静安区、青浦区2014年中考二模数学试卷参考答案及评分标准2014.4.10一、选择题:(本大题共6题,每题4分,满分24分)1.D ; 2.A ; 3.B ; 4.B ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.5±; 8.)21)(21(--+-x x ; 9.23≤x ; 10.没有实数根; 11.4; 12.6; 13.53; 14.2123-; 15.︒40; 16.1; 17.4≥r ; 18.32+.三、(本大题共7题, 第19~22题每题10分, 第23、24题每题12分, 第25题14分, 满分78分)19.解:原式=x x x -+-11……………………………………………………………………(4分) =xxx -=-111……………………………………………………………………(2分)当13+=x 时,原式=233)13)(13()13(313131-=-+--=+--.…………………(4分) 20.解:设x x y 12+=,…………………………………………………………………………(1分)得:43=+y y,………………………………………………………………………(1分)0342=+-y y ,…………………………………………………………………(1分).3,121==y y ……………………………………………………………………(2分)当1=y 时,,112=+x x 012=+-x x ,此方程没有数解.…………………(2分)当3=y 时,,312=+x x 0132=+-x x ,253±=x .………………………(2分) 经检验253±=x 都是原方程的根,…………………………………………(1分)所以原方程的根是253±=x .21.解:(1) 联结AC ,AC 与BD 相交于点O ,………………………………………………(1分)∵四边形ABCD 是菱形,∴AC ⊥BD ,BO =221=BD .……………………(1分)∵Rt △BOC 中,21tan ==∠OB OC CBD ,………………………………………(1分) ∴OC =1,…………………………………………………………………………(1分) ∴AB =BC =5212222=+=+OC BO .……………………………………(1分)(2)∵AE ⊥BC ,∴AC BD AE BC S ABCD ⋅⋅21==菱形,………………………………(2分)∵AC =2OC =2,∴42215⨯⨯=AE ,…………………………………………(1分)∴54=AE ,………………………………………………………………………(1分)∴54sin ==∠AB AE ABE .…………………………………………………………(1分)22.解:设水笔与练习本的单价分别为x 元、y 元,…………………………………………(1分)∴⎩⎨⎧=+=+,39512,2136y x y x ………………………………………………………………………(4分)解得⎩⎨⎧==.3,2y x ……………………………………………………………………………(4分)答:水笔与练习本的单价分别是2元与3元.…………………………………………(1分)23.证明:(1)∵AB =AC ,AD =,21AC AE =,21AB ∴AD =AE ,…………………………(1分) ∵∠BAD =∠CAE ,∴△BAD ≌△CAE .…………………………………………(1分) ∴∠ABD =∠ACE ,…………………………………………………………………(1分) ∵DF ⊥AC ,AD =CD ,∴AF =CF ,………………………………………………(1分) ∴∠GAD =∠ACE ,∴∠GAD =∠ABD .………………………………………(1分) ∵∠GDA =∠ADB ,∴△GDA ∽△ADB .…………………………………………(1分) ∴ADDGDB AD =,∴BD DG AD ⋅=2.……………………………………………(1分) (2)∵ADDG DB AD =,AD =CD ,∴CD DGDB CD =.………………………………………(1分) ∵∠CDG =∠BDC ,∴△DCG ∽△DBC .…………………………………………(1分) ∴∠DBC =∠DCG .…………………………………………………………………(1分) ∵AB=AC ,∴∠ABC =∠ACB .……………………………………………………(1分) ∵∠ABD =∠ACE ,∴∠ECB =∠DBC=∠DCG .………………………………(1分)24.解:(1)在⊙O 中,作OD ⊥AB ,垂足为D ,……………………………………………(1分)在Rt △OAD 中,31cos ==∠OA AD BAO ,………………………………………(1分) ∴AD =31AO =1. ∴AB =2AD =2.………………………………………………(1分) (2)联结OB 、P A 、PC ,∵⊙P 与⊙O 相切于点A ,∴点P 、A 、O 在一直线上.……………………(1分) ∵PC =P A ,OA =OB ,∴∠PCA =∠P AC =∠OAB =∠OBA ,∴PC //OB .………(1分)∴AO PA AB AC =,∴AC 32xAC AB PA =⋅=. ………………………………………(1分) ∵81322222=-=-=AD OA OD ,CD =AD +AC =132+x ,∴OC =8)132(222++=+x CD OD ,………………………………………(1分)∴81124312++=x x y ,定义域为0>x .…………………………………(1分) (3)当⊙P 与⊙O 外切时,∵∠BOA =∠OCA ,∠CAO =∠POC ,∴△OAC ∽△OCP .∴OPOCOC OA =,∴OP OA OC ⋅=2,……………………(1分) ∴)3(3)81124(912x x x +=++,∴01=x (不符合题意,舍去)4152=x , ∴这时⊙P 的半径为415.………………………………………………………(1分)∴2932=x ,427=x ,∴这时⊙P 的半径为427.……………………………(1分) ∴⊙P 的半径为415或427.25.解:(1)设反比例函数的解析式为xky =.∵它图像经过点A (–2,5)和点B (–5,p ), ∴5=2-k,∴10-=k ,∴反比例函数的解析式为xy 10-=.……………………(1分)∴2510=--=p ,∴点B 的坐标为(–5,2).……………………………………(1分) 设直线AB 的表达式为n mx y +=,则⎩⎨⎧+-=+-=,52,25n m n m ………………………………(1分)∴⎩⎨⎧==.7,1n m ∴直线AB 的表达式为7+=x y .………………………………………(1分)(2)由□ABCD 中,AB //CD ,设CD 的表达式为c x y +=,…………………………(1分)∴C (0,c ),D (–c ,0),…………………………………………………………(1分)∵CD =AB ,∴22AB CD =∴2222)52()25(-++-=+c c ,……………………(1分)∴c =–3,∴点C 、D 的坐标分别是(0,–3)、(3,0).………………………(1分)(3)设二次函数的解析式为32-+=bx ax y ,⎩⎨⎧-+=--=,3390,3245b a b a ………………………(1分)∴⎩⎨⎧-==.2,1b a ∴二次函数的解析式为322--=x x y .…………………………(1分) 作EF ⊥y 轴,BG ⊥y 轴,垂足分别为F 、G .∵OC =OD ,BG =CG , ∴∠BCG =∠OCD =∠ODC =45 º.∴∠BCD =90º,∵∠DCE =∠BDO ,∴∠ECF =∠BDC .……………………………………………(1分)∴tan ∠ECF =tan ∠BDC=35)30()03()23()50(2222=++-+++=CD BC.…………………………(1分) 设CF =3t ,则EF =5t ,OF =3–3t ,∴点E (5t ,3t –3),………………………(1分) ∴31025332--=-t t t ,2513,(021==t t 舍去).∴点E (513,2536-).………(1分)。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知二次函数y=(x+m )2–n 的图象如图所示,则一次函数y=mx+n 与反比例函数y=mn x的图象可能是( )A .B .C .D .【答案】C【解析】试题解析:观察二次函数图象可知: 00m n ,,∴一次函数y=mx+n 的图象经过第一、二、四象限,反比例函数mn y x =的图象在第二、四象限. 故选D.2.关于x 的不等式组0312(1)x m x x -<⎧⎨->-⎩无解,那么m 的取值范围为( ) A .m≤-1B .m<-1C .-1<m≤0D .-1≤m<0【答案】A【解析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m 的不等式,就可以求出m 的取值范围了. 【详解】()03121x m x x -<⎧⎪⎨->-⎪⎩①②, 解不等式①得:x<m ,解不等式②得:x>-1,由于原不等式组无解,所以m≤-1,故选A.【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.3.一、单选题在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的()A.平均数B.众数C.中位数D.方差【答案】C【解析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【详解】由于总共有7个人,且他们的成绩各不相同,第4的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.故选C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.4.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.【答案】B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.5.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm【答案】B【解析】(1)如图1,当点C在点A和点B之间时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=12AB=4cm,BN=12BC=1cm,∴MN=MB-BN=3cm;(2)如图2,当点C在点B的右侧时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=12AB=4cm,BN=12BC=1cm,∴MN=MB+BN=5cm.综上所述,线段MN的长度为5cm或3cm.故选B.点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种. 6.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A.B.C.D.【答案】B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.7.如图,在平面直角坐标系中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B、C在反比例函数y=2x(x>0)的图象上,则△OAB的面积等于()A.2 B.3 C. 4 D.6 【答案】B【解析】作BD⊥x轴于D,CE⊥x轴于E,∴BD∥CE,∴CE AE ACBD AD AB==,∵OC是△OAB的中线,∴12CE AE AC BD AD AB ===, 设CE=x ,则BD=2x ,∴C 的横坐标为2x,B 的横坐标为1x , ∴OD=1x ,OE=2x, ∴DE=OE-OD=2x ﹣1x =1x, ∴AE=DE=1x, ∴OA=OE+AE=213x x x+=, ∴S △OAB =12OA•BD=12×32x x ⨯=1. 故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.8.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC=35°,则∠CAB 的度数为( )A .35°B .45°C .55°D .65°【答案】C 【解析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B 即可求得.详解:∵∠ADC=35°,∠ADC 与∠B 所对的弧相同,∴∠B=∠ADC=35°,∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故选C .点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.9.在六张卡片上分别写有13,π,1.5,5,02六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16B .13C .12D .56【答案】B【解析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π,2共2个, ∴卡片上的数为无理数的概率是21=63. 故选B.【点睛】本题考查了无理数的定义及概率的计算.10.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像CD 的长( )A .16cmB .13cm C .12cm D .1cm【答案】D【解析】过O 作直线OE ⊥AB ,交CD 于F ,由CD//AB 可得△OAB ∽△OCD ,根据相似三角形对应边的比等于对应高的比列方程求出CD 的值即可.【详解】过O 作直线OE ⊥AB ,交CD 于F ,∵AB//CD ,∴OF ⊥CD ,OE=12,OF=2,∴△OAB ∽△OCD ,∵OE 、OF 分别是△OAB 和△OCD 的高,∴OF CD OE AB =,即2126CD =, 解得:CD=1.故选D.【点睛】本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.二、填空题(本题包括8个小题)11.我们知道:1+3=4,1+3+5=9,1+3+5+7=16,…,观察下面的一列数:-1,2,,-3, 4,-5,6…,将这些数排列成如图的形式,根据其规律猜想,第20行从左到右第3个数是 .【答案】2【解析】先求出19行有多少个数,再加3就等于第20行第三个数是多少.然后根据奇偶性来决定负正.【详解】∵1行1个数,2行3个数,3行5个数,4行7个数,…19行应有2×19-1=37个数∴到第19行一共有1+3+5+7+9+…+37=19×19=1.第20行第3个数的绝对值是1+3=2.又2是偶数,故第20行第3个数是2.12.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n 次的运算结果是____________(用含字母x 和n 的代数式表示).【答案】2(21)1n n x x -+ 【解析】试题分析:根据题意得121x y x =+;2431x y x =+;3871x y x =+;根据以上规律可得:n y =2(21)1n n x x -+. 考点:规律题.13.如图,在△ABC 中,∠C =∠ABC ,BE ⊥AC ,垂足为点E ,△BDE 是等边三角形,若AD =4,则线段BE的长为______.【答案】1【解析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到结论.【详解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案为:1.【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.14.如图,在△ABC中,DE∥BC,1=2ADDB,则ADEBCED的面积四边形的面积=_____.【答案】18 【解析】先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题. 【详解】解:∵DE ∥BC ,AD 1=DB 2, ∴AD 1=AB 3, 由平行条件易证△ADE ~△ABC,∴S △ADE :S △ABC =1:9,∴ADE S ADE BCED S ABC S ADE 的面积四边形的面积=-=18. 【点睛】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键. 15.有一张三角形纸片ABC ,∠A =80°,点D 是AC 边上一点,沿BD 方向剪开三角形纸片后,发现所得两张纸片均为等腰三角形,则∠C 的度数可以是__________.【答案】25°或40°或10°【解析】分AB=AD 或AB=BD 或AD=BD 三种情况根据等腰三角形的性质求出∠ADB ,再求出∠BDC ,然后根据等腰三角形两底角相等列式计算即可得解.【详解】由题意知△ABD 与△DBC 均为等腰三角形,对于△ABD 可能有①AB=BD ,此时∠ADB=∠A=80°,∴∠BDC=180°-∠ADB=180°-80°=100°,∠C=12(180°-100°)=40°, ②AB=AD ,此时∠ADB=12(180°-∠A )=12(180°-80°)=50°, ∴∠BDC=180°-∠ADB=180°-50°=130°,∠C=12(180°-130°)=25°, ③AD=BD ,此时,∠ADB=180°-2×80°=20°,∴∠BDC=180°-∠ADB=180°-20°=160°,∠C=12(180°-160°)=10°, 综上所述,∠C 度数可以为25°或40°或10°故答案为25°或40°或10°【点睛】本题考查了等腰三角形的性质,难点在于分情况讨论.16.如图,在Rt △ABC 中,∠C=90°,AB=5,BC=3,点P 、Q 分别在边BC 、AC 上,PQ ∥AB ,把△PCQ 绕点P 旋转得到△PDE (点C 、Q 分别与点D 、E 对应),点D 落在线段PQ 上,若AD 平分∠BAC ,则CP 的长为_________.【答案】1【解析】连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.【详解】连接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=1x,∵AQ=4-4x,∴4-4x=1x,解得x=2,3∴CP=3x=1;故答案为:1.【点睛】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.17.同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是_____.【答案】50°【解析】直接利用圆周角定理进行求解即可.【详解】∵弧AB所对的圆心角是100°,∴弧AB所对的圆周角为50°,故答案为:50°.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.18.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.【答案】4或8【解析】由平移的性质可知阴影部分为平行四边形,设A′D=x,根据题意阴影部分的面积为(12−x)×x,即x(12−x),当x(12−x)=32时,解得:x=4或x=8,所以AA′=8或AA′=4。
综合计算宝山区、嘉定区21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在梯形ABCD 中,AD ∥BC ,︒=∠90BAD ,AD AC =. (1)如果BAC ∠︒=∠-10BCA ,求D ∠的度数; (2)若10=AC ,31cot =∠D ,求梯形ABCD 的面积.21.解:(1)∵AD ∥BC∴CAD BCA ∠=∠ …………………1分 ∵BAC ∠︒=∠-10BCA∴BAC ∠︒=∠-10CAD …………………1分 ∵︒=∠90BAD∴BAC ∠︒=∠+90CAD∴︒=∠40CAD …………………1分 ∵AD AC =∴D ACD ∠=∠ …………………1分 ∵︒=∠+∠+∠180CAD D ACD∴︒=∠70D …………………1分(2) 过点C 作AD CH ⊥,垂足为点H ,在Rt △CHD 中,31cot =∠D ∴31cot ==∠CH HD D …………………………1分 设x HD =,则x CH 3=,∵AD AC =,10=AC ∴x AH -=10在Rt △CHA 中,222AC CH AH =+ ∴22210)3()10(=+-x x∴2=x ,0=x (舍去)∴2=HD …………1分 ∴6=HC ,8=AH ,10=AD ………………1分 ∵︒=∠=∠90CHD BAD ∴AB ∥CH∵AD ∥BC ∴四边形ABCH 是平行四边形 ∴8==AH BC ………1分 ∴梯形ABCD 的面积546)810(21)(21=⨯+=⨯+=CH BC AD S ………1分 图4DCB A图4DCBAH21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC .(1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE∴1=k , ∴55==k AE , 1313==k AB (2分)(2)过点D 作DF ⊥BC ,垂足为点F ∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE // ∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分)∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分)ADB第21题图21.(本题满分10分,第(1)、(2)小题满分各5分)已知圆O 的直径12AB =,点C 是圆上一点,且30ABC ∠=︒,点P 是弦BC 上一动点, 过点P 作PD OP ⊥交圆O 于点D . (1)如图1,当PD AB ∥时,求PD 的长; (2)如图2,当BP 平分OPD ∠时,求PC 的长.21.(本题满分10分,每小题5分)(1)解:联结OD∵直径12AB = ∴6OB OD == ……………………………………1分∵PD OP ⊥ ∴90DPO =︒∠∵PD AB ∥ ∴180DPO POB +=︒∠∠ ∴90POB =︒∠ ……1分 又∵30ABC =︒∠,6OB =∴30OP OB tan =︒= ………………………………………………1分 ∵在Rt POD △中,222PO PD OD += ……………………………1分∴2226PD +=∴PD =……………………………………………………………1分 (2)过点O 作OH BC ⊥,垂足为H ∵OH BC ⊥∴90OHB OHP ==︒∠∠ ∵30ABC =︒∠,6OB =∴132OH OB ==,30BH OB cos =︒= ……………………2分 (第21题图1)ABOPCD (第21题图2)OABDPC∵在⊙O 中,OH BC ⊥∴CH BH ==……………………………………………………1分 ∵BP 平分OPD ∠ ∴1452BPO DPO ==︒∠∠ ∴453PH OH cot =︒= ……………………………………………1分∴3PC CH PH =-= ………………………………………1分奉贤区21.(本题满分10分,每小题满分各5分)已知:如图6,在△ABC 中,AB =13,AC=8,135cos =∠BAC ,BD ⊥AC ,垂足为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F .(1) 求EAD ∠的余切值; (2) 求BFCF的值. 21、(1)56; (2)58; 黄浦区21.(本题满分10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =23, AD ∶DB =1∶2.(1)求△ABC 的面积; (2)求CE ∶DE.21. 解:(1)由AB =AC =6,AH ⊥BC ,图6ABCD EF得BC =2BH .—————————————————————————(2分) 在△ABH 中,AB =6,cosB =23,∠AHB =90°, 得BH =2643⨯=,AH=————————————(2分) 则BC =8,所以△ABC 面积=182⨯=——————————————(1分)(2)过D 作BC 的平行线交AH 于点F ,———————————————(1分)由AD ∶DB =1∶2,得AD ∶AB =1∶3, 则31CE CH BH AB DE DF DF AD ====. ——————————————(4分) 金山区21.(本题满分10分,每小题5分)如图5,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为F .(1)求证:AF=BE ;(2)如果BE ∶EC=2∶1,求∠CDF 的余切值.21.解:(1)∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∠B =90°,∴∠DAF=∠AEB ,……………………………………………………………………(1分) ∵AE=BC ,DF ⊥AE ,∴AD=AE ,∠ AFD=∠EBA=90°,………………………(2分) ∴△ADF ≌△EAB ,∴AF =EB ,………………………………………………………(2分) (2)设BE =2k ,EC =k ,则AD =BC =AE =3k ,AF =BE =2k ,…………………………(1分)∵∠ADC =90°,∠AFD =90°,∴∠CDF +∠ADF =90°,∠DAF +∠ADF =90°, ∴∠CDF =∠DAF …………………………………………………………………(2A BCDFE图5分)在Rt △ADF 中,∠AFD =90°,DF=∴cot ∠CDF =cot ∠DAF=AF DF ==.………………………………(2分) 静安区21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)已知:如图,边长为1的正方形ABCD 中,AC 、DB 交于点H .DE 平分∠ADB ,交AC 于点E .联结BE 并延长,交边AD 于点F . (1)求证:DC =EC ; (2)求△EAF 的面积.21.(本题满分10分, 第(1)小题5分,第(2)小题5分)解:(1)∵正方形ABCD ,∴DC=BC=BA=AD , ∠BAD =∠ADC =∠DCB =∠CBA =90°AH=DH=CH=BH , AC ⊥BD ,∴∠ADH =∠HDC =∠DCH =∠DAE = 45°. …………(2分) 又∵DE 平分∠AD B ∴∠ADE =∠EDH∵∠DAE +∠ADE =∠DEC , ∠EDH +∠HDC =∠EDC …………(1分) ∴∠EDC =∠DEC …………(1分) ∴DC =EC …………(1分) (2)∵正方形ABCD ,∴AD ∥BC , ∴△AFE ∽△CBE ∴2)(ECAE S S CEB AEF =∆∆ ………………………………(1分)第21题图第21题图∵AB=BC=DC=EC =1,AC =2,∴AE =12- …………………………(1分) Rt △BHC 中, BH =22BC =22, ∴在△BEC 中,BH ⊥EC , 4222121=⨯⨯=∆BEC S ……………………(2分) ∴2)12(42-=∆AEF S , ∴4423)223(42-=-⨯=∆AEF S …………(1分) 闵行区21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)已知一次函数24y x =-+的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内作直角三角形ABC ,且∠BAC = 90o,1tan 2ABC ∠=(1)求点C 的坐标;(2)在第一象限内有一点M (1,m ),且点M 与点C 位于直线AB 的同侧,使得ABC ABM S S ∆∆=2求点M 的坐标.21.解:(1)令0y =,则240x -+=,解得:2x =,∴点A 坐标是(2,0).令0x =,则4y =,∴点B 坐标是(0,4).………………………(1分) ∴AB 1分) ∵90BAC ∠=,1tan 2ABC ∠=,∴AC = 过C 点作CD ⊥x 轴于点D ,易得OBA DAC ∆∆∽.…………………(1分) ∴2AD =,1CD =,∴点C 坐标是(4,1).………………………(1分) (2)11522ABC S AB AC ∆=⋅=⨯.………………………………(1分) ∵2ABM ABC S S ∆∆=,∴52ABM S ∆=.……………………………………(1分)∵(1M ,)m ,∴点M 在直线1x =上;令直线1x =与线段AB 交于点E ,2ME m =-;……………………(1分)分别过点A 、B 作直线1x =的垂线,垂足分别是点F 、G ,∴AF +BG = OA = 2;……………………………………………………(1分)∴111()222ABM BME AME S S S ME BG ME AF ME BG AF ∆∆=+=⋅+⋅=+1152222ME OA ME =⋅=⨯⨯=…………………(1分) ∴52ME =,522m -=,92m =,∴(1M ,92).……………………(1分) 普陀区21.(本题满分10分)如图7,在Rt △ABC 中,90C ∠=,点D 在边BC 上,DE ⊥AB ,点E 为垂足,7AB =,45DAB ∠=,3tan 4B =. (1)求DE 的长; (2)求CDA ∠的余弦值. 21.解:(1)∵DE ⊥AB ,∴︒=∠90DEA又∵45DAB ∠=,∴AE DE =. ················ (1分) 在Rt △DEB 中,︒=∠90DEB ,43tan =B ,∴43=BE DE . ······ (1分) 设x DE 3=,那么x AE 3=,x BE 4=.∵7AB =,∴743=+x x ,解得1=x . ·············· (2分) ∴3=DE . ·························· (1分) (2) 在Rt △ADE 中,由勾股定理,得23=AD . ··········· (1分)同理得5=BD . ························ (1分) 在Rt △ABC 中,由43tan =B ,可得54cos =B .∴528=BC . ···· (1分) ∴53=CD . ·························· (1分)∴102cos ==∠AD CD CDA . ··················· (1分)A BCDE 图7即CDA ∠青浦区21. (本题满分10分,第(1)、(2)小题,每小题5分)如图5,在Rt △ABC 中,∠C =90°,AC=3,BC =4,∠ABC 的平分线交边AC 于点D ,延长BD 至点E ,且BD=2DE ,联结AE . (1)求线段CD 的长; (2)求△ADE 的面积.21.解:(1)过点D 作DH ⊥AB ,垂足为点H . ··············· (1分)∵BD 平分∠ABC ,∠C =90°,∴DH = DC =x , ······················· (1分) 则AD =3-x .∵∠C =90°,AC=3,BC =4,∴AB =5. ············· (1分) ∵sin ∠==HD BCBAC AD AB, ∴435=-x x , ······················· (1分) ∴43=x . ························· (1分) (2)1141052233=⋅=⨯⨯=ABDSAB DH . ·············· (1分) ∵BD=2DE , ∴2==ABD ADES BDSDE, ···················· (3分) ∴1015323=⨯=ADES. ··················· (1分) 松江区21.(本题满分10分, 每小题各5分)如图,已知△ABC 中,∠B =45°,1tan 2C =,BC =6.(1)求△ABC 面积;(2)AC 的垂直平分线交AC 于点D ,交BC 于ED A图5AB点E. 求DE 的长.21.(本题满分10分, 每小题各5分) 解:(1)过点A 作AH ⊥BC 于点H …………1分 在Rt ABC ∆中,∠B =45°设AH =x ,则BH =x ………………………………1分 在Rt AHC ∆中,1tan 2AH C HC == ∴HC=2x ………………………………………………………1分 ∵BC =6∴x+2x =6 得x =2∴AH =2…………………………………………………………1分 ∴162ABC S BC AH ∆=⋅⋅=……………………………………1分(2)由(1)得AH =2,CH =4在Rt AHC∆中,AC =2分∵DE 垂直平分AC ∴12CD AC =ED ⊥AC …………………………………………………1分 在Rt EDC ∆中,1tan 2ED C CD ==……………………………1分 ∴DE =………………………………………………1分 徐汇区21. 如图,在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =,AD 平分BAC ∠交BC 于点D .(1)求tan DAB ∠;(2)若⊙O 过A 、D 两点,且点O 在边AB 上,用(第21题图)DACBE尺规作图的方法确定点O的位置并求出的⊙O半径.(保留作图轨迹,不写作法)杨浦区21、(本题满分10分,第(1)小题满分3分,第(2)小题满分7分)已知,如图5,在梯形ABCD中,DC//AB, AD=BC, BD平分∠ABC,∠A=600求:(1)求∠CDB的度数(2)当AD=2时,求对角线BD的长和梯形ABCD的面积。
上海市静安区2019届中考第二次模考试卷数 学一、选择题1.)A.B.D.2.的结果是( )A. B.D.3. )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.如图,在同一平面内,将边长相等的正方形、正五边形的一边重合,那么∠1的大小是( )5.小明和小丽暑期参加工厂社会实践活动,师傅将他们工作第一周每天生产的合格产品的个数整理成如表两组数据,那么关于他们工作第一周每天生产的合格产品个数,下列说法中正确的是( )A. 小明的平均数小于小丽的平均数B. 两人的中位数相同C. 两人众数相同D. 小明的方差小于小丽的方差 6.下列说法中正确的是( ) A. 对角线相等的四边形是矩形B. 对角线互相垂直的矩形是正方形C. 顺次联结矩形各边中点所得四边形是正方形 D. 正多边形都是中心对称图形二、填空题7.8.__________9.________10.________11.某商店三月份的利润是25000元,要使五月份的利润达到36000元,假设每月的利润增长率相同,那么这个相同的增长率是________ 12.________(填“增大或“减小”)13.从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是________14.为了解某校九年级男生1000米跑步的水平情况,从中随机抽取部分男生进行测试,、、度数为________度15.16.中,,,的半径是________ 17.,那么向量18.60°____________三、解答题19.20.解方程组:21.一个水库的水位在某段时间内持续上涨,表记录了连续5小时内6个时间点的水位高度,.(小时)(米)(1;(2)据估计,这种上涨规律还会持续,并且当水位高度达到8米时,水库报警系统会自动发出警报,请预测再过多久系统会发出警报.22.(1(2.23.(1(28.24.(如图),轴的另一个交点为(1)求这条抛物线表达式;(2(32.25.已知:如图,中,,,(1(2(3相交,求.答案解析一、选择题1.)A. B. D.【答案】C【解析】【分析】各项化简后,利用同类二次根式定义判断即可.【详解】解:ABCD、.故选:C.【点睛】此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.2.)A. B. D.【答案】A【解析】【分析】利用平方差公式计算即可求出值,故选:A.【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.3.)A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】y随x的增大而增大,进而得出答案.故选:D.【点睛】此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键.4.如图,在同一平面内,将边长相等的正方形、正五边形的一边重合,那么∠1的大小是()A. B. D.【答案】C【解析】【分析】结果.故选:C.【点睛】本题考查了多边形的内角和定理、正方形的性质,求得正五边形的内角的度数是关键.5.小明和小丽暑期参加工厂社会实践活动,师傅将他们工作第一周每天生产的合格产品的个数整理成如表两组数据,那么关于他们工作第一周每天生产的合格产品个数,下列说法中正确的是()A. 小明的平均数小于小丽的平均数B. 两人的中位数相同C. 两人的众数相同D. 小明的方差小于小丽的方差 【答案】D 【解析】 【分析】根据众数、中位数、方差和平均数的计算公式分别进行解答即可得出答案. 【详解】解:A故本选项错误;B、小明的中位数为7,小丽的中位数为4,故本选项错误; C 、小明的众数为7,小丽的众数为8,故本选项错误; D故选:D .【点睛】此题主要考查了众数、中位数、方差和平均数,熟练掌握定义和公式是解题的关键;一组数据中是这组数据的中位数;一般地设n 也成立.6.下列说法中正确的是( ) A. 对角线相等的四边形是矩形 B. 对角线互相垂直的矩形是正方形C. 顺次联结矩形各边中点所得四边形是正方形D. 正多边形都是中心对称图形【答案】B【解析】【分析】根据矩形的判定方法对A进行判断;根据正方形的判定方法对B进行判断;根据矩形的性质、三角形中位线定理以及菱形的判定方法对C进行判断;根据中心对称图形的定义对D进行判断.【详解】解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直的矩形是正方形,所以B选项正确;C、顺次联结矩形各边中点所得四边形是菱形,所以C选项错误;D、边数为偶数的正多边形都是中心对称图形,所以D选项错误.故选:B.设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“用推理证实的,这样的真命题叫做定理.二、填空题7.【解析】【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行运算即可.【点睛】此题考查了同底数幂的乘法运算,属于基础题,解答本题的关键是掌握同底数幂的乘法法则.8.__________【答案】【解析】【分析】根据二次根式有意义的条件以及分式有意义的条件即可求出答案.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式有意义的条件以及分式有意义的条件,本题属于基础题型.9.________【答案】x=10【解析】由题意得:x-1=32,解得:x=10,故答案为:10.10.________【解析】【分析】关于x由此可解.【详解】关于x实数根,【点睛】本题考查了二次三项式的因式分解问题,可转化为对应的二次方程的实数根的情况,属于比较简单的问题.11.某商店三月份的利润是25000元,要使五月份的利润达到36000元,假设每月的利润增长率相同,那么这个相同的增长率是________【解析】 【分析】设每月的利润增长率为x ,根据该商店三月份及五月份的利润,可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每月的利润增长率为x ,【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12.________(填“增大或“减小”)【答案】减小 【解析】 【分析】直接根据正比例函数的性质解答.所以y 的值随x 的值增大而减小.故答案是:减小.一、三象限,y 值随x y 值随x 的增大而减小.13.从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是________ 【解析】 【分析】利用列举法展示所有4种等可能的结果数,再确定取得的3个数中不含2的结果数,然后根据概率公式求解. 【详解】解:从0,1,2,3这四个数字中任取3个数有0、1、2;0、1、3;0、2、3;1、2、3四种等可能所以取得的3个数中不含2【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.14.为了解某校九年级男生1000米跑步的水平情况,从中随机抽取部分男生进行测试,、、度数为________度【答案】72【解析】【分析】根据A等次的人数和所占的百分比求出总人数,再用C等次的人数除以总人数求出所占的百分比,然后乘【详解】解:扇形统计图中表示C故答案为:72.问题的关键.15.【解析】AB上的高为h,根据三角形的重心到顶点的距离等于到对边中点的距离的2AB【详解】解:设AB上的高为h,AB上的故答案为:.【点睛】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.16.中,,的半径是________【解析】【分析】由直线与圆的位置关系可知,圆心C到AB∴C为圆心的圆与斜边AB有且只有一个交点,S△ABC【点睛】此题考查直线与圆的位置关系,关键是根据等腰直角三角形的性质和直线与圆的位置关系解答.17.,那么向量【解析】【分析】如图,延长FG交CD首先证明【详解】解:如图,延长FG交CD的延长线于H.ABCD是平行四边形,,,,故答案为.【点睛】本题考查平面向量,平行四边形的性质,平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,灵活运用平行线分线段成比例定理解决问题,属于中考常考题型.18.60°____________【解析】【分析】况,PQ交OB于点N即可得出P点的坐标;,P点的坐标;Q点与A P点的坐标;,PQ与直线AB1所示:延长PQ交OB于点N在中,23所示:Q点与A点重合,综上所述:P【点睛】本题考查了翻折变换性质、直角三角形的性质、勾股定理、三角函数、坐标等知识,熟练掌握翻折变换的性质、直角三角形的性质,并进行分类讨论是关键.三、解答题19.【解析】【分析】将原式每一项分别化简,再进行计算即可..【点睛】本题考查负指数幂的运算,分母有理化,绝对值运算20.,【解析】【分析】先将二次方程化为两个一次方程,则原方程组化为两个二元一次方程组,解方程组即可.,.原方程组的解为,【点睛】本题考查了解高次方程组,将高次方程化为一次方程是解题的关键.21.一个水库的水位在某段时间内持续上涨,表记录了连续5小时内6个时间点的水位高度,.(小时)(米)(1;(2)据估计,这种上涨规律还会持续,并且当水位高度达到8米时,水库报警系统会自动发出警报,请预测再过多久系统会发出警报.【答案】(1(2【解析】【分析】y与x之间的函数解析式;x的值,再用x的值减去5即可解答本题.y与x即y与x之间的函数解析式为发出警报t=小时后系统会发出警报.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.22.(1(2.【答案】(1)证明见解析;(2【解析】【分析】AECF为平行四边形,然后利用对角线互相垂直得到结论;,即ABCD为矩形,M为AC的中点,≌AECF为平行四边形,AECF为菱形;又四边形ABCD为矩形,又AECF为菱形,ABCD为矩形,【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相23.(1(28.【答案】(1)证明见解析;(2)【解析】【分析】DEBF⊥DE可得出结论.1所示:AD经过圆心O,E为弦AB的中点,,且,∴∠BFC=45°,△CFG均为等腰直角三角形,.CG=FG;∵AC=AB=BF=12∴AG=BG CG=FG∴CF=(×【点睛】本题考查了圆周角定理、等腰三角形的性质、等腰直角三角形的判定与性质、垂径定理、直角三角形的性质等知识;熟练掌握圆周角定理和垂径定理是解题的关键.24.(如图),轴的另一个交点为(1)求这条抛物线表达式;(2(32.【答案】(1(2(3)6【解析】【分析】a,从而得抛物线的解析式;分别用点P、点H、点B的相关坐标来表示这个直角三角形中的直角边长即可求解;PB与x轴交于点M,求出点A坐标,利用点P坐标,得出APAP和AM的长度;求出直线PB得解析式,从而求得点B的坐标,进而求出BH的长度,再利用角平分线的性质定理即可得点B到直线AP的距离就等于BH的长度.抛物线的表达式:PQ与y轴交点为H.的正切值为:.PB与x轴交于点M.APB设直线PBBPBB到直线AP的距离为6.【点睛】本题是二次函数的综合题,分别考查了待定系数法求解析式、构造直角三角形求三角函数值、利用点的坐标表示相关线段长度,以及角平分线的性质定理来得点到直线的距离等知识点,综合性较强,难度较大.25.已知:如图,中,,,(1(2(3.【答案】(1)证明见解析;(2(3【解析】【分析】得到结论;P、A、D作BC的垂线,垂足分别为点H、F ADGF是矩形,根据平行线分线段成比例定理得到作交DC于推出四边形PDME证明:梯形ABCD,P、A、D作BC的垂线,垂足分别为点H、F、G.ABCDADGF,,,在中,解:作交DC于M.PDME是平行四边形.,当两圆外切时,【点睛】本题属于圆综合题,梯形的性质,平行四边形的性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.。
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,点A是反比例函数y=kx的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3 B.﹣3 C.6 D.﹣6【答案】D【解析】试题分析:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D.考点:反比例函数系数k的几何意义.2.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-8【答案】D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣1.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.3.利用运算律简便计算52×(–999)+49×(–999)+999正确的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–1998【答案】B【解析】根据乘法分配律和有理数的混合运算法则可以解答本题.【详解】原式=-999×(52+49-1)=-999×100=-1.故选B.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.4.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个【答案】C【解析】分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.【详解】如图,分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.5.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.96 【答案】C【解析】解:根据图形,身高在169.5cm~174.5cm之间的人数的百分比为:12100%=24% 6+10+16+12+6⨯,∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).故选C.6.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>-14B.k>-14且0k≠C.k<-14D.k≥-14且0k≠【答案】B【解析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b2-4ac≥1.【详解】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>14-且k≠1.故选B.【点睛】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.7.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°【答案】C【解析】试题分析:∵DC ∥AB ,∴∠DCA=∠CAB=65°.∵△ABC 绕点A 旋转到△AED 的位置,∴∠BAE=∠CAD ,AC=AD.∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC ﹣∠DCA="50°." ∴∠BAE=50°.故选C .考点:1.面动旋转问题; 2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质.8.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是( )A .0.1B .0.2C .0.3D .0.4【答案】B 【解析】∵在5.5~6.5组别的频数是8,总数是40, ∴=0.1.故选B .9.若关于x ,y 的二元一次方程组59x y k x y k+=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( )A .34-B .34C .43D .43- 【答案】B【解析】将k 看做已知数求出用k 表示的x 与y ,代入2x+3y=6中计算即可得到k 的值.【详解】解:59x y k x y k +=⎧⎨-=⎩①②, ①+②得:214x k =,即7x k =,将7x k =代入①得:75k y k +=,即2y k =-,将7x k =,2y k =-代入236x y +=得:1466k k -=, 解得:34k =. 故选:B .【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.10.如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC ,OB=3OD ),然后张开两脚,使A ,B 两个尖端分别在线段a 的两个端点上,当CD=1.8cm 时,则AB 的长为( )A .7.2 cmB .5.4 cmC .3.6 cmD .0.6 cm【答案】B 【解析】由已知可证△ABO ∽CDO,故CD OC AB OA = ,即1.813AB =. 【详解】由已知可得,△ABO ∽CDO, 所以,CD OC AB OA= , 所以,1.813AB =, 所以,AB=5.4故选B【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质.二、填空题(本题包括8个小题)11.如图,AG ∥BC ,如果AF :FB =3:5,BC :CD =3:2,那么AE :EC =_____.【答案】3:2;【解析】由AG//BC 可得△AFG 与△BFD 相似 ,△AEG 与△CED 相似,根据相似比求解.【详解】假设:AF =3x,BF =5x ,∵△AFG与△BFD相似∴AG=3y,BD=5y由题意BC:CD=3:2则CD=2y∵△AEG与△CED相似∴AE:EC=AG:DC=3:2.【点睛】本题考查的是相似三角形,熟练掌握相似三角形的性质是解题的关键.12.一个扇形的圆心角为120°,弧长为2π米,则此扇形的半径是_____米.【答案】1【解析】根据弧长公式l=,可得r=,再将数据代入计算即可.【详解】解:∵l=,∴r===1.故答案为:1.【点睛】考查了弧长的计算,解答本题的关键是掌握弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为r).13.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.【答案】a1+1ab+b1=(a+b)1【解析】试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)1,所以a1+1ab+b1=(a+b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.14.如图,把△ABC绕点C顺时针旋转得到△A'B'C',此时A′B′⊥AC于D,已知∠A=50°,则∠B′CB的度数是_____°.【答案】1【解析】由旋转的性质可得∠A =∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=1°=∠B′CB .【详解】解:∵把△ABC 绕点C 顺时针旋转得到△A'B'C',∴∠A =∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案为:1.【点睛】本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.15.请写出一个比2大且比4小的无理数:________.【答案】π57)【解析】利用完全平方数和算术平方根对无理数的大小进行估算,然后找出无理数即可 x 4x 16<<x 的取值在4~165【点睛】本题考查估算无理数的大小,能够判断出中间数的取值范围是解题关键16.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是__________.【答案】k >-14且k≠1 【解析】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b 2-4ac=(2k+1)2-4k 2=4k+1>1.又∵方程是一元二次方程,∴k≠1,∴k >-1/4 且k≠1.17.如图所示,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △BDE :S 四边形DECA 的值为_____.【答案】1:1【解析】根据题意得到BE :EC=1:3,证明△BED ∽△BCA ,根据相似三角形的性质计算即可.【详解】∵S △BDE :S △CDE =1:3,∴BE :EC=1:3,∵DE ∥AC ,∴△BED ∽△BCA ,∴S △BDE :S △BCA =(BE BC)2=1:16, ∴S △BDE :S 四边形DECA =1:1,故答案为1:1.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键. 18.若|a|=20160,则a=___________.【答案】±1【解析】试题分析:根据零指数幂的性质(01(0)a a =≠),可知|a|=1,座椅可知a=±1.三、解答题(本题包括8个小题)19.如图,一次函数y 1=kx +b(k≠0)和反比例函数y 2=m x(m≠0)的图象交于点A(-1,6),B(a ,-2).求一次函数与反比例函数的解析式;根据图象直接写出y 1>y 2 时,x 的取值范围.【答案】(1)y 1=-2x +4,y 2=-6x;(2)x<-1或0<x<1. 【解析】(1)把点A 坐标代入反比例函数求出k 的值,也就求出了反比例函数解析式,再把点B 的坐标代入反比例函数解析式求出a 的值,得到点B 的坐标,然后利用待定系数法即可求出一次函数解析式; (2)找出直线在一次函数图形的上方的自变量x 的取值即可.【详解】解:(1)把点A (﹣1,6)代入反比例函数2m y x=(m≠0)得:m=﹣1×6=﹣6,∴26y x =-. 将B (a ,﹣2)代入26y x =-得:62a -=-,a=1,∴B (1,﹣2),将A (﹣1,6),B (1,﹣2)代入一次函数y 1=kx+b 得:632k b k b -+=⎧⎨+=-⎩, ∴24k b =-⎧⎨=⎩, ∴124y x =-+;(2)由函数图象可得:x <﹣1或0<x <1.【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键.20.如图,已知△ABC 中,AB=BC=5,tan ∠ABC=34.求边AC 的长;设边BC 的垂直平分线与边AB 的交点为D ,求AD DB 的值.【答案】(1)10;(2)35AD BD =. 【解析】(1)过A 作AE ⊥BC ,在直角三角形ABE 中,利用锐角三角函数定义求出AC 的长即可;(2)由DF 垂直平分BC ,求出BF 的长,利用锐角三角函数定义求出DF 的长,利用勾股定理求出BD 的长,进而求出AD 的长,即可求出所求.【详解】(1)如图,过点A 作AE ⊥BC ,在Rt △ABE 中,tan ∠ABC=34AE BE =,AB=5, ∴AE=3,BE=4,∴CE=BC ﹣BE=5﹣4=1,在Rt △AEC 中,根据勾股定理得:2231+10(2)∵DF 垂直平分BC ,∴BD=CD ,BF=CF=52, ∵tan ∠DBF=34DF BF =,∴DF=158, 在Rt △BFD 中,根据勾股定理得:BD=2251528⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=258, ∴AD=5﹣258=158, 则35AD BD =.【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.21.计算532224m m m m -⎛⎫+-÷ ⎪--⎝⎭. 【答案】26m +【解析】分析:先计算522m m +--,再做除法,结果化为整式或最简分式. 详解: 532224m m m m -⎛⎫+-÷ ⎪--⎝⎭()()()2252423m m m m m +---=⋅-- ()222923m m m m --=⋅-- ()()()332223m m m m m -+-=⋅-- 26m =+.点睛:本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.22.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别 频数(人数) 频率小说0.5戏剧 4散文10 0.25其他 6合计 1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.【答案】(1)41(2)15%(3)1 6【解析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【详解】(1)∵喜欢散文的有11人,频率为1.25,∴m=11÷1.25=41;(2)在扇形统计图中,“其他”类所占的百分比为×111%=15%,故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)=212=16.23.某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价.【答案】足球单价是60元,篮球单价是90元.【解析】设足球的单价分别为x元,篮球单价是1.5x元,列出分式方程解答即可.【详解】解:足球的单价分别为x元,篮球单价是1.5x元,可得:24002250151.5x x-=,解得:x=60,经检验x=60是原方程的解,且符合题意,1.5x=1.5×60=90,答:足球单价是60元,篮球单价是90元.【点睛】本题考查分式方程的应用,利用题目等量关系准确列方程求解是关键,注意分式方程结果要检验.24.为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<80 30 aC 80≤x<90 b 0.45D 90≤x<100 8 0.08请根据所给信息,解答以下问题:表中a=______,b=______;请计算扇形统计图中B组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【答案】(1)0.3 ,45;(2)108°;(3)16.【解析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a=30100=0.3,b=100×0.45=45(人).故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为212=16.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?【答案】解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得111x 1.5x12 +=,解得x=1.经检验,x=1是方程的解且符合题意.1.5 x=2.∴甲,乙两公司单独完成此项工程,各需1天,2天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:1×5000=100000(元);乙公司单独完成此项工程所需的施工费:2×(5000﹣1500)=105000(元);∴让一个公司单独完成这项工程,甲公司的施工费较少.【解析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.26.已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;直接写出点A1的坐标,点A2的坐标.【答案】(1)见解析;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【解析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【详解】(1)如图所示:△OA1B1,△OA2B2,即为所求;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【点睛】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣3 【答案】B【解析】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.2.如图,平行于x轴的直线与函数11ky(k0x0)x=>>,,22ky(k0x0)x=>>,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若ABC的面积为4,则12k k-的值为()A.8 B.8-C.4 D.4-【答案】A【解析】设()A a,h,()B b,h,根据反比例函数图象上点的坐标特征得出1ah k=,2bh k.=根据三角形的面积公式得到()()()ABC A121111S AB y a b h ah bh k k42222=⋅=-=-=-=,即可求出12k k8-=.【详解】AB//x轴,A∴,B两点纵坐标相同,设()A a,h,()B b,h,则1ah k=,2bh k=,()()()ABC A121111S AB y a b h ah bh k k42222=⋅=-=-=-=,12k k8∴-=,故选A.【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.3.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( )A .甲、乙的众数相同B .甲、乙的中位数相同C .甲的平均数小于乙的平均数D .甲的方差小于乙的方差【答案】D【解析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7, 26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,23488==55x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4, 所以只有D 选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.4.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是( )A .平均数是15B .众数是10C .中位数是17D .方差是443【答案】C【解析】解:中位数应该是15和17的平均数16,故C 选项错误,其他选择正确.故选C .【点睛】本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.5.若正六边形的边长为6,则其外接圆半径为( )A .3B .32 C .33 D .6【答案】D【解析】连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.【详解】如图为正六边形的外接圆,ABCDEF 是正六边形,∴∠AOF=10°, ∵OA=OF, ∴△AOF 是等边三角形,∴OA=AF=1.所以正六边形的外接圆半径等于边长,即其外接圆半径为1.故选D .【点睛】本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.6.如果2(2)2a a -=-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥【答案】B 【解析】试题分析:根据二次根式的性质2(0)0(0)(0)a a a a a a a ><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质2(0)0(0)(0)a a a a a a a ><⎧⎪===⎨⎪-⎩可求解.7.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为( )A .90°B .120°C .270°D .360°【答案】B 【解析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC 各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,∠BAC=180°-60°-∠1=120°-∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°-∠2)+(120°-∠1)=180°,∴∠1+∠2=120°.故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.8.如图,一次函数1y ax b 和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >【答案】B 【解析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.9.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31【答案】C【解析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n(n+1)和12(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【详解】∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选:C.【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.10.已知一个多边形的内角和是外角和的3倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】D【解析】根据多边形的外角和是360°,以及多边形的内角和定理即可求解.【详解】设多边形的边数是n,则(n−2)⋅180=3×360,解得:n=8.故选D.【点睛】此题考查多边形内角与外角,解题关键在于掌握其定理.二、填空题(本题包括8个小题)11..如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC 的长度是_______.【答案】2【解析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA,最后用勾股定理即可得出结论.【详解】设圆锥底面圆的半径为 r ,∵AC=6,∠ACB=120°, ∴1206180l π⨯⨯==2πr , ∴r=2,即:OA=2,在 Rt △AOC 中,OA=2,AC=6,根据勾股定理得,OC=22AC OA -=42,故答案为42.【点睛】本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出 OA 的长是解本题的关键.12.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.【答案】1【解析】画出图形,设菱形的边长为x ,根据勾股定理求出周长即可.【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm ,在Rt △ABC 中,由勾股定理:x 2=(8-x )2+22,解得:x=174, ∴4x=1,即菱形的最大周长为1cm .故答案是:1.【点睛】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.13.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.【答案】2.【解析】设第n 层有a n 个三角形(n 为正整数),根据前几层三角形个数的变化,即可得出变化规律“a n =2n ﹣2”,再代入n =2029即可求出结论.【详解】设第n 层有a n 个三角形(n 为正整数),∵a 2=2,a 2=2+2=3,a 3=2×2+2=5,a 4=2×3+2=7,…,∴a n =2(n ﹣2)+2=2n ﹣2.∴当n =2029时,a 2029=2×2029﹣2=2.故答案为2.【点睛】本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“a n =2n ﹣2”是解题的关键.14.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.【答案】4.4×1【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:44000000=4.4×1,故答案为4.4×1.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.对于二次函数y =x 2﹣4x+4,当自变量x 满足a≤x≤3时,函数值y 的取值范围为0≤y≤1,则a 的取值范围为__.【答案】1≤a≤1【解析】根据y 的取值范围可以求得相应的x 的取值范围.【详解】解:∵二次函数y =x 1﹣4x+4=(x ﹣1)1,∴该函数的顶点坐标为(1,0),对称轴为:x =﹣4222b a -=-=, 把y =0代入解析式可得:x =1,把y =1代入解析式可得:x 1=3,x 1=1,所以函数值y 的取值范围为0≤y≤1时,自变量x 的范围为1≤x≤3,故可得:1≤a≤1,故答案为:1≤a≤1.【点睛】此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答. 16.如图,正方形ABCD 边长为3,以直线AB 为轴,将正方形旋转一周.所得圆柱的主视图(正视图)的周长是_____.【答案】1.【解析】分析:所得圆柱的主视图是一个矩形,矩形的宽是3,长是2.详解:矩形的周长=3+3+2+2=1.点睛:本题比较容易,考查三视图和学生的空间想象能力以及计算矩形的周长.17.若关于x 的分式方程2122x a x -=-的解为非负数,则a 的取值范围是_____. 【答案】1a ≥-且2a ≠【解析】分式方程去分母得:2(2x-a )=x-2,去括号移项合并得:3x=2a-2,解得:223a x -=, ∵分式方程的解为非负数,∴ 2203a -≥且 22203a --≠, 解得:a≥1 且a≠4 .18.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.做法中用到全等三角形判定的依据是______.【答案】SSS .【解析】由三边相等得△COM ≌△CON ,即由SSS 判定三角全等.做题时要根据已知条件结合判定方法逐个验证.【详解】由图可知,CM=CN ,又OM=ON ,∵在△MCO 和△NCO 中MO NO CO CO NC MC ⎧⎪⎨⎪⎩===,∴△COM ≌△CON (SSS ),∴∠AOC=∠BOC ,即OC 是∠AOB 的平分线.故答案为:SSS .【点睛】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.三、解答题(本题包括8个小题)19.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A ),豆沙粽子(记为B ),肉粽子(记为C ),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【答案】(1)12;(2)316 【解析】(1)由题意知,共有4种等可能的结果,而取到红枣粽子的结果有2种则P (恰好取到红枣粽子)=12. (2)由题意可得,出现的所有可能性是:(A ,A )、(A ,B )、(A ,C )、(A ,C )、(A ,A )、(A ,B )、(A ,C )、(A ,C )、(B ,A )、(B ,B )、(B ,C )、(B ,C )、(C ,A )、(C ,B )、(C ,C )、(C ,C ),∴由上表可知,取到的两个粽子共有16种等可能的结果,而一个是红枣粽子,一个是豆沙粽子的结果有3种,则P (取到一个红枣粽子,一个豆沙粽子)=316. 考点:列表法与树状图法;概率公式.20.如图,二次函数232(0)2y ax x a =-+≠的图象与x 轴交于A 、B 两点,与y 轴交于点C ,已知点A (﹣4,0).求抛物线与直线AC 的函数解析式;若点D (m ,n )是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S ,求S 关于m 的函数关系式;若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以A 、C 、E 、F 为顶点的四边形是平行四边形时,请求出满足条件的所有点E 的坐标.。
2019-2020学年数学中考模拟试卷一、选择题1.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.95°B.75°C.35°D.85°2.如图,点A、B、C是⊙O上的三点,且AB=OB,则∠ACB的度数为()A.60°B.45°C.30°D.22.5°3.如图,正△AOB的边长为5,点B在x轴正半轴上,点A在第一象限,反比例函数y=kx(x>0)的图象分别交边AO,AB于点C,D,若OC=2BD,则实数k的值为()A.43B.932C.2534D.834.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则:①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣l <x<3,其中正确的是()A.①②④B.②④C.①④D.②③5.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )A.12B.13C.14D.166.如图,已知正方形ABCD的边长为3cm,若将这个正方形沿射线AD方向平移2cm,则平移前后图形的重叠部分面积为()A .3cm 2B .4.5cm 2C .6cm 2D .9cm 2 7.一副直角三角板按如图所示的方式摆放,其中点C 在FD 的延长线上,且AB ∥FC ,则∠CBD 的度数为( )A .15°B .20°C .25°D .30°8.如图,AB 是⊙O 的直径,点C 是圆上任意一点,点D 是AC 中点,OD 交AC 于点E ,BD 交AC 于点F ,若BF =1.25DF ,则tan ∠ABD 的值为( )A .23B .3C .35D .5 9.我市在旧城改造中,需要在一块如图所示的三角形空地上铺设草坪,如果每平方米草坪的价格为x 元,则购买草坪需要的花费大概是( )提示:2≈1.414,3≈1.732A .150x 元B .300x 元C .130x 元D .260x 元10.如图,点A 、B 、C 、D 在⊙O 上,»»CBCD =,∠CAD =30°,∠ACD =50°,则∠ADB =( )A .30°B .50°C .70°D .80°11.已知a ﹣b=3,c+d=2,则(b+c )﹣(a ﹣d )的值是( )A .﹣1B .1C .﹣5D .1512.如图,在平面直角坐标系中,Rt ABC ∆的顶点A 在函数()0k y x x=>的图象上,90ACB ∠=︒,边CB 在x 轴上,点D 为斜边AB 的中点,连续DC 并延长交y 轴于点E ,连结BE ,若CEB ∆的面积为4,则k 的值为 ( )A.2B.4C.8D.16二、填空题 13.小芳参加图书馆标志设计大赛,他在边长为2的正方形ABCD 内作等边△BCE ,并与正方形的对角线交于F 、G 点,制成了图中阴影部分的标志,则这个标志AFEGD 的面积是_____.14.如图,抛物线y =ax 2﹣1(a >0)与直线y =kx+3交于MN 两点,在y 轴负半轴上存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称,则点P 的坐标是_____15.用棋子按下列方式摆图形,依照此规律,第n 个图形有_____枚棋子.16.如图,点A (m ,6),B (n ,1)在反比例函数k y x=的图象上,AD ⊥x 轴于点D ,BC ⊥x 轴于点C ,点E 在CD 上,CD =5,△ABE 的面积为10,则点E 的坐标是_____.17.计算:(-1)0=________.18.将32363x x x -+分解因式,其结果为_________.三、解答题19.如图,在矩形ABCD 中,E 为CD 的中点,F 为BE 上的一点,连接CF 并延长交AB 于点M ,MN ⊥CM 交射线AD 于点N .(1)如图1,当点F 为BE 中点时,求证:AM =CE ;(2)如图2,若AB EF BC BF ==3时,求AN ND 的值; (3)若AB EF BC BF ==n (n≥3)时,请直接写出AN ND的值.(用含n 的代数式表示)20.已知a 、b 、c 是等腰ABC ∆的三条边,其中4a =,如果b 、c 是关于x 的一元二次方程260x x m -+=的两个根,求m 的值.21.如图,在平面直角坐标系内,直线y 1=kx+b(k≠0)与双曲线y 2=(a≠0)交于A 、B 两点,已知点A(m ,2),点B(-1,-4).(1)求直线和双曲线的解析式;(2)把直线y 1沿x 轴向负方向平移1个单位,得到直线y 3,直接写出y 3解析式及当y 3>y 2时,自变量x 的取值范围.22.在平面直角坐标系xOy 中,抛物线y=ax 2-2ax-3a (a≠0)顶点为P ,且该抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧).我们规定:抛物线与x 轴围成的封闭区域称为“G 区域”(不包含边界);横、纵坐标都是整数的点称为整点.(1)求抛物线y=ax 2-2ax-3a 顶点P 的坐标(用含a 的代数式表示);(2)如果抛物线y=ax 2-3ax-3a 经过(1,3).①求a 的值;②在①的条件下,直接写出“G 区域”内整点的个数.(3)如果抛物线y=ax 2-2ax-3a 在“G 区域”内有4个整点,直接写出a 的取值范围.23.如图是集体跳绳的示意图,绳子在最高处和最低处时可以近似看作两条对称的抛物线,分别记为C 1和C 2,绳子在最低点处时触地部分线段CD =2米,两位甩绳同学的距离AB =8米,甩绳的手最低点离地面高度AE =BN =1516 米,最高点离地AF =BM =2316米,以地面AB 、抛物线对称轴GH 所在直线为x 轴和y 轴建立平面直角坐标系.(1)求抛物线C 1和C 2的解析式;(2)若小明离甩绳同学点A 距离1米起跳,至少要跳多少米以上才能使脚不被绳子绊住?(3)若集体跳绳每相邻两人(看成两个点)之间最小距离为0.8米,腾空后的人的最高点头顶与最低点脚底之距为1.5米,请通过计算说明,同时进行跳绳的人数最多可以容纳几人?(温馨提醒:所有同学起跳处均在直线CD 上,不考虑错时跳起问题,即身体部分均在C 1和C 2之间才算通过),(参考数据:2 =1.414,3≈1.732)24.如图,已知在ABCD □中,点O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E .(1)求证:AOD EOC ∆∆≌.(2)连接AC ,DE ,当==∠∠B AEB ______时,四边形ACED 是正方形.请说明理由.25.菱形ABCD 中,对角线AC=6cm ,BD=8cm ,动点P 、Q 分别从点C 、O 同时出发,运动速度都是1cm/s ,点P 由C 向D 运动;点Q 由O 向B 运动,当Q 到达B 时,P 、Q 两点运动停止,设时间为t 妙(0<t <4).连接AP ,AQ ,PQ .(1)当t 为何值时,PQ ⊥AB ;(2)设△APQ 的面积为y (cm 2),请写出y 与t 的函数关系式;(3)当t 为何值时,△APQ 的面积是四边形AQPD 面积的23? (4)是否存在t 值,使得线段PQ 经过CO 的中点M ?若存在,求出t 值;若不存在,请说明理由.【参考答案】***一、选择题13.14.(0,-5)15.(31)2n n - 16.(3,0) 17.118.23(1)x x -三、解答题19.(1)见解析;(2)5;(3)2125AN n N n -=- 【解析】【分析】(1)由F 为BE 的中点,可得BF =EF ,因为四边形ABCD 为矩形,可得∠BCE =∠ABC =90°,CF =BF =EF ,∠FBC =∠FCB ,可推出△MBC ≌△ECB ,则可推导出AM =CE .(2)根据AB ∥CD ,可得EF EC BF BM ==3,设MB =a ,则EC =DE =3a ,AB =CD =6a ,根据AB BC=3,可得BC =AD =2a ,根据MN ⊥CM ,可推出△AMN ∽△BCM ,则可得AM AN BC BM =,52a AN a a =,推出AN =52a ,DN =12a ,则AN ND=5. (3)同(2)的推导方法.【详解】解:(1)∵F 为BE 的中点,∴BF =EF ,∵四边形ABCD 为矩形,∴∠BCE =∠ABC =90°,∴CF =BF =EF ,∴∠FBC =∠FCB ,∵BC =CB ,∴△MBC ≌△ECB (AAS ),∴BM =EC =DE ,∵AB =CD ,∴BM =AM ,∴AM =CE .(2)∵AB ∥CD ,∴EF EC BF BM==3, 设MB =a ,则EC =DE =3a ,∴AB =CD =6a ,∵AB BC=3,∴BC =AD =2a ,∵MN ⊥CM ,∴△AMN ∽△BCM , ∴AM AN BC BM =, ∴52a AN a a=, ∴AN =52a , DN =12a , ∴AN ND=5. (3)∵AB ∥CD , ∴EF EC BF BM ==n , 设MB =a ,则EC =DE =an ,∴AB =CD =2an , ∵AB BC=n , ∴BC =AD =2a ,∵MN ⊥CM ,∴△AMN ∽△BCM , ∴AM AN BC BM =, ∴22an a AN a a-=, ∴AN =22an a -, DN =252an a - ∴2125AN n ND n -=-. 【点睛】此题考查了矩形的基本性质,及相似三角形的判定和性质,发现题目中的相似三角形,设参数求相应的边长为解题关键.20.9m =或8.【解析】【分析】分a 为腰和底两种情况根据三角形三边关系定理及等腰三角形的特点,确定另两边的长,从而确定m 的值.【详解】①若4a =为底,则b c =,即方程有两个相等的实数根.∴2640m ∆=-=,解得:9m =, 4,3,3符合题意.②若4a =为腰,则方程必有一根为4,则46,4,x x m +=⎧⎨=⎩解得2,8.x m =⎧⎨=⎩ 三角形三边为4,4,2符合题意.∴综上:9m =或8【点睛】 本题考查了一元二次方程的应用,三角形的三边关系,等腰三角形的性质,解题的关键是利用等腰三角形的性质分类讨论,难度不大.21.(1)双曲线的解析式为y 2=4x ,直线的解析式为y=2x-2;(2)y 3=2x ,当y 3>y 2时,自变量x 的取值范围是:0x <<或x >【解析】【分析】(1)因为A 、B 是直线y 1=kx+b (k≠0)与双曲线y 2=a x(a≠0)的图象的两个交点,所以把A 点、B 点坐标代入反比例函数解析式,即可求出a 和m 的值,从而求出反比例函数的解析式和A 点坐标,进而把A 、B 点的坐标代入一次函数y 1=kx+b 的解析式,就可求出k 、b 的值;(2)根据图象和交点坐标,从而求得x 的取值范围.【详解】解:(1)∵点B (-1,-4)在双曲线y 2=a x (a≠0)上, ∴a=-1×(-4)=4.∴双曲线的解析式为y 2=4x∵点A (m ,2)在反比例函数y 2=4x 的图象上, ∴2=4m, ∴m=2.∵点A (2,2)和点B (-1,-4)在直线y 1=kx+b (k≠0)上,224k b k b +=⎧∴⎨-+=-⎩解得22k b =⎧⎨=-⎩∴直线的解析式为y=2x-2.(2)直线y 1沿x 轴向负方向平移1个单位,得到直线y 3=2(x+1)-2=2x , 解24y x y x =⎧⎪⎨=⎪⎩,得x y ⎧=⎪⎨=⎪⎩或x y ⎧=⎪⎨=-⎪⎩ ∴直线y 3和双曲线的交点为和(-. ∴当y 3>y 2时,自变量x的取值范围是:0x -<<或x >【点睛】 题考查了反比例函数和一次函数的交点问题,能够熟练运用待定系数法求得函数的解析式;能够运用数形结合的思想观察两个函数值的大小关系22.(1)顶点P 的坐标为(1,-4a ).(2)①a=-34.②“G 区域”有6个整数点.(3)a 的取值范围为-23≤a<-12或12<a≤23. 【解析】【分析】(1)利用配方法将抛物线的解析式变形为顶点式,由此即可得出顶点P 的坐标;(2)将点(1,3)代入抛物线解析式中,即可求出a 值,再分析当x=0、1、2时,在“G 区域”内整数点的坐标,由此即可得出结论;(3)分a <0及a >0两种情况考虑,依照题意画出图形,结合图形找出关于a 的不等式组,解之即可得出结论.【详解】解:(1)∵y=ax 2-2ax-3a=a (x+1)(x-3)=a (x-1)2-4a ,∴顶点P 的坐标为(1,-4a ).(2)∵抛物线y=a (x+1)(x-3)经过(1,3),∴3=a (1+1)(1-3),解得:a=-34. 当y=-34(x+1)(x-3)=0时,x 1=-1,x 2=3, ∴点A (-1,0),点B (3,0). 当x=0时,y=-34(x+1)(x-3)=94, ∴(0,1)、(0,2)两个整数点在“G 区域”; 当x=1时,y=-34(x+1)(x-3)=3, ∴(1,1)、(1,2)两个整数点在“G 区域”;当x=2时,y=-34(x+1)(x-3)=94, ∴(2,1)、(2,2)两个整数点在“G 区域”.综上所述:此时“G 区域”有6个整数点.(3)当x=0时,y=a (x+1)(x-3)=-3a ,∴抛物线与y 轴的交点坐标为(0,-3a ).当a <0时,如图1所示,此时有{24332a a <-≤-≤,解得:-23≤a<-12; 当a >0时,如图2所示,此时有{34232a a -≤-<--≥-, 解得:12<a≤23. 综上所述,如果G 区域中仅有4个整数点时,则a 的取值范围为-23≤a<-12或12<a≤23.【点睛】本题考查了抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征以及解一元一次不等式组,解题的关键是:(1)利用配方法将抛物线解析式变形为顶点式;(2)利用二次函数图象上点的坐标特征,寻找“G 区域”内整数点的个数;(3)依照题意,画出图形,观察图形找出关于a 的一元一次不等式组.23.(1) 221213911,y x 16161616y x =+=-;(2) 至少要12跳米以上才能使脚不被绳子绊住;(3) 8人. 【解析】【分析】(1)先写出点C 、D 、E 、F 的坐标,然后设解析式代入求解即可;(2)小明离甩绳同学点A 距离1米起跳,可得此点的横坐标,代入C 2解析式,即可求得;(3)用y 1减去y 2,让其等于1.5,解出相应点的横坐标,求出这两个点的横坐标之间的距离,然后用间隔0.8乘以人数减1,即可解出.【详解】解:(1)由已知得:C (﹣1,0),D (1,0),E (﹣4,1516),F (﹣4,2316), 设C 2解析式为:2y = a ( x + 1 ) ( x - 1 ),把154,16⎛⎫- ⎪⎝⎭代入得15a =1516, ∴116a =, ∴22111616y x =-. 由对称性,设C 1解析式21116y x c =-+,把F (﹣4,2316)代入得c =3916, ∴211391616y x =-+ 故答案为:抛物线C 1和C 2的解析式分别为:211391616y x =-+,22111616y x =-. (2)把x =﹣3代入22111616y x =-得2111916162y =⨯-=, ∴至少要跳12米以上才能使脚不被绳子绊住.。
2019-2020学年数学中考模拟试卷 一、选择题 1.若式子22(1)m m +-有意义,则实数m 的取值范围是( ) A .m >﹣2B .m >﹣2且m≠1C .m≥﹣2D .m≥﹣2且m≠1 2.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,OC 交⊙O 于点D ,若∠ABD =24°,则∠C 的度数是( )A.48°B.42°C.34°D.24°3.如图所示的几何体的俯视图是( )A. B. C. D.4.如图,在等腰直角三角形ABC 中,∠C=90°,AC=6,D 是BC 上一点,若tan ∠DAB=15,则AD 的长为( )A.22 13 C.13 D.85.经党中央批准、国务院批复自2018年起,将每年秋分日设立为“中国农民丰收节”,据国家统计局数据显示,2018年某省夏季粮食总产量达到2389000吨,将数据“2389000”用科学记数法表示为( )A .238.9×104B .2.389×106C .23.89×105D .2389×103 6.下列等式,错误的是( ) A .(x 2y 3)2=x 4y 6B .(﹣xy )3=﹣xy 3C .(3m 2n 2)2=9m 4n 4D .(﹣a 2b 3)2=a 4b 6 7.下列运算正确的是( ) A .a 3+a 3=a 6B .(﹣a 2)3=a 6C .a 5÷a ﹣2=a 7D .(a+1)0=1 8.反比例函数y =m x的图象如图所示,以下结论:①常数m <﹣2;②若A (﹣1,h ),B (2,k )在图象上,则h <k ;③y 随x 的增大而减小;④若P (x ,y )在图象上,则P'(﹣x ,﹣y )也在图象上.其中正确的是()A.①②B.③④C.②③D.②④9.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=kx上(k>0,x>0),则k的值为()A.253B.183C.9 D.9310.若x>y,a<1,则()A.x>y+1 B.x+1>y+a C.ax>ay D.x-2>y-111.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.5 C.6 D.25412.如果关于x的不等式﹣3x+2a≥0的解能中仅含有两个正整数解,且关于x的分式方程212x ax-=-有非负数解,则整数a的值( )A.2或3或4 B.3 C.3或4 D.2或3 二、填空题13.一个扇形的弧长为4π,半径长为4,则该扇形的面积为___________. 14.因式分解:8a3﹣2ab2=_____.15.如图,在平面直角坐标系中,函数y=kx与y=3x的图象交于A,B两点,过A作y轴的垂线,交函数4yx=-的图象于点C,连接BC,则△ABC的面积为_____.16.当101x =-时,多项式226x x ++的值等于_______.17.同时掷两枚质地均匀的骰子,观察向上一面的点数,用两枚骰子的点数作为点的坐标,则点在第一象限角平分线上的概率是_____.18.分解因式:m 2n - n 3=_____________.三、解答题19.计算:0231168tan 60()22-⨯+-+ 20.某学校为了创建书香校园,去年购买了一批图书.其中科普书的单价比文学书的单价多8元,用1800元购买的科普书的数量与用l000元购买的文学书的数量相同.(1)求去年购买的文学书和科普书的单价各是多少元;(2)这所学校今年计划再购买这两种文学书和科普书共200本,且购买文学书和科普书的总费用不超过2088元.今年文学书的单价比去年提高了20%,科普书的单价与去年相同,且每购买1本科普书就免费赠送1本文学书,求这所学校今年至少要购买多少本科普书?21.(1)计算:32349(2)(1)16--÷+- (2)解方程组:23532x y x y -=⎧⎨+=⎩22.解方程:3x (x ﹣4)=4x (x ﹣4).23.如图,四边形ABCD 是菱形,BE 是AD 边上的高,请仅用无刻度的直尺作图(保留作图痕迹)(1)在图①中,BD =AB ,作△BCD 的边BC 上的中线DF ;(2)在图②中,BD≠AB 作△ABD 的边AB 上的高DF .24.如图1,AB 为半圆O 的直径,D 为BA 的延长线上一点,DC 为半圆O 的切线,切点为C .(1)求证:ACD B ∠=∠;(2)如图2,BDC ∠的平分线分别交AC ,BC 于点E ,F .①求tan CFE ∠的值;②若3AC =,4BC =,求CE 的长.25.在△ABC 中,∠A 、∠B 、∠C 所对的边分别用a 、b 、c 表示.(1)如图①,在△ABC 中,∠A =2∠B ,且∠A =60°.求证:a 2=b (b+c )(2)如图②,在△ABC 中,最大角∠A 是最小角∠C 的2倍,且c =7,b =8,求a 的长.(3)若一个三角形的一个内角等于另一个内角的2倍,我们则称这样的三角形为“倍角三角形”.问题(1)中的三角形是一个特殊的倍角三角形,那么对于任意的倍角△ABC ,如图③,∠A =2∠B ,关系式a 2=b (b+c )是否仍然成立?并证明你的结论.【参考答案】***一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D B B C B B C D D BB C 13.8π14.2a (2a+b )(2a ﹣b ).15.16.1517.1618.n(m+n)(m-n)三、解答题19.6【解析】【分析】直接利用特殊角的三角函数值以及负指数幂的性质、立方根的性质分别化简进而得出答案.【详解】+4=6.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.20.(1)文学书的单价是10元,科普书的单价是18元;(2) 至少要购买52本科普书.【解析】【分析】(1)设去年购买的文学书的单价是x元,科普书的单价是(x+8)元,根据“用1800元购买的科普书的数量与用l000元购买的文学书的数量相同”列出方程;(2)设这所学校今年要购买y本科普书,根据“购买文学书和科普书的总费用不超过2088元”列出不等式.【详解】解:(1)设去年购买的文学书的单价是x元,科普书的单价是(x+8)元,根据题意,得180010008x x=+.解得x=10.经检验 x=10是原方程的解.当x=10时,x+8=18.答:去年购买的文学书的单价是10元,科普书的单价是18元;(2)设这所学校今年要购买y本科普书,根据题意,得10×(1+20%)(200﹣y﹣y)+18y≤2088解得y≥52答:这所学校今年至少要购买52本科普书.【点睛】本题考查分式方程的应用和一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.21.(1)157;(2)11xy=⎧⎨=-⎩.【解析】【分析】(1)根据幂的运算法则进行计算即可解答;(2)利用加减消元法解二元一次方程组即可解答. 【详解】解:(1)=2×47+1=157;(2)解:23532x yx y-=⎧⎨+=⎩①②,①+②×3,得x=1.把x=1代入②,得y=﹣1.所以原方程组的解是11 xy=⎧⎨=-⎩.【点睛】本题考查了幂的运算法则和解二元一次方程组,准确计算是解题的关键.22.x1=0,x2=4.【解析】【分析】先整理方程,把右边的项移到左边,然后利用因式分解法解方程.【详解】3x(x﹣4)=4x(x﹣4),整理得:x2﹣4x=0,x(x﹣4)=0,x=0,x﹣4=0,x1=0,x2=4.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.23.(1)见解析;(2)见解析.【解析】【分析】(1)连接AC交BD于点O,作直线OE交BC于F,连接DF,线段DF即为所求.(2)作直线AC交BE的延长线于K,作直线DK交BA于点F,线段DF即为所求.【详解】(1)如图1中,线段DF即为所求.(2)如图2中,线段DF即为所求.【点睛】本题考查了作图﹣复杂作图,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(1)见解析;(2)①1;②127CE =【解析】【分析】(1)连接OC ,由切线性质得OC CD ⊥,根据直径所对的圆周角为直角得90ACB ︒∠=,由“三角形中等角对等边”得OCB OBC ∠=∠,根据角的等量代换即可证得ACD B ∠=∠。
上海市静安区、青浦区2019年中考二模数学试题一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]....B、﹣5.(4分)(2019•老河口市模拟)如果▱ABCD的对角线相交于点O,那么在下列条件中,能判断▱ABCD6.(4分)(2019•静安区二模)一个图形沿一条直线翻折后再沿这条直线的方向平移,我们把这样的图形运动称为图形的翻移,这条直线称为翻移线.如图△A2B2C2是由△ABC沿直线l翻移后得到的.在下列结论中,图形的翻移所具有的性质是()数学试卷二、填空题:(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.(4分)(2019•静安区二模)计算:=.=故答案为:8.(4分)(2019•静安区二模)不等式组的解集是x>2.解:>.>9.(4分)(2019•静安区二模)如果一个数的倒数等于它本身,则这个数是±1.10.(4分)(2019•静安区二模)如果关于x的方程x2﹣6x+m﹣1=0没有实数根,那么m的取值范围是m >10.11.(4分)(2019•静安区二模)如果点A(﹣1,2)在一个正比例函数y=f(x)的图象上,那么y随着x 的增大而减小(填“增大”或“减小”).12.(4分)(2019•静安区二模)将抛物线y=2x2+1向右平移3个单位,所得抛物线的表达式是y=2(x ﹣3)2+1.数学试卷13.(4分)(2019•静安区二模)某校200名学生一次数学测试的分数均大于75且小于150,分数段的频数分布情况如下:75~90有15人,90~105有42人,105~120有58人,135~150有35人(其中每个分数段可包括最小值,不包括最大值),那么测试分数在120~135分数段的频率是0.25.即可求出测试分数在==14.(4分)(2019•静安区二模)从点数为1、2、3、4、5的五张扑克牌中随机摸出两张牌,摸到的两张牌的点数之和为素数的概率是.∴摸到的两张牌的点数之和为素数的概率是:=故答案为:.15.(4分)(2019•静安区二模)在梯形ABCD中,AD∥BC,BC=3AD,,那么=.,则可表示出、,从而可得出===,又∵=,=﹣=﹣.故答案为:﹣﹣.16.(4分)(2019•静安区二模)如果⊙O1与⊙O2内含,O1O2=4,⊙O1的半径是3,那么⊙O2的半径的取值范围是r>7.17.(4分)(2019•静安区二模)在△ABC中,∠A=40°,△ABC绕点A旋转后点C落在边AB上的点C′,点B落到点B′,如果点C、C′、B′在同一直线上,那么∠B的度数是30°.数学试卷C=((18.(4分)(2019•静安区二模)在正方形ABCD中,点E、F、G、H分别在边AB、BC、CD、AD上,四边形EFGH是矩形,EF=2FG,那么矩形EFGH与正方形ABCD的面积比是.EF=2a的面积比是故答案为:三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.(10分)(2019•静安区二模)化简:,并求当时的值.+.=20.(10分)(2019•静安区二模)解方程组:.解:原方程组可化为,,,解得原方程组的解是,数学试卷21.(10分)(2019•静安区二模)已知:如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线AC、BD 相交于点E,BD⊥CD,AB=12,cot∠ADB=.求:(1)∠DBC的余弦值;(2)DE的长.ADB=,ADB=,=,BD==20ADB==;DBC==,==,=,DE=BD=20=.22.(10分)(2019•静安区二模)一辆高铁列车与另一辆动车组列车在1320公里的京沪高速铁路上运行时,高铁列车比动车组列车平均速度每小时快99公里,用时少3小时,求这辆高铁列车全程的运行时间和平均速度.时,23.(12分)(2019•静安区二模)已知:如图,在△ABC中,AB=AC,点D、E分别在边AC、AB上,DA=DB,BD与CE相交于点F,∠AFD=∠BEC.求证:(1)AF=CE;(2)BF2=EF•AF.,数学试卷.24.(12分)(2019•静安区二模)已知AB是⊙O的直径,弦CD⊥AB,垂足为H,AH=5,CD=,点E在⊙O上,射线AE与射线CD相交于点F,设AE=x,DF=y.(1)求⊙O的半径;(2)如图,当点E在AD上时,求y与x之间的函数解析式,并写出函数的定义域;(3)如果EF=,求DF的长.DC=2,在2AE=,再在=;x=BE=FH=2;,然后利用DH=DC=4,2,的半径为;AG=AE=x:==y=,;,即x=﹣DF=y===,=BE==:﹣,DF=DH+FH=2+数学试卷25.(14分)(2019•静安区二模)如图,点A(2,6)和点B(点B在点A的右侧)在反比例函数的图象上,点C在y轴上,BC∥x轴,tan∠ACB=2,二次函数的图象经过A、B、C三点.(1)求反比例函数和二次函数的解析式;(2)如果点D在x轴的正半轴上,点E在反比例函数的图象上,四边形ACDE是平行四边形,求边CD 的长.y=,由,6=∴反比例函数的解析式为,解得故二次函数的解析式为;数学试卷CD=。
2019年上海各区初三二模数学试卷19--21题专题汇编(学生版)静安区19.(本题满分10分)计算:12241)1-++-20.(本题满分10分)解方程组:226,3100.x yx xy yì-=ïí+-=ïî21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)一个水库的水位在某段时间内持续上涨,表2记录了连续5小时内6个时间点的水位高度,其中x表示时间,y表示水位高度.(1)通过观察数据,请写出水位高度y与时间x的函数解析式(不需要写出定义域);(2)据估计,这种上涨规律还会持续,并且当水位高度达到8米时,水库报警系统会自动发出警报.请预测再过多久系统会发出警报.表2嘉定区19.(本题满分10分)计算:220)3(60tan 21)21()2018(π-+︒+-+--.20.(本题满分10分)解方程:21224162+--+=-x x x x .21.(本题满分10分,第(1)小题5分、第(2)小题5分)如图4,在△ABC 中,AD 是边BC 上的高,点E 是边AC 的中点,11=BC ,12=AD ,四边形DFGH 是边长为4的正方形,其中点F 、G 、H 分别在AD 、AB 、BC 上.(1)求BD 的长度; (2)求EDC ∠cos 的值.普陀区19.(本题满分10分)计算:312019212sin 60227(1)2-⎛⎫︒-+--- ⎪⎝⎭.20.(本题满分10分)解方程:242193x x x =--+.AG B HD F EC图421.(本题满分10分)如图8,已知点D 、E 分别在△ABC 的边AB 和AC 上,DE //BC ,13DE BC =,△ADE 的面积等于3.(1)求△ABC 的面积; (2)如果9BC =,且2cot 3B =,求AED ∠的正切值. 徐汇区19.(本题满分10分)计算:()()12831233-+-+---20.(本题满分10分)解方程组:22222021,.x xy y x xy y ⎧--=⎪⎨++=⎪⎩A BCDE图8BO CAABCDE第21题图21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,已知⊙O 的弦AB 长为8,延长AB 至C ,且BC =12AB , tanC =12. 求:(1)⊙O 的半径;(2)点C 到直线AO 的距离.金山区19. 计算:()()()1212312283-++-++.20. 解方程:142212=---x xx .21. 已知:如图,在ABC Rt ∆中,ο90=∠ACB ,D 是边AB 的中点,CB CE =,5=CD ,53sin =∠ABC .求:(1)BC 的长. (2)E tan 的值.(第21题图)崇明19.(本题满分10分)先化简,再求值:2221(1)121a a a a a a +-÷+---+,其中a =.20.(本题满分10分)解方程组224;20.x y x xy y +=⎧⎨+-=⎩21.(本题满分10分,每小题满分各5分)①② 如图5,已知ABC △中,6AB =,30B ∠=︒,3tan 2ACB ∠=. (1)求边AC 的长;(2)将ABC △沿直线l 翻折后点B 与点A 重合, 直线l 分别与边AB 、BC 相交于点D 、E ,求BEEC的值.虹口区19.(本题满分10分) 先化简,再求值:35(2)242m m m m -÷+---,其中23m =-.20.(本题满分10分)解方程组:22560,312.x xy y x y ⎧--=⎨-=⎩21.(本题满分10分,第(1)小题3分,第(2)小题7分)如图,在锐角△ABC 中,小明进行了如下的尺规作图:①分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧分别相交于点P 、Q ;②作直线PQ 分别交边AB 、BC 于点E 、D . (1)小明所求作的直线DE 是线段AB 的 ▲ ; (2)联结AD ,AD=7,sin ∠DAC 17=,BC =9,求AC 的长.ABC图5C第21题图DBAEPQ黄浦区19.(本题满分10分)计算: ()()133tan 60cos3271301902-+--︒-︒.20.(本题满分10分)解方程:22161242x x x x +-=--+.21.(本题满分10分)如图4,已知O e 是ABC ∆的外接圆,圆心O 在ABC ∆的外部,4AB AC ==,43BC =,求O e 的半径.ABCO图4青浦19.(本题满分10分)计算:.20.(本题满分10分)解方程组:21.(本题满分10分,第(1)、(2)小题,每小题5分)如图7,在△ABC 中,∠C =90°,AB 的垂直平分线分别交边BC 、AB 于点D 、E ,联结AD . (1)如果∠CAD ∶∠DAB =1∶2,求∠CAD 的度数; (2)如果AC =1,,求∠CAD 的正弦值.①② 22602 1.x xy y x y ⎧+-=⎨+=⎩;EDABC图7宝山19.(本题满分10分)计算:202)3(30cot 21)2019(21π-+︒+--+⎪⎭⎫ ⎝⎛-.21.(本题满分10分)解方程:214162++-x x =22-+x x21.(本题满分10分,第(1)、第(2)小题满分各5分)如图已知:△ABC 中,AD 是边BC 上的高、E 是边AC 的中点, BC =11,AD =12,DFGH 为边长为4的正方形,其中点F 、G 、H 分别在AD 、AB 、BC 上.(1)求BD 的长度; (2)求cos ∠EDC 的值.第21题图松江19.(本题满分10分) 计算:()()121227+3116+23---+20.(本题满分10分) 解方程组:2226691x y x xy y +=⎧⎨-+=⎩21.(本题满分10分)在梯形ABCD 中,AB ∥CD ,BC ⊥AB ,且AD ⊥BD ,BD =6,sin A =32,求梯形ABCD 的面积.②① (第21题图)CBAD图6DCB AEF奉贤19.(本题满分10分)先化简,再求值:22693111x x x x x x x -+--?--+,其中2x =20.(本题满分10分) 解方程组:226,320.x y x xy y +=⎧⎨-+=⎩21.(本题满分10分,每小题5分)如图6,已知梯形ABCD 中,AD//BC ,∠ABC=90°,BC =2AB =8,对角线AC 平分∠BCD ,过点D 作DE ⊥AC ,垂足为点E ,交边AB 的延长线于点F ,联结CF . (1)求腰DC 的长; (2)求∠BCF 的余弦值.闵行19.(本题满分10分)先化简,再求值:2214422x x xx x x x-÷-++++,其中21x=-.20.(本题满分10分)解不等式组:62442133x xx x->-⎧⎪⎨≥-⎪⎩,,并把解集在数轴上表示出来.21.(本题共2小题,每小题5分,满分10分)如图,在△ABC中,AB = AC,BC = 10,5cos13ABC∠=,点D是边BC的中点,点E在边AC上,且23AEAC=,AD与BE相交于点F.求:(1)边AB的长;(2)EFBF的值.-1-2012(第20题图)AB C(第21题图)EDF杨浦19.(本题满分10分)计算:2301(3)()(32)4cos3023--+--︒+.20.(本题满分10分)已知关于x ,y 的二元一次方程组2213ax by a x b y ab +=⎧⎨-=+⎩,的解为11.x y =⎧⎨=-⎩,求a 、b 的值.21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)已知在梯形ABCD 中,AD //BC ,AB =BC ,DC ⊥BC ,且AD =1,DC =3,点P 为边AB 上一动点,以P 为圆心,BP 为半径的圆交边BC 于点Q . (1)求AB 的长;(2)当BQ 的长为409时,请通过计算说明圆P 与直线DC 的位置关系.长宁19.(本题满分10分)A BCD Q.P先化简,再求值:)44(24222-+÷+-x x xx x ,其中3=x .20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧≤--->- 1223)1(3)6(2 . ,x x x x ,并把解集在数轴上表示出来.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在Rt ABC ∆中,︒=∠90ACB ,4=AC ,3=BC ,点D 是边AC 的中点,BD CF ⊥,垂足为点F ,延长CF 与边AB 交于点E . 求:(1)ACE ∠的正切值; (2)线段AE 的长.43 2 10 -4 -3 -2 -1 图4ACBD E F。
上海市静安区2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC 中,AB=3,AC=4,BC=5,D 、E 分别是AC 、AB 的中点,则以DE 为直径的圆与BC 的位置关系是( )A .相切B .相交C .相离D .无法确定2.关于x 的一元二次方程(m ﹣2)x 2+(2m ﹣1)x+m ﹣2=0有两个不相等的正实数根,则m 的取值范围是( )A .m >34B .m >34且m≠2C .﹣12<m <2D .54<m <2 3.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为( )A .14.4×103B .144×102C .1.44×104D .1.44×10﹣44.如图,AB 是O e 的直径,弦CD AB ⊥,垂足为点E ,点G 是AC 上的任意一点,延长AG 交DC 的延长线于点F ,连接,,GC GD AD .若25BAD ∠=︒,则AGD ∠等于( )A .55︒B .65︒C .75︒D .85︒5.下列二次根式,最简二次根式是( )A .B .C .D .6.如图1是一座立交桥的示意图(道路宽度忽略不计),A 为人口,F ,G 为出口,其中直行道为AB ,CG ,EF ,且AB =CG =EF ;弯道为以点O 为圆心的一段弧,且»BC ,»CD,»DE 所对的圆心角均为90°.甲、乙两车由A 口同时驶入立交桥,均以10m/s 的速度行驶,从不同出口驶出,其间两车到点O 的距离y (m )与时间x (s )的对应关系如图2所示.结合题目信息,下列说法错误的是( )A .甲车在立交桥上共行驶8sB .从F 口出比从G 口出多行驶40mC .甲车从F 口出,乙车从G 口出D .立交桥总长为150m7.实数a 、b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <﹣1B .ab >0C .a ﹣b <0D .a+b <08.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,BC 的中点,点F 是BD 的中点.若AB=10,则EF=( )A .2.5B .3C .4D .59.在如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果 C 也是图中的格点,且使得△ABC 为等腰直角三角形,则这样的点C 有( )A .6个B .7个C .8个D .9个10.如图,已知AB ∥CD ,DE ⊥AF ,垂足为E ,若∠CAB=50°,则∠D 的度数为( )A .30°B .40°C .50°D .60°11.如图,在Rt ABC ∆中,90C =o ∠,10AB =,8AC =,则sin A 等于( )A.35B.45C.34D.4312.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:a3-a=14.当a=3时,代数式22121()222a a aa a a-+-÷---的值是______.15.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.16.一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为.17.一个不透明的袋子中装有5个球,其中3个红球、2个黑球,这些球除颜色外无其它差别,现从袋子中随机摸出一个球,则它是黑球的概率是_____.18.关于x的方程2230mx x-+=有两个不相等的实数根,那么m的取值范围是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某中学为了了解在校学生对校本课程的喜爱情况,随机调查了部分学生对A B C D E,,,,五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个不完整统计图.请根据图中所提供的信息,完成下列问题:(1)本次被调查的学生的人数为;(2)补全条形统计图(3)扇形统计图中,C类所在扇形的圆心角的度数为;(4)若该中学有2000名学生,请估计该校最喜爱C D,两类校本课程的学生约共有多少名.20.(6分)已知一个二次函数的图象经过A (0,﹣3),B (1,0),C (m ,2m+3),D (﹣1,﹣2)四点,求这个函数解析式以及点C 的坐标.21.(6分)如图,矩形ABCD 中,E 是AD 的中点,延长CE ,BA 交于点F ,连接AC ,DF . (1)求证:四边形ACDF 是平行四边形;(2)当CF 平分∠BCD 时,写出BC 与CD 的数量关系,并说明理由.22.(8分)如图,已知AB 是O e 的直径,点C 、D 在O e 上,60D ∠=o 且6AB =,过O 点作OE AC ⊥,垂足为E .()1求OE 的长;()2若OE 的延长线交O e 于点F ,求弦AF 、AC 和弧CF 围成的图形(阴影部分)的面积S .23.(8分)化简(222121x x x x x x ----+)1x x ÷+,并说明原代数式的值能否等于-1. 24.(10分)某中学为了解八年级学习体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A 、B 、C 、D 四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C 等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名.25.(10分)已知Rt △ABC,∠A=90°,BC=10,以BC 为边向下作矩形BCDE,连AE 交BC 于F. (1)如图1,当AB=AC,且sin ∠BEF=35时,求BF CF 的值; (2)如图2,当tan ∠ABC=12时,过D 作DH ⊥AE 于H,求EH EA ⋅的值; (3)如图3,连AD 交BC 于G ,当2FG BF CG =⋅时,求矩形BCDE 的面积26.(12分)如图所示,已知CFE BDC 180,DEF B ︒∠+∠=∠=∠,试判断AED ∠与ACB ∠的大小关系,并说明理由.27.(12分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图. 种类 A B C D E出行方式 共享单车 步行 公交车 的士 私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】首先过点A作AM⊥BC,根据三角形面积求出AM的长,得出直线BC与DE的距离,进而得出直线与圆的位置关系.【详解】解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM=345=125=2.1.∵D、E分别是AC、AB的中点,∴DE∥BC,DE=12BC=2.5,∴AN=MN=12AM,∴MN=1.2.∵以DE为直径的圆半径为1.25,∴r=1.25>1.2,∴以DE为直径的圆与BC的位置关系是:相交.故选B.【点睛】本题考查了直线和圆的位置关系,利用中位线定理得出BC到圆心的距离与半径的大小关系是解题的关键.2.D 【解析】【分析】根据一元二次方程的根的判别式的意义得到m-2≠0且Δ=(2m-1)2-4(m-2)(m-2) >0,解得m>54且m≠﹣2,再利用根与系数的关系得到2mm-1-2,m﹣2≠0,解得12<m<2,即可求出答案.【详解】解:由题意可知:m-2≠0且Δ=(2m﹣1)2﹣4(m﹣2)2=12m﹣15>0,∴m>54且m≠﹣2,∵(m﹣2)x2+(2m﹣1)x+m﹣2=0有两个不相等的正实数根,∴﹣2mm-1-2>0,m﹣2≠0,∴12<m<2,∵m>54,∴54<m<2,故选:D.【点睛】本题主要考查对根的判别式和根与系数的关系的理解能力及计算能力,掌握根据方程根的情况确定方程中字母系数的取值范围是解题的关键.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】14400=1.44×1.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.B【解析】【分析】连接BD ,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可.【详解】连接BD ,∵AB 是直径,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故选B .【点睛】此题考查圆周角定理,关键是利用直径得出∠ABD=65°.5.C【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、被开方数含开的尽的因数,故A 不符合题意;B 、被开方数含分母,故B 不符合题意;C 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C 符合题意;D 、被开方数含能开得尽方的因数或因式,故D 不符合题意.故选C .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.6.C【解析】分析:结合2个图象分析即可.详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:538s +=,故正确.B.3段弧的长度都是:()105320,m ⨯-=从F 口出比从G 口出多行驶40m ,正确.C.分析图2可知甲车从G口出,乙车从F口出,故错误.⨯⨯+⨯=故正确.D.立交桥总长为:1033203150.m故选C.点睛:考查图象问题,观察图象,读懂图象是解题的关键.7.C【解析】【分析】直接利用a,b在数轴上的位置,进而分别对各个选项进行分析得出答案.【详解】选项A,从数轴上看出,a在﹣1与0之间,∴﹣1<a<0,故选项A不合题意;选项B,从数轴上看出,a在原点左侧,b在原点右侧,∴a<0,b>0,∴ab<0,故选项B不合题意;选项C,从数轴上看出,a在b的左侧,∴a<b,即a﹣b<0,故选项C符合题意;选项D,从数轴上看出,a在﹣1与0之间,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故选项D不合题意.故选:C.【点睛】本题考查数轴和有理数的四则运算,解题的关键是掌握利用数轴表示有理数的大小. 8.A【解析】【分析】先利用直角三角形的性质求出CD的长,再利用中位线定理求出EF的长.【详解】∵∠ACB=90°,D 为AB 中点∴CD=∵点E 、F 分别为BC 、BD 中点 ∴.故答案为:A.【点睛】本题考查的知识点是直角三角形的性质和中位线定理,解题关键是寻找EF 与题目已知长度的线段的数量关系.9.A【解析】【分析】根据题意,结合图形,分两种情况讨论:①AB 为等腰△ABC 底边;②AB 为等腰△ABC 其中的一条腰.【详解】如图:分情况讨论:①AB 为等腰直角△ABC 底边时,符合条件的C 点有2个;②AB 为等腰直角△ABC 其中的一条腰时,符合条件的C 点有4个.故选:C .【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.10.B【解析】试题解析:∵AB ∥CD ,且50CAB ∠=︒,50ECD ∴∠=︒,ED AE Q ,⊥ 90CED ∴∠=︒,∴在Rt CED V 中,905040D .∠=︒-︒=︒ 故选B .11.A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.详解:在Rt △ABC 中,∵AB=10、AC=8,∴, ∴sinA=63105BC AB ==. 故选:A .点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.12.C【解析】【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【详解】∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=1.故选C .【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(1)(1)a a a -+【解析】a 3-a=a(a 2-1)=(1)(1)a a a -+14.1.【解析】【分析】先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.【详解】 原式=212a a --÷()212a a --=()()a1a12a+--•()221aa--=1a1a+-,当a=3时,原式=3131+-=1,故答案为:1.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.15.4.8或64 11【解析】【分析】根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.【详解】①CP和CB是对应边时,△CPQ∽△CBA,所以CPCB=CQCA,即16216t-=12t,解得t=4.8;②CP和CA是对应边时,△CPQ∽△CAB,所以CPCA=CQCB,即16212t-=16t,解得t=64 11.综上所述,当t=4.8或6411时,△CPQ与△CBA相似.【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.16.-1.【解析】【分析】因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解.【详解】∵一元二次方程x2+mx+1=0的一个根为-1,设另一根为x1,由根与系数关系:-1•x1=1,解得x1=-1.故答案为-1.17.2 5【解析】【分析】用黑球的个数除以总球的个数即可得出黑球的概率.【详解】解:∵袋子中共有5个球,有2个黑球,∴从袋子中随机摸出一个球,它是黑球的概率为25;故答案为25.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.18.13m<且0m≠【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<13且m≠1,故答案为:m<13且m≠1.点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)300;(2)见解析;(3)108°;(4)约有840名.【解析】【分析】(1)根据A种类人数及其占总人数百分比可得答案;(2)用总人数乘以B的百分比得出其人数,即可补全条形图;(3)用360°乘以C类人数占总人数的比例可得;(4)总人数乘以C、D两类人数占样本的比例可得答案.【详解】解:(1)本次被调查的学生的人数为69÷23%=300(人),故答案为:300;(2)喜欢B类校本课程的人数为300×20%=60(人),补全条形图如下:(3)扇形统计图中,C类所在扇形的圆心角的度数为360°×90300=108°,故答案为:108°;(4)∵2000×90+36300=840,∴估计该校喜爱C,D两类校本课程的学生共有840名.【点睛】本题考查条形统计图、扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解题关键.条形统计图能清楚地表示出每个项目的数据.20.y=2x2+x﹣3,C点坐标为(﹣32,0)或(2,7)【解析】【分析】设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,进而求出点C的坐标即可.【详解】设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得32 ca b ca b c=-⎧⎪++=⎨⎪-+=-⎩,解得213 abc=⎧⎪=⎨⎪=-⎩,∴抛物线的解析式为y=2x2+x﹣3,把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣32,m2=2,∴C点坐标为(﹣32,0)或(2,7).【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.21.(1)证明见解析;(2)BC=2CD,理由见解析.【解析】分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.详解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)BC=2CD.证明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD.点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.22.(1)OE=32;(2)阴影部分的面积为32【解析】【分析】(1)由题意不难证明OE为△ABC的中位线,要求OE的长度即要求BC的长度,根据特殊角的三角函数即可求得;(2)由题意不难证明△COE≌△AFE,进而将要求的阴影部分面积转化为扇形FOC的面积,利用扇形面积公式求解即可.【详解】解:(1) ∵AB是⊙O的直径,∴∠ACB=90°,∵OE⊥AC,∴OE // BC,又∵点O是AB中点,∴OE是△ABC的中位线,∵∠D=60°,∴∠B=60°,又∵AB=6,∴BC=AB·cos60°=3,∴OE=12BC=32;(2)连接OC,∵∠D=60°,∴∠AOC=120°,∵OF⊥AC,∴AE=CE,¶AF=¶CF,∴∠AOF=∠COF=60°,∴△AOF为等边三角形,∴AF=AO=CO,∵在Rt△COE与Rt△AFE中,AF CO AE CE=⎧⎨=⎩, ∴△COE ≌△AFE ,∴阴影部分的面积=扇形FOC 的面积,∵S 扇形FOC =2603360π⨯=32π. ∴阴影部分的面积为32π.【点睛】本题主要考查圆的性质、全等三角形的判定与性质、中位线的证明以及扇形面积的计算,较为综合. 23.见解析【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,若原代数式的值为﹣1,则11x x +-=﹣1,截至求得x 的值,再根据分式有意义的条件即可作出判断.【详解】 原式=[2222221(1)(1)x x x x x x x x--+-⋅-- =221(1)x x x x x-+⋅- =2(1)1(1)x x x x x-+⋅- =11x x +-, 若原代数式的值为﹣1,则11x x +-=﹣1, 解得:x=0,因为x=0时,原式没有意义,所以原代数式的值不能等于﹣1.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.24.(1)50名;(2)16名;见解析;(3)56名.【解析】试题分析:根据A等级的人数和百分比求出总人数;根据总人数和A、B、D三个等级的人数求出C等级的人数;利用总人数乘以D等级人数的百分比得出答案.试题解析:(1)10÷20%=50(名)答:本次抽样共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.补全图形如图所示:(3)700×(4÷50)=56(名)答:估计该中学八年级700名学生中体能测试为D等级的学生有56名.考点:统计图.25.(1)17;(2)80;(3)100.【解析】【分析】(1)过A作AK⊥BC于K,根据sin∠BEF=35得出35FKAK=,设FK=3a,AK=5a,可求得BF=a,故17BFCF=;(2)过A作AK⊥BC于K,延长AK交ED于G,则AG⊥ED,得△EGA∽△EHD,利用相似三角形的性质即可求出;(3)延长AB、ED交于K,延长AC、ED交于T,根据相似三角形的性质可求出BE=ED,故可求出矩形的面积.【详解】解:(1)过A作AK⊥BC于K,∵sin∠BEF=35,sin∠FAK=35,∴35 FKAK=,设FK=3a,AK=5a,∴AK=4a,∵AB=AC,∠BAC=90°, ∴BK=CK=4a,∴BF=a,又∵CF=7a,∴17 BFCF=(2)过A 作AK ⊥BC 于K,延长AK 交ED 于G ,则AG ⊥ED ,∵∠AGE=∠DHE=90°,∴△EGA ∽△EHD, ∴EH ED EG EA =, ∴·EH EA EG ED ⋅=,其中EG=BK, ∵BC=10,tan ∠ABC =12, cos ∠ABC =5, ∴BA =BC· cos ∠ABC =5, BK= BA·cos ∠ABC =855⨯= ∴EG=8, 另一方面:ED=BC=10,∴EH·EA=80(3)延长AB 、ED 交于K,延长AC 、ED 交于T,∵BC ∥KT,BF AF FG KE AE ED==, ∴BF KE FG DE =,同理:FG ED CG DT= ∵FG 2= BF·CG ∴BF FG FG CG=, ∴ED 2= KE·DT ∴KE ED DE DT= , 又∵△KEB ∽△CDT,∴KE CD BE DT =, ∴KE·DT =BE 2, ∴BE 2=ED 2∴ BE=ED∴1010100BCDE S =⨯=矩形【点睛】此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解.∠=∠.26.AED ACB【解析】【分析】首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.【详解】解:∠AED=∠ACB.理由:如图,分别标记∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠1.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).【点睛】本题重点考查平行线的性质和判定,难度适中.27.(1)800,240;(2)补图见解析;(3)9.6万人.【解析】试题分析:(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;(2)根据百分比之和为1求得A类别百分比,再乘以360°和总人数可分别求得;(3)总人数乘以样本中A、B、C三类别百分比之和可得答案.试题解析:(1)本次调查的市民有200÷25%=800(人),∴B类别的人数为800×30%=240(人),故答案为800,240;(2)∵A类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人.考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图。
静安区 2019学年第二学期期中教学质量调研九年级数学试卷2019.4(满分 150分,100分钟完成)考生注意:1.本试卷含三个大题,共 25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、 本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共 6题,每题 4分,满分 24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用 2B 铅笔正确填涂] 1 2等于 1. 2 (A ) 2;2.下列二次根式里,被开方数中各因式的指数都为 1的是 (A ) x 2y 2; (B ) x 2 y 2; (C ) (x y )2; (D ) xy 2.(B )2;(C ) 2;2 (D )2 .2 3.关于 x 的一元二次方程 x 2mx 10的根的情况是(A )有两个不相等的实数根; (C )没有实数根;(B )有两个相等的实数根;(D )不能确定.4.一次数学作业共有 10道题目,某小组 8位学生做对题目数的情况如下表:做对题目数 人数6 17 18 29 310 1那么这 8位学生做对题目数的众数和中位数分别是 (A )9和 8; (B )9和 8.5; (C )3和 2; 5.在下列图形中,一定是中心对称图形,但不一定是轴对称图形的为 (A )正五边形; (B )正六边形; (C )等腰梯形;(D )3和 1.(D )平行四边形. 6.已知四边形 ABCD 中,对角线 AC 与 BD 相交于点 O ,AD //BC ,下列判断中错误的是 .. (A )如果 AB =CD ,AC =BD ,那么四边形 ABCD 是矩形; (B )如果 AB //CD ,AC =BD ,那么四边形 ABCD 是矩形; (C )如果 AD =BC ,AC ⊥BD ,那么四边形 ABCD 是菱形; (D )如果 OA =OC ,AC ⊥BD ,那么四边形 ABCD 是菱形. 二、填空题:(本大题共 12题,每题 4分,满分 48分) [在答题纸相应题号后的空格内直接填写答案]8.在实数范围内分解因式:2x 26 ▲.2x3 0, 9.不等式组 x5的解集是▲.10.函数 y x2x 3的定义域是 ▲ . 11.如果函数 y 3m 1的图像在每个象限内,当自变量 x 的值逐渐增大时,y 的值随着逐渐增大,那么mx的取值范围是▲.1 1 1 12.如果实数 x 满足(x)2(x) 20,那么 x的值是 ▲ .x xx频率13.为了解全区 5000名初中毕业生的体重情况,随机抽测了 400名学生的体重,频率分布如图所示(每小 组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为 0.02、0.03、0.04、0.05, 由此可估计全区初中毕业生的体重不小于 60千克 组距0.04 0.03 0.020.01 40 45 50 55 60 65 70体重(千克)(第 13题图)的学生人数约为▲人.AD14.布袋里有三个红球和两个白球,它们除了颜色外其他都相同,从布袋里摸出两个球,摸到两个红球的概率是▲.B (第 15题图)C D 15.如图,在△ABC 中,点 D 是边 AC 的中点,如果 ABa , BCb ,那么 BD(用向量a 、b 表示). 16.如图,在正方形 ABCD 中,点 E 、F 分别在边 BC 、CD 上,△AEF 是等边三角形,如果 AB =1,那么 CE 的长是 A F▲CE(第 16题图)▲ .17.在 Rt △ABC 中,∠C =90°,∠B =70°,点 D 在边 AB 上,△ABC 绕点 D 旋转后点 B 与点 C 重合,点 C 落在点 C ’, AB那么∠ACC ’的度数是18.如图,⊙A 和⊙B 的半径分别为 5和 1,AB =3,点 O 在直线AB 上,⊙O 与⊙A 、⊙B 都内切,那么⊙O 半径是▲.▲.(第 18题图)三、解答题:(本大题共 7题,满分 78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.(本题满分 10分)x 3 x 1 1化简:( - ) ,并求 x时的值. x 2 x 6 x 2 4 x 2 2 320.(本题满分 10分)解方程: x1 2x 5 1.21.(本题满分 10分,每小题满分 5分)已知:如图,在 Rt △ABC 和 Rt △BCD 中,∠ABC =∠BCD =90°,BD 与 AC 相交于点 E , A3 5 . 12 AB =9,cosBAC , tan DBC5DC求:(1)边 CD 的长; E(2)△BCE 的面积.B(第 21题图)22.(本题满分 10分,第(1)小题满分 6分,第(2)小题满分 4分)有两种包装盒,大盒比小盒可多装 20克某一物品.已知 120克这一物品单独装满小盒比单独装满大盒 多 1盒.(1)问小盒每个可装这一物品多少克?(2)现有装满这一物品两种盒子共 50个.设小盒有 n 个,所有盒子所装物品的总量为 w 克.①求 w 关于n 的函数解析式,并写出定义域;②如果小盒所装物品总量与大盒所装物品总量相同,求所有盒子所装物品的总量.23.(本题满分12分,第小题满分6分)已知:如图,在菱形ABCD中,点E在边BC上,点F在BA的延长线上,BE=AF,CF//AE,CF与边AD相交于点G. F求证:(1)FD=CG;A(2)CG 2 FGGFC .B DEC(第23题图)24.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)已知二次函数y 1 x2 bx c的图像与x轴的正半轴相交于点A(2,0)和点B、2与y轴相交于点C,它的顶点为M、对称轴与x轴相交于点N.y(1)用b的代数式表示顶点M的坐标;(2)当tan∠MAN=2时,求此二次函数的解析式及∠ACB的正切值.2AO 2 x(第24题图)25.(本题满分14分,第(1)小题满分6分,第(2)小题满分8分)如图,已知⊙O的半径OA的长为2,点B是⊙O上的动点,以AB为半径的⊙A与线段OB相交于点AC的延长线与⊙O相交于点D.设线段AB的长为x,线段OC的长为y.(1)求y关于x的函数解析式,并写出定义域;(2)当四边形ABDO是梯形时,求线段OC的长.DBCAO(第25题图)静安区质量调研九年级数学试卷参考答案及评分标准 2019.4.20一、选择题:(本大题共 6题,每题 4分,满分 24分) 1.C ; 2.B ; 3.A ; 4.B ; 5.D ; 6A .二.填空题:(本大题共 12题,满分 48分) 7.1 ;8.2(x 3)(x 3);9.3 x 5;2 210. x3;13.1500;16. 3 1; 11.m1; 12.2;314. 310 ;15. b 1 a ;1 2 3 2 9 17.50°; 18.或. 2 2三、(本大题共 7题,第 19~22题每题 10分,第 23、24题每题 12分,第 25题 14分,满分 78分)x 3 x 119.解:原式=[ ]……………………………………(3分) (x 3)(x 2) (x 2)(x 2)x 2 x 2 x =[ ](x 2)……………………………………(2分) (x 2)(x 2) (x 2)(x 2) 2=.…………………………………………………………………………(2分) 2 3时,…………………………………………………………(1分) x 2 1 当 x 2 3 原式= 2 = 2 3.……………………………………………………………………(2分) 3 320.解: 2x5 1x 1,………………………………………………………………(1分) 2x 5 12 x 1x1,…………………………………………………………(2分)2 x 1 7x .………………………………………………………………………(1分) 4x449 14xx 2,………………………………………………………………(2分)x 2 18x 450,……………………………………………………………………(1分)x 13, x 2 15,………………………………………………………………………(1分)经检验: x 13, x 2 15都是增根,………(1分)所以原方程无解.…………(1分)21.解:(1)在 Rt △ABC 中,cosBAC AB 3.………………………………………(1分)AC 5∴ AC5 AB15,………………………………………………………………(1分)∴BC = AC 2 AB 2 152 92 12.…………………………………………(1分)在 Rt △BCD 中, tanDBC CD BC 5,………………………………………(1分)12∴CD =5.…………………………………………………………………………(1分) (2)过点 E 作 EH ⊥BC ,垂足为 H ,…………………………………………………(1分)∵∠ABC =∠BCD =90°,∴∠ABC +∠BCD =180°,∴CD //AB .∴ CE DC 5.………………………………………………………………(1分) AE AB 9∵∠EHC =∠ABC =90°,∴EH//AB ,∴ EH CE 5.…………………(1分)AB CA 14 ∴ EH5 AB 5 9 45.…………………………………………………(1分) 14 14 14∴ S EBC 1 BC EH 1 1245 1357.……………………………………(1分)2214 22.解:(1)设小盒每个可装这一物品 x 克,…………………………………………………(1分)∴120 x 1201,…………………………………………………………………(2分)x 20x 2 20x 2400 0,……………………………………………………………(1分)x 140, x 260,………………………………………………………………(1分)它们都是原方程的解,但 x60不合题意.∴小盒每个可装这一物品 40克.(1分) (2)① w40 n 60 (50 n )300020 n ,(0n50,n 为整数)…………(2分)② 40 n60 (50 n ), n 30, w 2400 .…………………………………(2分)∴所有盒子所装物品的总量为 2400克.23.证明:(1)∵在菱形 ABCD 中,AD //BC ,∴∠FAD =∠B ,……………………………(1分)又∵AF=BE ,AD =BA ,∴△ADF ≌△BAE .……………………………………(2分) ∴FD =EA ,…………………………………………………………………………(1分) ∵CF //AE ,AG //CE ,∴EA =CG .…………………………………………………(1分) ∴FD=CG .…………………………………………………………………………(1分)(2)∵在菱形 ABCD 中,CD //AB ,∴∠DCF =∠BFC .……………………………(1分)∵CF //AE ,∴∠BAE =∠BFC ,∴∠DCF =∠BAE .……………………………(1分) ∵△ADF ≌△BAE ,∴∠BAE =∠FDA ,∴∠DCF =∠FDA .…………………(1分) 又∵∠DFG =∠CFD ,∴△FDG ∽△FCD .……………………………………(1分)∴ FD FC FG , FD 2FG FC .…………………………………………………(1分)FD ∵FD=CG ,CG 2FG FC .……………………………………………………(1分) 24.解:(1)∵二次函数 y1 x 2bxc 的图像经过点 A (2,0),2 ∴0 1 4 2b c ,………………………………………………………………(1分)2 ∴ c22b ,…………………………………………………………………………(1分)∴ y 1 x 2 bx c 1 x 2bx22b1 (xb ) 2b 24b4,………(2分)2 22 2∴顶点 M 的坐标为(b , b 2 4b4).……………………………………………(1分)2MN(2)∵tan ∠MAN = 2,∴MN =2AN .………………………………………………(1分)AN∵M (b , b 2 4b 4 2),∴ N (b ,0), MN b 2 4b 4 1 (b 2) .……(1分) 22 2 ①当点 B 在点 N 左侧时, AN =2b ,∴ 1 ( b 2) 2(2 b ),b 2.22不符合题意.…………………………………………………………………………(1分) 1 ②当点 B 在点 N 右侧时, AN = b 2,∴ (b 2)2 2(b 2), b 6.…………(1分)2∴二次函数的解析式为 y1 x2 6x 10.………………………………………(1分)2∴点 C (0,–10),∵点 A 、B 关于直线 MN 对称,∴点 B (10,0).∵OB =OC =10,∴BC =10 2,∠OBC =45°.………………………………………(1分) 过点 A 作 AH ⊥BC ,垂足为 H ,∵AB =8,∴AH =BH =4 2,∴CH =6 2. ∴ tan ACBAH 4 22.……………………………………………………(1分)CH 6 2 325.解:(1)在⊙O 与⊙A 中,∵OA=OB ,AB=AC ,∴∠ACB =∠ABC =∠OAB .……(2分)ABC .…………………………………………………………………(1分) ∴ BC AB AB OA ,∴ BC x x ,………………………………………………………(1分)2 ∴ BC1 2x 2,∵OC=OB –BC ,∴y 关于 x 的函数解析式 y2 1 x 2,……(1分)2定义域为0 x2.………………………………………………………………(1分)122 1 x2x2(2)①当OD//A B时,∴ BC ABCO OD ,∴x,……………………………(1分)22∴ x 2 1 x2,∴ x 2 2x 4 0,……………………………………………(1分)2∴ x 15(负值舍去).……………………………………………………(1分)∴AB= 5 1,这时AB OD,符合题意.∴OC =2 1 x2 2 1 ( 5 1)2 5 1.………………………………………(1分)2 2②当BD//OA时,设∠ODA=,∵BD//OA,OA=OD,∴∠BDA=∠OAD=∠ODA=,又∵OB=OD,∴∠BOA =∠OBD=∠ODB=2.…………………………………(1分)∵AB=AC,OA=OB,∴∠OAB=∠ABC=∠ACB=∠COA+∠CAO=3.………(1分)∵∠AOB+∠OAB +∠OBA =180°,∴233180,∴22.5,∠BOA=45°.………………………………………………………(1分)∴∠ODB=∠OBD=45°,∠BOD=90°,∴BD =2 2 .∵BD//OA,∴ BC BD.OACO∴ 2y 2 2,∴ y 2 2 2.OC 2 2 2.………………………………(1分)y 2由于BD OA,OC 2 2 2符合题意.∴当四边形ABDO是梯形时,线段OC的长为 5 1或2 2 2.或:过点B作BH⊥OA ,垂足为H ,BH=OH = 2,AH=2–2,∴ AB 2 AH 2 BH 2 (2 2)2 ( 2)2 8 4 2 .∴OC 2 12x2 2 1 AB2 2 (4 2 2) 2 2 2 .…………………………(1分)2。
上海市2019年中考二模数学汇编:23题几何证明 闵行 23.(本题共2小题,每小题6分,满分12分)如图,已知四边形ABCD 是菱形,对角线AC 、BD 相交于点O ,BD = 2AC .过点A 作AE ⊥CD ,垂足为点E ,AE 与BD 相交于点F .过点C 作CG ⊥AC ,与AE 的延长线相交于点G . 求证:(1)△ACG ≌△DOA ;(2)2DF BD DE AG ⋅=⋅.宝山23.(本题满分12分,第(1)、第(2)小题满分各6分)如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,联结AP 并延长AP 交CD 于F 点, (1)求证:四边形AECF 为平行四边形;(2)如果PA=PC ,联结BP ,求证:△APB ≅△EPC .ABCDOE GF(第23题图)A B CDOE H F第23题图23.(本题满分12分,每小题满分各6分)如图7,在直角梯形ABCD 中,90ABC ∠=︒,AD BC ∥,对角线AC 、BD 相交于点O . 过点D 作DE BC ⊥,交AC 于点F . (1)联结OE ,若BE AOEC OF=,求证:OE CD ∥; (2)若AD CD =且BD CD ⊥,求证:AF DFAC OB=. 奉贤23.(本题满分12分,每小题满分各6分)已知:如图8,正方形ABCD ,点E 在边AD 上,AF ⊥BE ,垂足为点F ,点G 在线段BF 上,BG=AF .(1)求证:CG ⊥BE ;(2)如果点E 是AD 的中点,联结CF ,求证:CF=CB . 金山22. 已知:如图,菱形ABCD 的对角线AC 与BD 相交于点O ,若DBC CAD ∠=∠.(1)求证:ABCD 是正方形.(2)E 是OB 上一点,CE DH ⊥,垂足为H ,DH 与OC 相交于点F ,求证:OF OE =.ABCDOE F图7ABCD FGE 图823.(本题满分12分)已知:如图10,在四边形ABCD 中,AD BC <,点E 在AD 的延长线上, ACE BCD ∠=∠,EC ED EA =⋅2. (1)求证:四边形ABCD 为梯形; (2)如果EC ABEA AC=,求证:AB ED BC =⋅2. 杨浦23. 已知:在ABC 中,AB=BC ,∠ABC=90°,点D 、E 分别是边AB 、BC 的中点,点F 、G 是边AC 的三等分点,DF 、EG 的延长线相交于点H ,联结HA 、HC. 求证:(1)四边形FBGH 是菱形;(2)四边形ABCH 是正方形.长宁23.(本题满分12分,第(1)小题5分,第(2)小题7分)图10A BCD E如图5,平行四边形ABCD 的对角线BD AC 、交于点O ,点E 在边CB 的延长线上,且︒=∠90EAC ,EC EB AE ⋅=2. (1)求证:四边形ABCD 是矩形;(2)延长AE DB 、交于点F ,若AC AF =,求证:BF AE =. 黄浦嘉定23.静安图5AB CDE FO松江徐汇答案 闵行23.证明:(1)在菱形ABCD 中,AD = CD ,AC ⊥BD ,OB = OD .∴ ∠DAC =∠DCA ,∠AOD = 90°.……………………………(1分) ∵ AE ⊥CD ,CG ⊥AC ,∴ ∠DCA +∠GCE = 90°,∠G +∠GCE = 90°.∴ ∠G =∠DCA .…………………………………………………(1分) ∴ ∠G =∠DAC .…………………………………………………(1分) ∵ BD = 2AC ,BD = 2OD ,∴ AC = OD . ……………………(1分) 在△ACG 和△DOA 中,∵ ∠ACG =∠AOD ,∠G =∠DAC ,AC = OD ,∴ △ACG ≌△DOA . ……………………………………………(2分) (2)∵ AE ⊥CD ,BD ⊥AC ,∴ ∠DOC =∠DEF = 90°.…………(1分) 又∵ ∠CDO =∠FDE ,∴ △CDO ∽△FDE .…………………(1分)∴ CD OD DF DE=.即得 OD DF DE CD ⋅=⋅. ……………………(2分) ∵ △ACG ≌△DOA ,∴ AG = AD = CD . ……………………(1分)又∵ 12OD BD =,∴ 2DF BD DE AG ⋅=⋅.…………………(1分)宝山23.(1)证明:由折叠得到EC 垂直平分BP , ………………1分 设EC 与BP 交于Q ,∴BQ=EQ ………………1分 ∵E 为AB 的中点, ∴AE =EB , ………………1分 ∴EQ 为△ABP 的中位线,∴AF ∥EC , ………………2分 ∵AE ∥FC , ∴四边形AECF 为平行四边形; ………………1分 (2)∵AF ∥EC ,∴∠A PB =∠EQB =90° ………………1分由翻折性质∠E PC =∠EBC =90°,∠PEC =∠BEC ………………1分 ∵E 为直角△APB 斜边AB 的中点,且AP =EP ,∴△AEP 为等边三角形 , ∠BAP =∠AEP =60°, ………………1+1分︒=︒-︒=∠=∠60260180CEB CEP ………………1分 在△ABP 和△EPC 中, ∠BAP =∠CEP ,∠APB=∠E PC ,AP =EP ∴△ABP ≌△EPC (AAS ), ………………1分 崇明23.(本题满分12分,每小题满分各6分) 证明(1)∵90ABD ∠=︒,BC DE ⊥∴//AB DE ………………………………………………………………(1分)∴AO BOOF OD=………………………………………………………………(2分) ∵BE AOEC OF =∴AO BEOF EC=……… ………………………………………………………(2分) ∴//OE CD …………………………………………………………………(1分) (2)∵BC AD //,//AB DE ,∴四边形ABED 为平行四边形 又∵90ABD ∠=︒∴四边形ABED 为矩形 ……………………………………………………(1分) ∴AD BE =,90ADE ∠=︒ 又∵CD BD ⊥∴90BDC BDE CDE ∠=∠+∠=︒︒=∠+∠=∠90BDE ADB ADE∴CDE ADB ∠=∠ …………………………………………………………(1分)AD CD =∴DCA DAC ∠=∠∴()A S A CDF ADO ..∆≅∆…………………………………………………(1分) ∴OD DF =DE AB // ∴AF BE AD AC BC BC==…………………………………………………………(1分) ∵BC AD //∴BODFBO OD BC AD ==…………………………………………………………(1分) ∴AF DFAC OB=…………………………………………………………………(1分) 奉贤22.证明:(1)∵四边形ABCD 是正方形,∴AB BC =.90ABC. ············· (1分) ∵AF ⊥BE ,∴90FAB FBA ∠+∠=︒.∵90FBA CBG ∠+∠=︒,∴FAB CBG ∠=∠. ·········································· (1分) 又∵AF BG =,∴△AFB ≅△BGC . ···························································· (2分) ∴AFB BGC ∠=∠. ····························································································· (1分) ∵90AFB ∠=︒,∴90BGC ∠=︒,即CG ⊥BE . ··········································· (1分) (2)∵ABF EBA ∠=∠,90AFB BAE ∠=∠=︒,∴△AEB ∽△FAB .∴AE AFAB BF=. ································································· (3分) ∵点E 是AD 的中点,AD AB =,∴12AE AB =.∴12AF BF =.·························· (1分) ∵AF BG =,∴12BG BF =,即FG BG =.·························································· (1分) ∵CG ⊥BE ,∴CF CB =. ···················································································· (1分)金山23.(1)证明:∵四边形ABCD 是菱形,∴BC AD //,DAC BAD ∠=∠2,DBC ABC ∠=∠2; (2分) ∴ 180=∠+∠ABC DAB ; (1分) ∵DBC CAD ∠=∠;∴ABC BAD ∠=∠, (1分) ∴ 1802=∠BAD ; ∴ 90=∠BAD ; (1分) ∴四边形ABCD 是正方形. (1分) (2)证明:∵四边形ABCD 是正方形;∴BD AC ⊥,BD AC =,AC CO 21=,BO DO 21=; (1分) ∴ 90=∠=∠DOC COB ,DO CO =; (1分) ∵CE DH ⊥,垂足为H ;∴ 90=∠DHE , 90=∠+∠DEH EDH ; (1分) 又∵ 90=∠+∠DEH ECO ; ∴EDH ECO ∠=∠; (1分)∴ECO ∆≌FDO ∆; (1分) ∴OF OE =. (1分)普陀 23.证明:(1)∵ ACE BCD ∠=∠,∴DCE BCA ∠=∠. ······················································ (1分)∵EC ED EA =⋅2,∴ED ECEC EA=. ······································································· (1分) 又∵E ∠是公共角,∴△EDC ∽△ECA . ····························································· (1分) ∴DCE CAE ∠=∠. ································································································· (1分) ∴BCA CAE ∠=∠.∴AD ∥BC . ············································································································· (1分) ∵AD BC <,∴AB 与CD 不平行.∴四边形ABCD 是梯形. ··························································································· (1分)(2)∵△EDC ∽△ECA .∴EC CDEA AC =. ∵EC AB EA AC=,∴AB DC =.·············································································· (1分) ∴四边形ABCD 是等腰梯形. ··············································································· (1分) ∴B DCB ∠=∠.··································································································· (1分) ∵AD ∥BC .∴EDC DCB ∠=∠. ∴EDC B ∠=∠.∵ECD ACB ∠=∠,∴△EDC ∽△ABC . ····················································· (1分) ∴ED DCAB BC=. ········································································································ (1分) ∴AB ED BC =⋅2. ····························································································· (1分) 杨浦23.(1)证明略 (2)证明略 长宁 23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵EC EB AE ⋅=2 ∴AEEB EC AE =又 ∵CEA AEB ∠=∠ ∴AEB ∆∽CEA ∆ (2分) ∴EAC EBA ∠=∠∵︒=∠90EAC ∴︒=∠90EBA (1分) 又 ∵︒=∠+∠180CBA EBA ∴︒=∠90CBA (1分) ∵四边形ABCD 是平行四边形∴四边形ABCD 是矩形 (1分)(2)∵ AEB ∆∽CEA ∆ ∴ AC AB AE BE = 即 ACAE AB BE = , ECA EAB ∠=∠ (2分)∵四边形ABCD 是矩形 ∴BD AC =又 ∵BD OB 21=, AC OC 21= ∴OC OB = ∴ECA OBC ∠=∠ 又 ∵OBC EBF ∠=∠ ECA EBA ∠=∠ ∴EAB EBF ∠=∠又∵F F ∠=∠ ∴EBF ∆∽BAF ∆(3分)∴ABBEAF BF =∴ACAEAF BF =(1分)∵AC AF =∴AE BF = (1分) 黄浦嘉定静安松江徐汇。
表1静安区2018学年第二学期期中教学质量调研九年级数学试卷 2019.4(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1. (A ; (B (C (D 2.计算(1)(1)a a ---的结果是(A ) 21a -; (B )21a -; (C )221a a -+; (D )221a a -+-. 3.函数2y x=-(0x >)的图像位于 (A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限. 4.如图1,在同一平面内,将边长相等的正方形、正五边形的一边重合, 那么∠1的大小是(A )8°; (B )15°; (C )18°; (D )28°. 5.小明和小丽暑期参加工厂社会实践活动,师傅将他们工作第一周每 天生产的合格产品的个数整理成如表1两组数据.那么关于他们工作 第一周每天生产的合格产品个数,下列说法中正确的是 (A )小明的平均数小于小丽的平均数; (B )两人的中位数相同; (C )两人的众数相同; (D )小明的方差小于小丽的方差.1图16.下列说法中正确的是(A )对角线相等的四边形是矩形; (B )对角线互相垂直的矩形是正方形;(C )顺次联结矩形各边中点所得四边形是正方形; (D )正多边形都是中心对称图形.二、填空题:(本大题共12题,每题4分,满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.计算:24a a ? ▲ .8.如果x有意义,那么x 的取值范围是 ▲ . 93=的解是 ▲ .10.如果关于x 的二次三项式24x x m -+在实数范围内不能分解因式,那么m 的取值范围是 ▲ . 11.某商店三月份的利润是25000元,要使五月份的利润达到36000元,假设每月的利润增长率相同,那么这个相同的增长率是 ▲ .12.已知正比例函数2y x =-,那么y 的值随x 的值增大而 ▲ .(填“增大”或“减小”) 13.从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是 ▲ . 14.为了解某校九年级男生1000米跑步的水平情况,从中随机抽取部分男生进行测试,并把测试成绩分为D 、C 、B 、A 四个等次绘制成如图2所示的不完整的统计图,那么扇形统计图中表示C 等次的扇形所对的圆心角的度数为 ▲ 度.15.已知点G 是△ABC 的重心,那么ABGABCS S ∆∆= ▲ . 16.已知在△ABC 中,∠C =90°,AC =BC=2,如果以点C 为圆心的圆与斜边AB 有且只有一个交点,那么⊙C 的半径是 ▲ .17.如图3,在平行四边形ABCD 中,点E 、F 是AB 的三等分点,点G 是AD 的中点,联结EC 、FG 交于点M .已知AB a =u u u r u r ,BC b =u u ur u r ,那么向量MC u u u u r = ▲ .(用向量表示). 图3A B E C F G M D 图2 A D B C 30% 5%18.如图4,在平面直角坐标系xOy中,已知A(0),B(0,6),M(0,2).点Q在直线AB上,把△BMQ沿着直线MQ翻折,点B落在点P处,联结PQ.如果直线PQ与直线AB所构成的夹角为60°,那么点P的坐标是▲ .三、解答题:(本大题共7题,满分78分)【将下列各题的解答过程,做在答题纸的相应位置上】19.(本题满分10分)计算:12241)1-+-.20.(本题满分10分)解方程组:226,3100.x yx xy y-=⎧⎨+-=⎩21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)一个水库的水位在某段时间内持续上涨,表2记录了连续5小时内6个时间点的水位高度,其中x表示时间,y表示水位高度.(1)通过观察数据,请写出水位高度y与时间x的函数解析式(不需要写出定义域);(2)据估计,这种上涨规律还会持续,并且当水位高度达到8米时,水库报警系统会自动发出警报.请预测再过多久系统会发出警报.图4表222.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)已知:如图5,在矩形ABCD 中,过AC 的中点M 作EF ⊥AC , 分别交AD 、BC 于点E 、F . (1)求证:四边形AECF 是菱形; (2)如果2CD BF BC =⋅,求∠BAF 的度数.23.(本题满分12分,第(1)小题满分8分,第(2)小题满分4分)已知:如图6,△ABC 内接于⊙O ,AB ﹦AC ,点E 为弦AB 的中点,AO 的延长线交BC 于点D ,联结ED .过点B 作BF ⊥DE 交AC 于点F .(1)求证:∠BAD ﹦∠CBF ; (2)如果OD ﹦DB .求证:AF =BF .图5CFEDA BM图6BCDEF OA·在平面直角坐标系xOy 中(如图7),已知抛物线2(0)y ax bx c a =++≠经过原点,与 x 轴的另一个交点为A ,顶点为P (3-,4). (1)求这条抛物线表达式;(2)将该抛物线向右平移,平移后的新抛 物线顶点为Q ,它与y 轴交点为B ,联结PB 、 PQ .设点B 的纵坐标为m ,用含m 的代数式表示∠BPQ 的正切值;(3)联结AP ,在(2)的条件下,射线PB 平分∠APQ ,求点B 到直线AP 的距离.图7已知:如图8,梯形ABCD 中,AD ∥BC ,AD=2,AB=BC=CD =6.动点P 在射线BA 上,以BP 为半径的⊙P 交边BC 于点E (点E 与点C 不重合), 联结PE 、PC .设BP = x ,PC = y . (1) 求证:PE ∥DC ;(2) 求y 关于x 的函数解析式,并写出定义域; (3) 联结PD ,当∠PDC =∠B 时,以D 为圆心 半径为R 的⊙D 与⊙P 相交,求R 的取值范围.图8A BECDP静安区2018学年第二学期期中质量调研九年级数学试卷参考答案及评分标准(2019.4)(考试时间:100分钟,满分:150分)一、选择题(本大题共6题,每题4分,满分24分)1、C ;2、A ;3、D ;4、C ;5、D ;6、B . 二、填空题(本大题共12题,每题4分,满分48分)7、6a . 8、0x >. 9、10x =. 10、m > 4. 11、20%. 12、减小. 13、14. 14、72. 15、13.16. 17、5596a b +ur u r . 18、(4)或(0,-2)或(-,0).三、解答题(本大题共12题,满分78分) 19.(本题满分10分)计算:12241)1-+-.解:原式=1312+- ··········································· (8分)52. ································································· (2分)20.(本题满分10分)解方程组:226,3100.x y x xy y ①②ì-=ïí+-=ïî 解:由②得:(2)(5)0x y x y -+=. ························································· (2分)原方程组可化为: 620x y x y -=⎧⎨-=⎩和 6+50x y x y -=⎧⎨=⎩...........................................................(4分)解得:11126x y =⎧⎨=⎩和 2251x y =⎧⎨=-⎩ .∴原方程组的解是11126x y =⎧⎨=⎩和2251x y =⎧⎨=-⎩ . ················································ (4分) 21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)设y 与x 之间的函数解析式为:(0)y kx b k =+≠. ························ (1分)把(0,3)、(1,3.3)代入得:33.3bk b =⎧⎨=+⎩,··············································· (2分) 解得,0.33k b =⎧⎨=⎩. ················································································· (1分) ∴y 与x 之间的函数解析式为0.33y x =+. ················································ (1分) (2)把y =8,代入0.33y x =+, ····························································· (1分)得80.33x =+,解得503x =. ··································································· (2分)所以,5035533-=(小时). ···································································· (1分)答:再过353小时后系统会发出警报. ······················································· (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分) 证明:(1)∵四边形ABCD 为矩形,∴AD //BC , ∴∠1=∠2...........................................(1分)∵点M 为AC 的中点,∴AM =CM .在△AME 与△CMF 中,12AM CM AME CMF ∠=∠⎧⎪=⎨⎪∠=∠⎩..............................................(1分) ∴△AME ≌△CMF ...........................................(1分) ∴AE =CF .∴四边形AECF 为平行四边形. ·································································· (1分) 又∵EF ⊥AC ,∴平行四边形AECF 为菱形. ····································································· (1分) (2)∵2CD BF BC =⋅,∴CD BC BF CD =.又∵四边形ABCD 为矩形,∴AB =CD ,∴AB BC BF AB =. ··········································································· (1分)又∵∠ABF =∠CBA ,∴△ABF ∽△CBA . ·················································································· (1分) ∴∠2=∠3. ···························································································· (1分) ∵四边形AECF 为菱形,∴∠1=∠4,即∠1=∠3=∠4. ····································································· (1分) ∵四边形ABCD 为矩形, ∴∠BAD =∠1+∠3+∠4=90°,∴即∠1=30°. ······················································································· (1分)图5CF EDA B M 124323.(本题满分12分,第(1)小题8分,第(2)小题4分) 证明:(1)∵AB ﹦AC , ∴»»AB AC =. ........................(1分)∵直线AD 经过圆心O , ..................................................(1分) ∴AD ⊥BC ,BD=CD . ....................................................(1分) ∵点E 为弦AB 的中点, ∴DE 是△ABC 的中位线. ∴DE ∥AC . ......................................................................(1分) ∵BF ⊥DE ,∴∠1=90°, ∴∠2=90°.......................................................................(1分) ∴∠CBF +∠ACB ﹦90°.∵AB ﹦AC ,∴∠ABC ﹦∠ACB , .....................................(1分)∴∠CBF +∠ABC ﹦90°..................................................(1分)又∵AD ⊥BC ,∴∠BAD +∠ABC ﹦90°,∴∠BAD ﹦∠CBF ..............................................................(1分)(2)联结OB .∵AD ⊥BC ,OD ﹦DB ,∴△ODB 是等腰直角三角形........................................................................................................(1分)∴∠BOD ﹦45°. ∵OB=OA ,∴∠OBA ﹦∠OAB .∵∠BOD ﹦∠OBA +∠OAB ,∴∠BAO=12∠BOD=22.5°. .....................................................................................................(1分)∵AB=AC ,且AD ⊥BC , ∴∠BAC=2∠BAO=45°. ∵∠2=90°,即BF ⊥AC ,∴在△ABF 中,∠ABF =180904545--=o o o o ,................................................................................(1分)∴∠ABF =∠BAC ,∴AF =BF ..........................................................................................................................................(1分)图6 B C DE F O A·1224.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 解:(1)设抛物线表达式为:2(3)4(0)y a x a =++≠..........(2分) 把O (0,0)代入,得49a =-...................................(1分)∴抛物线的表达式:24(3)49y x =-++. ..............(1分)(2)设PQ 与y 轴交点为H .∵P (3,4-),B (0,m ),∴PH =3,BH =4m -.........(2分) 在Rt △PBH 中,4tan 3BH m BPQ PH -∠==....................(2分) (3)设PB 与x 轴交于点M .由(1)得点A 坐标为(6,0-).又P (3,4-), ∴AP=5.∵射线PB 平分∠APQ ,∴∠APB =∠BPQ . ∵PQ ∥x 轴,∴∠AMP =∠BPQ ,∴∠AMP =∠APB , ··················································································· (1分) ∴AP=AM =5,∴M (1,0-). ·························································································· (1分) 设直线PB 为(0)y kx b k =+≠,把点P (3,4-),M (1,0-)代入,得:22y x =--,∴点B 为(0,2-). ··················································································· (1分) ∴BH=6.∵射线PB 平分∠APQ ,PH ⊥PQ ,∴点B 到直线AP 的距离为6..........................................................................................(1分)25.(本题满分14分,第(1)小题满分3分,第(2)小题满分6分,第(3)小题满分5分) 证明:(1)∵梯形ABCD ,AB=CD , ∴∠B =∠DCB . ····················································································· (1分) ∵PB=PE ,∴∠B=∠PEB , ······················································································· (1分) ∴∠DCB=∠PEB , ··················································································· (1分)图7第 11 页 共 11 页 ∴PE ∥CD .(2)分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、G.∵梯形ABCD 中,AD ∥BC ,AF ⊥BC ,DG ⊥BC ,PH ⊥BC ,∴四边形ADGF 是矩形,PH ∥AF .∵AD=2,BC=DC=6,∴BF=FG=GC=2.在Rt △ABF 中,AF ==...................(1分) ∵PH ∥AF , ∴PH BP BH AF AB BF ==62x BH ==....................(1分)∴PH =,13BH x =. ······································································· (1分) ∴163CH x =-. ······················································································· (1分) 在Rt △PHC中,PC∴y,即9)y x =<<. ···························· (2分) (3)作EM ∥PD 交DC 于M . ∵PE ∥DC ,∴四边形PDME 是平行四边形.∴PE=DM=x ,即 MC=6-x .PD=ME ,∠PDC=∠EMC ,又∵∠PDC=∠B ,∠B=∠DCB ,∴∠DCB =∠EMC =∠PBE =∠PEB . ∴△PBE ∽△ECM . ·················································································· (1分) ∴PB BE EC MC=,即232663x x x x =--.整理方程,解得:185x =. ···························· (1分) 即BE 125=.∴PD=EC=1218655-=. ·························································· (1分) 当两圆外切时,PD=P r R +,即0R =(舍去);当两圆内切时,PD=P r R -,即10R =(舍去),2365R =; 即两圆相交时,3605R <<. ····································································· (2分) M F 图8(2)A B C DP G 图8(1) A D F G H B C P。