2015年四川省雅安中学七年级上学期数学期中试卷带解析答案
- 格式:doc
- 大小:324.50 KB
- 文档页数:22
四川省雅安市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列说法错误的是()A . 没有最大的正数,却有最大的负数B . 0大于一切负数C . 数轴上右边的数离原点越远,表示数越大D . 在原点左边离原点越远,数就越小2. (2分) (2019七上·吴兴期中) 下列选项中,具有相反意义的量是()A . 向东走5米和向北走5米B . 身高增加2厘米和体重减少2千克C . 胜1局和亏本70元D . 收入50元和支出40元3. (2分) (2015七上·龙岗期末) 若两个数绝对值之差为0,则这两个数()A . 相等B . 互为相反数C . 都为0D . 相等或互为相反数4. (2分)有理数a、b在数轴上的位置如图所示,则a+b的值()A . 大于0B . 小于0C . 小于aD . 大于b5. (2分) (2016七上·重庆期中) 下列各组的两个数中,运算后结果相等的是()A . 23和32B . ﹣53和(﹣5)3C . ﹣|﹣5|和﹣(﹣5)D . (﹣)3和﹣6. (2分)毕节地区水能资源丰富,理论蕴藏量达221.21万千瓦,已开发156万千瓦,把已开发水能资源用四舍五入法保留两个有效数字并且用科学记数法表示应记为()千瓦.A .B .C .D .7. (2分)一件商品的进价是a 元,提价20%后出售,则这件商品的售价是()A . 0.8a元B . a元C . 1.2a元D . 2a元8. (2分) (2016七上·昌平期中) ﹣(﹣4)3等于()A . ﹣12B . 12C . ﹣64D . 649. (2分)(2017·丰润模拟) 若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A . ﹣6B . 6C . 18D . 3010. (2分)(2018·西华模拟) -3是3的()A . 倒数B . 相反数C . 绝对值D . 平方根11. (2分)在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树,树与灯间的距离是10m.如图,第一棵树左边5m处有一个路牌,则从此路牌起向右500m~540m之间树与灯的排列顺序是()A .B .C .D .12. (2分) 2的相反数是()A . 2B . ﹣2C .D .二、填空题 (共6题;共8分)13. (3分) (2016七上·江津期中) ﹣6的相反数是________,﹣(+10)的绝对值是________,的倒数是________.14. (1分)今年我市投入10 000 000 000元用于绿化、造林,将10 000 000 000用科学记数法表示为________ .15. (1分) (2015八上·广州开学考) 一条鲸鱼所处的位置是—250米,它再下潜80米后所处的位置是________米.16. (1分) (2019七上·鄞州期中) 为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按a元收费;如果超过100度,那么超过部分每度电价按b元收费.某户居民在一个月内用电160度,他这个月应缴纳电费是________元(用含a、b的代数式表示)17. (1分) (2016七下·柯桥期中) 求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012 ,则2S=2+22+23+24+…+22013 ,因此2S﹣S=22013﹣1,所以1+2+22+23+…+22012=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为________.18. (1分) (2016七上·莆田期中) 在数轴上的点A表示的数为2.5,则与A点相距3个单位长度的点表示的数是________.三、解答题 (共8题;共59分)19. (5分) (2017七上·埇桥期中) 计算:﹣0.5﹣(﹣3 )+2.75﹣7.5.20. (5分)若a﹣5和﹣7互为相反数,求a的值.21. (10分) (2017七上·重庆期中) 计算(1)(﹣2)2﹣( + + )×12(2)﹣14﹣×[2﹣(﹣3)2]÷(﹣7).22. (7分) (2017七上·鄞州月考) 从2开始,连续的偶数相加,它们和的情况如下表:(1)如果n =8时,那么S的值为________;(2)根据表中的规律猜想:用n的代数式表示S的公式为S=2+4+6+8+…+2n=________;(3)根据上题的规律计算102+104+106+…+2006的值(要有计算过程).23. (12分) (2018七上·永城月考) 如图,数轴的单位长度为1.(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是________、________;(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?24. (9分) (2018七上·江都期中) 观察下列等式:第1个等式: = = ×(1- );第2个等式: = = ×( - );第3个等式: = = ×( - );第4个等式: = = ×( - );…请回答下列问题:(1)按以上规律列出第5个等式: =________=________;(2)用含n的代数式表示第n个等式: =________=________(n为正整数);(3)求的值.25. (8分)下列各数中:3.5,-3.5,0.2,-2,-1.6,,0.5,整数的个数为m个,正数的个数为n 个.(1)求m2-n2的值;(2)以上7个数中,绝对值最大的数为________,绝对值最小的数为________,有________对互为相反数.26. (3分)阅读材料:大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n= n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…n(n+1)=?观察下面三个特殊的等式:1×2= (1×2×3﹣0×1×2)2×3= (2×3×4﹣1×2×3)3×4= (3×4×5﹣2×3×4)将这三个等式的两边相加,可以得到1×2+2×3+3×4= ×3×4×5=20,读完这段材料,请你思考后回答:(1)1×2+2×3+…+10×11=________;(2)1×2+2×3+3×4+…+n×(n+1)=________;(3)1×2×3+2×3×4+…+n(n+1)(n+2)=________.(只需写出结果,不必写中间的过程)参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共8分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共59分)19-1、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。
四川省雅安市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、仔细选一选 (共10题;共20分)1. (2分)下列说法中,正确的是()A . 绝对值小于1 的整数是0、1B . 绝对值小于1 的整数是﹣1、0、1C . 绝对值小于1 的整数是﹣1、1D . 绝对值小于1 的整数是12. (2分)已知a、b在数轴上对应的点如图1所示,下列结论正确的是()A . a>bB . |a|<|b|C . -a<-bD . a<-b3. (2分) (2020七下·西吉期末) 在-2,,3,这3个数中,无理数共有()A . 0个B . 1个C . 2个D . 3个4. (2分)(2019·石家庄模拟) -2的倒数是()A .B . -C . -2D . 25. (2分)下列计算正确的是()A . a5•a2=3a7B . a4+a4=a8C . (a3)3=a6D . a5÷a2=a36. (2分) (2016七上·同安期中) 有理数a、b、c在数轴上的位置如图所示,下列结论正确的是()A . ﹣b>a>cB . a﹣b<0C . c+b<0D . c>|b|7. (2分)如果0<m<10,并且m≤x≤10,那么,代数式|x﹣m|+|x﹣10|+|x﹣m﹣10|化简的结果是()A . x﹣2m+20B . x﹣2mC . x﹣20D . 20﹣x8. (2分)下列运算结果最小的是()A . (﹣3)×(﹣2)B . (﹣3)2÷(﹣2)2C . (﹣3)2×(﹣2)D . ﹣(﹣3﹣2)29. (2分) (2019八上·辽阳月考) 若5x+19的立方根是4,则2x+7的平方根是()A . ±3B . ±4C . ±2D . ±510. (2分) (2017七下·江苏期中) 如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→……,白甲壳虫爬行的路线是AB→BB1→……,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n 是正整数).那么当黑、白两个甲壳虫各爬行完第2015条棱分别停止在所到的正方体顶点处时,它们之间的距离是().A . 0B . 1C .D .二、认真填一填 (共6题;共9分)11. (1分)用科学记数法表示21345为________ (保留三位有效数字)12. (1分) (2018八上·营口期末) 如图,A,B,C三点在数轴上,对应的数分别是,1,,且点B到A,C的距离相等,则x=________.13. (2分) (2017七上·和县期末) 单项式﹣πa3bc的次数是________,系数是________.14. (3分) (2018七上·孝南月考) -的相反数是________;倒数是________;绝对值是________ .15. (1分) (2019八上·靖远月考) 若互为相反数,互为倒数,则 ________.16. (1分)一个数与-0.5的积是1,则这个数是________.三、全面答一答 (共7题;共85分)17. (10分) (2016七上·北京期中) 以下是一位同学所做的有理数运算解题过程的一部分:(1)请你在上面的解题过程中仿照给出的方式,圈画出他的错误之处,并将正确结果写在相应的圈内;(2)请就此题反映出的该同学有理数运算掌握的情况进行具体评价,并对相应的有效避错方法给出你的建议.18. (20分) (2016七上·瑞安期中) 计算:(要求写出计算过程)(1) 5﹣(﹣6)×2÷22(2)(﹣ + )×(﹣63)(3)(﹣2)3×()2﹣|﹣1﹣2|(4) + ﹣(﹣).19. (5分) (2015七上·海棠期中) 已知当x=2时,多项式ax3+bx+1的值是5,求当x=﹣2时,多项式ax3+bx+4的值.20. (10分) (2019七上·集美期中) 如图,正方形ABCD和正方形ECGF.(1)写出表示阴影部分面积的整式.(2)求a=4cm,b=6cm时,阴影部分的面积.21. (10分) (2019七上·房山期中) “十一”国庆期间出租车司机小李某天下午的营运始终在长安街(自东向西或自西向东)上进行,如果规定向东为正,向西为负,他这天下午从天安门出发,行车里程(单位:千米)如下:+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.(1)小李将最后一名乘客送抵目的地时,小李距天安门有多远?(2)如果汽车耗油量为0.08升/千米,这天下午小李共耗油多少升?22. (15分) (2017七上·启东期中) 观察下列三行数:①0,3,8,15,24,…②2,5,10,17,26,…③0,6,16,30,48,…(1)第①行数按什么规律排行?(2)第②行,第③行数与第①行数分别有什么关系?(3)分别从①②③行数中取出第a个数,并计算这三个数的和.(结果用含a的式子表示)23. (15分) (2018七上·梁子湖期中) 数轴上点A对应的数为,点B对应的数为,且多项式的二次项系数为,常数项为 .(1)直接写出: ;(2)数轴上点A、B之间有一动点P,若点P对应的数为,试化简;(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B出发,沿数轴每秒2个单位长度的速度向左移动,到达A点后立即返回并向右继续移动,求经过多少秒后,M、N两点相距1个单位长度?参考答案一、仔细选一选 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、认真填一填 (共6题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、三、全面答一答 (共7题;共85分)17-1、17-2、18-1、18-2、18-3、18-4、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、。
2015学年第一学期七年级期中考试数学试卷答案一、填空题(每小题2分,共30分)1、 +11a b ; 2、14 ; 3、 -6a ; 4、-2.4×610 ;5、54-a; 6、194 ; 7、 +--+-2232415732z x x y x y x y ;8、12 ; 9、-+2269x xy y ; 10、-22259y x ;11、5813+m n;12、19=-k ; 13、1352 ; 14、20 ; 15、222+m n二、选择题(每小题2分,共8分)16、B 17、A 18、A 19、 D三、简答题(每小题5分,共35分)20、当23a =-时原式= 221323⎛⎫-+ ⎪⎝⎭- ( 1分) =41923+- (1分) == 13923-(1分)= 136-(2分)21、原式=22(35)b c a -- 2分=222(93025)b bc c a -+- 2分= 22293025b bc c a -+- 1分22、原式= )32(2c b a -+= 222494612a b c ab ac bc +++-- 5分(其他计算方法酌情给分)23、原式=2222112()36643xy y x x y -+-⋅ 2分=22222222112363636643xy x y y x y x x y -+-⋅ 1分=3324426924x y x y x y -+- 2分24、原式=()()222x a a x -+⎡⎤⎣⎦ 1分= ()2224x a - 2分 = 4224168x a x a -+ 2分25、原式=333244184227a b a b a a b ⋅-⋅ 2分 = 64644427a b a b - 2分 = 6410427a b - 1分 26、2222(4263)33x x x x x x x +----+>- 1分 2222426333x x x x x x x +--++->- 1分 2236433x x x x -+>- 1分34x ->- 1分43x < 1分四.解答题(本题共4题, 27、28题每题6分,29题7分,30题8分,共27分))27、 ∵ A -2B =13-x∴ 2B=A-(3x-1) 1分22231x x x =-+-+ 1分=2243x x -+ 1分∴B= 2322x x -+ 1分 ∴B+A= 2322x x -++222+-x x 1分 = 27332x x -+ 1分 28、()4222222m n -=⨯,()323333nm +=⨯ 1分 422222m n +-=,32333n m ++= 2分 4222m n =,3533n m += 1分4m=2n, 3n=m+5 1分解得m=1,n=2 1分29、(1)444a b a b += 1分()()2222a b = 2分22m n = 1分(2)623a a a = 2分mp = 1分30、( 1 ) S=()()34b t a a t b --- 1分 =334bt ab at ab --+ 1分 =()3b a t ab -+(结果写成3bt at ab -+也可以) 1分(2) 30b a -= 1分3a b = 1分(3)227xa yb ab ++=222921xb yb b ++=()2921x y b ++ 1分 〖 ()921x y ++应该是完全平方数,x 、y 是正整数。
七年级(上)期中数学试卷一、细心填一填(每题3分,共30分)1.长方体是由个面围成,它有个顶点,条棱.2.如图,将图形沿虚线旋转一周,所围成的几何体是,它的侧面展开图是形.3.﹣2.5的相反数是,倒数是,绝对值是.4.单项式﹣的系数是,次数,多项式2xy2﹣3x2y3﹣8是次项式.5.绝对值大于2而小于6的所有整数的和是.6.﹣384000000用科学记数表示为.7.x4y m与﹣2x2﹣n y2是同类项,则m+n=.8.当1<x<5时,化简||5﹣x|+|x﹣6||=.9.用火柴棒按下图的方式搭图形,第n个图形要根火柴.10.按照下面所示的操作步骤,若输入x的值为﹣2,则输出的值为.二、选择题(共10小题,每小题3分,满分30分)11.下列说法不正确的是()A.任何一个有理数的绝对值都是正数B.0既不是正数也不是负数C.有理数可以分为正有理数,负有理数和零D.0的绝对值等于它的相反数12.在﹣,0,﹣|﹣5|,﹣0.,2,,﹣10中负数的个数有()A.3 B.4 C. 5 D. 613.下列各题正确的是()A.3x+3y=6xy B.x+x=x2 C.﹣9y2+6y2=﹣3 D.9a2b﹣9a2b=014.下列各式从左到右正确的是()A.﹣(﹣3x+2)=﹣3x+2 B.﹣(2x﹣7)=2x+7 C.﹣(﹣3x+2)=3x﹣2 D.﹣(2x ﹣7)=﹣2x﹣715.一个两位数,个位上的数字是a,十位上的数字是b,用代数式表示这个两位数是()A.ab B.ba C.10a+b D.10b+a16.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>017.代数式y2+2y+7的值是6,则4y2+8y﹣5的值是()A.9 B.﹣9 C.18 D.﹣1818.若,则x2+y2的值是()A.0 B.C.D.119.下列各式中,①﹣a2b和ab2,②5xy2和4xy3,③﹣5和,④﹣a2b和a2c,⑤x3y2和y2x3,是同类项的有()组.A.0 B. 1 C. 2 D. 320.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…通过观察,用你所发现规律写出229的末位数字是()A.2 B. 4 C.8 D. 6三、细心画一画21.画出如图所示几何体的主视图、左视图、俯视图.主视图左视图俯视图.22.如图所示,这是一个由小立方块塔成的几何体的俯视图,图中的数字表示在该位置的小立方块的个数,请你画出它的主视图和左视图.主视图左视图.四、用心做一做23.计算(1)﹣16+23+(﹣24)﹣(﹣7)(2)×(﹣36)(3)16÷(﹣2)3﹣(﹣22)×(﹣4)(4)﹣14+(1﹣0.5)××〔2﹣(﹣3)2〕24.化简求值:(3x2y﹣2xy2)﹣2(xy2﹣2x2y),其中x=﹣1,y=2.五、精心拼一拼25.某一出租车一天下午以一中为出发地在东西方向运营,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+10.(1)将最后一名乘客送到目的地,出租车离一中出发点多远?在一中的什么方向?(2)若每千米的价格为1元,司机一个下午的营业额是多少?26.“十一”黄金周期期间,我市某风景区在7天假期中每天游客的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)日期1日2日3日4日5日6日7日人数变化(万人)+1.5 +0.7 +0.4 ﹣0.4 ﹣0.8 +0.2 ﹣1.2(1)请判断七天内游客最多的是日,最少的是日,相差万人.(2)如果最多一天有游客3万人,那么9月30日游客有万人.27.实际应用题:(A)我国出租车收费标准因地而异.A市为:起步价10元,3千米后每千米价为1.2元;B市为:起步价8元,3千米后每千米价为1.4元.试问在A、B两市乘坐出租车x(x>3)千米的价差是多少元?28.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:碟子的个数碟子的高度(单位:cm)1 22 2+1.53 2+34 2+4.5……(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);(2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.参考答案与试题解析一、细心填一填(每题3分,共30分)1.长方体是由6个面围成,它有8个顶点,12条棱.考点:认识立体图形.分析:根据长方体的概念和特性即可解题.解答:解:根据长方体的特征知,长方体是由6个面围成,它有8个顶点,12条棱.故答案为:6,8,12.点评:此题主要考查了认识立体图形,对于四棱柱,一定有8个顶点,12条棱,6个面,应熟记这一特征.2.如图,将图形沿虚线旋转一周,所围成的几何体是圆柱,它的侧面展开图是长方形.考点:几何体的展开图;点、线、面、体.分析:根据题意,一个长方形沿虚线旋转一周,所围成的几何体是圆柱,圆柱的侧面展开图是长方形.解答:解:结合图形特征可知,所围成的几何体是圆柱,它的侧面展开图是长方形.故填圆柱,长方.点评:本题考查的是图形的旋转,考法较新颖,解题关键是正确理常见图形的旋转情况.3.﹣2.5的相反数是﹣2.5,倒数是﹣,绝对值是 2.5.考点:倒数;相反数;绝对值.专题:计算题.分析:分别根据相反数、倒数和绝对值的定义求解.解答:解:﹣2.5的相反数是2.5,倒数是﹣,绝对值是2.5.故答案为2.5,﹣,2.5.点评:本题考查了倒数:a(a≠0)的倒数为.也考查了相反数与绝对值.4.单项式﹣的系数是﹣,次数三,多项式2xy2﹣3x2y3﹣8是五次三项式.考点:多项式;单项式.分析:根据单项式系数、次数的定义,多项式次数、项数的定义,进行填空即可.解答:解:单项式﹣的系数是﹣,次数是三次,多项式2xy2﹣3x2y3﹣8是五次三项式.故答案为:﹣、三、五、三.点评:本题考查了单项式及多项式的知识,掌握多项式次数的定义及单项式系数、次数的定义是解题关键.5.绝对值大于2而小于6的所有整数的和是0.考点:绝对值.专题:数形结合.分析:根据题意画出图形,由绝对值的几何意义可知:绝对值大于2小于6的所有整数即为到原点的距离大于2小于6,观察数轴即可得到满足题意的所有整数,求出这些整数之和即可.解答:解:根据题意画出数轴,如图所示:根据图形得:绝对值大于2而小于6的所有整数有:﹣3,﹣4,﹣5,3,4,5,这几个整数的和为:(﹣3)+(﹣4)+(﹣5)+3+4+5=[(﹣3)+3]+[(﹣4)+4]+[(﹣5)+5]=0.故答案为:0点评:此题考查了绝对值的几何意义,即一个数的绝对值就是在数轴上表示这个数的点到原点的距离,离原点越近,绝对值越小;离原点越远,绝对值越大.另外在求和时利用加法的运算律可以简化运算,同时注意数形结合思想的灵活运用.6.﹣384000000用科学记数表示为﹣3.84×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将﹣384000000用科学记数法表示为﹣3.84×108.故答案为:﹣3.84×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.x4y m与﹣2x2﹣n y2是同类项,则m+n=0.考点:同类项;解二元一次方程组.分析:本题考查同类项的定义,由同类项的定义中相同字母的指数相同,可先求得m和n 的值,从而求出它们的和.解答:解:由同类项的定义可知,解得m=2,n=﹣2.∴m+n=2﹣2=0.点评:此类问题注意运用同类项的定义中,相同字母的指数相同这一点进行解题.8.当1<x<5时,化简||5﹣x|+|x﹣6||=11﹣2x.考点:绝对值.分析:由已知1<x<5,得:5﹣x>0,x﹣6<0,再根据绝对值的性质进行化简.解答:解:∵1<x<5,∴5﹣x>0,x﹣6<0,∴||5﹣x|+|x﹣6||=|5﹣x+6﹣x|=|11﹣2x|=11﹣2x,故答案为:11﹣2x.点评:此题主要考查了绝对值的性质,关键明确:一个正数的绝对值等于本身,一个负数的绝对值等于其相反数,0的绝对值等于0.9.用火柴棒按下图的方式搭图形,第n个图形要2n+1根火柴.考点:规律型:图形的变化类.专题:推理填空题.分析:规律:除第一个图形外,每增加一个三角形需要两根火柴.解答:解:由图形得到:第一个图形要火柴1+2=3根;第二个图形要火柴1+2+2=5根;第三个图形要火柴1+2+2+2=7根;…故第n个图形要火柴1+2+2+…+2=1+2n根.故答案为:2n+1点评:观察、分析和归纳总结能力.10.按照下面所示的操作步骤,若输入x的值为﹣2,则输出的值为7.考点:代数式求值.专题:图表型.分析:根据题意可知,该程序计算是先平方,再乘以3,再减去5.将x输入即可求解.解答:解:输入x=﹣2,x2=(﹣2)2=44×3=12,12﹣5=7.点评:解答本题的关键就是弄清楚题图给出的计算程序.二、选择题(共10小题,每小题3分,满分30分)11.下列说法不正确的是()A.任何一个有理数的绝对值都是正数B.0既不是正数也不是负数C.有理数可以分为正有理数,负有理数和零D.0的绝对值等于它的相反数考点:绝对值;相反数.分析:有理数包括:正有理数、负有理数和0;0既不是正数也不是负数;0的相反数是0.绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.解答:解:A、任何一个有理数的绝对值都是非负数.错误;B、C、D都正确.故选A.点评:考查的是有理数的分类、正数和负数的定义以及绝对值的定义.12.在﹣,0,﹣|﹣5|,﹣0.,2,,﹣10中负数的个数有()A.3 B. 4 C. 5 D. 6考点:正数和负数.分析:负数就是小于0的数,依据定义即可求解.解答:解:﹣是负数,0既不是正数也不是负数,﹣|﹣5|=﹣5是负数,﹣0.是负数,2是正数,是正数,﹣10是负数.负数有4个,故选B.点评:此题考查了正数与负数,判断一个数是正数还是负数,要把它化简成最后形式再判断.13.下列各题正确的是()A.3x+3y=6xy B.x+x=x2 C.﹣9y2+6y2=﹣3 D.9a2b﹣9a2b=0考点:合并同类项.分析:根据合并同类项的法则结合选项进行判断.解答:解:A、3x和3y不是同类项,不能合并,故本选项错误;B、x+x=2x,计算错误,故本选项错误;C、﹣9y2+6y2=﹣3y2,计算错误,故本选项错误;D、9a2b﹣9a2b=0,计算正确,故本选项正确.故选D.点评:本题考查了合并同类项,解答本题的关键是掌握合并同类项法则.14.下列各式从左到右正确的是()A.﹣(﹣3x+2)=﹣3x+2 B.﹣(2x﹣7)=2x+7 C.﹣(﹣3x+2)=3x﹣2 D.﹣(2x ﹣7)=﹣2x﹣7考点:去括号与添括号.分析:利用去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进而得出答案.解答:解:A、﹣(﹣3x+2)=﹣3x﹣2,故此选项错误;B、﹣(2x﹣7)=﹣2x+7,故此选项错误;C、﹣(﹣3x+2)=3x﹣2,故此选项正确;D、﹣(2x﹣7)=﹣2x+7,故此选项错误;故选:C.点评:此题主要考查了去括号法则,正确去括号是解题关键.15.一个两位数,个位上的数字是a,十位上的数字是b,用代数式表示这个两位数是()A.ab B.ba C.10a+b D.10b+a考点:列代数式.专题:应用题.分析:两位数的表示方法为:十位数字×10+个位数字,直接根据此公式表示即可.解答:解:个位上是a,十位上是b,则这个两位数是10b+a.故选D.点评:本题考查两位数的表示方法.解决问题的关键是读懂题意,找到所求的量的等量关系,即两位数的表示方法为:十位数字×10+个位数字.16.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>0考点:有理数的减法;数轴;有理数的加法.专题:常规题型.分析:先根据数轴判断出a、b的正负情况,以及绝对值的大小,然后对各选项分析后利用排除法求解.解答:解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.点评:本题考查了有理数的加法、减法,根据数轴判断出a、b的情况,以及绝对值的大小是解题的关键.17.代数式y2+2y+7的值是6,则4y2+8y﹣5的值是()A.9 B.﹣9 C.18 D.﹣18考点:代数式求值.专题:整体思想.分析:根据代数式y2+2y+7的值是6,可得y2+2y的值,然后整体代入所求代数式求值即可.解答:解:∵代数式y2+2y+7的值是6;∴y2+2y+7=6;∴y2+2y=﹣1;∴4y2+8y﹣5=4(y2+2y)﹣5=4×(﹣1)﹣5=﹣9.故选B.点评:本题是代数式求值问题以及整体代入的思想.18.若,则x2+y2的值是()A.0 B.C.D.1考点:非负数的性质:绝对值;非负数的性质:偶次方.专题:常规题型.分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可求解.解答:解:根据题意得,x﹣=0,2y+1=0,解得x=,y=﹣,∴x2+y2=()2+(﹣)2=+=.故选B.点评:本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.19.下列各式中,①﹣a2b和ab2,②5xy2和4xy3,③﹣5和,④﹣a2b和a2c,⑤x3y2和y2x3,是同类项的有()组.A.0 B. 1 C. 2 D. 3考点:同类项.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)即可判断.解答:解:①相同字母的次数不同,不是同类项;②相同字母的次数不同,不是同类项;③正确;④所含字母不同,不是同类项;⑤正确.故寻C.点评:本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.20.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…通过观察,用你所发现规律写出229的末位数字是()A.2 B. 4 C.8 D. 6考点:尾数特征.分析:易得底数为2的幂的个位数字依次是2,4,8,6循环,让29÷4,看余数是几,末位数字就在相应的循环上.解答:解:2n的末位数字为2、4、8、6四个一循环,∵29÷4=7…1,∴229的末位数字与21的末位数字相同,是2.故选A.点评:此题考查数字的变化规律;得到底数为2的幂的个位数字的循环规律是解决本题的关键.三、细心画一画21.画出如图所示几何体的主视图、左视图、俯视图.主视图左视图俯视图.考点:作图-三视图.分析:利用画三视图的方法①确定主视图位置,画出主视图;②在主视图的正下方画出俯视图,注意与主视图“长对正”;③在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”,进而得出答案.解答:解:如图所示:.点评:此题主要考查了画三视图,正确观察注意观察角度是解题关键.22.如图所示,这是一个由小立方块塔成的几何体的俯视图,图中的数字表示在该位置的小立方块的个数,请你画出它的主视图和左视图.主视图左视图.考点:作图-三视图;由三视图判断几何体.分析:利用俯视图结合小立方块的个数分别得出主视图与左视图.解答:解:如图所示:.点评:此题主要考查了画三视图以及由三视图判断几何体,培养学生空间想象能力.四、用心做一做23.计算(1)﹣16+23+(﹣24)﹣(﹣7)(2)×(﹣36)(3)16÷(﹣2)3﹣(﹣22)×(﹣4)(4)﹣14+(1﹣0.5)××〔2﹣(﹣3)2〕考点:有理数的混合运算.专题:计算题.分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.解答:解:(1)原式=﹣16﹣24+23+7=﹣40+30=﹣10;(2)原式=﹣18+20﹣30+21=﹣48+41=﹣7;(3)原式=16÷(﹣8)﹣(﹣4)×(﹣4)=﹣2﹣16=﹣18;(4)原式=﹣1+××(2﹣9)=﹣1﹣=﹣2.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.化简求值:(3x2y﹣2xy2)﹣2(xy2﹣2x2y),其中x=﹣1,y=2.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.解答:解:(3x2y﹣2xy2)﹣2(xy2﹣2x2y)=3x2y﹣2xy2﹣2xy2+4x2y=7x2y﹣4xy2,当x=﹣1,y=2时,原式=14+16=30.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.五、精心拼一拼25.某一出租车一天下午以一中为出发地在东西方向运营,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+10.(1)将最后一名乘客送到目的地,出租车离一中出发点多远?在一中的什么方向?(2)若每千米的价格为1元,司机一个下午的营业额是多少?考点:有理数的加法.专题:应用题.分析:首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.解答:解:(1)根据题意有:向东走为正,向西走为负;则将最后一名乘客送到目的地有+9﹣3﹣5+4﹣8+6﹣3﹣6﹣4+10=0(km).故出租车在一中出发点.(2)司机一个下午共走了+9+3+5+4+8+6+3+6+4+10=58(km),若每千米的价格为1元,有58×1=58(元).故司机一个下午的营业额是58元.点评:解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.一般情况下具有相反意义的量才是一对具有相反意义的量.26.“十一”黄金周期期间,我市某风景区在7天假期中每天游客的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)日期1日2日3日4日5日6日7日人数变化(万人)+1.5 +0.7 +0.4 ﹣0.4 ﹣0.8 +0.2 ﹣1.2(1)请判断七天内游客最多的是3日,最少的是7日,相差 2.2万人.(2)如果最多一天有游客3万人,那么9月30日游客有0.4万人.考点:正数和负数.分析:(1)分别计算出游客相对于9月30日的人数即可求解;(2)根据(1)的计算结果就可求得.解答:解:(1)1日:+1.5;2日:1.5+0.7=+2.2;3日:+2.2+0.4=+2.6;4日:+2.6﹣0.4=+2.2;5日:+2.2﹣0.8=+1.4;6日:+1.4+0.2=+1.6;7日:+1.6﹣1.2=+0.4,故七天内游客人数最多的是3日,最少的是7日,它们相差2.6﹣0.4=2.2(万人);(2)3﹣2.6=0.4(万人).故答案为:3,7,2.2;0.4.点评:本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.27.实际应用题:(A)我国出租车收费标准因地而异.A市为:起步价10元,3千米后每千米价为1.2元;B市为:起步价8元,3千米后每千米价为1.4元.试问在A、B两市乘坐出租车x(x>3)千米的价差是多少元?考点:一元一次方程的应用.专题:应用题;经济问题.分析:出租车付费为:起步价+超过起步路程的费用.解答:解:在A市乘出租车x(x>3)千米的价钱为:[10+1.2(x﹣3)]元;在B市乘出租车x(x>3)千米的价钱为:[8+1.4(x﹣3)]元.故A、B两市乘坐出租车x(x>3)千米的价差是:[10+1.2(x﹣3)]﹣[8+1.4(x﹣3)]=(2.6﹣0.2x)元.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出所求量的合适的等量关系.28.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:碟子的个数碟子的高度(单位:cm)1 22 2+1.53 2+34 2+4.5……(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);(2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.考点:简单组合体的三视图;代数式求值.专题:图表型.分析:由表中给出的碟子个数与碟子高度的规律,可以看出碟子数为x时,碟子的高度为2+1.5(x﹣1).解答:解:由题意得:(1)2+1.5(x﹣1)=1.5x+0.5(2)由三视图可知共有12个碟子∴叠成一摞的高度=1.5×12+0.5=18.5(cm)点评:考查获取信息(读表)、分析问题解决问题的能力.找出碟子个数与碟子高度的之间的关系式是此题的关键.。
七年级(上)期中数学试卷一、选择题(每题3分,共36分)1.5的相反数是()A.B.﹣5 C.±5 D.﹣2.在﹣(﹣6),﹣(﹣6)2,﹣|﹣6|,(﹣6)2中,负数的个数为()A.0个B.1个C.2个D.3个3.一个两位数,十位数字是a,个位数字是b,则这个两位数是()A.ab B.a+b C.10a+b D.10b+a4.一列火车长m米,以每秒n米的速度通过一个长为p米的桥洞,用代数式表示它通过桥洞所需的时间为()A.秒B.秒C.秒D.秒5.一个代数式的2倍与﹣2a+b的和是a+2b,这个代数式是()A.3a+b B.C.D.6.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体7.下列两项中,属于同类项的是()A.62与x2 B.4ab与4abcC.0.2x2y与0.2xy2 D.nm和﹣mn8.下列计算正确的是()A.﹣12﹣8=﹣4 B.C.﹣5﹣(﹣2)=﹣3 D.﹣32=99.一个多项式加上3x2y﹣3xy2得x3﹣3x2y,则这个多项式是()A.x3+3xy2 B.x3﹣3xy2 C.x3﹣6x2y+3xy2 D.x3﹣6x2y﹣3x2y10.下列说法正确的是()A.单项式﹣πx3的系数是﹣B.0和a都是代数式C.数a的与这个数的和表示为+D.合并同类项﹣n2﹣n2=011.文具店、书店和玩具店依次座落在一条东西走向的九龙山大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了﹣60米,此时小明的位置在()A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处12.已知:(b+3)2+|a﹣2|=0,则b a的值为()A.﹣9 B.9 C.﹣6 D. 6二、填空题(每题4分,共32分)13.平方得的数是,立方得﹣8的数是,倒数是﹣的数是,的相反数是.14.数轴上表示有理数﹣3.5与4.5两点的距离是.15.若3a m﹣1bc2和﹣2a3b n﹣2c2是同类项,则m+n=.16.38400万千米用科学记数表示为米.17.矩形的周长为30,若一边长用字母x表示,则此矩形的面积是.18.有一次小明在做24点游戏时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请写出一个成功的算式:=24.19.代数式2x2y3﹣x3y﹣xy4﹣5x4y3有项,其中﹣xy4的系数是.20.观察下列算式:31=3,32=9,33=27,34=81,35=243,…,根据上述算式中的规律,你认为32014的末位数字是.三、数形题(本大题共10分,每小题5分)21.如图,是一个由小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的正方形的个数.请你画出它的主视图和左视图.22.一点A从数轴上表示+2的A点开始连续移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…求:(1)写出第一次移动后这个点在数轴上表示的数;(2)写出第二次移动结果这个点在数轴上表示的数;(3)写出第五次移动后这个点在数轴上表示的数;(4)写出第n次移动结果这个点在数轴上表示的数.四、计算题(每小题12分,共12分)23.(1)(﹣7)+(+15)﹣(﹣25)(2)(3)(4).五、解答题(本大题共36分)24.计算(1)3a+2a﹣7a(2)﹣4x2y+8xy2﹣9x2y﹣21xy2(3)﹣5m2n+4mn2﹣2mn+6m2n+3mn(4)(a+b)﹣2(2a﹣3b)+(3a﹣2b)25.先化简,再求值:(1)3x+2(﹣4x+1)﹣(6﹣4x),其中x=﹣(2)2(5a2﹣7ab+9b2)﹣3(14a2﹣2ab+3b2),其中a=(3)4x3﹣[﹣x2+2(x3﹣x2)],其中x=﹣3(4),其中x=﹣2,y=.六、综合题26.某下岗工人在路边开了一个小吃店,上星期日收入20元,下表是本周星期一至星期五小吃店的收入变化情况(多收入为正,少收入为负):星期一二三四五收入的变化值(与前一天比较)+10 ﹣5 ﹣3 +6 ﹣2(1)算出星期五该小店的收入情况;(2)算出这五天平均收入多少元?(3)请用折线统计图表示该小店这五天的收入情况,并观察折线统计图,写出一个正确的结论.27.解决问题:一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?(4)货车每千米耗油0.2升,这次共耗油多少升?参考答案与试题解析一、选择题(每题3分,共36分)1.5的相反数是()A.B.﹣5 C.±5 D.﹣考点:相反数.分析:据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.解答:解:根据概念,(5的相反数)+5=0,则5的相反数是﹣5.故选:B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.在﹣(﹣6),﹣(﹣6)2,﹣|﹣6|,(﹣6)2中,负数的个数为()A.0个B.1个C.2个D.3个考点:正数和负数.分析:先化简,再根据小于0的是负数即可求解.解答:解:在﹣(﹣6)=6,﹣(﹣6)2=﹣36,﹣|﹣6|=﹣6,(﹣6)2=36中,负数有﹣(﹣6)2,﹣|﹣6|,一共2个.故选C.点评:本题主要考查了正数和负数的意义,判断一个数是正数还是负数,关键是看它比0大还是比0小.3.一个两位数,十位数字是a,个位数字是b,则这个两位数是()A.ab B.a+b C.10a+b D.10b+a考点:列代数式.分析:根据数的表示,用数位上的数字乘以数位即可.解答:解:这个两位数是:10a+b.故选C.点评:本题考查了列代数式,比较简单,主要是数的表示方法.4.一列火车长m米,以每秒n米的速度通过一个长为p米的桥洞,用代数式表示它通过桥洞所需的时间为()A.秒B.秒C.秒D.秒考点:列代数式(分式).专题:应用题.分析:通过桥洞所需的时间为=(桥洞长+车长)÷车速.解答:解:它通过桥洞所需的时间为秒.故选D.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.注意此时路程应为桥洞长+车长.5.一个代数式的2倍与﹣2a+b的和是a+2b,这个代数式是()A.3a+b B.C.D.考点:整式的加减.分析:此题可先列出所求代数式的两倍,然后再除以2即可.解答:解:依题意得[(a+2b)﹣(﹣2a+b)]÷2=.故选D.点评:整式的加减运算实际上就是去括号、合并同类项.合并同类项时,注意是系数相加减,字母与字母的指数不变.去括号时,括号前面是“﹣”号,去掉括号和“﹣”号,括号里的各项都要改变符号.6.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体考点:截一个几何体.分析:根据圆柱、圆锥、球、正方体的形状特点判断即可.解答:解:本题中,用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,无论如何,截面也不会有弧度不可能是圆,故选D.点评:本题考查几何体的截面,关键要理解面与面相交得到线.7.下列两项中,属于同类项的是()A.62与x2 B.4ab与4abcC.0.2x2y与0.2xy2 D.nm和﹣mn考点:同类项.分析:同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项.并且与字母的顺序无关.解答:解:A、62与x2字母不同不是同类项;B、4ab与4abc字母不同不是同类项;C、0.2x2y与0.2xy2字母的指数不同不是同类项;D、nm和﹣mn是同类项.故选D.点评:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.8.下列计算正确的是()A.﹣12﹣8=﹣4 B.C.﹣5﹣(﹣2)=﹣3 D.﹣32=9考点:有理数的除法;有理数的减法;有理数的乘方.专题:计算题.分析:原式利用有理数的乘方,乘法,以及除法法则计算得到结果,即可做出判断.解答:解:A、﹣12﹣8=﹣20,错误;B、(﹣)÷(﹣4)=﹣×(﹣)=,错误;C、﹣5﹣(﹣2)=﹣5+2=﹣3,正确;D、﹣32=﹣9,错误.故选C.点评:此题考查了有理数的除法,乘方,以及乘法,熟练掌握运算法则是解本题的关键.9.一个多项式加上3x2y﹣3xy2得x3﹣3x2y,则这个多项式是()A.x3+3xy2 B.x3﹣3xy2 C.x3﹣6x2y+3xy2 D.x3﹣6x2y﹣3x2y考点:整式的加减.分析:根据题意得出:(x3﹣3x2y)﹣(3x2y﹣3xy2),求出即可.解答:解:根据题意得:(x3﹣3x2y)﹣(3x2y﹣3xy2)=x3﹣3x2y﹣3x2y+3xy2=x3﹣6x2y+3xy2,故选C.点评:本题考查了整式的加减的应用,主要考查学生的计算能力.10.下列说法正确的是()A.单项式﹣πx3的系数是﹣B.0和a都是代数式C.数a的与这个数的和表示为+D.合并同类项﹣n2﹣n2=0考点:单项式;代数式;列代数式;合并同类项.分析:分别利用单项式以及代数式和合并同类项法则分析得出即可.解答:解:A、单项式﹣πx3的系数是﹣π,故此选项错误;B、0和a都是代数式,此选项正确;C、数a的与这个数的和表示为+a,故此选项错误;D、合并同类项﹣n2﹣n2=﹣2n2,故此选项错误.故选:B.点评:此题主要考查了单项式、代数式以及合并同类项的定义,正确把握相关性定义是解题关键.11.文具店、书店和玩具店依次座落在一条东西走向的九龙山大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了﹣60米,此时小明的位置在()A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处考点:数轴.专题:计算题.分析:由题意知,可看作书店为原点,文具店在书店西边20米处,即﹣20米,玩具店位于书店东边100米处,即+100米,解答出即可.解答:解:根据题意得:文具店在书店西边20米处,玩具店位于书店东边100米处,∴书店看作原点时,玩具店为100米,文具店为﹣20米,∴小明的位置为:40﹣60=﹣20,∴小明的位置为:﹣20米,∴小明的位置在文具店.故答案为A.点评:本题考查了数轴,规定了原点、正方向、单位长度的直线叫做数轴,学生掌握数轴的定义,是解答本题的关键.12.已知:(b+3)2+|a﹣2|=0,则b a的值为()A.﹣9 B.9 C.﹣6 D. 6考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,b+3=0,a﹣2=0,解得a=2,b=﹣3,所以,b a=(﹣3)2=9.故选B.点评:本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.二、填空题(每题4分,共32分)13.平方得的数是±,立方得﹣8的数是﹣2,倒数是﹣的数是﹣4,的相反数是﹣1.考点:有理数的乘方;相反数;倒数.专题:计算题.分析:原式利用有理数的乘方,相反数,以及倒数的定义计算即可得到结果.解答:解:平方得的数是±,立方得﹣8的数是﹣2,倒数是﹣的数是﹣4,的相反数是﹣1.故答案为:±;﹣2;﹣4;﹣1点评:此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.14.数轴上表示有理数﹣3.5与4.5两点的距离是8.考点:数轴.专题:计算题.分析:有理数﹣3.5与4.5两点的距离实为两数差的绝对值.解答:解:由题意得:有理数﹣3.5与4.5两点的距离为|﹣3.5﹣4.5|=8.故答案为:8.点评:本题考查了数轴的知识,属于基础题,难度不大,注意两点之间的距离即是两数差的绝对值.15.若3a m﹣1bc2和﹣2a3b n﹣2c2是同类项,则m+n=7.考点:同类项.分析:根据同类项的定义:所含字母相同,并且相同字母的指数也相同,求得m,n的值,代入求解即可.解答:解:∵3a m﹣1bc2和﹣2a3b n﹣2c2是同类项,∴m﹣1=3,n﹣2=1,∴m=4,n=3,则m+n=7.故答案为:7.点评:本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.38400万千米用科学记数表示为 3.84×108米.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将300 670用科学记数法表示为3.84×108.故答案为3.84×108.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.矩形的周长为30,若一边长用字母x表示,则此矩形的面积是x(15﹣x).考点:列代数式.分析:根据周长是30,一边是x,求出另一边是15﹣x,再根据长方形的面积公式即可求解.解答:解:∵周长是30,∴相邻两边的和是15,∵一边是x,∴另一边是15﹣x.∴面积是:x(15﹣x).故答案为:x(15﹣x).点评:本题考查了列代数式,用到的知识点是矩形的周长和面积公式,关键是根据矩形的周长和一边的长,求出另一边的长.18.有一次小明在做24点游戏时抽到的四张牌分别是3、4、1、7,他苦思不得其解,相信聪明的你一定能帮他解除困难,请写出一个成功的算式:3×7+(4﹣1)=24.考点:有理数的混合运算.专题:计算题;开放型.分析:24点游戏的关键是加入任何运算符号和括号,使其运算结果为24即可,答案不唯一.解答:解:答案不唯一,如:3×7+(4﹣1)=24.点评:此题考查有理数混合运算的灵活程度,可以提高学生的学习兴趣.19.代数式2x2y3﹣x3y﹣xy4﹣5x4y3有四项,其中﹣xy4的系数是﹣1.考点:整式的加减;多项式.分析:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,由此可确定多项式2x2y3﹣x3y﹣xy4﹣5x4y3的项数,根据单项式的系数的定义确定﹣xy4的系数.解答:解:代数式2x2y3﹣x3y﹣xy4﹣5x4y3有四项,其中﹣xy4的系数是﹣1.故答案为:四,﹣1.点评:本题考查了多项式的定义,多项式中每个单项式叫做多项式的项,单项式中的数字因数叫做单项式的系数.20.观察下列算式:31=3,32=9,33=27,34=81,35=243,…,根据上述算式中的规律,你认为32014的末位数字是9.考点:尾数特征;规律型:数字的变化类.分析:由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…,可知末位数字以3、9、7、1四个数字为一循环,用32014的指数2014除以4得到的余数是几就与第几个数字相同,由此解答即可.解答:解:末位数字以3、9、7、1四个数字为一循环,2014÷4=503…2,所以32014的末位数字与32的末位数字相同是9.故答案为9.点评:此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.三、数形题(本大题共10分,每小题5分)21.如图,是一个由小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的正方形的个数.请你画出它的主视图和左视图.考点:作图-三视图;由三视图判断几何体.分析:由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,3;左视图有2列,每列小正方形数目分别为3,2.据此可画出图形.解答:解:如图所示:点评:本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.22.一点A从数轴上表示+2的A点开始连续移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…求:(1)写出第一次移动后这个点在数轴上表示的数;(2)写出第二次移动结果这个点在数轴上表示的数;(3)写出第五次移动后这个点在数轴上表示的数;(4)写出第n次移动结果这个点在数轴上表示的数.考点:数轴.专题:计算题.分析:数轴上点的移动规律是“左减右加”.依据规律计算即可.解答:解:(1)第一次移动后这个点在数轴上表示的数:+2﹣1+2=+3;(2)第二次移动结果这个点在数轴上表示的数:+3﹣3+4=+4;(3)第五次移动后这个点在数轴上表示的数:+3+1+1+1+1=7;(4)第n次移动结果这个点在数轴上表示的数:+3+n﹣1=n+2.点评:本题考查了数轴的知识,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.四、计算题(每小题12分,共12分)23.(1)(﹣7)+(+15)﹣(﹣25)(2)(3)(4).考点:有理数的混合运算.分析:(1)先化简,再分类计算;(2)先算乘方和括号里面的加法,再算除法,最后算减法;(3)先算乘方和除法,再算括号里面的减法,再算乘法,最后算加法;(4)利用乘法分配律简算.解答:解:(1)原式=﹣7+15+25=33;(2)原式=9﹣(﹣)÷=9﹣(﹣)×12=9+11=20;(3)原式=﹣1×(4﹣9)+3×(﹣)=﹣1×(﹣5)﹣4=5﹣4=1;(4)原式=﹣24×(﹣)+(﹣24)×﹣24×(﹣)=20﹣9+1=12.点评:此题考查有理数的混合运算,掌握运算顺序,正确判定符号计算即可.五、解答题(本大题共36分)24.计算(1)3a+2a﹣7a(2)﹣4x2y+8xy2﹣9x2y﹣21xy2(3)﹣5m2n+4mn2﹣2mn+6m2n+3mn(4)(a+b)﹣2(2a﹣3b)+(3a﹣2b)考点:整式的加减.分析:(1)(2)(3)直接合并整式中的同类项即可;(4)先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.解答:解:(1)3a+2a﹣7a=﹣2a;(2)﹣4x2y+8xy2﹣9x2y﹣21xy2=﹣13x2y﹣13xy2;(3)﹣5m2n+4mn2﹣2mn+6m2n+3mn=m2n+4mn2+mn;(4)(a+b)﹣2(2a﹣3b)+(3a﹣2b)=a+b﹣4a+6b+3a﹣2b=5b.点评:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.25.先化简,再求值:(1)3x+2(﹣4x+1)﹣(6﹣4x),其中x=﹣(2)2(5a2﹣7ab+9b2)﹣3(14a2﹣2ab+3b2),其中a=(3)4x3﹣[﹣x2+2(x3﹣x2)],其中x=﹣3(4),其中x=﹣2,y=.考点:整式的加减—化简求值.专题:计算题.分析:(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;(3)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(4)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:(1)原式=3x﹣8x+2﹣3+2x=﹣3x﹣1,当x=﹣时,原式=1﹣1=0;(2)原式=10a2﹣14ab+18b2﹣42a2+6ab﹣9b2=﹣32a2﹣8ab+9b2,当a=,b=﹣时,原式=﹣18+4+4=﹣10;(3)原式=4x3+x2﹣2x3+x2=2x3+x2,当x=﹣3时,原式=﹣81+15=﹣66;(4)原式=5x2﹣2xy+xy+6﹣4x2=x2﹣xy+6,当x=﹣2,y=时,原式=4+1+6=11.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.六、综合题26.某下岗工人在路边开了一个小吃店,上星期日收入20元,下表是本周星期一至星期五小吃店的收入变化情况(多收入为正,少收入为负):星期一二三四五收入的变化值(与前一天比较)+10 ﹣5 ﹣3 +6 ﹣2(1)算出星期五该小店的收入情况;(2)算出这五天平均收入多少元?(3)请用折线统计图表示该小店这五天的收入情况,并观察折线统计图,写出一个正确的结论.考点:折线统计图;正数和负数;算术平均数.专题:应用题.分析:(1)根据上周日的收入依次加减即可解答;(2)根据平均数=总收入÷天数进行求解;(3)根据(2)的数据,可以作出折线图,然后分析即可.解答:解:(1)星期五该小店的收入情况为20+10﹣5﹣3+6﹣2=26(元);(2)星期一20+10=30元,星期二30﹣5=25元,25﹣3=22元,22+6=28元,28﹣2=26元,(30+25+22+28+26)÷5=26.2(元);(3)画折线统计图:正确结论例如:这五天中收入最高的是星期一为30元.点评:本题考查折线统计图的运用,折线统计图表示的是事物的变化情况.熟练掌握对统计图的分析和平均数的计算.要理解极差的概念,能够根据计算的数据进行综合分析.27.解决问题:一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?(4)货车每千米耗油0.2升,这次共耗油多少升?考点:数轴.分析:(1)根据题目的叙述1个单位长度表示1千米,即可表示出;(2)根据(1)得到的数轴,得到表示小明家与小彬家的两点之间的距离,利用1个单位长度表示1千米,即可得到实际距离;(3)把三次所行路程相加即可,(4)路程是20千米,乘以0.5即可求得耗油量.解答:解:(1)如图所示:(2)根据数轴可知:小明家距小彬家是7.5个单位长度,因而是7.5千米;(3)路程是2×10=20千米,(4)耗油量是:20×0.2=4升.答:小明家距小彬家7.5千米,这趟路货车共耗油4升.点评:本题考查了数轴,利用数轴表示一对具有相反意义的量,借助数轴用几何方法解决问题,有直观、简捷,举重若轻的优势.。
2015年最新人教版七年级上册数学期中考试试卷及答案一、填得圆圆满满(每小题3分,共30分) 1.-1-(-3)= 。
2.的绝对值是 ,相反数是 ,倒数是 。
3.单项式22xy π的系数是 ,次数是 。
4.若逆时针旋转90o 记作+1,则-2表示 。
5.如果a 、b 互为相反数,x 、y 互为倒数,那么(a+b )xy+a 2-b 2= 。
6.在数轴上,点A 表示数-1,距A 点个单位长度的点表示的数是 。
7.灾难无情人有情!某次在抗震救灾文艺汇演中,各界艺人和人士为地震灾区人民捐款捐物达万元。
将这个数字用科学计数法表示并保留三个有效数字为 元。
8.长方形的长是a 米,宽比长的2倍少b 米,则宽为 米。
9.若m 、n 满足2)3(2++-n m =0,则.__________=m n10.某厂10月份的产值是125万元,比3月份的产值的3倍少13万元,若设3月份的产值为x 万元,则可列出的方程为二、做出你的选择(每小题3分,共30分)11.如果向东走2km 记作+2km ,那么-3km 表示( ).A.向东走3kmB.向南走3kmC.向西走3kmD.向北走3km12.下列说法正确的是( )的系数为0 B. a1是一项式 是单项式 系数是4 13.下列各组数中是同类项的是( )和4y 和4xy 和-8x 2y 和4y 2x14.下列各组数中,互为相反数的有( ) ①2)2(----和 ②221)1(--和 ③2332和 ④332)2(--和 A.④ B.①② C.①②③ D.①②④15.若a+b<0,ab<0,则下列说法正确的是( )、b 同号 、b 异号且负数的绝对值较大、b 异号且正数的绝对值较大 D.以上均有可能16.下列计算正确的是( )+6x=-x =3xy =x 2121=0 17.数轴上的点M 对应的数是-2,那么将点M 向右移动4个单位长度,此时点M 表示的数是( )A. -6B. 2C. -6或2D.都不正确18.若x 的相反数是3,5y =,则x+y 的值为( ).A.-8B. 2C. 8或-2D.-8或219.若 3x=6,2y=4则5x+4y 的值为( )D. 620.若-3xy 2m 与5x 2n-3y 8是同类项,则m 、n 的值分别是( )=2,n =2 =4,n =1 =4,n =2 =2,n =3三、用心解答(共90分)21.(20分)计算(1) -26-(-15) (2)(+7)+(-4)-(-3)-14(3)(-3)×31÷(-2)×(-21) (4)-(3-5)+32×(-3)22.解方程(本题10分)(1)x+3x= -12 (2)3x+7=32-2x23.(6分)将下列各数用“<”连接:-22, -(-1), 0,24.(6分)若a 是绝对值最小的数,b 是最大的负整数。
雅安市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) -的绝对值是()A . 5B .C . -D . -52. (2分) (2016七上·平定期末) 下列说法正确的个数是()①|a|一定是正数;②﹣a一定是负数;③﹣(﹣a)一定是正数;④一定是分数.A . 0个B . 1个C . 2个D . 3个3. (2分)(2016·德州) 2016年第一季度,我市“蓝天白云、繁星闪烁”天数持续增加,获得山东省环境空气质量生态补偿资金408万元,408万用科学记数法表示正确的是()A . 408×B . 4.08×C . 4.08×D . 4.08×4. (2分) (2019七上·顺德期末) 两个单项式是同类项的是()A . 2x2y与2xy2B . ﹣x3与3x3C . 1与aD . ﹣3ab2c3与0.6b2c35. (2分)下列说法中正确的个数是()(1) a和0都是单项式。
(2)多项式-3a2b+7a2b2-2ab+1的次数是3。
(3)单项式-的系数为-2。
(4)x2+2xy-y2可读作x2、2xy、-y2的和。
A . 1个B . 2个C . 3个D . 4个6. (2分)下列说法中,正确的是()A . 倒数等于它本身的数是1B . 如果两条线段不相交,那么它们一定互相平行C . 等角的余角相等D . 任何有理数的平方都是正数二、填空题 (共10题;共11分)7. (1分)已知a﹣1的倒数是﹣,那么a+1的相反数是________.8. (1分) (2017八下·大庆期末) 写出满足14<a<15的无理数a的两个值为________9. (1分) (2019七上·龙华期中) 比较大小: ________10. (1分)某水果批发商购进一批苹果,共a箱,每箱b千克,若将这批苹果的放在大商场销售,则放在大商场销售的苹果有________ 千克(用含a、b的代数式表示).11. (1分) (2017七下·罗定期末) 在﹣,,,﹣,3.14,0,﹣1,,|﹣1|中,其中无理数有________个.12. (1分)若a、b互为相反数,c、d互为倒数,m的绝对值为2,则代数式m2﹣cd+ 的值为________.13. (1分)已知|m﹣2|+|3﹣n|=0,则﹣nm= ________14. (1分) (2019七上·海安月考) 数轴上有一个动点A向左移动2个单位长度到达B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数为________。
七年级(上)期中数学试卷一、选择题(每题3分,共30分)1.﹣3的相反数是()A.﹣B.C.﹣3 D.32.2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中“450亿”用科学记数法表示为()元.A.4.5×1010 B.4.5×109 C.4.5×108 D.0.45×1093.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.的系数是D.﹣22xab2的次数是64.|3.14﹣π|的值为()A.0 B. 3.14﹣π C.π﹣3.14 D.0.145.若﹣3x2m y3与2x4y n是同类项,那么m﹣n=()A.0 B. 1 C.﹣1 D.﹣26.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>07.计算(﹣2)11+(﹣2)10的值是()A.﹣2 B.(﹣2)21 C.0 D.﹣2108.减去﹣3x得x2﹣3x+6的式子为()A.x2+6 B.x2+3x+6 C.x2﹣6x D.x2﹣6x+69.若(a﹣1)2+|b+2|=0,则|a+b|的值是()A.3 B. 1 C. 2 D.﹣110.化简2a﹣[3b﹣5a﹣(2a﹣7b)]的结果是()A.﹣7a+10b B.5a+4b C.﹣a﹣4b D.9a﹣10b二、填空题(每题3分,共30分)11.单项式﹣的系数是,次数是.12.已知|x|=3,(y+1)2=4,且xy<0,则x﹣y的值是.13.观察一列数:,,,,,…根据规律,请你写出第10个数是.14.化简3x2﹣[7x﹣(4x﹣3)﹣2x2]的结果是.15.规定一种新运算:a△b=a•b﹣a﹣b+1,如3△4=3×4﹣3﹣4+1,则(﹣2)△5=.16.已知a、b互为相反数,m、n互为倒数,x的绝对值为2,计算﹣2mn+﹣x2=.17.计算:﹣15﹣(﹣8)+(﹣11)﹣12=.18.汽车向东行驶5千米记作+5千米,那么汽车向西行驶5千米记作.19.已知多项式3x m﹣1+3x﹣1是关于x的四次三项式,那么m的值为.20.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.三、解答题21.在数轴上表示下列各数,并把下列各数用“”号连接起来:﹣,﹣2,,﹣|﹣5|,﹣(﹣5)22.计算(1)|﹣|÷(﹣)﹣×(﹣2)2(2)﹣14+﹣(﹣4)×(﹣)23.先化简,再求值:(1)﹣(a2+2a)+3(a2﹣3a﹣),其中a=﹣1;(2)(4a2﹣2a﹣6)﹣2(2a2﹣2a﹣5).其中a=﹣2.24.已知一个三角形的第一条边长为(a+2b)厘米,第二条边比第一条边短(b﹣2)厘米,第三条边比第二条边短3厘米.(1)请用式子表示该三角形的周长(2)当a=2,b=3时,求此三角形的周长(3)当a=2,三角形的周长为27时,求此三角形各边的长.25.有这样一道题“当a=2,b=﹣2时,求多项式﹣2b2+3的值”,马小虎做题时把a=2错抄成a=﹣2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.26.某儿童服装店以每件32元的价格购进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同.若以47元为标准,将超出的钱数记为正数,不足的钱数记为负数,记录结果如下表所示:售出件数(件)7 6 3 5 4 5售价(元)+3 +2 +1 0 ﹣1 ﹣2(1)该服装店在售完这30件连衣裙后,赚了多少钱?(2)平均每件连衣裙赚了多少钱?(精确到0.01)参考答案与试题解析一、选择题(每题3分,共30分)1.﹣3的相反数是()A.﹣B.C.﹣3 D.3考点:相反数.分析:根据相反数的概念解答即可.解答:解:﹣3的相反数是﹣(﹣3)=3.故选:D.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中“450亿”用科学记数法表示为()元.A.4.5×1010 B.4.5×109 C.4.5×108 D.0.45×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将450亿用科学记数法表示为:4.5×1010.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.的系数是D.﹣22xab2的次数是6考点:多项式;单项式.专题:常规题型.分析:根据单项式和多项式的概念及性质判断各个选项即可.解答:解:A、2x2﹣3xy﹣1是二次三项式,故本选项不符合题意;B、﹣x+1不是单项式,故本选项不符合题意;C、的系数是,故本选项不符合题意;D、﹣22xab2的次数是4,故本选项符合题意.故选D.点评:本题考查单项式及多项式的知识,注意对这两个基本概念的熟练掌握,属于基础题,比较容易解答.4.|3.14﹣π|的值为()A.0 B. 3.14﹣π C.π﹣3.14 D.0.14考点:实数的性质.专题:计算题.分析:首先判断3.14﹣π的正负情况,然后利用绝对值的定义即可求解|.解答:解:∵3.14﹣π<0,∴|3.14﹣π|=π﹣3.14.故选C.点评:此题主要考查了绝对值的定义,解题时先确定绝对值符号中代数式的正负再去绝对值符号.5.若﹣3x2m y3与2x4y n是同类项,那么m﹣n=()A.0 B. 1 C.﹣1 D.﹣2考点:同类项.专题:计算题.分析:根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m和n的值,继而代入可得出答案.解答:解:∵﹣3x2m y3与2x4y n是同类项,∴2m=4,n=3,解得:m=2,n=3,∴m﹣n=﹣1.故选C.点评:此题考查同类项的定义,属于基础题,解答本题的关键是掌握同类项:所含字母相同,并且相同字母的指数也相同,难度一般.6.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>0考点:有理数的减法;数轴;有理数的加法.专题:常规题型.分析:先根据数轴判断出a、b的正负情况,以及绝对值的大小,然后对各选项分析后利用排除法求解.解答:解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.点评:本题考查了有理数的加法、减法,根据数轴判断出a、b的情况,以及绝对值的大小是解题的关键.7.计算(﹣2)11+(﹣2)10的值是()A.﹣2 B.(﹣2)21 C.0 D.﹣210考点:有理数的乘方.分析:乘方的运算可以利用乘法的运算来进行,运用乘法的分配律简便计算.解答:解:原式=(﹣2)10×(﹣2+1)=(﹣2)10×(﹣1)=﹣210.故选D.点评:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.本题运用乘法的分配律计算.负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.8.减去﹣3x得x2﹣3x+6的式子为()A.x2+6 B.x2+3x+6 C.x2﹣6x D.x2﹣6x+6考点:整式的加减.分析:本题考查整式的加法运算,要先去括号,然后合并同类项.解答:解:﹣3x+(x2﹣3x+6)=﹣3x+x2﹣3x+6=x2﹣6x+6故选D.点评:整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.合并同类项时,注意是系数相加减,字母与字母的指数不变.去括号时,括号前面是“﹣”号,去掉括号和“﹣”号,括号里的各项都要改变符号.9.若(a﹣1)2+|b+2|=0,则|a+b|的值是()A.3 B. 1 C. 2 D.﹣1考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:由题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,|a+b|=|1﹣2|=1.故选B.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.化简2a﹣[3b﹣5a﹣(2a﹣7b)]的结果是()A.﹣7a+10b B.5a+4b C.﹣a﹣4b D.9a﹣10b考点:整式的加减.分析:先去小括号,再去中括号,进而求解.解答:解:2a﹣[3b﹣5a﹣(2a﹣7b)]=2a﹣[3b﹣5a﹣2a+7b]=2a﹣(10b﹣7a)=9a﹣10b,故选D.点评:能够化简一些简单的整式.注意去括号法则.二、填空题(每题3分,共30分)11.单项式﹣的系数是,次数是4.考点:单项式.分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:根据单项式系数、次数的定义,数字因数是系数,字母的指数和1+3=4,故次数为4.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.12.已知|x|=3,(y+1)2=4,且xy<0,则x﹣y的值是6或﹣4.考点:有理数的混合运算.专题:计算题.分析:根据题意,求出x与y的值,即可求出x﹣y的值.解答:解:∵|x|=3,(y+1)2=4,且xy<0,∴x=3或﹣3,y+1=2或y+1=﹣2,解得:x=3,y=﹣3;x=﹣3,y=1,则x﹣y=6或﹣4.故答案为:6或﹣4.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.观察一列数:,,,,,…根据规律,请你写出第10个数是.考点:规律型:数字的变化类.分析:仔细观察给出的一列数字,从而可发现,分子等于其项数,分母为其所处的项数的平方加1,根据规律解题即可.解答:解:,,,,,…根据规律可得第n个数是,∴第10个数是,故答案为;.点评:本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.14.化简3x2﹣[7x﹣(4x﹣3)﹣2x2]的结果是5x2﹣3x﹣3.考点:整式的加减.分析:先去小括号,再去中括号,合并同类项即可.解答:解:原式=3x2﹣[7x﹣4x+3﹣2x2]=3x2﹣7x+4x﹣3+2x2=5x2﹣3x﹣3.故答案为:5x2﹣3x﹣3.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.15.规定一种新运算:a△b=a•b﹣a﹣b+1,如3△4=3×4﹣3﹣4+1,则(﹣2)△5=﹣12.考点:有理数的混合运算.专题:新定义.分析:根据题中的新定义计算即可得到结果.解答:解:根据题中的新定义得:(﹣2)△5=﹣10+2﹣5+1=﹣12.故答案为:﹣12点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.已知a、b互为相反数,m、n互为倒数,x的绝对值为2,计算﹣2mn+﹣x2=﹣7.考点:代数式求值;相反数;绝对值;倒数.专题:计算题.分析:利用相反数,倒数,以及绝对值的代数意义求出a+b,mn,以及x的值,代入原式计算即可得到结果.解答:解:根据题意得:a+b=0,mn=1,x=2或﹣2,则原式=﹣3+0﹣4=﹣7.故答案为:﹣7点评:此题考查了代数式求值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.17.计算:﹣15﹣(﹣8)+(﹣11)﹣12=﹣30.考点:有理数的加减混合运算.专题:计算题.分析:原式利用减法法则变形,计算即可得到结果.解答:解:原式=﹣15+8﹣11﹣12=﹣38+8=﹣30.故答案为:﹣30点评:此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.18.汽车向东行驶5千米记作+5千米,那么汽车向西行驶5千米记作﹣5千米.考点:正数和负数.分析:根据正数和负数表示相反意义的量,向东记作正,可得向西记作负.解答:解:汽车向东行驶5千米记作+5千米,那么汽车向西行驶5千米记作﹣5千米,故答案为:﹣5千米.点评:本题考查了正数和负数,向东记作正,向西记作负.19.已知多项式3x m﹣1+3x﹣1是关于x的四次三项式,那么m的值为5.考点:多项式.专题:计算题.分析:利用多项式的项与次数的定义判断即可求出m的值.解答:解:∵多项式3x m﹣1+3x﹣1是关于x的四次三项式,∴m﹣1=4,解得:m=5,故答案为:5点评:此题考查了多项式,熟练掌握多项式的项与次数定义是解本题的关键.20.根据如图所示的程序计算,若输入x的值为1,则输出y的值为4.考点:代数式求值.专题:图表型.分析:观察图形我们可以得出x和y的关系式为:y=2x2﹣4,因此将x的值代入就可以计算出y的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y的值.解答:解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.点评:解答本题的关键就是弄清楚题图给出的计算程序.由于代入1计算出y的值是﹣2,但﹣2<0不是要输出y的值,这是本题易出错的地方,还应将x=﹣2代入y=2x2﹣4继续计算.三、解答题21.在数轴上表示下列各数,并把下列各数用“”号连接起来:﹣,﹣2,,﹣|﹣5|,﹣(﹣5)考点:数轴.分析:先把各数在数轴上表示出来,再从左到右用“<”连接起来即可.解答:解:如图所示,,由图可知,﹣|﹣5|<﹣2<﹣<<﹣(﹣5).点评:本题考查的是数轴,熟知数轴上右边的数总比左边的大的特点是解答此题的关键.22.计算(1)|﹣|÷(﹣)﹣×(﹣2)2(2)﹣14+﹣(﹣4)×(﹣)考点:有理数的混合运算.专题:计算题.分析:(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.解答:解:(1)原式=÷﹣×4=﹣=;(2)原式=﹣1++2﹣1=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.先化简,再求值:(1)﹣(a2+2a)+3(a2﹣3a﹣),其中a=﹣1;(2)(4a2﹣2a﹣6)﹣2(2a2﹣2a﹣5).其中a=﹣2.考点:整式的加减—化简求值.专题:计算题.分析:(1)原式去括号合并得到最简结果,把a的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把a的值代入计算即可求出值.解答:解:(1)原式=﹣a2﹣2a+3a2﹣9a﹣1=2a2﹣11a﹣1,当a=﹣1时,原式=2+11﹣1=12;(2)原式=4a2﹣2a﹣6﹣4a2+4a+10=2a+4,当a=﹣2时,原式=﹣4+4=0.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.已知一个三角形的第一条边长为(a+2b)厘米,第二条边比第一条边短(b﹣2)厘米,第三条边比第二条边短3厘米.(1)请用式子表示该三角形的周长(2)当a=2,b=3时,求此三角形的周长(3)当a=2,三角形的周长为27时,求此三角形各边的长.考点:整式的加减;代数式求值.分析:(1)根据题意列出各边长的式子,再把各整式相加即可;(2)把a=2,b=3代入(1)中的式子即可;(3)把a=2代入(1)中的式子求出b的值,进而可得出结论.解答:解:(1)∵第一条边长为(a+2b)厘米,第二条边比第一条边短(b﹣2)厘米,∴第二条边长=(a+2b)﹣(b﹣2)=a+b+2;∵第三条边比第二条边短3厘米,∴第三条边长=a+b+2﹣3=a+b﹣1,∴该三角形的周长=(a+2b)+(a+b+2)+(a+b﹣1)=3a+4b+1;(2)∵由(1)知该三角形的周长=3a+4b+1,∴当a=2,b=3时,该三角形的周长=3×2+4×3+1=19;(3)∵当a=2时,三角形的周长为27,∴3×2+4b+1=27,解得b=5,∴第一条边长=a+2b=2+10=12;第二条边长=a+b+2=2+5+2=9;第三条边长=a+b﹣1=2+5﹣1=6.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.25.有这样一道题“当a=2,b=﹣2时,求多项式﹣2b2+3的值”,马小虎做题时把a=2错抄成a=﹣2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.考点:整式的加减.专题:应用题.分析:先通过去括号、合并同类项对多项式进行化简,然后代入a、b的值进行计算.解答:解:﹣2b2+3=(3﹣4+1)a3b3+(﹣++)a2b+(1﹣2)b2+b+3=b﹣b2+3.因为它不含有字母a,所以代数式的值与a的取值无关.点评:整式的加减运算实际上就是去括号、合并同类项;与某字母的取值无关,则是式子中不含该字母.26.某儿童服装店以每件32元的价格购进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同.若以47元为标准,将超出的钱数记为正数,不足的钱数记为负数,记录结果如下表所示:售出件数(件)7 6 3 5 4 5售价(元)+3 +2 +1 0 ﹣1 ﹣2(1)该服装店在售完这30件连衣裙后,赚了多少钱?(2)平均每件连衣裙赚了多少钱?(精确到0.01)考点:正数和负数.分析:(1)首先由进货量和进货单价计算出进货的成本,然后再根据售价计算出赚了多少钱.(2)用赚的钱数÷30即可.解答:解:(1)7×(47+3)+6×(47+2)+3×(47+1)+5×47+4×(47﹣1)+5×(47﹣2)=350+294+144+235+184+225=1432,∵30×32=960,∴1432﹣960=472,∴售完这30件连衣裙后,赚了472元;(2)472÷30≈15.73(元).∴平均每件连衣裙赚了15.73元.点评:本题主要考查有理数的混合运算,关键在于根据表格计算出一共卖了多少钱.。
四川省雅安市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分)用平面去截一个几何体,如果截面的形状是圆,则原来的几何体的形状是()A . 圆柱B . 圆锥C . 球D . 以上都有可能2. (2分)下列说法正确的是()A . 一个数的相反数一定是负数B . 若|a|=|b|,则a=bC . 若|m|=2,则m=±2D . ﹣a一定是负数3. (2分)(2017·宜昌模拟) 用五块大小相同的小正方体搭成如图所示的几何体,这个几何体的俯视图是()A .B .C .D .4. (2分)娄底市针对城区中小学日益突出的“大班额”问题,决定自2012年起启动《中心城区化解大班额四年(2012年~2015年)行动计划》,计划投入资金8.71亿元,力争新增学位3.29万个.3.29万用科学记数法表示为()A . 3.29×105B . 3.29×106C . 3.29×104D . 3.29×1035. (2分)下列各组数中互为相反数的一组是()。A . -2与B . -2与C . -2与D . 与26. (2分)汽车向南行驶10千米记作10千米,那么汽车向北行驶10千米记作()A . 0千米B . ﹣10千米C . ﹣20千米D . 10千米7. (2分)下列计算正确的是A . a2•a3=a6B . a6÷a3=a2C . (-2a2)3=-8a6D . 4x2-3x2=18. (2分)(2018·恩施) 下列计算正确的是()A . a4+a5=a9B . (2a2b3)2=4a4b6C . ﹣2a(a+3)=﹣2a2+6aD . (2a﹣b)2=4a2﹣b29. (2分)已知实数m、n在数轴上的对应点的位置如图所示,则下列判断正确的是()A . m>0B . n<0C . mn<0D . m-n>010. (2分) (2017八上·扶余月考) 若,,则代数式的值等于()A .B .C .D . 2二、填空题 (共8题;共9分)11. (2分) (2017七下·苏州期中) 单项式的系数为________,次数为________12. (1分) (2016七上·阳新期中) 如果物体向东运动6米记作+6米,那么﹣5米表示的意义是________.13. (1分) (2016七下·海宁开学考) 一张纸的厚度为0.09mm,假设连续对折始终是可能的.那么要使对折后的纸的厚度超过你的身高(假设为1.62m),则至少要对折________次.14. (1分)已知(39+)×(40+)=a+b,若a是整数,1<b<2,则a=________ .15. (1分)若3a2bn﹣5amb4所得的差是单项式,则这个单项式是________ .16. (1分) (2018八上·汕头期中) 若实数x,y满足(2x+3)2+|9-4y|=0,则xy的立方根为________。
2015-2016学年七年级上学期期中考试数学试卷(满分120分,考试时间120分钟) 座位号_______一、选择题(每题..3分,共3×8=24分) 1. 下列各数中,是负数的是 ( )A. )9(--B. )9(+-C. 9-D. 2)9(-2. (-3)4表示( )A .-3个4相乘 B.4个-3相乘 C. 3个4相乘 D.4个3相乘 3.单项式322xy π-的系数和次数分别是 ( )A.3 , 32 B. -3 , 32C. 3 , 32π-D. 2 , 2- 4. 光年是天文学中的距离单位,1光年大约是9500 000 000 000㎞,这个数据用科学记数法表示是( )A.131095.0⨯ ㎞B.12105.9⨯ ㎞C.111095⨯ ㎞D.1010950⨯ ㎞5. 下列计算正确的是 ( )(A) 09)3(3=+- (B) 36)9()4(-=-⨯- (C) 13223=÷ (D) 4)2(23=-÷-6. 下列说法正确的是( )A .0.600精确到十分位B .5.7万精确到0.1C .6.610精确到千分位D .410708.2⨯精确到千分位 7.a 、b 为有理数,它们在数轴上的对应点的位置如图所示,把a 、-a 、b 、-b 按照从小到大的顺序排序是 ( )A.-b ﹤-a ﹤a ﹤bB.-a ﹤-b ﹤a ﹤bC.-b ﹤a ﹤-a ﹤bD.-b ﹤b ﹤-a ﹤a8. 以下说法正确的有( )(1)不是正数的数一定是负数;(2) 0C表示没有温度; (3)小华的体重增长了-2 kg 表示小华的体重减少2 kg ;(4)数轴上离原点越远,数就越小;(5) 绝对值等于其本身的有理数只有零A 、1个B 、2个C 、3个D 、4个 二、填空题(每.题.3分,共3×8=24分) 9. -9的相反数是 ,3.0-的倒数是 w10. 倒数等于本身的数是 ,绝对值等于本身的数是 11. 比较大小:① 2-- )2(-- ② -0.5 13--12. 某旅游景点11月5日的最低气温为2-,最高气温为8℃,那么该景点这天的温差是____.C13.a =51,则a1= . 14. 两个有理数之积是1,已知一个数是—712,则另一个数是 15. 若 7=a , 2=b ,且b a >,则b a -= 16. 观察一列数:123456,,,,,2510172637---……根据规律,请你写出第10个数是 。
2014-2015学年四川省雅安中学七年级(上)期中数学试卷一.选择题(本大题共18小题,每小题2分,共36分)在每小题给出的四个选项中,有且只有一个选项是正确的,请将正确选项的代号填涂在机读卡.1.(2分)下面哪些图形经过折叠可以围成棱柱?()A.B.C.D.2.(2分)如图所示的几何体甲截面的形状是图乙中的()A.B.C.D.3.(2分)如图所示,从正面看,所能看到的结果是图形()A.B.C.D.4.(2分)侧面展开图是一个长方形的几何体是()A.圆锥B.圆柱C.棱锥D.球5.(2分)如图所示的图形绕虚线旋转一周所成的几何体是()A.B.C.D.6.(2分)绝对值等于本身的有理数共有()A.1个 B.2个 C.0个 D.无数个7.(2分)下列说法中,正确的是()A.整数就是正整数和负整数B.﹣a一定是负数C.+5是表示向东走5米D.零既不是正数,也不是负数8.(2分)如果+10米表示向东走10米,则﹣20米表示()A.向南走20米B.向北走20米C.向西走20米D.以上说法都可以9.(2分)下列各组数中:①﹣52和(﹣5)2;②(﹣3)3和﹣33;③﹣(﹣0.3)5和0.35;④0100和0200;⑤(﹣1)3和﹣(﹣1)2.相等的共有()A.2组 B.3组 C.4组 D.5组10.(2分)在下列选项中,具有相反意义的量是()A.向东走3千米与向北走3千米B.收入与支出C.气温上升3℃与上升7℃ D.5个老人与5个小孩11.(2分)据宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数法表示为()A.7.6057×105人B.7.6057×106人C.7.6057×107人D.0.76057×107人12.(2分)如果|﹣a|=﹣a,那么()A.﹣a一定是负数B.﹣a一定是非负数C.|a|一定是正数D.﹣|a|不能是零13.(2分)计算|﹣1|﹣|﹣2|+(﹣3)﹣(﹣4)+|﹣5|﹣(﹣6)=()A.11 B.10 C.﹣3 D.﹣214.(2分)实数a,b,c在数轴上对应点的位置如图,下列式子中正确的有()①b+c>0;②a+b>a+c;③bc>ac;④ab>ac.A.1个 B.2个 C.3个 D.4个15.(2分)如果﹣a2b2n﹣1是五次单项式,则n的值为()A.1 B.2 C.3 D.416.(2分)a与﹣2的积,应表示为()A.a×(﹣2)B.﹣2×a C.﹣2 a D.﹣a17.(2分)一个两位数,其两个数字之和为13,个位上数字为a,则这个两位数是()A.(13﹣a)a B.10a+(13﹣a)C.10(13﹣a)D.10(13﹣a)+a 18.(2分)表示“x与﹣4的和的3倍”的代数式为()A.x+(﹣4)×3 B.x﹣(﹣4)×3 C.3[x+(﹣4)]D.3(x+4)二.填空题(本大题共10个小题,每小题2分,共20分).19.(2分)下图所示图形中能围成一个正方体的是.20.(2分)在4.5,﹣,2.51,0,﹣1.98,,0.8080080008…中,是非负数,是正有理数.21.(2分)若﹣(a﹣3)是负数,则a﹣3是,若﹣[﹣(a+b)]是负数,则a+b是.22.(2分)的倒数是,相反数是,绝对值是.23.(2分)已知|m﹣2|+(3﹣n)2=0,则﹣(﹣n)m=.24.(2分)如图所示,这是一个正方体纸盒的展开图,在其中的三个正方形A、B、C内分别填入适当的数,使它们折成正方体后相对的面上的两个数互为相反数,则A=,B=.25.(2分)数轴上的点A表示的是数1,点B表示的是数5,那么到点A距离等于2的点C所表示的数为,点C与点B的距离等于.26.(2分)在直径为a+b的圆形钢板上,挖上直径为a与b的两个小圆板,则剩下的钢板面积是.27.(2分)代数式3a﹣b的意义是.28.(2分)下图中是由火柴搭成的五边形.搭一个五边形用了五根火柴棒,按照这样的规律,搭n个五边形需要火柴棒根.三.解答题(44分)29.(6分)如图,是由6个相同的长方体堆成的物体,试画出这一物体的主视图、左视图、俯视图.30.(4分)在数轴上标出下列各数,并用“<”把各数连接起来:﹣4,2,﹣(+),1,﹣|﹣1|.31.(16分)计算下列各题:(1)[3÷(﹣)×]4﹣2(﹣3)3﹣(﹣5)2;(2)4(x2﹣2xy)﹣3(xy﹣y2)+5(2x2﹣3y2);(3)已知|2a+1|+4|b﹣4|+(c+1)2=0,求9a2b2﹣{ac2﹣[6a2b2+(4a2c﹣3ac2)]﹣6a2c}的值.32.(4分)有理数a、b、c在数轴上对应的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|+|b﹣a|﹣|b﹣c|.33.(6分)某地电话拨号入网有两种收费方式,用户可以任选其一.(Ⅰ)计时制:0.05元/分;(Ⅱ)包月制:50元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通信费0.02元/分.(1)某用户某月上网的时间为x小时,请你分别写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?34.(8分)将连续的奇数1、3、5、7、9、…排成如图所示的数阵.(1)十字框中的五个数的和与中间数15有什么关系?(2)设中间数为a,用代数式表示十字框中五数之和.(3)若将十字框上下、左右平移,可框住另外五个数,这五个数的和还有这种规律吗?(4)十字框中五数之和能等于2005吗?若能,请写出这五个数,若不能,说明理由.2014-2015学年四川省雅安中学七年级(上)期中数学试卷参考答案与试题解析一.选择题(本大题共18小题,每小题2分,共36分)在每小题给出的四个选项中,有且只有一个选项是正确的,请将正确选项的代号填涂在机读卡.1.(2分)下面哪些图形经过折叠可以围成棱柱?()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A侧面有3个,上下两地为四边形,无法构成棱柱,选项C、D中,上、下两底面不在侧面展开图长方形的两侧,所以不能围成一个棱柱,选项B可以围成一个四棱柱.故选:B.2.(2分)如图所示的几何体甲截面的形状是图乙中的()A.B.C.D.【分析】根据截面过圆锥的顶点、底面圆心是一个三角形,可得答案.【解答】解;截面过圆锥的顶点、底面圆心是一个三角形,故选:B.3.(2分)如图所示,从正面看,所能看到的结果是图形()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解;从正面看;下面是矩形,矩形的左上角是一个小正方形,中间是一个等边三角形,上面是y形,故选:A.4.(2分)侧面展开图是一个长方形的几何体是()A.圆锥B.圆柱C.棱锥D.球【分析】根据圆锥、圆柱、棱锥和球的特点得到其侧面展开图,然后作出选择即可.【解答】解:A、圆锥侧面展开图是一个扇形,故选项错误;B、圆柱侧面展开图是一个长方形,故选项正确;C、棱锥侧面展开图不是一个长方形,故选项错误;D、球的侧面展开图不是一个长方形,故选项错误.故选:B.5.(2分)如图所示的图形绕虚线旋转一周所成的几何体是()A.B.C.D.【分析】此题需把三角形分解为上、下两个直角三角形,上面的直角三角形旋转一周后是一个圆锥,下面的直角三角形旋转一周后也是一个圆锥.所以应是圆锥和圆锥的组合体.【解答】解:由题意可知,该图应是圆锥和圆锥的组合体.故选:D.6.(2分)绝对值等于本身的有理数共有()A.1个 B.2个 C.0个 D.无数个【分析】根据正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0进行判断.【解答】解:有理数的绝对值等于其本身的数是正数和0,所以有无数个.故选:D.7.(2分)下列说法中,正确的是()A.整数就是正整数和负整数B.﹣a一定是负数C.+5是表示向东走5米D.零既不是正数,也不是负数【分析】根据有理数和相反数的定义,利用排除法求解.【解答】解:A、整数就是正整数,0和负整数,故A错误;B、a可能为正数、负数、也可能是0,﹣a也可能是正数、负数、也可能是0,故B错误;C、没有规定向哪个方向为正,故C错误;D、零既不是正数也不是负数,故D正确.故选:D.8.(2分)如果+10米表示向东走10米,则﹣20米表示()A.向南走20米B.向北走20米C.向西走20米D.以上说法都可以【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以如果+10米表示向东走10米,那么﹣20米表示向西走20米.故选:C.9.(2分)下列各组数中:①﹣52和(﹣5)2;②(﹣3)3和﹣33;③﹣(﹣0.3)5和0.35;④0100和0200;⑤(﹣1)3和﹣(﹣1)2.相等的共有()A.2组 B.3组 C.4组 D.5组【分析】首先计算出各组数的值,然后作出判断.【解答】解:①﹣52=﹣25,(﹣5)2=25;②(﹣3)3=﹣27和﹣33=﹣27;③﹣(﹣0.3)5=0.00729,0.35=0.00729;④0100=0200=0;⑤(﹣1)3=﹣1,﹣(﹣1)2=﹣1.故②③④⑤组相等.故选:C.10.(2分)在下列选项中,具有相反意义的量是()A.向东走3千米与向北走3千米B.收入与支出C.气温上升3℃与上升7℃ D.5个老人与5个小孩【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,本题收入与支出具有相反意义.【解答】解:A、向东与向北不具有相反意义,不符合题意,此选项错误,B、收入与支出具有相反意义,符合题意,此选项正确,C、上升与上升不具有相反意义,不符合题意,此选项错误,D、老人与小孩不具有相反意义,不符合题意,此选项错误,故选:B.11.(2分)据宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数法表示为()A.7.6057×105人B.7.6057×106人C.7.6057×107人D.0.76057×107人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,由760.57万=7605700共有7位,所以,n=7﹣1=6.【解答】解:∵760.57万=7605700,∴7605700=7.6057×106.故选:B.12.(2分)如果|﹣a|=﹣a,那么()A.﹣a一定是负数B.﹣a一定是非负数C.|a|一定是正数D.﹣|a|不能是零【分析】根据一个数的绝对值是其本身,那么这个数一定是非负数可以解题.【解答】解:∵|﹣a|=﹣a,∴﹣a一定是非负数.故选:B.13.(2分)计算|﹣1|﹣|﹣2|+(﹣3)﹣(﹣4)+|﹣5|﹣(﹣6)=()A.11 B.10 C.﹣3 D.﹣2【分析】原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1﹣2﹣3+4+5+6=11.故选:A.14.(2分)实数a,b,c在数轴上对应点的位置如图,下列式子中正确的有()①b+c>0;②a+b>a+c;③bc>ac;④ab>ac.A.1个 B.2个 C.3个 D.4个【分析】根据不等式的性质,可得答案.【解答】解:①b+c<0,故①错误;②不等式的两边都加或减同一个整式,不等号的方向不变,故②正确;③不等式的两边都乘以或除以同一个负数,不等号的方向改变,故③正确;④不等式的两边都乘以或除以同一个正数,不等号的方向不变,故④正确;故选:C.15.(2分)如果﹣a2b2n﹣1是五次单项式,则n的值为()A.1 B.2 C.3 D.4【分析】根据单项式的概念求解即可.【解答】解:∵﹣a2b2n﹣1是五次单项式,∴2+2n﹣1=5,解得:n=2.故选:B.16.(2分)a与﹣2的积,应表示为()A.a×(﹣2)B.﹣2×a C.﹣2 a D.﹣a【分析】a与﹣2的积,即a×(﹣2).【解答】解:a与﹣2的积应该表示为a×(﹣2).故选:A.17.(2分)一个两位数,其两个数字之和为13,个位上数字为a,则这个两位数是()A.(13﹣a)a B.10a+(13﹣a)C.10(13﹣a)D.10(13﹣a)+a 【分析】先表示出十位上的数字,然后表示出两位数.【解答】解:十位上的数字为:13﹣a,则这个两位数为:10(13﹣a)+a.故选:D.18.(2分)表示“x与﹣4的和的3倍”的代数式为()A.x+(﹣4)×3 B.x﹣(﹣4)×3 C.3[x+(﹣4)]D.3(x+4)【分析】本题考查列代数式,要明确给出文字语言中的运算关系,先求和,然后倍数.【解答】解:和为:x+(﹣4),∴x与﹣4的和的3倍为:3[x+(﹣4)].二.填空题(本大题共10个小题,每小题2分,共20分).19.(2分)下图所示图形中能围成一个正方体的是A、C.【分析】根据正方体展开图的常见形式作答即可.【解答】解:由展开图可知:A、C能围成正方体,符合题意;B、D围成几何体时,有两个面重合,故不能围成正方体,不符合题意.故答案为:A、C.20.(2分)在4.5,﹣,2.51,0,﹣1.98,,0.8080080008…中, 4.5,2.51,0,,0.8080080008…是非负数, 4.5,2.51,.是正有理数.【分析】根据有理数的定义及正负数的定义进行判断即可.【解答】解:在4.5,﹣,2.51,0,﹣1.98,,0.8080080008…中,非负数有:4.5,2.51,0,,0.8080080008…;正有理数有:4.5,2.51,.故答案为:4.5,2.51,0,,0.8080080008…;4.5,2.51,.21.(2分)若﹣(a﹣3)是负数,则a﹣3是正数,若﹣[﹣(a+b)]是负数,则a+b是负数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣(a﹣3)=a+3是负数,a﹣3是正数;﹣[﹣(a+b)]=a+b是负数,故答案为:正数,负数.22.(2分)的倒数是,相反数是,绝对值是.【分析】求一个数的倒数即1除以这个数;a的相反数是﹣a;负数的绝对值是它的相反数.【解答】解:的倒数是=﹣;的相反数是1;的绝对值是1.故答案为﹣;1;1.23.(2分)已知|m﹣2|+(3﹣n)2=0,则﹣(﹣n)m=﹣9.【分析】根据绝对值及偶次方的非负性,可得m、n的值,代入计算即可.【解答】解:∵|m﹣2|+(3﹣n)2=0,∴m=2,n=3,∴﹣(﹣n)m=﹣9.故答案为:﹣9.24.(2分)如图所示,这是一个正方体纸盒的展开图,在其中的三个正方形A、B、C内分别填入适当的数,使它们折成正方体后相对的面上的两个数互为相反数,则A=1,B=﹣2.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再根据只有符号不同的两数叫做互为相反数解答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣1”是相对面,“B”与“2”是相对面,“C”与“0”是相对面,∵相对的面上的两个数互为相反数,∴A=1,B=﹣2.故答案为:1;﹣2.25.(2分)数轴上的点A表示的是数1,点B表示的是数5,那么到点A距离等于2的点C所表示的数为﹣1或3,点C与点B的距离等于6或2.【分析】C点的位置分为两种情况:①在A点的左边,②在A点的右边;根据两点间的距离公式计算,即可得到点C与点B的距离.【解答】解:当C点在A点的左边时,1﹣2=﹣1,C点表示的数是﹣1,此时点C与点B的距离=|﹣1﹣5|=6,当C点在A点的右边时,1+2=3,C点表示的数是3,此时点C与点B的距离=|3﹣5|=2,故到点A距离等于2的点C所表示的数为:﹣1或3;点C与点B的距离等于6或2.故答案为:﹣1或3;6或2.26.(2分)在直径为a+b的圆形钢板上,挖上直径为a与b的两个小圆板,则剩下的钢板面积是ab.【分析】用圆形钢板的面积减去两个小圆板的面积求解.【解答】解:剩下的钢板面积=π()2﹣π()2﹣π()2=ab.故答案为:ab.27.(2分)代数式3a﹣b的意义是如一个苹果的质量是a,一个桔子的质量是b,那么3个苹果比一个桔子的质量多多少?.【分析】结合实际情境作答,答案不唯一,如一个苹果的质量是a,一个桔子的质量是b,那么3个苹果比一个桔子的质量多多少是3a﹣b.【解答】解:答案不唯一.如一个苹果的质量是a,一个桔子的质量是b,那么3个苹果比一个桔子的质量多多少?故答案为:如一个苹果的质量是a,一个桔子的质量是b,那么3个苹果比一个桔子的质量多多少是3a﹣b.28.(2分)下图中是由火柴搭成的五边形.搭一个五边形用了五根火柴棒,按照这样的规律,搭n个五边形需要火柴棒4n+1根.【分析】搭一个五边形需5根火柴,搭2个五边形中间少用1根,需要9根火柴棒,搭3个五边形中间少用2根,需要13根火柴棒,搭4个五边形中间少用3根,需要17根火柴棒…搭n个五边形中间少用(n﹣1)根,需要[5n﹣(n﹣1)]=4n+1根火柴棒.【解答】解:搭一个五边形需5根火柴,搭2个五边形中间少用1根,需要9根火柴棒,搭3个五边形中间少用2根,需要13根火柴棒,搭4个五边形中间少用3根,需要17根火柴棒,…搭n个五边形中间少用(n﹣1)根,需要[5n﹣(n﹣1)]=4n+1根火柴棒;故答案为:4n+1.三.解答题(44分)29.(6分)如图,是由6个相同的长方体堆成的物体,试画出这一物体的主视图、左视图、俯视图.【分析】利用画立体图形的三视图要循序渐进,不妨从熟悉的图形出发,对于一般的立体图要通过仔细观察和想象,再画它的三视图,进而得出答案.【解答】解:如图所示:.30.(4分)在数轴上标出下列各数,并用“<”把各数连接起来:﹣4,2,﹣(+),1,﹣|﹣1|.【分析】首先在数轴上表示出各个数字,然后比较大小.【解答】解:在数轴上表示为:,用“<”把各数连接起来为:﹣4<﹣|﹣1|<﹣(+)<1<2.31.(16分)计算下列各题:(1)[3÷(﹣)×]4﹣2(﹣3)3﹣(﹣5)2;(2)4(x2﹣2xy)﹣3(xy﹣y2)+5(2x2﹣3y2);(3)已知|2a+1|+4|b﹣4|+(c+1)2=0,求9a2b2﹣{ac2﹣[6a2b2+(4a2c﹣3ac2)]﹣6a2c}的值.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式去括号合并即可得到结果;(3)原式去括号合并得到最简结果,利用非负数的性质求出a,b,c的值,代入原式计算即可得到结果.【解答】解:(1)原式=(﹣××)4+54﹣25=1+54﹣25=30;(2)原式=4x2﹣8xy﹣3xy+3y2+10x2﹣15y2=14x2﹣11xy﹣12y2;(3)原式=9a2b2﹣ac2+6a2b2+4a2c﹣3ac2+6a2c=15a2b2+10a2c﹣4ac2,∵|2a+1|+4|b﹣4|+(c+1)2=0,∴a=﹣,b=4,c=﹣1,则原式=60﹣+2=59.5.32.(4分)有理数a、b、c在数轴上对应的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|+|b﹣a|﹣|b﹣c|.【分析】先根据各点在数轴上的位置判断出其符号,再去绝对值符号,合并同类项即可.【解答】解:∵由图可知,c<﹣1<b<a,∴a+c>0,a﹣b﹣c>0,b﹣a<0,b﹣c>0,∴原式=a+c﹣(a﹣b﹣c)﹣(b﹣a)﹣(b﹣c)=a+c﹣a+b+c﹣b+a﹣b+c=a﹣b+c.33.(6分)某地电话拨号入网有两种收费方式,用户可以任选其一.(Ⅰ)计时制:0.05元/分;(Ⅱ)包月制:50元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通信费0.02元/分.(1)某用户某月上网的时间为x小时,请你分别写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?【分析】(1)第一种是费用=每分钟的费用×时间+通信费,第二种的费用=月费+通信费;(2)分别计算x=20时对应的费用,再进行比较.【解答】解:(1)采用计时制应付的费用为:0.05•x•60+0.02•x•60=4.2x(元).采用包月制应付的费用为:50+0.02•x•60=(50+1.2x)(元);(2)若一个月内上网的时间为20小时,则计时制应付的费用为84元,包月制应付的费用为74元,很明显,包月制较为合算.34.(8分)将连续的奇数1、3、5、7、9、…排成如图所示的数阵.(1)十字框中的五个数的和与中间数15有什么关系?(2)设中间数为a,用代数式表示十字框中五数之和.(3)若将十字框上下、左右平移,可框住另外五个数,这五个数的和还有这种规律吗?(4)十字框中五数之和能等于2005吗?若能,请写出这五个数,若不能,说明理由.【分析】(1)先求出这5个数的和,用这个和去除以中间的这个数15就可以得出结论;(2)由左右相邻两个奇数之间相差2,上下相邻两个奇数之间相差10,就可以分别表示出这5个数,进而得出结论;(3)同样设中间数为b,就可以表示出这5个数的和,得出结论与(1)一样;(4)设中间的一个数为x,建立方程求出x的值就可以得出结论.【解答】解:(1)由题意,得5+13+15+17+25=75.75÷15=5.∴十字框中的五个数的和是中间数15的5倍;(2)设中间数为a,则其余的4个数分别为a﹣2,a+2,a﹣10,a+10,由题意,得a+a﹣2+a+2+a﹣10+a+10=5a.答:5个数之和为5a;(3)设设中间数为b,则其余的4个数分别为b﹣2,b+2,b﹣10,b+10,由题意,得∵b+b﹣2+b+2+b﹣10+b+10=5b,∴这五个数的和还是中间这个数的5倍;(4)设中间的一个数为x,则其余的4个数分别为x﹣2,x+2,x﹣10,x+10,由题意,得x+x﹣2+x+2+x﹣10+x+10=2005,解得:x=401.∵401在最左边,∴不存在十字框中五数之和等于2005.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。