专题16 概率与统计(高考押题)-2016年高考理数二轮复习精品资料(解析版)
- 格式:doc
- 大小:372.40 KB
- 文档页数:8
【2016考纲解读】1.以客观题形式考查抽样方法,样本的数字特征和回归分析,独立性检验的基本思路、方法及相关计算与推断.2.本部分较少命制大题,若在大题中考查多在概率与统计、算法框图等知识交汇处命题,重点考查抽样方法,频率分布直方图和回归分析或独立性检验,注意加强抽样后绘制频率分布直方图,然后作统计分析或求概率的综合练习.3.以客观题形式考查古典概型与几何概型、互斥事件与对立事件的概率计算. 4.与统计结合在大题中考查古典概型与几何概型. 【重点知识梳理】 一、统计与统计案例 1.抽样方法三种抽样方法的比较2.统计图表(1)在频率分布直方图中:①各小矩形的面积表示相应各组的频率,各小矩形的高=频率组距;②各小矩形面积之和等于1;③中位数左右两侧的直方图面积相等,因此可以估计其近似值. (2)茎叶图当数据有两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.当数据有三位有效数字,前两位相对比较集中时,常以前两位为茎,第三位(个位)为叶(其余类推). 3.样本的数字特征 (1)众数在样本数据中,频率分布最大值所对应的样本数据(或出现次数最多的那个数据). (2)中位数样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取当中两个数据的平均数作为中位数. (3)平均数与方差样本数据的平均数x -=1n (x 1+x 2+…+x n ).方差s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2].注意:(1)现实中总体所包含的个体数往往较多,总体的平均数与标准差、方差是不知道(或不可求)的,所以我们通常用样本的平均数与标准差、方差来估计总体的平均数与标准差、方差.(2)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定. 4.变量间的相关关系(1)利用散点图可以初步判断两个变量之间是否线性相关.如果散点图中的点从整体上看大致分布在一条直线的附近,我们说变量x 和y 具有线性相关关系. (2)用最小二乘法求回归直线的方程 设线性回归方程为y ^=b ^x +a ^,则⎩⎪⎨⎪⎧b ^=∑i =1nx i -x -y i -y-∑i =1n x i -x-2=∑i =1nx i y i -n x -y-∑i =1nx 2i -n x -2a ^=y --b ^x-.注意:回归直线一定经过样本的中心点(x -,y -),据此性质可以解决有关的计算问题. 5.回归分析r=∑i =1nx i -x -y i -y-∑i =1nx i -x-2∑i =1ny i -y-2,叫做相关系数.相关系数用来衡量变量x 与y 之间的线性相关程度;|r |≤1,且|r |越接近于1,相关程度越高,|r |越接近于0,相关程度越低. 6.独立性检验假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为则K 2=a +b +c +d ad -bc a +b c +da +cb +d,若K 2>3.841,则有95%的把握说两个事件有关; 若K 2>6.635,则有99%的把握说两个事件有关; 若K 2<2.706,则没有充分理由认为两个事件有关. 7.随机事件的概率随机事件的概率范围:0≤P (A )≤1;必然事件的概率为1,不可能事件的概率为0. 8.古典概型①计算一次试验中基本事件的总数n ;②求事件A 包含的基本事件的个数m ;③利用公式P (A )=mn 计算.9.一般地,如果事件A 、B 互斥,那么事件A +B 发生(即A 、B 中有一个发生)的概率,等于事件A 、B 分别发生的概率的和,即P (A +B )=P (A )+P (B ).10.对立事件:在每一次试验中,相互对立的事件A 和A -不会同时发生,但一定有一个发生,因此有P (A -)=1-P (A ).11.互斥事件与对立事件的关系 对立必互斥,互斥未必对立. 12.几何概型一般地,在几何区域D 内随机地取一点,记事件“该点落在其内部区域d 内”为事件A ,则事件A 发生的概率P (A )=d 的测度D 的测度.【高频考点突破】 考点一 事件与概率例1.(2015·广东,4)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A .1 B.1121 C.1021 D.521答案 C【变式探究】(2014·新课标全国Ⅰ,5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.18B.58C.38D.78解析 由题意知4位同学各自在周六、周日两天中任选一天参加公益活动有24种情况,而4位同学都选周六有1种情况,4位同学都选周日有1种情况,故周六、周日都有同学参加公益活动的概率为P =24-1-124=1416=78,故选D. 答案 D考点二 古典概型例2.(2014·陕西,6)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) A.15B.25C.35D.45解析 从这5个点中任取2个,有C 25=10种取法,满足两点间的距离不小于正方形边长的取法有C 24=6种,因此所求概率P =610=35.故选C.答案 C【变式探究】甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( ) A.136 B.19C.536D.16答案 D考点三 随机数与几何概型例3.(2015·陕西,11)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A.34+12πB.14-12πC.12-1π D .12+1π解析 由|z |≤1可得(x -1)2+y 2≤1,表示以(1,0)为圆心,半径为1的圆及其内部,满足y ≥x 的部分为如图阴影所示,由几何概型概率公式可得所求概率为: P =14π×12-12×12π×12=π4-12π=14-12π. 答案 B【变式探究】(2014·湖北,7)由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A.18B.14C.34D.78答案 D考点四 条件概率与相互独立事件的概率例4.(2015·新课标全国Ⅰ,4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36D .0.312解析 该同学通过测试的概率为p =0.6×0.6+C 12×0.4×0.62=0.648. 答案 A【变式探究】(2014·新课标全国Ⅱ,5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A .0.8 B .0.75C .0.6D .0.45解析 由条件概率可得所求概率为0.60.75=0.8,故选A.答案 A考点五 正态分布例5.(2015·湖南,7)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( )附:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.682 6, P (μ-2σ<X ≤μ+2σ)=0.954 4.A .2 386B .2 718C .3 413D .4 772答案 C【变式探究】(2014·新课标全国Ⅰ,18)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x 和样本方差s 2(同一组中的数据用该组区间的中点值作代表); (2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2.(ⅰ)利用该正态分布,求P (187.8<Z <212.2);(ⅱ)某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用(ⅰ)的结果,求E (X ). 附:150≈12.2.若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 6, P (μ-2σ<Z <μ+2σ)=0.954 4.解 (1)抽取产品的质量指标值的样本平均数x 和样本方差s 2分别为x -=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200, s 2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)(ⅰ)由(1)知,Z~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.682 6.(ⅱ)由(ⅰ)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X~B(100,0.682 6),所以E(X)=100×0.682 6=68.26.考点六离散型随机变量的分布列例6.(2015·安徽,17)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结果.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).【变式探究】(2015·福建,16)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X,求X的分布列和数学期望.解(1)设“当天小王的该银行卡被锁定”的事件为A,考点七 均值与方差例7.(2014·浙江,9)已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(m ≥3,n ≥3),从乙盒中随机抽取i (i =1,2)个球放入甲盒中.(a)放入i 个球后,甲盒中含有红球的个数记为ξi (i =1,2);(b)放入i 个球后,从甲盒中取1个球是红球的概率记为p i (i =1,2).则( ) A .p 1>p 2,E (ξ1)<E (ξ2) B .p 1<p 2,E (ξ1)>E (ξ2) C .p 1>p 2,E (ξ1)>E (ξ2)D .p 1<p 2,E (ξ1)<E (ξ2)解析 法一 (特值法) 取m =n =3进行计算、比较即可.法二 (标准解法)从乙盒中取1个球时,取出的红球的个数记为ξ,则ξ的所有可能取值为0,1,则P (ξ=0)=n m +n =P (ξ1=1),P (ξ=1)=m m +n =P (ξ1=2),所以E (ξ1)=1·P (ξ1=1)+2·P (ξ1=2)=m m +n +1,所以p 1=E (ξ1)2=2m +n2(m +n );从乙盒中取2个球时,取出的红球的个数记为η,则η的所有可能取值为0,1,2,则P (η=0)=C 2n C 2m +n =P (ξ2=1),P (η=1)=C 1n C 1m C 2m +n =P (ξ2=2),P (η=2)=C 2mC 2m +n=P (ξ2=3),所以E (ξ2)=1·P (ξ2=1)+2P (ξ2=2)+3P (ξ2=3)=2mm +n +1,所以p 2=E (ξ2)3=3m +n 3(m +n ),所以p 1>p 2,E (ξ1)<E (ξ2),故选A.答案 A【变式探究】如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E (X )=( )A.126125B.65C.168125D.75考点八 抽样方法例8.(2015·陕西,2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .167B .137C .123D .93解析 由题干扇形统计图可得该校女教师人数为:110×70%+150×(1-60%)=137.故选B. 答案 B【变式探究】(2014·湖南,2)对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( ) A .p 1=p 2<p 3 B .p 2=p 3<p 1 C .p 1=p 3<p 2D .p 1=p 2=p 3解析 因为采取简单随机抽样、系统抽样和分层抽取样本时,总体中每个个体被抽中的概率相等,故选D. 答案 D考点九 频率分布直方图与茎叶图例9.(2015·安徽,6)若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为()A.8 B.15 C.16 D.32答案 C【变式探究】(2015·重庆,3)重庆市2013年各月的平均气温(℃)数据的茎叶图如下:则这组数据的中位数是()0 1 2 2 8 92 5 80 0 0 3 3 81 2A.19 B.20 C.21.5 D.23解析从茎叶图知所有数据为8,9,12,15,18,20,20,23,23,28,31,32,中间两个数为20,20,故中位数为20,选B.答案 B考点十变量间的相关关系及统计案例例10.(2015·新课标全国Ⅱ,31)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确的是()A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关答案 D【变式探究】(2015·福建,4)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y ∧=b ∧x +a ∧,其中b ∧=0.76,a ∧=y -b∧x .据此估计,该社区一户年收入为15万元家庭的年支出为( ) A .11.4万元 B .11.8万元 C .12.0万元D .12.2万元解析 回归直线一定过样本点中心(10,8),∵b ∧=0.76,∴a ∧=0.4,由y ∧=0.76x +0.4得当x =15万元时,y∧=11.8万元.故选B.答案 B【经典考题精析】1.(2015·北京,16)A ,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下: A 组:10,11,12,13,14,15,16 B 组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(1) 求甲的康复时间不少于14天的概率;(2) 如果a =25,求甲的康复时间比乙的康复时间长的概率;(3) 当a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明)2.(2015·福建,13)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f (x )=x 2,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于________.解析 由几何概型的概率公式:P =1-⎠⎛12x 2d x 4=512. 答案5123.(2015·山东,8)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.) A .4.56% B .13.59% C .27.18% D .31.74%解析 由题意,知P (3<ξ<6)=P (-6<ξ<6)-P (-3<ξ<3)2=95.44%-68.26%2=13.59%.答案 B4.(2015·重庆,17)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.5.(2015·新课标全国Ⅱ,18)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,故P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020, P (C B 2)=820,P (C )=1020×1620+820×420=0.48.6.(2015·新课标全国Ⅰ,19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =x i ,w =18∑i =18wi .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为:β^=1121()(),()nii nii u u v v a v u u u β==--=--∑∑.1. 【2014高考湖北卷理第7题】由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( ) A.81 B.41 C. 43 D.87 【答案】D【解析】依题意,不等式组表示的平面区域如图,易求得)2,0(A ,)0,2(-B ,)1,0(C ,)23,21(D ,由几何概型公式知,该点落在2Ω内的概率为872221211212221=⨯⨯⨯⨯-⨯⨯=P ,故选D.【考点定位】几何概型2. 【2014高考湖南卷第2题】对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为321,,p p p ,则( ) A.321p p p <= B. 132p p p <= C. 231p p p <= D. 321p p p == 【答案】D【考点定位】抽样调查3. 【2014高考福建卷第14题】如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.【答案】22e 【解析】由对数函数与指数函数的对称性,可得两块阴影部分的面积相同.11002()2()2x x S e e dx ex e =-=-=⎰.所以落到阴影部分的概率为22P e =. 【考点定位】几何概型4. 【2014高考广东卷理第11题】从0、1、2、3、4、5、6、7、8、9中任取七个不同的数,则这七个数的中位数是6的概率为 . 【答案】1/6【考点定位】排列组合5. 【2014高考江苏卷第4题】 从1,2,3,6这四个数中一次随机地取2个数,则所取两个数的乘积为6的概率为 . 【答案】13【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为2163P ==. 【考点】古典概型.6. 【2014江西高考理第13题】10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________. 【答案】12【解析】从10件产品中任取4件,共有410C 种基本事件,恰好取到1件次品就是取到1件次品且取到3件正品,共有1337C C ,因此所求概率为13374101.2C C C =【考点定位】古典概型概率7. 【2014辽宁高考理第14题】正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x=-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .【答案】23【考点定位】几何概型8. 【2014全国1高考理第5题】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A .81 B .83 C .85 D .87 【答案】D【解析】由已知,4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种不同的结果,而周六、周日都有同学参加公益活动有两类不同的情况:(1)一天一人,另一天三人,有12428C A =种不同的结果;(2)周六、日各2人,有246C =种不同的结果,故周六、周日都有同学参加公益活动有8614+=种不同的结果,所以周六、周日都有同学参加公益活动的概率为147168=,选D . 【考点定位】排列和组合、古典概型的概率9. 【2014全国2高考理第5题】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 【答案】A【解析】设A=“某一天的空气质量为优良”,B=“随后一天的空气质量为优良”,则()0.6(|)0.8()0.75P A B P B A P A ⋂===,故选A.【考点定位】概率10. 【2014浙江高考理第9题】已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<< 【答案】C【考点定位】独立事件的概率11. 【2014陕西高考理第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C 4.5D【答案】C【考点定位】古典概型及其概率计算公式.12.【2014高考安徽卷第17题】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1) 求甲在4局以内(含4局)赢得比赛的概率;记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望). 【答案】(1)5681;(2)22481. 【解析】用A 表示“甲在4局以内(含4局)赢得比赛”,k A 表示“第k 局甲获胜”,k B 表示“第k 局乙获胜”.则2()3k P A =,1(),1,2,3,4,53k P B k ==. 121231234()()()()P A P A A P B A A P A B A A =++121231234()()()()()()()()()P A P A P B P A P A P A P B P A P A =++2222122125633333381⎛⎫⎛⎫⎛⎫=+⨯+⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.X 的可能取值为2,3,4,5.121212125(2)()()()()()()9P X P A A P B B P A P A P B P B ==+=+=.1231231231232(3)()()()()()()()()9P X P B A A P A B B P B P A P A P A P B P B ==+=+=123412341234123410(4)()()()()()()()()()()81P X P A B A A P B A B B P A P B P A P A P B P A P B P B ==+=+=8(5)1(2)(3)(4)81P X P X P X P X ==-=-=-==. 故X 的分布列为所以52108224234599818181EX=⨯+⨯+⨯+⨯=. 【考点定位】概率的求解、期望的求解.13. 【2014高考北京理第16题】李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记x 为表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明在这场比赛中的命中次数,比较EX 与x 的大小(只需写出结论) 【答案】(1)0.5;(2)2513;(3)x EX =.【考点定位】概率的计算、数学期望、平均数、互斥事件的概率. 13. 【2014高考大纲理第20题】设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(I )求同一工作日至少3人需使用设备的概率;(II )X 表示同一工作日需使用设备的人数,求X 的数学期望. 【答案】(1)0.31;(2)2.【解析】记i A 表示事件:同一工作日乙、丙恰有i 人需使用设备,0,1,2i =;B 表示事件:甲需使用设备;C 表示事件:丁需使用设备;D 表示事件:同一工作日至少3人需使用设备.(1)122D A B C A B A B C =⋅⋅+⋅+⋅⋅,又()()()()220.6,0.4,0.5,0,1,2.ii P B P C P A C i P D ===⨯=∴=()()()()()()()()()()()()1221221220.31.P A B C A B A B C P A B C P A B P A B C P A P B P C P A P B P A P B P C ⋅⋅+⋅+⋅⋅=⋅⋅+⋅+⋅⋅=++=(2)X 的可能取值为0,1,2,3,4.()()()()()()()200010.60.510.40.06P X P B A C P B P A P C ==⋅⋅==-⨯⨯-=, ()()()()()()()()()()()200100110.60.5P X P B A C B A C B A C P B P A P C P B P A P C P B P A P C ==⋅⋅+⋅⋅+⋅⋅=++=⨯()()()()()()22210.410.60.50.410.620.510.40.25,4P X P A B C ⨯-+-⨯⨯+-⨯⨯⨯-===⋅⋅=()()()()()()()()220.50.60.40.06,340.25,210P A P B P C P X P D P X P X P X =⨯⨯===-====-=()()()13410.060.250.250.060.38.P X P X P X -=-=-==----=∴数学期望为2【考点定位】相互独立事件的概率计算;2.离散型随机变量的数学期望的计算.14. 【2014高考福建理第18题】为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求 ①顾客所获的奖励额为60元的概率 ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和 50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励 总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球 的面值给出一个合适的设计,并说明理由. 【答案】(1)12,见解析;(2) 见解析【考点定位】概率、统计、数学期望、方差.15. 【2014高考广东理第17题】随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30、42、41、36、44、40、37、37、25、45、29、43、31、36、49、34、33、43、38、42、32、34、46、39、36,根据上述数据得到样本的频率分布表如下:(1)确定样本频率分布表中1n 、2n 、1f 和2f 的值; (2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(]30,35的概率. 【答案】(1)17n =,22n =,10.28f = ,20.08f =;(2)详见解析;(3)0.5904.【考点定位】频率分布直方图、独立性重复试验、频率分布直方图的绘制与应用、概率16. 【2014高考湖北理第20题】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立. (1)求未来4年中,至多1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台? 【答案】(1)0.9477;(2)8620, 2.(2)记水电站年总利润为Y (单位:万元) ①安装1台发电机的情形.由于水库年入流量总大于40,所以一台发电机运行的概率为1, 对应的年利润5000=Y ,500015000=⨯=EY . ②安装2台发电机.当8040<<X 时,一台发电机运行,此时42008005000=-=Y , 因此2.0)8040()4200(1==<<==P X P y P ,当80≥X 时,两台发电机运行,此时1000025000=⨯=Y ,因此8.0)80()10000(21=+=≥==P P X P Y P .由此得Y 的分布列如下:当120>X 时,三台发电机运行,此时1500035000=⨯=y , 因此1.0)120()15000(3==>==P X P Y P , 由此得Y 的分布列如下:所以86201.0150007.092002.03400=⨯+⨯+⨯=EY . 综上,欲使水电站年总利润的均值达到最大,应安装发电机2台. 【考点定位】随机变量的均值.17. 【2014高考湖南理第17题】某企业甲,乙两个研发小组,他们研发新产品成功的概率分别为23和35,现安排甲组研发新产品A ,乙组研发新产品B .设甲,乙两组的研发是相互独立的. (1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获得120万元,若新产品B 研发成功,预计企业可获得利润100万元,求该企业可获得利润的分布列和数学期望. 【答案】(1)1315(2)详见解析 【解析】(1)解:设至少有一组研发成功的事件为事件A 且事件B 为事件A 的对立事件,则事件B 为新产品,A B 都没有成功,因为甲,乙成功的概率分别为23,35,则()2312211353515P B ⎛⎫⎛⎫=-⨯-=⨯= ⎪ ⎪⎝⎭⎝⎭,再根据对立事件概率之间的概率公式可得()()13115P A P B =-=,所以至少一种产品研发成功的概率为1315.所以ξ的分布列如下:则数学期望24120120100220151555E ξ=⨯+⨯+⨯+⨯322088140=++=. 【考点定位】分布列、数学期望、概率18. 【2014高考江苏第22题】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机抽出2个球,求取出的2个球的颜色相同的概率;(2)从盒中一次随机抽出4个球,其中红球、黄球、绿球的个数分别为123,,x x x ,随机变量X 表示123,,x x x 的最大数,求X 的概率分布和数学期望()E X . 【答案】(1)518;(2)20()9E X =. 【解析】(1)由题意22243229518C C C P C ++==;(2)随机变量X 的取值可能为2,3,4,44491(4)126C P X C ===,313145364913(3)63C C C C P X C +===, 11(2)1(3)(4)14P X P X P X ==-=-==,所以X 的分布列为13120()21434631269E X =⨯+⨯+⨯=. 【考点】排列与组合,离散型随机变量的分布列与均值19. 【2014高考江西理第21题】随机将()1,2,,2,2n n N n *⋅⋅⋅∈≥这2n 个连续正整数分成A,B 两组,每组n 个数,A 组最小数为1a ,最大数为2a ;B 组最小数为1b ,最大数为2b ,记2121,a a b b ξη=-=- (1)当3n =时,求ξ的分布列和数学期望;(2)令C 表示事件ξ与η的取值恰好相等,求事件C 发生的概率()p c ;(3)对(2)中的事件C,c 表示C 的对立事件,判断()p c 和()p c 的大小关系,并说明理由。
2016 年高考数学理试题分类汇编统计与概率一、1、( 2016 年北京高考)袋中装有偶数个球,其中球、黑球各占一半.甲、乙、丙是三个空盒 .每次从袋中任意取出两个球,将其中一个球放入甲盒,如果个球是球,就将另一个球放入乙盒,否就放入丙盒.重复上述程,直到袋中所有球都被放入盒中,()A. 乙盒中黑球不多于丙盒中黑球B. 乙盒中球与丙盒中黑球一多C.乙盒中球不多于丙盒中球D. 乙盒中黑球与丙盒中球一多【答案】 C2、( 2016 年山高考)某高校了200 名学生每周的自(位:小),制成了如所示的率分布直方,其中自的范是[17.5,30] ,本数据分[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方,200 名学生中每周的自不少于22.5 小的人数是(A ) 56(B)60(C)120(D)140【答案】 D3、( 2016 年全国 I 高考)某公司的班在7:30,8:00,8:30 ,小明在 7:50 至 8:30 之到达站乘坐班,且到达站的刻是随机的,他等不超10 分的概率是( A)1123 3( B )2( C)3(D )4【答案】 B4、( 2016 年全国 II 高考)从区0,1随机抽取 2n 个数x1,x2,⋯, x n, y1, y2,⋯, y n,构成 n 个数x, y, x , y x , y,其中两数的平方和小于 1 的数共有m个,则用随机模拟的方法得到的圆周率的近似值为(A)4n(B)2n(C)4m(D)2m m m n n【答案】 C5、( 2016 年全国III 高考)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中 A 点表示十月的平均最高气温约为150C,B 点表示四月的平均最低气温约为50C。
下面叙述不正确的是(A)各月的平均最低气温都在00C 以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于200C 的月份有 5 个【答案】 D二、填空题1 、( 2016年山东高考)在[-1,1]上随机的取一个数k,则事件“ 直线y = kx与圆(x-5)2 + y2 = 9 相交”发生的概率为3【答案】.42、( 2016 年上海高考)某次体检, 6 位同学的身高(单位:米)分别为 1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米)【答案】 1.763、( 2016 年四川高考)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在 2 次试验中成功次数X 的均值是.【答案】3 2三、解答题1、( 2016 年北京高考)A、 B、C 三个班共有100 名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时);A 班6 6.577.58B 班6789101112C 班3 4.567.5910.51213.5( 1)试估计 C 班的学生人数;( 2)从 A 班和 C 班抽出的学生中,各随机选取一人, A 班选出的人记为甲, C 班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;( 3)再从 A 、 B、 C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7, 9, 8.25(单位:小时),这 3 个新数据与表格中的数据构成的新样本的平均数记1,表格中数据的平均数记为0 ,试判断0 和 1 的大小,(结论不要求证明)解析】⑴8100 40 , C班学生40 人20⑵在 A 班中取到每个人的概率相同均为15设 A 班中取到第 i 个人事件为 A i, i1,2,3,4,5C 班中取到第j 个人事件为C j,j 1,2,3,4,5,6,7,8A 班中取到 A i C j的概率为 P i所求事件为 D则 P( D )1P11P21P31P41P5555551213131314585858585838⑶ 10三组平均数分别为 7 , 9 , 8.25 , 总均值08.2但 1 中多加的三个数据7 , 9 , 8.25 , 平均值为 8.08 ,比0小,故拉低了平均值2、( 2016 年山东高考)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得 3 分;如果只有一人猜对,则“星队”得 1 分;如果两人都没猜对,则“星队”得0 分.已知甲每轮猜对的概率是3,乙每轮4猜对的概率是2;每轮活动中甲、乙猜对与否互不影响,各轮结果也互不影响.假设“星队”3参加两轮活动,求:( Ⅰ )“星队”至少猜对 3 个成语的概率;( Ⅱ )“星队”两轮得分之和X 的分布列和数学期望EX .【解析】 ( Ⅰ ) “至少猜对 3 个成语”包括“恰好猜对 3 个成语”和“猜对 4 个成语”.设“至少猜对 3 个成语”为事件 A ;“恰好猜对 3 个成语”和“猜对 4 个成语”分别为事件B,C ,则 P( B) C213 3 2 1C21 3 1 2 25 ;443344331233221.P(C )43344所以 P( A)P( B)P(C )512.1243( Ⅱ )“星队”两轮得分之和X 的所有可能取值为0,1,2,3,4,6于是 P( X0)11111;4343144P( X 1) C211 2 1 1C21 1 1 3 110 5 ;4343434314472P( X 2) 1 12 2 3 3 1 1C21 1 3 2 125 ;443344334433144 P( X3) C21 3 2 1 1 12 1 ;434314412P( X 4) C2132( 1 2 3 1)60 5 ;43434314412P( X6)3232361;43431444X012346P1525151 14472144121241525154155223X 的数学期望 EX01236144.144721441212463、( 2016 年四川高考)我国是世界上重缺水的国家,某市政府了鼓励居民用水,划整居民生活用水收方案,确定一个合理的月用水量准x (吨)、一位居民的月用水量不超 x 的部分按平价收,超出 x 的部分按价收.了了解居民用水情况,通抽,得了某年 100 位居民每人的月均用水量(位:吨),将数据按照 [0,0.5) ,[0.5,1) ,⋯,[4,4.5)分成 9 ,制成了如所示的率分布直方.( I)求直方中 a 的;( II )市有30 万居民,估全市居民中月均用水量不低于 3 吨的人数,并明理由;( III )若市政府希望使85%的居民每月的用水量不超准x (吨),估x 的,并明理由 .【解析】( I )由概率相关知,各率之和的1∵ 率 =(率 /距 )* 距∴ 0.50.080.160.40.520.120.080.042a1得 a0.3( II )由,不低于3吨人数所占百分比0.50.120.080.04 =12%∴全市月均用水量不低于3吨的人数:3012%=3.6 (万 )( III )由可知,月均用水量小于 2.5吨的居民人数所占百分比:0.50.080.160.30.40.520.73即 73% 的居民月均用水量小于 2.5吨 ,同理, 88%的居民月均用水量小于3吨,故 2.5x3假月均用水量平均分布,x 2.50.585%73%0.52.9 (吨) .0.3注:本次估计默认组间是平均分布,与实际可能会产生一定误差。
十、概率与统计1.(2016 新课标2理数10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为(A )4n m (B )2n m (C )4m n (D )2m n【答案】C2.(2017 新课标2理数13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =____________.【答案】1.96【解析】:由题意可得,抽到二等品的件数符合二项分布,即()~100,0.02X B ,由二项分布的期望公式可得()11000.020.98 1.96DX np p =-=⨯⨯=.【考点】 二项分布的期望与方差3. (2018 新课标2理数8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C. 4.(2016 新课标2理数18)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:(II)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(III)求续保人本年度的平均保费与基本保费的比值.解:(I)解法1:设“一续保人本年度的保费高于基本保费”为事件为A则P(A)=1-P(A)=1-(0.3+0.15)=0.55所以该续保人本年度的保费高于基本保费的概率为0.55解法2:由题知:续保人本年度的保费高于基本保费的概率为0.200.200.100.050.55P=+++=(II)由统计表可知:其保费比基本保费高出60%的概率:0.100.050.15P=+=所以在一续保人本年度的保费高于基本保费的条件下; 续保人本年度的保费高于基本保费的概率为:0.1530.5511 P==(III)该续保人的本年平均保费为:0.850.300.15 1.250.20 1.50.20 1.750.10+20.05 1.23a a a a a a a????创=所以该续保人本年度的平均保费与基本保费的比值为:1.231.23aa=5.(2017 新课标2理数18)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg ).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50kg ,新养殖法的箱产量不低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:0.01).附:,22()()()()()n ad bc K a b c d a c b d -=++++【答案】(1)0.4092;(2)有99%的把握认为箱产量与养殖方法有关;(3)52.35kg .6. (2018 新课标2理数18)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)利用模型①预测值为226.1,利用模型②预测值为256.5,(2)利用模型②得到的预测值更可靠.【解析】分析:(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果,(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测.详解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠..【考点】独立事件概率公式、独立性检验原理、频率分布直方图估计中位数。
专题16 概率与统计(高考押题)-2016年高考理数二轮复习精品资料1.周老师上数学课时,给班里同学出了两道选择题,她预估计做对第一道题的概率为0.80,做对两道题的概率为0.60,则预估计做对第二道题的概率为( )A .0.80B .0.75C .0.60D .0.482.已知甲、乙两人下棋,和棋的概率为12,乙胜的概率为13,则甲胜的概率和甲不输的概率分别为( )A.16,16 B .12,23 C .16,23 D .23,123.(2015·四川成都模拟)一个边长为2 m ,宽1 m 的长方形内画有一个中学生运动会的会标,在长方形内随机撒入100粒豆子,恰有60粒落在会标区域内,则该会标的面积约为( )A.35m 2 B.65 m 2 C.125m 2 D.185m 2 4.某校高三年级学生会主席团共有5名同学组成,其中有3名同学来自同一班级,另外两名同学来自另两个不同班级.现从中随机选出两名同学参加会议,则两名选出的同学来自不同班级的概率为( )A. 0.35 B . 0.4 C. 0.6 D. 0.75.一颗质地均匀的正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,将这颗骰子连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为( )A.112B.118C.136D.71086.已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为( )A .0.85B .0.819 2C .0.8D .0.757.设随机变量ξ服从正态分布N (2,9),若P (ξ>c )=P (ξ<c -2),则c 的值是( ) A .1 B .2 C .3 D .48.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( )A.⎝⎛⎭⎫0,712B.⎝⎛⎭⎫712,1C.⎝⎛⎭⎫0,12D.⎝⎛⎭⎫12,19.某人射击,一次击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为( ) A.81125 B.54125 C.36125 D.2712510.设ξ是离散型随机变量,P (ξ=x 1)=23,P (ξ=x 2)=13,且x 1<x 2,又已知E (ξ)=43,D (ξ)=29,则x 1+x 2的值为( )A.53B.73C .3 D.11311.若某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图),其中茎为十位数,叶为个位数,则这组数据的中位数是( )A.91 B .91.5C .92D .92.512.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,测试成绩(单位:分)如图所示,假设得分值的中位数为m e ,众数为m 0,平均值为x ,则( )A .m e =m 0=xB .m e =m 0<xC .m e <m 0<xD .m 0<m e <x13.设整数m 是从不等式x 2-2x -8≤0的整数解的集合S 中随机抽取的一个元素,记随机变量ξ=m 2,则ξ的数学期望E (ξ)=________.14.某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别为0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.(1)求ξ的数学期望;(2)记“函数f (x )=x 2-3ξx +1在区间[2,+∞)上单调递增”为事件A ,求事件A 的概率. 15.一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:其中i =1,2,3,4,5,6,7.(1)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图;(2)求回归直线方程.(结果保留到小数点后两位) (参考数据:71i ii x y =∑=3 245,72125,15.43,ii x y x===∑=5 075,2()x =4 375,7x y=2 695)(3)预测进店人数为80人时,商品销售的件数.(结果保留整数)16.由于当前学生课业负担较重,造成青少年视力普遍下降,现从湖口中学随机抽取16名学生,经校医用视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:(1)指出这组数据的众数和中位数;(2)若视力测试结果不低于5.0则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;(3)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记ξ表示抽到“好视力”学生的人数,求ξ的分布列及数学期望.:。
大题专项强化练三统计与概率(A组)大题集训练,练就慧眼和规范,占领高考制胜点!1.某市实施小汽车限购政策.根据规定,每年发放10万个小汽车名额,其中电动小汽车占20%,通过摇号方式发放,其余名额通过摇号和竞价两种方式各发放一半.政策推出后,某网站针对不同年龄段的申请意向进行了调查,结果如表所示:(1)采用分层抽样的方式从30至50岁的人中抽取10人,求抽取各种意向人数.(2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率.(3)用样本估计总体,在全体市民中任意选取4人,其中有摇号申请电动小汽车意向的人数记为ξ,求ξ的分布列和数学期望.【解析】(1)因为30至50岁的人中有意向参与摇号电动小汽车、非电动小汽车和竞价的人数占总体的比例分别为=,=,=.所以,抽取的10人中摇号电动小汽车、非电动小汽车和竞价的人数分别为×10=1(人),×10=3(人),×10=6(人).(2)由题意可知,在(1)中10人中有竞价申请意向的人数为10×=6人,所以,抽取4人中恰有2人有竞价申请意向的概率为=.(3)ξ的可能取值为0,1,2,3,4.因为用样本估计总体,任取一人,其有摇号电动小汽车意向的概率为=,所以,随机变量ξ服从二项分布,即ξ~B.P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,P(ξ=4)==.即ξ的分布列为:Pξ的数学期望为E(ξ)=4×=.2.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2,3,4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,求两只手中所取的球颜色不同的概率.(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为随机变量X,求X的分布列和数学期望.【解题提示】(1)设事件A为“两手所取的球不同色”,由此能求出P (A)=.(2)依题意,X的可能取值为0,1,2,左手所取的两球颜色相同的概率为=,右手所取的两球颜色相同的概率为=.分别求出P(X=0),P(X=1),P(X=2),由此能求出X的分布列和E(X).【解析】(1)设事件A为“两手所取的球不同色”, 则P (A)=1-=.(2)依题意,X的可能取值为0,1,2.左手所取的两球颜色相同的概率为=, 右手所取的两球颜色相同的概率为=,P(X=0)==×=,P(X=1)=×+×=,P(X=2)=×=.所以X的分布列为PE(X)=0×+1×+2×=.。
泄露天机——2016年高考押题 精粹数学理科本卷共48题,三种题型:选择题、填空题和解答题。
选择题30小题,填空题4小题,解答题14小题. 1.已知集合22{|log 1},{|60},A x x B x x x =≥=--<则()RA B等于( )A 。
{|21}x x -<<B 。
{|22}x x -<< C.{|23}x x ≤< D 。
{|2}x x <【答案】B【解析】{}{}|2,|23,A x x B x x =≥=-<<得{}|2RA x x =<,{}()|22.R AB x x =-<<2。
已知复数()4i 1ib z b R +=∈-的实部为1-,则复数z b -在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】试题分析:41bizi=(4)(1)44(1)(1)22bi i b b i i i ++-+=+-+,则由412b -=-,得6b =,所以15z i =-+,所以75z b i -=--,其在复平面上对应点为(7,5)--,位于第三象限。
3。
若复数z 满足()1i 1i i z -=-+,则z 的实部为( )A.121 C 。
1 D.12【答案】A【解析】由()1i 1i i z -=-+i ,得i i)(1i)1i (1i)(1i)z +==--+=11i 22+,所以z 的实部为12,故选A .4。
下列函数中,既是奇函数又在区间(0,)2π上是减函数的是( )A .3y x = B.sin y x=- C .21y x =+ D .cos y x =【答案】B【解析】选项C 、D 不是奇函数,3y x = 在R 上都是增函数,只有选项B 符合.5.若()(),,,A a b B c d 是()ln f x x =图象上不同两点,则下列各点一定在()f x 图象上的是( )A.(),a c b d ++B.()a c bd +,C.(),ac b d +D.(),ac bd 【答案】C【解析】因为()(),,,A a b B c d 在()ln f x x =图象上,所以ln b a = ,ln ,d c =所以ln ln ln b d a c ac +=+=,因此(),ac b d +在()ln f x x =图象上,故选C .6。
2016全国卷高考押题卷 数学(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第15考题为三选一,其它题为必考题,考生作答时,将答案写在答题卡上,在本试卷上答题无效.本试卷满分150分,考试时间120分钟. 注意事项: 1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上. 2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;选择题答案使用0.5毫米的黑色中性签字笔或碳素笔书写,字体:工整、笔迹清楚,将答案书写在答题卡规定的位置上. 3.所有题目必须在答题卡上作答,在试卷上答题无效。
一.选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={(x ,y )|x 2+y 2=1,x ∈R ,y ∈R},N={(x ,y )|x 2﹣y 2=0,x ∈R ,y ∈R},则集合M∩N 中元素的个数为( )A.1B.2C.3D.4 2.复数11iz i+=-的模长为( ) A.1 B.2C.D.23.若cos2α=,则cos 2α=( )A. 13B. 79C. 7-9D. 1-34.设某中学高三的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y=0.85x ﹣85.71,则下列结论中不正确的是( ) A. y 与x 具有正的线性相关关系 B. 回归直线过样本点的中心(),x yC. 若该中学高三某女生身高增加1cm ,则其体重约增加0.85kgD. 若该中学高三某女生身高为170cm ,则可断定其体重必为58.79kg 5.下面程序运行后,输出的值是( )i=0 DOi=i+1LOOP UNTIL i*i>=2000 i=i-1 输出 iA.42B.43C.44D.45 6.过点(1,1)的直线与圆224640x y x y +--+=相交于A ,B 两点,则|AB|的最小值为( )A. B.4C. D.57.已知变量x ,y 满足约束条件20170x y x x y ⎧-+≤⎪≥⎨+-≤⎪⎩,则y x 的取值范围是( )A. 9,65⎡⎤⎢⎥⎣⎦B. )9-,6,+5⎛⎤⎡∞∞ ⎥⎣⎝⎦ C. ()-,36,+⎤⎡∞∞⎦⎣ D. 3,6⎡⎤⎣⎦ 8.设向量,,则“12e x dt t=⎰ ”是“∥”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件9.数列{a n }满足:{6(4)n 10,(n 7),(n 7)n n a a a ---≤=>,且{a n }是递增数列,则实数a 的范围是( )A. 9,44⎛⎫⎪⎝⎭B. 9,44⎡⎫⎪⎢⎣⎭C. ()1,4D. ()2,410.已知[]x 表示不超过实数x 的最大整数()x R ∈,如:[][][]1.32,0.80, 3.43-=-==.定义{}[]x x x =-,求23201420132013201320132014201420142014⎧⎫⎧⎫⎧⎫⎧⎫++++=⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭( )A. 1006B.1007C. 1008D.2014二.填空题(本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置)11.双曲线22--116x y m=的离心率为53,则m 等于 _________ . 12.一个几何体按比例绘制的三视图如图所示(单位:cm ),该几何体的体积为 _________cm 3.13.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n≥3)从左向右的第1个数为 _________ .14.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…a 5为实数,则a 3= _________ . 15.(考生注意:请在下列三个小题中任选一题作答,如果多做,则按所做的第一题评分) A.(不等式选做题)函数的最大值是 _________ . B.(几何证明选讲选做题)如图,在Rt △ABC 中,∠C=90°,⊙O 分别切AC 、BC 于M 、N ,圆心O 在AB 上,⊙O 的半径为4,OA=5,则OB 的长为 _________ .C.(坐标系与参数方程选做题)已知直线的极坐标方程为,则极点到该直线的距离是 _________ .三.解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤) 16.(本小题满分12分)在ABC ∆中,角A,B,C 的对边分别为a ,b,c,且满足s i n c o s a C c A=,2AB AC ⋅=. (1)求ABC ∆的面积;(2)若1b =,求边c 与a 的值.17.(本小题满分12分)设数列{a n }的前n 项和为S n 满足2S n =a n+1—2n+l +1,n ∈N *,且a 1,a 2+5,a 3成等差数列。
1.周老师上数学课时,给班里同学出了两道选择题,她预估计做对第一道题的概率为0.80,做对两道题的概率为0.60,则预估计做对第二道题的概率为( ) A .0.80
B .0.75
C .0.60
D .0.48
答案 B
2.已知甲、乙两人下棋,和棋的概率为12,乙胜的概率为1
3,则甲胜的概率和甲不输的概率分别为( )
A.16,16 B .12,23 C .16,23 D .23,1
2
解析 “甲胜”是“和棋或乙胜”的对立事件,所以“甲胜”的概率为1-12-13=16
.
设“甲不输”为事件A ,可看做是“甲胜”与“和棋”这两个互斥事件的和事件,所以P (A )=16+12=2
3.(或设“甲不
输”为事件A ,可看做是“乙胜”的对立事件,所以P (A )=1-13=2
3).
答案 C
3.(2015·四川成都模拟)一个边长为2 m ,宽1 m 的长方形内画有一个中学生运动会的会标,在长方形内随机撒入100粒豆子,恰有60粒落在会标区域内,则该会标的面积约为( ) A.3
5
m 2 B.65 m 2 C.12
5
m 2 D.18
5
m 2 解析 由几何概型的概率计算公式可知,会标的面积约为60100×2=6
5.故选B.
答案 B
4.某校高三年级学生会主席团共有5名同学组成,其中有3名同学来自同一班级,另外两名同学来自另两个不同班级.现从中随机选出两名同学参加会议,则两名选出的同学来自不同班级的概率为( ) A. 0.35 B . 0.4 C. 0.6 D. 0.7
答案 D
5.一颗质地均匀的正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,将这颗骰子连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为( ) A.112 B.118 C.136 D.7108
解析 连续抛掷三次共有63=216种情况,记三次点数分别为a ,b ,c ,则a +c =2b ,所以a +c 为偶数,则a 、c 的奇偶性相同,且a 、c 允许重复,一旦a 、c 确定,b 也唯一确定,又a ,c 共有2×32=18种,所以所求概率为18216=1
12,故选A.
答案 A
6.已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为( ) A .0.85
B .0.819 2
C .0.8
D .0.75
解析 P =C 340.83·0.2+C 440.84=0.819 2,故选B.
答案 B
7.设随机变量ξ服从正态分布N (2,9),若P (ξ>c )=P (ξ<c -2),则c 的值是( ) A .1 B .2 C .3 D .4
解析 因为ξ服从正态分布N (2,9),即μ=2为图象的对称轴,而P (ξ>c )=P (ξ<c -2),即μ=c 与μ=c -2关于μ=2对称,则有c +c -22=2,c =3.故选C.
答案 C
8.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( )
A.⎝⎛⎭⎫0,712
B.⎝⎛⎭⎫712,1
C.⎝⎛⎭⎫0,12
D.⎝⎛⎭
⎫1
2,1 解析 由已知条件可得P (X =1)=p ,P (X =2)=(1-p )p ,P (X =3)=(1-p )2p +(1-p )3=(1-p )2,
则E (X )=P (X =1)+2P (X =2)+3P (X =3)=p +2(1-p )p +3(1-p )2=p 2-3p +3>1.75,解得p >52或p <1
2
,又由
p ∈(0,1),可得p ∈⎝⎛⎭⎫0,1
2,故应选C. 答案 C
9.某人射击,一次击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为( ) A.
81125 B .54125 C.36125 D.27
125
答案 A
10.设ξ是离散型随机变量,P (ξ=x 1)=23,P (ξ=x 2)=13,且x 1<x 2,又已知E (ξ)=43,D (ξ)=2
9,则x 1+x 2的
值为( ) A.53 B.7
3
C .3 D.11
3
解析 由E (ξ)=43,D (ξ)=2
9
,得
⎩⎪⎨⎪⎧23x 1
+13x 2
=4
3,
⎝⎛⎭⎫x 1
-432·23+⎝
⎛⎭⎫x 2
-432·13=29, 解得⎩
⎨⎧x 1=5
3,x 2=
23
或⎩⎪⎨⎪⎧
x 1=1,
x 2=2,由于x 1<x 2,
∴⎩
⎪⎨⎪⎧x 1=1,x 2=2,∴x 1+x 2=3. 答案 C
11.若某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图),其中茎为十位数,叶为个位数,则这组数据的中位数是( )
A.91 B .91.5
C .92
D .92.5
解析 中位数为91+922
=91.5,故选B.
答案 B
12.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,测试成绩(单位:分)如图所示,假设得分值的中位数为m e ,众数为m 0,平均值为x ,则( )
A .m e =m 0=x
B .m e =m 0<x
C .m e <m 0<x
D .m 0<m e <x
答案 D
13.设整数m 是从不等式x 2-2x -8≤0的整数解的集合S 中随机抽取的一个元素,记随机变量ξ=m 2,则ξ的数学期望E (ξ)=________.
解析 不等式x 2-2x -8≤0的整数解的集合S ={-2,-1,0,1,2,3,4},列出相关分布列:
E (ξ)=17×0+27×1+27×4+17×9+17×16=5.
答案 5
14.某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别为0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值. (1)求ξ的数学期望;
(2)记“函数f (x )=x 2-3ξx +1在区间[2,+∞)上单调递增”为事件A ,求事件A 的概率.
15.一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
其中i =1,2,3,4,5,6,7.
(1)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图;
(2)求回归直线方程.(结果保留到小数点后两位) (参考数据:71
i i
i x y =∑=3 245,7
21
25,15.43,i
i x y x
===∑=5 075,2()x =4 375,7x y
=2 695)
(3)预测进店人数为80人时,商品销售的件数.(结果保留整数) 解(1)散点图如图
71
(2)i i i x y =∑ 3 245,x =25,y =15.43,7
21
i i x =∑=5 075,=72()x =4 375,7x y =-4.32,
7
1
7
2
2
1
70.79, 4.32,7()i i
i i
i x y x y
b
a
y bx x
x ==-∴≈=-=--∑∑ ∴回归直线方程是y ^
=0.79x -4.32.
(3)进店人数为80人时,商品销售的件数y =0.79×80-4.32≈59.
16.由于当前学生课业负担较重,造成青少年视力普遍下降,现从湖口中学随机抽取16名学生,经校医用视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:
(1)指出这组数据的众数和中位数;
(2)若视力测试结果不低于5.0则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;
(3)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记ξ表示抽到“好视力”学生的人数,求ξ的分布列及数学期望.
E (ξ)=0×2764+1×2764+2×964+3×1
64
=0.75.
:。