2019版高考数学(文)高分计划一轮狂刷练:第2章函数、导数及其应用 2-6a Word版含解析
- 格式:doc
- 大小:145.50 KB
- 文档页数:9
[重点保分 两级优选练]A 级一、选择题1.(2017·安庆二模)若函数y =a e x +3x 在R 上有小于零的极值点,则实数a 的取值范围是( )A .(-3,+∞)B .(-∞,-3) C.⎝ ⎛⎭⎪⎫-13,+∞ D.⎝⎛⎭⎪⎫-∞,-13 答案 B解析 y =a e x +3x ,求导,y ′=a e x +3, 由若函数y =a e x +3x 在R 上有小于零的极值点, 则y ′=a e x +3=0有负根,则a ≠0, 则e x =-3a 在y 轴的左侧有交点, ∴0<-3a <1,解得:a <-3,实数a 的取值范围为(-∞,-3).故选B.2.(2018·太原模拟)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,g (x )≠0,当x <0时,f ′(x )g (x )-f (x )g ′(x )>0,且f (-3)=0,则不等式f (x )g (x )<0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)答案 D解析 ∵当x <0时,f ′(x )·g (x )-f (x )g ′(x )>0,∴⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x )>0, ∴当x <0时,f (x )g (x )是增函数,故当x >0时,f (x )g (x )也是增函数.∵f (x ),g (x )分别是定义在R 上的奇函数和偶函数,∴f (x )g (x )为奇函数,f (x )g (x )的图象关于原点对称, 函数f (x )g (x )的单调性的示意图,如图所示:∵f (-3)=0,∴f (3)=0,∴由不等式f (x )g (x )<0,可得x <-3或0<x <3,故原不等式的解集为{x |x <-3或0<x <3}.故选D.3.(2017·冀州月考)函数f (x )=x 3+bx 2+cx +d 的图象如图所示,则x 21+x 22等于( )A.23 B.43 C.83 D.163答案 C解析 由图象可得f (x )=0的根为0,1,2,故d =0,f (x )=x (x 2+bx+c ),则1,2为x 2+bx +c =0的根,由根与系数的关系得b =-3,c =2,故f (x )=x 3-3x 2+2x ,则f ′(x )=3x 2-6x +2,由图可得x 1,x 2为3x 2-6x +2=0的根,则x 1+x 2=2,x 1x 2=23,故x 21+x 22=(x 1+x 2)2-2x 1x 2=83.故选C.4.(2017·合肥期中)已知a 2+2a +2x ≤4x 2-x +1对于任意的x ∈(1,+∞)恒成立,则( )A .a 的最小值为-3B .a 的最小值为-4C .a 的最大值为2D .a 的最大值为4答案 A解析 a 2+2a +2x ≤4x 2-x +1对于任意的x ∈(1,+∞)恒成立,转化为a 2+2a +2≤4x -1+x =f (x )的最小值.f ′(x )=(x +1)(x -3)(x -1)2,可得x =3时,函数f (x )取得极小值即最小值f (3)=5. ∴a 2+2a +2≤5,化为a 2+2a -3≤0, 即(a +3)(a -1)≤0,解得-3≤a ≤1. 因此a 的最小值为-3.故选A.5.(2018·兴庆区模拟)设f (x )是定义在R 上的函数,其导函数为f ′(x ),若f (x )+f ′(x )>1,f (0)=2018,则不等式e x f (x )>e x +2017(其中e 为自然对数的底数)的解集为( )A .(-∞,0)∪(0,+∞)B .(0,+∞)C .(2017,+∞)D .(-∞,0)∪(2017,+∞)答案 B解析 设g (x )=e x f (x )-e x ,则g ′(x )=e x f (x )+e x f ′(x )-e x =e x [f (x )+f ′(x )-1],∵f (x )+f ′(x )>1,e x >0,∴g ′(x )=e x [f (x )+f ′(x )-1]>0, ∴g (x )是R 上的增函数. 又g (0)=f (0)-1=2017, ∴g (x )>2017的解集为(0,+∞),即不等式e x f (x )>e x +2017的解集为(0,+∞).故选B.6.(2017·五华区校级模拟)设函数f (x )=x (ln x -ax )(a ∈R )在区间(0,2)上有两个极值点,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎭⎪⎫0,ln 2+14 C.⎝ ⎛⎭⎪⎫12,1 D.⎝ ⎛⎭⎪⎫ln 2+14,12 答案 D解析 f (x )=x (ln x -ax ),求导f ′(x )=ln x -2ax +1,由题意,关于x 的方程2ax =ln x +1在区间(0,2)有两个不相等的实根,则y =2ax 与y =ln x +1有两个交点,由y =ln x +1,求导y ′=1x ,设切点(x 0,y 0),ln x 0+1x 0=1x 0,解得x 0=1,∴切线的斜率k =1,则2a =1,a =12, 则当x =2,则直线斜率k =ln 2+12,则a =ln 2+14,∴a 的取值范围为⎝ ⎛⎭⎪⎫ln 2+14,12.故选D. 7.(2017·江西模拟)若函数f (x )=a (x -2)e x +ln x +1x 存在唯一的极值点,且此极值大于0,则( )A .0≤a <1eB .0≤a <1e 2C .-1e <a <1e 2D .0≤a <1e 或a =-1e答案 A解析 f (x )=a (x -2)e x+ln x +1x ,x >0,∴f ′(x )=a (x -1)e x+1x -1x 2=(x -1)⎝ ⎛⎭⎪⎫a e x +1x 2,由f ′(x )=0得到x =1或a e x+1x 2=0(*).由于f (x )仅有一个极值点,关于x 的方程(*)必无解, ①当a =0时,(*)无解,符合题意, ②当a ≠0时,由(*)得,a =-1e x x 2,∴a >0,由于这两种情况都有,当0<x <1时,f ′(x )<0,于是f (x )为减函数, 当x >1时,f ′(x )>0,于是f (x )为增函数, ∴x =1为f (x )的极值点, ∵f (1)=-a e +1>0,∴a <1e .综上可得a 的取值范围是⎣⎢⎡⎭⎪⎫0,1e .故选A. 8.(2017·濮阳期末)函数f (x )=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( )A .20B .18C .3D .0 答案 A解析 对于区间[-3,2]上的任意x 1,x 2都有|f (x 1)-f (x 2)|≤t ,等价于对于区间[-3,2]上的任意x ,都有f (x )max -f (x )min ≤t .∵f (x )=x 3-3x -1,∴f ′(x )=3x 2-3=3(x -1)(x +1), ∵x ∈[-3,2],∴函数在[-3,-1],[1,2]上单调递增,在[-1,1]上单调递减, ∴f (x )max =f (2)=f (-1)=1, f (x )min =f (-3)=-19, ∴f (x )max -f (x )min =20, ∴t ≥20,∴实数t 的最小值是20.故选A.9.(2018·黄陵县模拟)已知函数y =x e x +x 2+2x +a 恰有两个不同的零点,则实数a 的取值范围为( )A.⎝ ⎛⎦⎥⎤-∞,1e +1 B.⎝ ⎛⎭⎪⎫-∞,1e +1 C.⎝ ⎛⎭⎪⎫1e +1,+∞ D.⎝ ⎛⎭⎪⎫1e ,+∞ 答案 B解析 函数y =x e x +x 2+2x +a 恰有两个不同的零点, 就是x e x +x 2+2x +a =0恰有两个不同的实数解, 设g (x )=x e x +x 2+2x ,则g ′(x )=e x +x e x +2x +2=(x +1)(e x +2),x <-1,g ′(x )<0,函数是减函数,x >-1,g ′(x )>0,函数是增函数,函数的最小值为g (-1)=-1-1e ,则-a >-1-1e ,即a <1+1e .函数y =x e x +x 2+2x +a 恰有两个不同的零点,则实数a 的取值范围为⎝ ⎛⎭⎪⎫-∞,1e +1.故选B.10.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1 B.12 C.52 D.22 答案 D解析 |MN |的最小值,即函数h (x )=x 2-ln x 的最小值,h ′(x )=2x -1x =2x 2-1x ,令h ′(x )=0,得x =22或x =-22(舍去),显然x=22是函数h (x )在其定义域内唯一的极小值点,也是最小值点,故t =22.故选D.二、填空题11.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-19,+∞ 解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .要使f (x )在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则必须有f ′⎝ ⎛⎭⎪⎫23>0,即29+2a >0,解得a >-19,所以a 的取值范围是⎝⎛⎭⎪⎫-19,+∞.12.(2017·信阳模拟)已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)f ′(x )>0的解集为________.答案 (-∞,-1)∪(-1,1)∪(3,+∞)解析 由函数图象可知f ′(x )>0的解集为(-∞,-1)∪(1,+∞),f ′(x )<0的解集为(-1,1).由(x 2-2x -3)f ′(x )>0,得⎩⎪⎨⎪⎧x 2-2x -3>0,f ′(x )>0,① 或⎩⎪⎨⎪⎧x 2-2x -3<0,f ′(x )<0, ② 解①得x <-1或x >3; 解②得-1<x <1.∴不等式(x 2-2x -3)f ′(x )>0的解集为 (-∞,-1)∪(-1,1)∪(3,+∞). 故答案为(-∞,-1)∪(-1,1)∪(3,+∞).13.(2017·七里河模拟)定义在R 上的奇函数y =f (x )满足f (3)=0,且当x >0时,不等式f (x )>-xf ′(x )恒成立,则函数g (x )=xf (x )+lg |x +1|的零点的个数是________.答案 3解析 定义在R 上的奇函数f (x )满足: f (0)=0=f (3)=f (-3), 且f (-x )=-f (x ),又x >0时,f (x )>-xf ′(x ),即f (x )+xf ′(x )>0, ∴[xf (x )]′>0,函数h (x )=xf (x )在x >0时是增函数, 又h (-x )=-xf (-x )=xf (x ),∴h (x )=xf (x )是偶函数;∴x <0时,h (x )是减函数,结合函数的定义域为R ,且f (0)=f (3)=f(-3)=0,可得函数y1=xf(x)与y2=-lg |x+1|的大致图象如图所示,∴由图象知,函数g(x)=xf(x)+lg |x+1|的零点的个数为3个.14.(2015·安徽高考)设x3+ax+b=0,其中a,b均为实数.下列条件中,使得该三次方程仅有一个实根的是________.(写出所有正确条件的编号)①a=-3,b=-3;②a=-3,b=2;③a=-3,b>2;④a=0,b=2;⑤a=1,b=2.答案①③④⑤解析令f(x)=x3+ax+b,则f′(x)=3x2+a.对于①,由a=b=-3,得f(x)=x3-3x-3,f′(x)=3(x+1)(x-1),f(x)极大值=f(-1)=-1<0,f(x)极小值=f(1)=-5<0,函数f(x)的图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;对于②,由a=-3,b=2,得f(x)=x3-3x+2,f′(x)=3(x+1)(x -1),f(x)极大值=f(-1)=4>0,f(x)极小值=f(1)=0,函数f(x)的图象与x 轴有两个交点,故x3+ax+b=0有两个实根;对于③,由a=-3,b>2,得f(x)=x3-3x+b,f′(x)=3(x+1)(x -1),f(x)极大值=f(-1)=2+b>0,f(x)极小值=f(1)=b-2>0,函数f(x)的图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;对于④,由a=0,b=2,得f(x)=x3+2,f′(x)=3x2≥0,f(x)在R上单调递增,函数f(x)的图象与x轴只有一个交点,故x3+ax+b =0仅有一个实根;对于⑤,由a=1,b=2,得f(x)=x3+x+2,f′(x)=3x2+1>0,f(x)在R上单调递增,函数f(x)的图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根.B级三、解答题15.(2017·西城区期末)已知函数f(x)=(x+a)e x,其中e是自然对数的底数,a∈R.(1)求函数f(x)的单调区间;(2)当a<1时,试确定函数g(x)=f(x-a)-x2的零点个数,并说明理由.解(1)因为f(x)=(x+a)e x,x∈R,所以f′(x)=(x+a+1)e x.令f′(x)=0,得x=-a-1.当x变化时,f(x)和f′(x)的变化情况如下:故f(x)的单调递减区间为(-∞,-a-1),单调递增区间为(-a -1,+∞).(2)结论:函数g(x)有且仅有一个零点.理由如下:由g(x)=f(x-a)-x2=0,得方程x e x-a=x2,显然x=0为此方程的一个实数解,所以x=0是函数g(x)的一个零点.当x≠0时,方程可化简为e x-a=x.设函数F(x)=e x-a-x,则F′(x)=e x-a-1,令F′(x)=0,得x=a.当x变化时,F(x)与F′(x)的变化情况如下:即F (x )的单调递增区间为(a ,+∞),单调递减区间为(-∞,a ). 所以F (x )的最小值F (x )min =F (a )=1-a .因为a <1,所以F (x )min =F (a )=1-a >0,所以对于任意x ∈R ,F (x )>0,因此方程e x -a =x 无实数解.所以当x ≠0时,函数g (x )不存在零点.综上,函数g (x )有且仅有一个零点.16.设函数f (x )=-13x 3+x 2+(a 2-1)x ,其中a >0.(1)若函数y =f (x )在x =-1处取得极值,求a 的值;(2)已知函数f (x )有3个不同的零点,分别为0,x 1,x 2,且x 1<x 2,若对任意的x ∈[x 1,x 2],f (x )>f (1)恒成立,求a 的取值范围.解 (1)f ′(x )=-x 2+2x +(a 2-1),因为y =f (x )在x =-1处取得极值,所以f ′(-1)=0.即-(-1)2+2(-1)+(a 2-1)=0.解得a =±2,经检验得a =2.(2)由题意得f (x )=x ⎝ ⎛⎭⎪⎫-13x 2+x +a 2-1=-13x ·(x -x 1)(x -x 2), 所以方程-13x 2+x +a 2-1=0有两个相异的实根x 1,x 2.故Δ=1+43(a 2-1)>0,解得a <-12(舍去)或a >12,且x 1+x 2=3,又因为x 1<x 2,所以2x 2>x 1+x 2=3,故x 2>32>1.①若x 1≤1<x 2,则f (1)=-13(1-x 1)(1-x 2)≥0,而f (x 1)=0不符合题意.②若1<x 1<x 2,对任意的x ∈[x 1,x 2],有x -x 1≥0,x -x 2≤0,所以f (x )=-13x (x -x 1)(x -x 2)≥0. 又f (x 1)=0,所以f (x )在[x 1,x 2]上的最小值为0. 于是对任意的x ∈[x 1,x 2],f (x )>f (1)恒成立的充要条件为f (1)=a 2-13<0,解得-33<a <33. 综上得12<a <33,即a 的取值范围为⎝ ⎛⎭⎪⎫12,33.。
[基础送分 提速狂刷练]一、选择题1.(2018·福州模拟)在一次数学实验中,运用计算器采集到如下一组数据:则y 关于x 的函数关系与下列函数最接近的(其中a ,b 为待定系数)是( )A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +b x 答案 B解析 由x =0时,y =1,排除D ;由f (-1.0)≠f (1.0),排除C ;由函数值增长速度不同,排除A.故选B.2.(2017·云南联考)某工厂6年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系可用图象表示的是( )答案 A解析 由于开始的三年产量的增长速度越来越快,故总产量迅速增长,图中符合这个规律的只有选项A ;后三年产量保持不变,总产量直线上升.故选A.3.某杂志每本原定价2元,可发行5万本,若每本提价0.20元,则发行量减少4000本,为使销售总收入不低于9万元,需要确定杂志的最高定价是( )A .2.4元B .3元C .2.8元D .3.2元答案 B解析 设每本定价x 元(x ≥2),销售总收入是y 元,则y =⎣⎢⎡⎦⎥⎤5×104-x -20.2×4×103·x =104·x (9-2x )≥9×104. ∴2x 2-9x +9≤0⇒32≤x ≤3.故选B. 4.(2017·南昌期末)某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( )A .5 km 处B .4 km 处C .3 km 处D .2 km 处答案 A解析 设仓库与车站距离为x ,土地费用为y 1,运输费用为y 2,于是y 1=k 1x ,y 2=k 2x ,∴⎩⎨⎧ 2=k 110,8=10k 2,解得k 1=20,k 2=45.设总费用为y ,则y =20x +4x 5≥220x ·4x5=8. 当且仅当20x =4x 5,即x =5时取等号.故选A.5.(2015·北京高考)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时.相同条件下, 在该市用丙车比用乙车更省油答案 D解析 对于A 选项,从图中可以看出当乙车的行驶速度大于40 km/h 时的燃油效率大于5 km/L ,故乙车消耗1升汽油的行驶路程可大于5千米,所以A 错误;对于B 选项,由图可知甲车消耗汽油最少;对于C 选项,甲车以80 km/h 的速度行驶时的燃油效率为10 km/L ,故行驶1小时的路程为80千米,消耗8 L 汽油,所以C 错误;对于D 选项,当最高限速为80 km/h 且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以D 正确.故选D.6.(2017·北京朝阳测试)将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水符合指数衰减曲线y =a e n t .假设过5分钟后甲桶和乙桶的水量相等,若再过m 分钟甲桶中的水只有a 8,则m 的值为( )A .7B .8C .9D .10答案 D解析 根据题意知12=e 5n ,令18a =a e n t ,即18=e n t ,因为12=e 5n ,故18=e 15n ,比较知t =15,m =15-5=10.故选D.7.(2016·天津模拟)国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( )A .560万元B .420万元C .350万元D .320万元答案 D解析 设该公司的年收入为x 万元,纳税额为y 万元,则由题意得y =⎩⎪⎨⎪⎧x ×p %,x ≤280,280×p %+(x -280)×(p +2)%,x >280, 依题有280×p %+(x -280)×(p +2)%x=(p +0.25)%,解得x =320.故选D.8.假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案每天的回报如图所示.横轴为投资时间,纵轴为每天的回报,根据以上信息,若使回报最多,下列说法错误的是( )A .投资3天以内(含3天),采用方案一B .投资4天,不采用方案三C .投资6天,采用方案一D .投资12天,采用方案二答案 D解析 由图可知,投资3天以内(含3天),方案一的回报最高,A 正确;投资4天,方案一的回报约为40×4=160(元),方案二的回报约为10+20+30+40=100(元),都高于方案三的回报,B 正确;投资6天,方案一的回报约为40×6=240(元),方案二的回报约为10+20+30+40+50+60=210(元),都高于方案三的回报,C 正确;投资12天,明显方案三的回报最高,所以此时采用方案三,D 错误.故选D.9.(2017·福建质检)当生物死亡后,其体内原有的碳14的含量大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用一般的放射性探测器探测不到,则它经过的“半衰期”个数至少是( )A .8B .9C .10D .11答案 C解析 设死亡生物体内原有的碳14含量为1,则经过n (n ∈N *)个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n ,由⎝ ⎛⎭⎪⎫12n <11000得n ≥10.所以,若探测不到碳14含量,则至少经过了10个“半衰期”.故选C.10.(2017·北京朝阳区模拟)某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为( )A .3000元B .3300元C .3500元D .4000元答案 B解析 由题意,设利润为y 元,租金定为3000+50x 元(0≤x ≤70,x ∈N ).则y =(3000+50x )(70-x )-100(70-x )=(2900+50x )·(70-x )=50(58+x )(70-x )≤50⎝ ⎛⎭⎪⎫58+x +70-x 22, 当且仅当58+x =70-x ,即x =6时,等号成立,故每月租金定为3000+300=3300(元)时,公司获得最大利润.故选B.二、填空题11.(2017·金版创新)“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A (a 为常数),广告效应为D =a A -A .那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a 表示)答案 14a 2解析 令t =A (t ≥0),则A =t 2,∴D =at -t 2=-⎝ ⎛⎭⎪⎫t -12a 2+14a 2. ∴当t =12a ,即A =14a 2时,D 取得最大值.12.一个容器装有细沙a cm 3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e -bt (cm 3),若经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.答案 16解析 当t =0时,y =a ;当t =8时,y =a e -8b =12a ,∴e -8b =12,容器中的沙子只有开始时的八分之一时,即y =a e -bt=18a .e -bt=18=(e -8b )3=e -24b ,则t =24,所以再经过16 min.13.(2014·北京高考改编)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),右图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________.答案 3.75分钟解析 由已知得⎩⎪⎨⎪⎧ 9a +3b +c =0.7,16a +4b +c =0.8,25a +5b +c =0.5,解得⎩⎪⎨⎪⎧ a =-0.2,b =1.5,c =-2, ∴p =-0.2t 2+1.5t -2=-15⎝ ⎛⎭⎪⎫t -1542+1316, ∴当t =154=3.75时p 最大,即最佳加工时间为3.75分钟.14.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式y =⎝ ⎛⎭⎪⎫116t -a (a 为常数),如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为________;(2)据测定,当空气中每立方米的含药量不大于0.25毫克时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.答案 (1)y =⎩⎨⎧ 10t ,0≤t ≤0.1,⎝ ⎛⎭⎪⎫116t -0.1,t >0.1 (2)0.6解析 (1)设y =kt ,由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10,∴y =10t (0≤t ≤0.1).由y =⎝ ⎛⎭⎪⎫116t -a 过点(0.1,1),得1=⎝ ⎛⎭⎪⎫1160.1-a ,解得a =0.1,∴y =⎝ ⎛⎭⎪⎫116t -0.1(t >0.1).(2)由⎝ ⎛⎭⎪⎫116t -0.1≤0.25=14,得t ≥0.6. 故至少需经过0.6小时学生才能回到教室.三、解答题15.(2017·济宁期末)已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量增加收益.据估算,若今年的实际销售单价为x 元/件(1≤x ≤2),则新增的年销量P =4(2-x )2(万件).(1)写出今年商户甲的收益f (x )(单位:万元)与x 的函数关系式;(2)商户甲今年采取降低单价提高销量的营销策略,是否能获得比往年更大的收益(即比往年收益更多)?请说明理由.解 (1)由题意可得:f (x )=[1+4(2-x )2](x -1),1≤x ≤2.(2)甲往年以单价2元/件销售该商品时,年销量为1万件,可得收益为1万元.f ′(x )=8(x -2)(x -1)+1+4(2-x )2=12x 2-40x +33=(2x -3)(6x -11),可得当x ∈⎣⎢⎡⎭⎪⎫1,32时,函数f (x )单调递增; 当x ∈⎝ ⎛⎭⎪⎫32,116时,函数f (x )单调递减; 当x ∈⎝ ⎛⎦⎥⎤116,2时,函数f (x )单调递增. ∴x =32时,函数f (x )取得极大值,f ⎝ ⎛⎭⎪⎫32=1; 又f (2)=1.∴当x =32或x =2时,函数f (x )取得最大值1(万元).因此商户甲今年采取降低单价提高销量的营销策略,不能获得比往年更大的收益.16.(2017·北京模拟)已知甲、乙两个工厂在今年的1月份的利润都是6万元,且乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份x 之间的函数关系式分别符合下列函数模型:f (x )=a 1x 2-4x +6,g (x )=a 2·3x +b 2(a 1,a 2,b 2∈R ).(1)求函数f (x )与g (x )的解析式;(2)求甲、乙两个工厂今年5月份的利润;(3)在同一直角坐标系下画出函数f (x )与g (x )的草图,并根据草图比较今年1~10月份甲、乙两个工厂的利润的大小情况.解 (1)依题意:由f (1)=6,解得a 1=4,所以f (x )=4x 2-4x +6.由⎩⎪⎨⎪⎧ g (1)=6,g (2)=8,得⎩⎪⎨⎪⎧3a 2+b 2=6,9a 2+b 2=8, 解得a 2=13,b 2=5,所以g (x )=13×3x +5=3x -1+5.(2)由(1)知甲厂在今年5月份的利润为f (5)=86万元,乙厂在今年5月份的利润为g (5)=86万元,故有f (5)=g (5),即甲、乙两个工厂今年5月份的利润相等.(3)作函数图象如下:从图中可以看出今年1~10月份甲、乙两个工厂的利润: 当x =1或x =5时,有f (x )=g (x );当x =2,3,4时,有f (x )>g (x );当x =6,7,8,9,10时,有f (x )<g (x ).。
[基础送分 提速狂刷练]一、选择题1.为了得到函数y =3×⎝ ⎛⎭⎪⎫13x 的图象,可以把函数y =⎝ ⎛⎭⎪⎫13x的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度答案 D解析 y =3×⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫13-1·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫13x -1,故它的图象是把函数y =⎝ ⎛⎭⎪⎫13x的图象向右平移1个单位长度得到的.故选D.2.(2017·山西太原二模)函数f (x )=ln |x -1||1-x |的图象大致为( )答案 D解析 函数f (x )=ln |x -1||1-x |的定义域为(-∞,1)∪(1,+∞),且图象关于x =1对称,排除B,C ;取特殊值,当x =12时,f (x )=2ln 12<0.故选D.3.函数f (x )=ln (x 2+1)的图象大致是( )答案 A解析 依题意,得f (-x )=ln (x 2+1)=f (x ),所以函数f (x )为偶函数,即函数f (x )的图象关于y 轴对称,故排除C ;因为函数f (x )过定点(0,0),排除B,D.故选A.4.(2017·乐山模拟)函数f (x )=Asin (ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则f (π)=( )A .4B .2 3C .2 D. 3 答案 A解析 由函数的图象可得A =2,根据半个周期T 2=12·2πω=5π12+π12,解得ω=2.由图象可得当x =-π12时,函数无意义,即函数的分母等于零,即sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫-π12+φ=0. 再由|φ|<π2,可得φ=π6, 故函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6,∴f (π)=4.故选A.5.(2017·北京模拟)已知函数f (x )=⎩⎨⎧log 12x ,x >0,2x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是( )A .(0,+∞)B .(-∞,1)C .(1,+∞)D .(0,1]答案D解析 作出函数y =f (x )与 y =k 的图象,如图所示: 由图可知k ∈(0,1].故选D.6.(2018·山东日照一模)现有四个函数①y =x sin x ,②y =x cos x ,③y =x |cos x |,④y =x ·2x 的部分图象如下,但顺序被打乱,则按照图象从左到右的顺序,对应的函数序号正确的一组是( )A .①④②③B .①④③②C .④①②③D .③④②①答案 A解析 ①y =x sin x 在定义域上是偶函数,其图象关于y 轴对称;②y =x cos x 在定义域上是奇函数,其图象关于原点对称;③y =x |cos x |在定义域上是奇函数,其图象关于原点对称,且当x >0时,其函数值y ≥0;④y =x ·2x 在定义域上为非奇非偶函数,且当x >0时,其函数值y >0,且当x <0时,其函数值y <0.故选A.7.(2015·浙江高考)函数f (x )=⎝ ⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )答案 D解析 解法一:(性质+特值排除法)该函数的定义域为[-π,0)∪(0,π],显然定义域关于原点对称.函数y =x -1x 是奇函数,y =cos x 为偶函数,所以f (x )=⎝ ⎛⎭⎪⎫x -1x cos x 为奇函数,所以排除A,B ;取x =π,则f (π)=⎝ ⎛⎭⎪⎫π-1πcosπ=-⎝ ⎛⎭⎪⎫π-1π<0,故排除C.故选D.解法二:(特值排除法)f (π)=⎝ ⎛⎭⎪⎫π-1πcosπ=-⎝ ⎛⎭⎪⎫π-1π<0,故可排除A 、C ;而f (-π)=⎝ ⎛⎭⎪⎫-π-1-π·cos(-π)=⎝ ⎛⎭⎪⎫π-1π>0,故排除B.故选D. 8.(2017·达州期末)已知函数f (x )=x cos x ,f ′(x )是f (x )的导数,同一坐标系中,f (x )和f ′(x )的大致图象是( )答案 C解析 由f (x )=x cos x ,得 f ′(x )=cos x -x sin x ,当x =0时,f (0)=0,f ′(0)=1,排除B,D ;当f ′(x )>0时,f (x )是增函数,曲线是上升的,f ′(x )<0时,f (x )是减函数,曲线是下降的,判断出C 是正确的,排除A.故选C.9.(2018·郑州模拟)函数y =11-x 的图象与函数y =2sinπx (-2≤x ≤4)的图象所有交点的横坐标之和等于( )A .2B .4C .6D .8答案 D解析 图象法求解.在同一坐标系中,分别作出函数y =11-x 与y=2sinπx (-2≤x ≤4)的图象,y =-1x -1的对称中心是(1,0),也是y =2sinπx (-2≤x ≤4)的中心,当-2≤x ≤4它们的图象在x =1的左侧有4个交点,则x =1右侧必有4个交点.不妨把它们的横坐标由小到大设为x 1,x 2,x 3,x 4,x 5,x 6,x 7,x 8,则x 1+x 8=x 2+x 7=x 3+x 6=x 4+x 5=2.故选D.10.(2017·杭州五校联盟诊断)若直角坐标平面内两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图象上;②P ,Q 关于原点对称,则称(P ,Q )是函数y =f (x )的一个“伙伴点组”(点组(P ,Q )与(Q ,P )看作同一个“伙伴点组”).已知函数f (x )=⎩⎪⎨⎪⎧kx -1,x >0,-ln (-x ),x <0有两个“伙伴点组”,则实数k 的取值范围是( )A .(-∞,0)B .(0,1) C.⎝ ⎛⎭⎪⎫0,12 D .(0,+∞)答案 B解析 依题意,“伙伴点组”的点满足:都在y =f (x )的图象上,且关于坐标原点对称.可作出函数y =-ln (-x )(x <0)关于原点对称的函数y =ln x (x >0)的图象,使它与直线y =kx -1(x >0)的交点个数为2即可.当直线y =kx -1与y =ln x 的图象相切时,设切点为(m ,ln m ), 又y =ln x 的导数为y ′=1x ,则km -1=ln m ,k =1m ,解得m =1,k =1,可得函数y =ln x (x >0)的图象过(0,-1)点的切线的斜率为1,结合图象可知k ∈(0,1)时两函数图象有两个交点.故选B.二、填空题11.(2018·咸阳模拟)已知f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,2|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数是________.答案 5解析 由2f 2(x )-3f (x )+1=0得f (x )=12或f (x )=1作出函数y =f (x )的图象.由图象知y =12与y =f (x )的图象有2个交点,y =1与y =f (x )的图象有3个交点.因此函数y =2f 2(x )-3f (x )+1的零点有5个. 12.设函数f (x ),g (x )的定义域分别为F ,G ,且FG .若对任意的x∈F ,都有g (x )=f (x ),则称g (x )为f (x )在G 上的一个“延拓函数”.已知函数f (x )=⎝ ⎛⎭⎪⎫12x(x ≤0),若g (x )为f (x )在R 上的一个延拓函数,且g (x )是偶函数,则函数g (x )的解析式为________.答案 g (x )=2|x |解析 画出函数f (x )=⎝ ⎛⎭⎪⎫12x (x ≤0)的图象关于y 轴对称的这部分图象,即可得到偶函数g (x )的图象,由图可知:函数g (x )的解析式为g (x )=2|x |.13.(2018·南昌大联考)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫0,12 解析 先画出y =x 2-2x +12在区间[0,3)上的图象,再将x 轴下方的图象对称到x 轴上方,利用周期为3,将图象平移至区间[-3,4]内,即得f (x )在区间[-3,4]上的图象如图所示,其中f (-3)=f (0)=f (3)=0.5,f (-2)=f (1)=f (4)=0.5.函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同)等价于y =f (x )的图象与直线y =a 有10个不同的交点,由图象可得a ∈⎝ ⎛⎭⎪⎫0,12.14.(2017·湖北百所重点学校联考)设函数f(x)对任意实数x满足f(x)=-f(x+1),且当0≤x≤1时,f(x)=x(1-x),若关于x的方程f(x)=kx 有3个不同的实数根,则k的取值范围是________.答案(5-26,1)∪{-3+22}解析因f(x)=-f(x+1),故f(x+2)=f(x),即函数f(x)是周期为2的周期函数,画出函数y=f(x),x∈[0,1]的图象,再借助函数满足的条件f(x)=-f(x+1)及周期性,画出函数y=f(x)的图象如图,易知仅当直线y =kx位于l1与l2之间(不包括l1,l2)或与l3重合时满足题意,对y=x(1-x)求导得y′=1-2x,y′|x=0=1,∴l2的斜率为1.以下求l3的斜率:当1≤x≤2时,易得f(x)=-f(x-1)=-(x-1)[1-(x-1)]=x2-3x+2,令x2-3x+2-kx=0,得x2-(3+k)x+2=0,令Δ=(3+k)2-8=0,解得k=-3±22,由此易知l3的斜率为-3+2 2.同理,由2≤x≤3时,f(x)=-x2+5x-6,可得l1的斜率为5-2 6.综上,5-26<k<1或k=-3+22,故应填(5-26,1)∪{-3+22}.三、解答题15.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5].(1)在如图所示给定的直角坐标系内画出f (x )的图象; (2)写出f (x )的单调递增区间;(3)由图象指出当x 取什么值时f (x )有最值.解 (1)函数f (x )的图象如图所示.(2)由图象可知,函数f (x )的单调递增区间为[-1,0],[2,5]. (3)由图象知当x =2时,f (x )min =f (2)=-1, 当x =0时,f (x )max =f (0)=3. 16.已知f (x )=|x 2-4x +3|. (1)作出函数f (x )的图象;(2)求函数f (x )的单调区间,并指出其单调性;(3)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.2019版高考数学(文)2019版高考数学(文)解 (1)当x 2-4x +3≥0时,x ≤1或x ≥3,∴f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤1或x ≥3,-x 2+4x -3,1<x <3, ∴f (x )的图象如图所示.(2)由函数的图象可知f (x )的单调区间是(-∞,1],(2,3),(1,2],[3,+∞),其中(-∞,1],(2,3)是减区间;(1,2],[3,+∞)是增区间.(3)由f (x )的图象知,当0<m <1时,f (x )=m 有四个不相等的实根,所以M ={m |0<m <1}.。
[基础送分 提速狂刷练]一、选择题1.已知A ={x |x =n 2,n ∈N },给出下列关系式:①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=x 4;⑤f (x )=x 2+1,其中能够表示函数f :A →A 的个数是( )A .2B .3C .4D .5答案 C解析 对⑤,当x =1时,x 2+1∉A ,故⑤错误,由函数定义可知①②③④均正确.故选C.2.(2018·吉安四校联考)已知函数f (x )=⎩⎪⎨⎪⎧1-x 2(x ≤1),x 2+x -2(x >1),则f ⎣⎢⎡⎦⎥⎤1f (2)的值为( )A.1516 B .89 C .-2716 D .18答案 A解析 f (2)=4,f ⎣⎢⎡⎦⎥⎤1f (2)=f ⎝ ⎛⎭⎪⎫14=1-⎝ ⎛⎭⎪⎫142=1516.故选A.3.已知f (x 5)=lg x ,则f (2)等于( ) A .lg 2 B .lg 32 C .lg 132 D.15lg 2答案 D解析 令x 5=t ,则x =t15(t >0),∴f (t )=lg t15 =15lg t .∴f (2)=15lg 2.故选D.4.(2017·山西名校联考)设函数f (x )=lg (1-x ),则函数f [f (x )]的定义域为( )A .(-9,+∞)B .(-9,1)C .[-9,+∞)D .[-9,1)答案 B解析 f [f (x )]=f [lg (1-x )]=lg [1-lg (1-x )],则⎩⎪⎨⎪⎧1-x >0,1-lg (1-x )>0⇒-9<x <1.故选B.5.若函数y =f (x )的定义域是[0,1],则函数F (x )=f (x +a )+f (2x +a )(0<a <1)的定义域是( )A.⎣⎢⎡⎦⎥⎤-a 2,1-a 2 B .⎣⎢⎡⎦⎥⎤-a 2,1-aC .[-a,1-a ] D.⎣⎢⎡⎦⎥⎤-a ,1-a 2 答案 A解析 ⎩⎪⎨⎪⎧0≤x +a ≤1,0≤2x +a ≤1⇒-a2≤x ≤1-a 2.故选A. 6.函数y =⎝ ⎛⎭⎪⎫121x 2+1的值域为( )A.⎝ ⎛⎦⎥⎤-∞,12 B .⎣⎢⎡⎦⎥⎤12,1C.⎣⎢⎡⎭⎪⎫12,1 D .⎣⎢⎡⎭⎪⎫12,+∞ 答案 C解析 由于x 2≥0,所以x 2+1≥1,所以0<1x 2+1≤1,结合函数y =⎝ ⎛⎭⎪⎫12x 在(0,1]上的图象可知函数y =⎝ ⎛⎭⎪⎫121x 2+1 的值域为⎣⎢⎡⎭⎪⎫12,1.故选C.7.(2018·黄冈联考)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f [f (-3)]=( )A .-2B .2C .3D .-3答案 B解析 由题意得f (0)=a 0+b =1+b =2,解得b =1; f (-1)=a -1+b =a -1+1=3, 解得a =12.故f (-3)=⎝ ⎛⎭⎪⎫12-3+1=9,从而f [f (-3)]=f (9)=log 39=2.故选B.8.(2018·银川模拟)已知具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎨⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③ D .①答案 B解析 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x )满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x +x =f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x>1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎨⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.故选B.9.(2018·铜陵一模)若函数f (x )图象上任意一点P (x ,y )皆满足y 2≥x 2,则f (x )的解析式可以是( )A .f (x )=x -1xB .f (x )=e x -1C .f (x )=x +4x D .f (x )=tan x答案 C解析 A 项,当x =1时,f (x )=1-1=0,02≥12不成立;B 项,当x =-1时,f (x )=1e -1∈(-1,0),⎝⎛⎭⎪⎫1e -12≥(-1)2不成立;D 项,当x =5π4时,f (x )=1,12≥⎝ ⎛⎭⎪⎫5π42不成立;对于C ,f 2(x )=x 2+16x 2+8>x 2,符合题意.故选C.10.(2017·山东模拟)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1.则满足f [f (a )]=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1 B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞)答案 C解析 ①当a <23时,f (a )=3a -1<1,f [f (a )]=3(3a -1)-1=9a -4,2f (a )=23a -1,显然f [f (a )]≠2f (a ).②当23≤a <1时,f (a )=3a -1≥1,f [f (a )]=23a -1,2f (a )=23a -1, 故f [f (a )]=2f (a ).③当a ≥1时,f (a )=2a >1,f [f (a )]=22a, 2f (a )=22a,故f [f (a )]=2f (a ). 综合①②③知a ≥23.故选C. 二、填空题11.已知x ∈N *,f (x )=⎩⎪⎨⎪⎧x 2-35,x ≥3,f (x +2),x <3,其值域设为D .给出下列数值:-26,-1,9,14,27,65,则其中属于集合D 的元素是________.(写出所有可能的数值)答案 -26,14,65解析 注意函数的定义域是N *,由分段函数解析式可知,所有自变量的函数值最终都是转化为大于等于3的对应自变量函数值计算的f (3)=9-35=-26,f (4)=16-35=-19,f (5)=25-35=-10,f (6)=36-35=1,f (7)=49-35=14,f (8)=64-35=29,f (9)=81-35=46,f (10)=100-35=65.故正确答案应填-26,14,65.12.(2018·厦门一模)已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________. 答案 ⎣⎢⎡⎭⎪⎫0,12 解析 当x ≥1时,f (x )=2x-1≥1,∵函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R , ∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12.13.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.答案 1解析 [a ,b ]的长度取得最大值时[a ,b ]=[-1,1],区间[a ,b ]的长度取得最小值时[a ,b ]可取[0,1]或[-1,0],因此区间[a ,b ]的长度的最大值与最小值的差为1.14.(2018·绵阳二诊)现定义一种运算“⊕”:对任意实数a ,b ,a ⊕b =⎩⎪⎨⎪⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-2x )⊕(x +3),若函数g (x )=f (x )+k 的图象与x 轴恰有两个公共点,则实数k 的取值范围是________.答案 (-8,-7]∪(-3,-2)∪{1}解析 因为(x 2-2x )-(x +3)-1=(x -4)(x +1),所以f (x )=(x 2-2x )⊕(x +3)=⎩⎪⎨⎪⎧x +3,x ∈(-∞,-1]∪[4,+∞),x 2-2x ,x ∈(-1,4).作出函数y =f (x )的图象如图所示.函数g (x )=f (x )+k 的图象与x 轴恰有两个公共点,即函数y =f (x )的图象与直线y =-k 有两个公共点,结合图象可得-k =-1 或2<-k <3或7≤-k <8,所以实数k 的取值范围是k ∈(-8,-7]∪(-3,-2)∪{1}.三、解答题15.(2018·福建六校联考)已知函数f (x )=log a (x +2)+log a (4-x )(a >0且a ≠1).(1)求函数f (x )的定义域;(2)若函数f (x )在区间[0,3]上的最小值为-2,求实数a 的值.解 (1)依题意得⎩⎪⎨⎪⎧x +2>0,4-x >0,解得-2<x <4,∴f (x )的定义域为(-2,4). (2)f (x )=log a (x +2)+log a (4-x ) =log a [(x +2)(4-x )],令t =(x +2)(4-x ),则可变形得t =-(x -1)2+9, ∵0≤x ≤3,∴5≤t ≤9, 若a >1,则log a 5≤log a t ≤log a 9,∴f (x )min =log a 5=-2,则a 2=15<1(舍去), 若0<a <1,则log a 9≤log a t ≤log a 5, ∴f (x )min =log a 9=-2, 则a 2=19,又0<a <1,∴a =13. 综上,得a =13.16.如果对∀x ,y ∈R 都有f (x +y )=f (x )·f (y ),且f (1)=2. (1)求f (2),f (3),f (4)的值;(2)求f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2014)f (2013)+f (2016)f (2015)+f (2018)f (2017)的值.解 (1)∵∀x ,y ∈R ,f (x +y )=f (x )·f (y ),且 f (1)=2,∴f (2)=f (1+1)=f (1)·f (1)=22=4, f (3)=f (1+2)=f (1)·f (2)=23=8, f (4)=f (1+3)=f (1)·f (3)=24=16.(2)解法一:由(1)知f(2)f(1)=2,f(4)f(3)=2,f(6)f(5)=2,…,f(2018)f(2017)=2,故原式=2×1009=2018.解法二:对∀x,y∈R都有f(x+y)=f(x)·f(y)且f(1)=2,令x=n,y=1,则f(n+1)=f(n)·f(1),即f(n+1)f(n)=f(1)=2,故f(2)f(1)=f(4)f(3)=…=f(2018)f(2017)=2,故原式=2×1009=2018.。
[基础送分 提速狂刷练]一、选择题1.(2017·江西九江七校联考)幂函数f (x )=(m 2-4m +4)x m2-6m +8在(0,+∞)上为增函数,则m 的值为( )A .1或3B .1C .3D .2答案 B解析 由题意知m 2-4m +4=1且m 2-6m +8>0⇒m =1,故选B.2.(2018·吉林期末)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A .a >-14B .a ≥-14 C .-14≤a <0 D .-14≤a ≤0答案 D解析 ①当a =0时,函数f (x )=2x -3为一次函数,是递增函数; ②当a >0时,二次函数开口向上,先减后增,在区间(-∞,4)上不可能是单调递增的,故不符合;③当a <0时,函数开口向下,先增后减,函数对称轴-1a ≥4,解得a ≥-14,又a <0,故-14≤a <0.综合得-14≤a ≤0.故选D.3.如果函数f (x )=x 2+bx +c 对任意的实数x ,都有f (1+x )=f (-x ),那么( )A .f (-2)<f (0)<f (2)B .f (0)<f (-2)<f (2)C .f (2)<f (0)<f (-2)D .f (0)<f (2)<f (-2)解析 由f (1+x )=f (-x )知f (x )图象关于x =12对称,又抛物线开口向上,结合图象可知f (0)<f (2)<f (-2).故选D.4.(2018·聊城检测)若二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,则f (x )的表达式为( )A .f (x )=-x 2-x -1B .f (x )=-x 2+x -1C .f (x )=x 2-x -1D .f (x )=x 2-x +1答案 D解析 设f (x )=ax 2+bx +c (a ≠0),由题意得⎩⎪⎨⎪⎧c =1,a (x +1)2+b (x +1)+c -(ax 2+bx +c )=2x . 故⎩⎪⎨⎪⎧2a =2,a +b =0,c =1,解得⎩⎪⎨⎪⎧a =1,b =-1,c =1,则f (x )=x 2-x +1.故选D.5.(2018·雅安诊断)如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b . 其中正确的是( ) A .②④ B .①④ C .②③D .①③解析 因为图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,①正确;对称轴为x =-1,即-b2a =-1,2a -b =0,②错误;结合图象,当x =-1时,y >0,即a -b +c >0,③错误;由对称轴为x =-1,知b =2a .又函数图象开口向下,所以a <0,所以5a <2a ,即5a <b ,④正确.故选B.6.(2018·济宁模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c (x ≤0),2(x >0),若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .4B .2C .1D .3答案 D解析 由解析式可得f (-4)=16-4b +c =f (0)=c ,解得b =4. f (-2)=4-8+c =-2,可求得c =2.∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2(x ≤0),2(x >0).又f (x )=x ,则当x ≤0时,x 2+4x +2=x ,解得x 1=-1,x 2=-2. 当x >0时,x =2,综上可知有三解.故选D.7.二次函数f (x )的二次项系数为正数,且对任意的x ∈R 都有f (x )=f (4-x )成立,若f (1-2x 2)<f (1+2x -x 2),则实数x 的取值范围是( )A .(2,+∞)B .(-∞,-2)∪(0,2)C .(-2,0)D .(-∞,-2)∪(0,+∞)答案 C解析 由题意知,二次函数的开口向上,对称轴为直线x =2,图象在对称轴左侧为减函数.而1-2x 2<2,1+2x -x 2=2-(x -1)2≤2,所以由f (1-2x 2)<f (1+2x -x 2),得1-2x 2>1+2x -x 2,解得-2<x <0.故选C.8.已知对任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,则x 的取值范围是( )A .1<x <3B .x <1或x >3C .1<x <2D .x <2或x >3答案 B解析 f (x )=x 2+(a -4)x +4-2a =(x -2)a +(x 2-4x +4).记g (a )=(x -2)a +(x 2-4x +4),由题意可得⎩⎪⎨⎪⎧g (-1)>0,g (1)>0,即⎩⎪⎨⎪⎧g (-1)=x 2-5x +6>0,g (1)=x 2-3x +2>0,解得x <1或x >3.故选B. 9.已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若有f (a )=g (b ),则b 的取值范围为( )A .[2-2,2+ 2 ]B .(2-2,2+2)C .[1,3]D .(1,3)答案 B解析 由题可知f (x )=e x -1>-1,g (x )=-x 2+4x -3=-(x -2)2+1≤1,若有f (a )=g (b ),则g (b )∈(-1,1],即-b 2+4b -3>-1,解得2-2<b <2+ 2.故选B.10.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1x i=( ) A .0 B .m C .2m D .4m答案 B解析 由f (x )=f (2-x )知函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象也关于直线x =1对称,所以这两函数的交点也关于直线x =1对称.不妨设x 1<x 2<…<x m ,则x 1+x m2=1,即x 1+x m =2,同理有x 2+x m-1=2,x 3+x m -2=2,…,又∑mi =1x i =x m +x m -1+…+x 1,所以2∑mi =1x i=(x 1+x m )+(x 2+x m -1)+…+(x m +x 1)=2m ,所以∑mi =1x i=m .故选B. 二、填空题11.(2017·湖北孝感模拟)函数f (x )=ax 2-2x +1,若y =f (x )在区间⎣⎢⎡⎦⎥⎤-12,12内有零点,则实数a 的取值范围为________. 答案 (-∞,0]解析 f (x )=ax 2-2x +1=0,可得a =-1x 2+2x =-⎝ ⎛⎭⎪⎫1x -12+1. 若f (x )在⎣⎢⎡⎦⎥⎤-12,12内有零点,则f (x )=0在区间⎣⎢⎡⎦⎥⎤-12,12内有解,当-12≤x <0或0<x ≤12时,可得a =-1x 2+2x ≤0.所以实数a 的取值范围为(-∞,0].12.(2018·九江模拟)已知f (x )=x 2+2(a -2)x +4,如果对x ∈[-3,1],f (x )>0恒成立,则实数a 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-12,4解析 因为f (x )=x 2+2(a -2)x +4, 对称轴x =-(a -2), 对x ∈[-3,1],f (x )>0恒成立,所以讨论对称轴与区间[-3,1]的位置关系得:⎩⎪⎨⎪⎧-(a -2)<-3,f (-3)>0或⎩⎨⎧-3≤-(a -2)≤1,Δ<0 或⎩⎪⎨⎪⎧-(a -2)>1,f (1)>0,解得a ∈∅或1≤a <4或-12<a <1,所以a 的取值范围为⎝ ⎛⎭⎪⎫-12,4. 13.(2017·北京丰台期末)若f (x )=(x -a )(x -b )+(x -b )(x -c )+(x-c )(x -a ),其中a ≤b ≤c ,对于下列结论:①f (b )≤0;②若b =a +c2,则∀x ∈R ,f (x )≥f (b );③若b ≤a +c2,则f (a )≤f (c );④f (a )=f (c )成立的充要条件为b =0.其中正确的是________.(请填写序号)答案 ①②③解析 f (b )=(b -a )(b -b )+(b -b )(b -c )+(b -c )·(b -a )=(b -c )(b -a ),因为a ≤b ≤c ,所以f (b )≤0,①正确;将f (x )展开可得f (x )=3x 2-2(a +b +c )x +ab +bc +ac ,又抛物线开口向上,故f (x )min =f ⎝ ⎛⎭⎪⎫a +b +c 3.当b =a +c 2时,a +b +c3=b ,所以f (x )min =f (b ),②正确;f (a )-f (c )=(a -b )(a -c )-(c -a )·(c -b )=(a -c )(a +c -2b ),因为a ≤b ≤c ,且2b ≤a +c ,所以f (a )≤f (c ),③正确;因为a ≤b ≤c ,所以当f (a )=f (c )时,即(a -c )(a +c -2b )=0,所以a =b =c 或a +c =2b ,故④不正确.14.对于实数a 和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.答案 ⎝ ⎛⎭⎪⎫1-316,0 解析 函数f (x )=⎩⎪⎨⎪⎧2x 2-x ,x ≤0,-x 2+x ,x >0的图象如图所示.设y =m 与y =f (x )图象交点的横坐标从小到大分别为x 1,x 2,x 3. 由y =-x 2+x =-⎝⎛⎭⎪⎫x -122+14,得顶点坐标为⎝ ⎛⎭⎪⎫12,14.当y =14时,代入y =2x 2-x ,得14=2x 2-x ,解得x =1-34(舍去正值),∴x 1∈⎝ ⎛⎭⎪⎫1-34,0. 又∵y =-x 2+x 图象的对称轴为x =12, ∴x 2+x 3=1,又x 2,x 3>0,∴0<x 2x 3<⎝⎛⎭⎪⎫x 2+x 322=14. 又∵0<-x 1<3-14,∴0<-x 1x 2x 3<3-116, ∴1-316<x 1x 2x 3<0. 三、解答题15.(2018·中山月考)设二次函数f (x )=ax 2+bx (a ≠0)满足条件:①f (x )=f (-2-x );②函数f (x )的图象与直线y =x 相切.(1)求f (x )的解析式; (2)若不等式πf (x )>⎝ ⎛⎭⎪⎫1π2-tx在|t |≤2时恒成立,求实数x 的取值范围. 解 (1)∵由①知f (x )=ax 2+bx (a ≠0)的对称轴方程是x =-1,∴b =2a .∵函数f (x )的图象与直线y =x 相切,∴方程组⎩⎪⎨⎪⎧y =ax 2+bx ,y =x ,有且只有一解,即ax 2+(b -1)x =0有两个相等的实根. ∴Δ=(b -1)2=0,∴b =1,∴2a =1,∴a =12. ∴函数f (x )的解析式为f (x )=12x 2+x . (2)∵π>1,∴πf (x )>⎝ ⎛⎭⎪⎫1π2-tx等价于f (x )>tx -2. ∵12x 2+x >tx -2在|t |≤2时恒成立等价于一次函数g (t )=xt -⎝ ⎛⎭⎪⎫12x 2+x +2<0在|t |≤2时恒成立, ∴⎩⎪⎨⎪⎧ g (2)<0,g (-2)<0,即⎩⎪⎨⎪⎧x 2-2x +4>0,x 2+6x +4>0.解得x <-3-5或x >-3+ 5.∴实数x 的取值范围是(-∞,-3-5)∪(-3+5,+∞). 16.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ). (1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围.解 (1)由已知c =1,a -b +c =0,且-b2a =-1, 解得a =1,b =2, ∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0. ∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由a =1,c =0,得f (x )=x 2+bx ,从而|f (x )|≤1在区间(0,1]上恒成立等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立,即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立. 又1x -x 的最小值为0,-1x -x 的最大值为-2. ∴-2≤b ≤0.故b 的取值范围是[-2,0].。
[基础送分 提速狂刷练]一、选择题1.(2017·重庆测试)下列函数为奇函数的是( ) A .y =x 3+3x 2 B .y =e x +e -x2 C .y =x sin x D .y =log 23-x3+x答案 D解析 函数y =x 3+3x 2既不是奇函数,也不是偶函数,排除A ;函数y =e x +e -x2是偶函数,排除B ;函数y =x sin x 是偶函数,排除C ;函数y =log 23-x 3+x 的定义域是(-3,3),且f (-x )=log 23+x3-x =-f (x ),是奇函数,D 正确.故选D.2.下列函数中,既是定义域内的偶函数又在(-∞,0)上单调递增的函数是( )A .f (x )=x 2B .f (x )=2|x |C .f (x )=log 21|x | D .f (x )=sin x答案 C解析 函数f (x )=x 2在(-∞,0)上单调递减,排除A ;当x ∈(-∞,0)时,函数f (x )=2|x |=⎝ ⎛⎭⎪⎫12x在(-∞,0)上单调递减,排除B ;当x∈(-∞,0)时,函数f (x )=log 21|x |=-log 2(-x )在(-∞,0)上单调递增,且函数f (x )在其定义域内是偶函数,C 正确;函数f (x )=sin x 是奇函数,排除D.故选C.3.(2017·唐山统考)f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln (1+x ).则当x <0时,f (x )=( )A .-x 3-ln (1-x )B .x 3+ln (1-x )C .x 3-ln (1-x )D .-x 3+ln (1-x )答案 C解析 当x <0时,-x >0,f (-x )=(-x )3+ln (1-x ),∵f (x )是R 上的奇函数,∴当x <0时,f (x )=-f (-x )=-[(-x )3+ln (1-x )],∴f (x )=x 3-ln (1-x ).故选C.4.已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=( )A .-0.5B .0.5C .-2.5D .2.5答案 D解析 ∵f (x +2)=-1f (x ),∴f (x +4)=f [(x +2)+2]=-1f (x +2)=-1-1f (x )=f (x ).∴函数f (x )的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,∴f (2.5)=2.5. ∴f (105.5)=2.5.故选D.5.(2017·金版创新)已知函数f (x )在∀x ∈R 都有f (x -2)=-f (x ),且当x ∈[-1,0]时,f (x )=2x ,则f (2017)等于( )A.12 B .-12 C .1 D .-1答案 B解析 由f (x -2)=-f (x ),得f (x -4)=-f (x -2)=f (x ),所以函数f (x )的周期为4.所以f (2017)=f (4×504+1)=f (1)=-f (-1)=-12.故选B.6.(2018·青岛模拟)奇函数f(x)的定义域为R,若f(x+1)为偶函数,且f(1)=2,则f(4)+f(5)的值为()A.2 B.1C.-1 D.-2答案 A解析∵f(x+1)为偶函数,f(x)是R上的奇函数,∴f(-x+1)=f(x+1),f(x)=-f(-x),f(0)=0,∴f(x+1)=f(-x+1)=-f(x-1),∴f(x+2)=-f(x),f(x+4)=f(x+2+2)=-f(x+2)=f(x),故4为函数f(x)的周期,则f(4)=f(0)=0,f(5)=f(1)=2,∴f(4)+f(5)=0+2=2.故选A.7.(2018·襄阳四校联考)已知函数f(x)的定义域为R.当x<0时,f(x)=x5-1;当-1≤x≤1时,f(-x)=-f(x);当x>0时,f(x+1)=f(x),则f(2018)=()A.-2 B.-1C.0 D.2答案 D解析因为当x>0时,f(x+1)=f(x),所以当x>0时,函数f(x)是周期为1的周期函数,所以f(2018)=f(1),又因为当-1≤x≤1时,f(-x)=-f(x),所以f(1)=-f(-1)=-[(-1)5-1]=2.故选D.8.已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若f(2)=2,则f(2018)的值为()A.2 B.0C.-2 D.±2答案 A解析∵f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x -1),∴g(-x)=f(-x-1)=f(x+1)=-g(x)=-f(x-1).即f (x +1)=-f (x -1). ∴f (x +2)=-f (x ).∴f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ). ∴函数f (x )是周期函数,且周期为4. ∴f (2018)=f (2)=2.故选A.9.(2017·石家庄模拟)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( )A .(-1,4)B .(-2,0)C .(-1,0)D .(-1,2)答案 A解析 ∵f (x )是定义在R 上的周期为3的偶函数,∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4.故选A. 10.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点所构成的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}答案 D解析 当x <0时,f (x )=-f (-x )=-[(-x )2+3x ]=-x 2-3x ,易求得g (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≥0,-x 2-4x +3,x <0,当x 2-4x +3=0时,可求得x 1=1,x 2=3;当-x 2-4x +3=0时,可求得x 3=-2-7,x 4=-2+7(舍去). 故g (x )的零点为1,3,-2-7.故选D. 二、填空题11.(2018·武昌联考)若函数f (x )=k -2x1+k ·2x在定义域上为奇函数,则实数k =________.答案 ±1解析 ∵f (-x )=k -2-x 1+k ·2-x =k ·2x -12x +k ,∴f (-x )+f (x )=(k -2x )(2x +k )+(k ·2x -1)·(1+k ·2x )(1+k ·2x )(2x +k )=(k 2-1)(22x +1)(1+k ·2x )(2x +k ). 由f (-x )+f (x )=0,可得k 2=1,∴k =±1.12.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎨⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是________.答案 -25解析 ∵f (x )是周期为2的函数, ∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12, f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫4+12=f ⎝ ⎛⎭⎪⎫12, 又∵f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,∴f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12, 即-12+a =110,解得a =35,则f (5a )=f (3)=f (4-1)=f (-1)=-1+35=-25.13.(2017·郑州联考)对于函数f (x ),若存在常数a ≠0,使得取定义域内的每一个x 值,都有f (x )=-f (2a -x ),则称f (x )为准奇函数.给出下列函数:①f (x )=(x -1)2,②f (x )=1x +1,③f (x )=x 3,④f (x )=cos x ,其中所有准奇函数的序号是________.答案 ②④解析 对于函数f (x ),若存在常数a ≠0,使得取定义域内的每一个x 值,都有f (x )=-f (2a -x ),则函数f (x )的图象关于(a,0)对称.对于①,f (x )=(x -1)2,函数图象无对称中心;对于②,f (x )=1x +1,函数f (x )的图象关于(-1,0)对称;对于③,f (x )=x 3,函数f (x )的图象关于(0,0)对称;对于④,f (x )=cos x ,函数f (x )的图象关于⎝ ⎛⎭⎪⎫k π+π2,0(k ∈Z )对称.所以所有准奇函数的序号是②④.14.(2018·太原模拟)已知定义在R 上的奇函数f (x )满足f ⎝ ⎛⎭⎪⎫32-x =f (x ),f (-2)=-3,数列{a n }的前n 项和为S n ,且a 1=-1,S n =2a n +n (n ∈N *),则f (a 5)+f (a 6)=________.答案 3解析 ∵奇函数f (x )满足f ⎝ ⎛⎭⎪⎫32-x =f (x ),∴f ⎝ ⎛⎭⎪⎫32-x =-f (-x ),∴f (x )=-f ⎝⎛⎭⎪⎫x +32=f (x +3),∴f (x )是以3为周期的周期函数,∵S n =2a n+n ①,∴S n +1=2a n +1+n +1②,②-①可得a n +1=2a n -1,结合a 1=-1,可得a 5=-31,a 6=-63,∴f (a 5)=f (-31)=f (2)=-f (-2)=3,f (a 6)=f (-63)=f (0)=0,∴f (a 5)+f (a 6)=3.三、解答题15.设函数f (x )在(-∞,+∞)上满足f (2-x )=f (2+x ),f (7-x )=f (7+x ),且在闭区间[0,7]上,只有f (1)=f (3)=0.(1)证明:函数f (x )为周期函数;(2)试求方程f (x )=0在闭区间[-2018,2018]上的根的个数,并证明你的结论.解 (1)证明:由⎩⎪⎨⎪⎧f (2-x )=f (2+x ),f (7-x )=f (7+x )⇒⎩⎪⎨⎪⎧f (x )=f (4-x ),f (x )=f (14-x )⇒f (4-x )=f (14-x )⇒f (x )=f (x +10). ∴f (x )为周期函数,T =10.(2)∵f (3)=f (1)=0,f (11)=f (13)=f (-7)=f (-9)=0,故f (x )在[0,10]和[-10,0]上均有两个解.从而可知函数y =f (x )在[0,2018]上有404个解, 在[-2018,0]上有403个解,所以函数y =f (x )在[-2018,2018]上有807个解.16.定义在R 上的函数f (x )对任意a ,b ∈R 都有f (a +b )=f (a )+f (b )+k (k 为常数).(1)判断k 为何值时,f (x )为奇函数,并证明;(2)设k =-1,f (x )是R 上的增函数,且f (4)=5,若不等式f (mx 2-2mx +3)>3对任意x ∈R 恒成立,求实数m 的取值范围.解 (1)若f (x )在R 上为奇函数,则f (0)=0, 令a =b =0,则f (0+0)=f (0)+f (0)+k ,所以k =0. 证明:由f (a +b )=f (a )+f (b ),令a =x ,b =-x , 则f (x -x )=f (x )+f (-x ),又f (0)=0,则有0=f (x )+f (-x ),即f (-x )=-f (x )对任意x ∈R 成立,所以f (x )是奇函数.(2)因为f (4)=f (2)+f (2)-1=5,所以f (2)=3. 所以f (mx 2-2mx +3)>3=f (2)对任意x ∈R 恒成立.又f (x )是R 上的增函数,所以mx 2-2mx +3>2对任意x ∈R 恒成立,即mx 2-2mx +1>0对任意x ∈R 恒成立,当m =0时,显然成立;当m ≠0时,由⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0,得0<m <1. 所以实数m 的取值范围是[0,1).。
[基础送分提速狂刷练] 一、选择题1.曲线y=lg x在x=1处的切线的斜率是()A.1ln 10B.ln 10 C.ln e D.1 ln e答案 A解析因为y′=1x·ln 10,所以y′|x=1=1ln 10,即切线的斜率为1ln 10.故选A.2.(2017·潼南县校级模拟)如图,是函数y=f(x)的导函数f′(x)的图象,则下面判断正确的是()A.在区间(-2,1)上f(x)是增函数B.在(1,3)上f(x)是减函数C.在(4,5)上f(x)是增函数D.当x=4时,f(x)取极大值答案 C解析由于f′(x)≥0⇒函数f(x)单调递增;f′(x)≤0⇒函数f(x)单调递减,观察f′(x)的图象可知,当x∈(-2,1)时,函数先递减,后递增,故A错误;当x∈(1,3)时,函数先增后减,故B错误;当x∈(4,5)时函数递增,故C正确.由函数的图象可知函数在4处取得函数的极小值,故D 错误.故选C.3.(2018·上城区模拟)函数f (x )的导函数f ′(x )的图象如图所示,则f (x )的函数图象可能是( )答案 B解析 由图可得-1<f ′(x )<1,切线的斜率k ∈(-1,1)且在R 上切线的斜率的变化先慢后快又变慢.∴结合选项可知选项B 符合.故选B.4.(2018·昆明调研)若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( )A .-1B .0C .1D .2 答案 C解析 依题意得f ′(x )=-a sin x ,g ′(x )=2x +b ,于是有f ′(0)=g ′(0),即-a sin0=2×0+b ,则b =0,又m =f (0)=g (0),即m =a =1,因此a +b =1.选C.5.(2018·山东烟台期末)若点P 是函数y =e x-e -x-3x ⎝ ⎛⎭⎪⎫-12≤x ≤12图象上任意一点,且在点P 处切线的倾斜角为α,则α的最小值是( )A.5π6B.3π4C.π4D.π6 答案 B解析 由导数的几何意义,k =y ′=e x +e -x -3≥2e x ·e -x -3=-1,当且仅当x =0时等号成立.即tan α≥-1,α∈[0,π),又∵tan α<0,所以α的最小值为3π4.故选B.6.(2017·山西名校联考)若函数f (x )的导函数的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+x 2C .f (x )=1+sin2xD .f (x )=e x +x答案 C解析 A 选项中,f ′(x )=-3sin x ,其图象不关于y 轴对称,排除A ;B 选项中,f ′(x )=3x 2+2x ,其图象的对称轴为x =-13,排除B ;C 选项中,f ′(x )=2cos2x ,其图象关于y 轴对称;D 选项中,f ′(x )=e x +1,其图象不关于y 轴对称.故选C.7.(2018·河南郑州质检二)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4 答案 B解析 由题图可知曲线y =f (x )在x =3处的切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×⎝⎛⎭⎪⎫-13=0.故选B.8.(2017·辽宁五校联考)已知f (x )=x 3-2x 2+x +6,则f (x )在点P (-1,2)处的切线与坐标轴围成的三角形的面积等于( )A .4B .5 C.254 D.132 答案 C解析 ∵f (x )=x 3-2x 2+x +6,∴f ′(x )=3x 2-4x +1,∴f ′(-1)=8,切线方程为y -2=8(x +1),即8x -y +10=0,令x =0,得y =10,令y =0,得x =-54,∴所求面积S =12×54×10=254.故选C.9.(2017·青山区月考)函数y =f (x )的图象过原点且它的导函数y =f ′(x )的图象是如图所示的一条直线,y =f (x )的图象的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 C解析 由导函数的图象和y =f (x )的图象过原点,设f (x )=ax 2+bx ,所以f ′(x )=2ax +b ,由图得a >0,b >0,则-b2a <0,4ac -b 24a =-b 24a <0,则函数f (x )=ax 2+bx 图象的顶点⎝ ⎛⎭⎪⎫-b 2a ,-b 24a 在第三象限.故选C.10.若存在过点O (0,0)的直线l 与曲线f (x )=x 3-3x 2+2x 和y =x 2+a 都相切,则a 的值是( )A .1 B.164 C .1或164 D .1或-164 答案 C解析 易知点O (0,0)在曲线f (x )=x 3-3x 2+2x 上. (1)当O (0,0)是切点时,则k =f ′(0)=2,直线l 方程为y =2x . 又直线l 与曲线y =x 2+a 相切,∴x 2-2x +a =0满足Δ=4-4a =0,解得a =1.(2)当O (0,0)不是切点时,设切点为P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =f ′(x 0)=3x 20-6x 0+2,①又k =y 0x 0=x 20-3x 0+2,②联立①②解得x 0=32(x 0=0舍), 即k =-14,则直线l 方程为y =-14x .由⎩⎨⎧y =-14x ,y =x 2+a ,联立得x 2+14x +a =0,由Δ=116-4a =0,得a =164,综上,a =1或a =164.故选C. 二、填空题11.(2017·临川区三模)已知函数f (x )=sin x -cos x ,且f ′(x )=2f (x ),则tan2x 的值是________.答案 -34解析 求导得:f ′(x )=cos x +sin x , ∵f ′(x )=2f (x ),∴cos x +sin x =2(sin x -cos x ),即3cos x =sin x , ∴tan x =3,则tan2x =2tan x 1-tan 2x =61-9=-34.12.设a ∈R ,函数f (x )=e x+ae x 的导函数是f ′(x ),且f ′(x )是奇函数.若曲线y =f (x )的一条切线的斜率是32,则切点的横坐标为 ________.答案 ln 2解析 函数f (x )=e x +a e x 的导函数是f ′(x )=e x -ae x .又f ′(x )是奇函数,所以f ′(x )=-f ′(-x ),即e x-ae x =-(e -x -a e x ),所以(e 2x +1)(1-a )=0,解得a =1,所以f ′(x )=e x -1e x .令e x -1e x =32,解得e x =2或e x =-12(舍去),所以x =ln 2.13.(2018·金版创新)函数f (x )(x ∈R )满足f (1)=1,且f (x )在R 上的导函数f ′(x )>12,则不等式f (x )<x +12的解集为________.答案 (-∞,1)解析 据已知f ′(x )>12,可得⎣⎢⎡⎦⎥⎤f (x )-12x ′=f ′(x )-12>0,即函数F (x )=f (x )-12x 在R 上为单调递增函数,又由f (1)=1可得F (1)=12,故f (x )<1+x 2=12+12x ,化简得f (x )-12x <12,即F (x )<F (1),由函数的单调性可得不等式的解集为(-∞,1).14.(2017·河北石家庄模拟)若对于曲线f (x )=-e x -x (e 为自然对数的底数)的任意切线l 1,总存在曲线g (x )=ax +2cos x 的切线l 2,使得l 1⊥l 2,则实数a 的取值范围为________.答案 [-1,2]解析 易知函数f (x )=-e x -x 的导数为f ′(x )=-e x -1,设l 1与曲线f (x )=-e x -x 的切点为(x 1,f (x 1)),则l 1的斜率k 1=-e x 1-1.易知函数g (x )=ax +2cos x 的导数为g ′(x )=a -2sin x ,设l 2与曲线g (x )=ax +2cos x 的切点为(x 2,g (x 2)),则l 2的斜率k 2=a -2sin x 2.由题设可知k 1·k 2=-1,从而有(-e x 1-1)(a -2sin x 2)=-1,∴a -2sin x 2=1e x 1+1,故由题意知对任意实数x 1,总存在x 2使得上述等式成立,则函数y =1e x +1的值域是y =a -2sin x 值域的子集,则(0,1)⊆[a -2,a +2],则⎩⎪⎨⎪⎧a -2≤0,a +2≥1,∴-1≤a ≤2.三、解答题15.(2017·云南大理月考)设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3. 当x =2时,y =12.又f ′(x )=a +bx 2, 于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x . (2)证明:设P (x 0,y 0)为曲线上的任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎪⎫0,-6x 0.切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x 0||2x 0=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.16.(2018·福建四地联考)已知函数f (x )=13x 3-32x 2+2x +5. (1)求函数f (x )的图象在点(3,f (3))处的切线方程;(2)若曲线y =f (x )与y =2x +m 有三个不同的交点,求实数m 的取值范围.解 (1)∵f (x )=13x 3-32x 2+2x +5,∴f ′(x )=x 2-3x +2,易求得f ′(3)=2,f (3)=132. ∴f (x )的图象在点(3,f (3))处的切线方程是 y -132= 2(x -3),即4x -2y +1=0. (2)令f (x )=2x +m ,即13x 3-32x 2+2x +5=2x +m ,得13x 3-32x 2+5=m ,设g (x )=13x 3-32x 2+5,∵曲线y =f (x )与直线y =2x +m 有三个不同的交点, ∴曲线y =g (x )与直线y =m 有三个不同的交点, 易得g ′(x )=x 2-3x ,令g ′(x )=0,解得x =0或x =3, 当x <0或x >3时,g ′(x )>0, 当0<x <3时,g ′(x )<0,∴g (x )在(-∞,0),(3,+∞)上单调递增,在(0,3)上单调递减,又g (0)=5,g (3)=12,即g (x )极大值=5, g (x )极小值=12,∴可画出如图所示的函数g (x ) 的大致图象,∴实数m 的取值范围为⎝ ⎛⎭⎪⎫12,5.。
[基础送分 提速狂刷练]一、选择题1.已知A ={x |x =n 2,n ∈N },给出下列关系式:①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=x 4;⑤f (x )=x 2+1,其中能够表示函数f :A →A 的个数是( )A .2B .3C .4D .5答案 C解析 对⑤,当x =1时,x 2+1∉A ,故⑤错误,由函数定义可知①②③④均正确.故选C.2.(2018·吉安四校联考)已知函数f (x )=⎩⎪⎨⎪⎧1-x 2(x ≤1),x 2+x -2(x >1),则f ⎣⎢⎡⎦⎥⎤1f (2)的值为( )A.1516 B .89 C .-2716 D .18答案 A解析 f (2)=4,f ⎣⎢⎡⎦⎥⎤1f (2)=f ⎝ ⎛⎭⎪⎫14=1-⎝ ⎛⎭⎪⎫142=1516.故选A.3.已知f (x 5)=lg x ,则f (2)等于( ) A .lg 2 B .lg 32 C .lg 132 D.15lg 2答案 D解析 令x 5=t ,则x =t15(t >0), ∴f (t )=lg t15 =15lg t .∴f (2)=15lg 2.故选D.4.(2017·山西名校联考)设函数f (x )=lg (1-x ),则函数f [f (x )]的定义域为( )A .(-9,+∞)B .(-9,1)C .[-9,+∞)D .[-9,1)答案 B解析 f [f (x )]=f [lg (1-x )]=lg [1-lg (1-x )],则⎩⎪⎨⎪⎧1-x >0,1-lg (1-x )>0⇒-9<x <1.故选B.5.若函数y =f (x )的定义域是[0,1],则函数F (x )=f (x +a )+f (2x +a )(0<a <1)的定义域是( )A.⎣⎢⎡⎦⎥⎤-a 2,1-a 2 B .⎣⎢⎡⎦⎥⎤-a 2,1-aC .[-a,1-a ] D.⎣⎢⎡⎦⎥⎤-a ,1-a 2 答案 A解析 ⎩⎪⎨⎪⎧0≤x +a ≤1,0≤2x +a ≤1⇒-a2≤x ≤1-a 2.故选A.6.函数y =⎝ ⎛⎭⎪⎫121x 2+1的值域为( )A.⎝ ⎛⎦⎥⎤-∞,12 B .⎣⎢⎡⎦⎥⎤12,1C.⎣⎢⎡⎭⎪⎫12,1 D .⎣⎢⎡⎭⎪⎫12,+∞ 答案 C解析 由于x 2≥0,所以x 2+1≥1,所以0<1x 2+1≤1,结合函数y =⎝ ⎛⎭⎪⎫12x 在(0,1]上的图象可知函数y =⎝ ⎛⎭⎪⎫121x 2+1 的值域为⎣⎢⎡⎭⎪⎫12,1.故选C. 7.(2018·黄冈联考)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f [f (-3)]=( )A .-2B .2C .3D .-3答案 B解析 由题意得f (0)=a 0+b =1+b =2,解得b =1; f (-1)=a -1+b =a -1+1=3, 解得a =12.故f (-3)=⎝ ⎛⎭⎪⎫12-3+1=9,从而f [f (-3)]=f (9)=log 39=2.故选B.8.(2018·银川模拟)已知具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎨⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③ D .①答案 B解析 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x )满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x +x =f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x>1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎨⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.故选B.9.(2018·铜陵一模)若函数f (x )图象上任意一点P (x ,y )皆满足y 2≥x 2,则f (x )的解析式可以是( )A .f (x )=x -1xB .f (x )=e x -1C .f (x )=x +4x D .f (x )=tan x答案 C解析 A 项,当x =1时,f (x )=1-1=0,02≥12不成立;B 项,当x =-1时,f (x )=1e -1∈(-1,0),⎝ ⎛⎭⎪⎫1e -12≥(-1)2不成立;D 项,当x =5π4时,f (x )=1,12≥⎝⎛⎭⎪⎫5π42不成立;对于C ,f 2(x )=x 2+16x 2+8>x 2,符合题意.故选C.10.(2017·山东模拟)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1.则满足f [f (a )]=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1 B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞)答案 C解析 ①当a <23时,f (a )=3a -1<1,f [f (a )]=3(3a -1)-1=9a -4,2f (a )=23a -1,显然f [f (a )]≠2f (a ).②当23≤a <1时,f (a )=3a -1≥1,f [f (a )]=23a -1,2f (a )=23a -1, 故f [f (a )]=2f (a ).③当a ≥1时,f (a )=2a >1,f [f (a )]=22a, 2f (a )=22a,故f [f (a )]=2f (a ).综合①②③知a ≥23.故选C. 二、填空题11.已知x ∈N *,f (x )=⎩⎪⎨⎪⎧x 2-35,x ≥3,f (x +2),x <3,其值域设为D .给出下列数值:-26,-1,9,14,27,65,则其中属于集合D 的元素是________.(写出所有可能的数值)答案 -26,14,65解析 注意函数的定义域是N *,由分段函数解析式可知,所有自变量的函数值最终都是转化为大于等于3的对应自变量函数值计算的f (3)=9-35=-26,f (4)=16-35=-19,f (5)=25-35=-10,f (6)=36-35=1,f (7)=49-35=14,f (8)=64-35=29,f (9)=81-35=46,f (10)=100-35=65.故正确答案应填-26,14,65.12.(2018·厦门一模)已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________. 答案 ⎣⎢⎡⎭⎪⎫0,12 解析 当x ≥1时,f (x )=2x-1≥1,∵函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R , ∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12. 13.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.答案 1解析 [a ,b ]的长度取得最大值时[a ,b ]=[-1,1],区间[a ,b ]的长度取得最小值时[a ,b ]可取[0,1]或[-1,0],因此区间[a ,b ]的长度的最大值与最小值的差为1.14.(2018·绵阳二诊)现定义一种运算“⊕”:对任意实数a ,b ,a ⊕b =⎩⎪⎨⎪⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-2x )⊕(x +3),若函数g (x )=f (x )+k 的图象与x 轴恰有两个公共点,则实数k 的取值范围是________.答案 (-8,-7]∪(-3,-2)∪{1}解析 因为(x 2-2x )-(x +3)-1=(x -4)(x +1),所以f (x )=(x 2-2x )⊕(x +3)=⎩⎪⎨⎪⎧x +3,x ∈(-∞,-1]∪[4,+∞),x 2-2x ,x ∈(-1,4).作出函数y =f (x )的图象如图所示.函数g (x )=f (x )+k 的图象与x 轴恰有两个公共点,即函数y =f (x )的图象与直线y =-k 有两个公共点,结合图象可得-k =-1 或2<-k <3或7≤-k <8,所以实数k 的取值范围是k ∈(-8,-7]∪(-3,-2)∪{1}.三、解答题15.(2018·福建六校联考)已知函数f (x )=log a (x +2)+log a (4-x )(a >0且a ≠1).(1)求函数f (x )的定义域;(2)若函数f (x )在区间[0,3]上的最小值为-2,求实数a 的值.解 (1)依题意得⎩⎪⎨⎪⎧x +2>0,4-x >0,解得-2<x <4,∴f (x )的定义域为(-2,4).(2)f (x )=log a (x +2)+log a (4-x ) =log a [(x +2)(4-x )],令t =(x +2)(4-x ),则可变形得t =-(x -1)2+9, ∵0≤x ≤3,∴5≤t ≤9, 若a >1,则log a 5≤log a t ≤log a 9,∴f (x )min =log a 5=-2,则a 2=15<1(舍去),若0<a <1,则log a 9≤log a t ≤log a 5, ∴f (x )min =log a 9=-2, 则a 2=19,又0<a <1,∴a =13. 综上,得a =13.16.如果对∀x ,y ∈R 都有f (x +y )=f (x )·f (y ),且f (1)=2. (1)求f (2),f (3),f (4)的值;(2)求f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2014)f (2013)+f (2016)f (2015)+f (2018)f (2017)的值.解 (1)∵∀x ,y ∈R ,f (x +y )=f (x )·f (y ),且 f (1)=2,∴f (2)=f (1+1)=f (1)·f (1)=22=4, f (3)=f (1+2)=f (1)·f (2)=23=8, f (4)=f (1+3)=f (1)·f (3)=24=16.(2)解法一:由(1)知f (2)f (1)=2,f (4)f (3)=2,f (6)f (5)=2,…,f (2018)f (2017)=2,故原式=2×1009=2018.解法二:对∀x ,y ∈R 都有f (x +y )=f (x )·f (y )且f (1)=2,令x =n ,y =1,则f (n +1)=f (n )·f (1),即f (n +1)f (n )=f (1)=2,故f (2)f (1)=f (4)f (3)=…=f (2018)f (2017)=2,故原式=2×1009=2018.。
一、选择题1.(2018·安阳检测)若点(a ,b )在y =lg x 图象上,a ≠1,则下列点也在此图象上的是( )A.⎝ ⎛⎭⎪⎫1a ,b B .(10a,1-b ) C.⎝ ⎛⎭⎪⎫10a ,b +1 D .(a 2,2b )答案 D解析 当x =a 2时,y =lg a 2=2lg a =2b ,所以点(a 2,2b )在函数y =lg x 图象上.故选D.2.已知函数f (x )=2+log 2x ,x ∈[1,2],则函数y =f (x )+f (x 2)的值域为( )A .[4,5]B .⎣⎢⎡⎦⎥⎤4,112C.⎣⎢⎡⎦⎥⎤4,132 D .[4,7]答案 B解析 y =f (x )+f (x 2)=2+log 2x +2+log 2x 2=4+3log 2x ,注意到为使得y =f (x )+f (x 2)有意义,必有1≤x 2≤2,得1≤x ≤2,从而4≤y ≤112.故选B.3.(2018·太原调研)已知函数f (x )=⎝ ⎛⎭⎪⎫13x -log 2x ,若实数x 0是方程f (x )=0的解,且0<x 1<x 0,则f (x 1)( )A .恒为负值B .等于0C .恒为正值D .不大于0答案 C解析 作出y =⎝ ⎛⎭⎪⎫13x和y =log 2x 的图象,如图.由图可知有0<x 1<x 0时,⎝ ⎛⎭⎪⎫13 x1>log 2x 1.即⎝ ⎛⎭⎪⎫13 x 1-log 2x 1>0. ∴f (x 1)>0.故选C.4.(2017·河南二模)函数y =2xln |x |的图象大致为( )答案 B解析 函数y =2xln |x |的定义域为{x |x ≠0且x ≠±1},故排除A ;∵f (-x )=-2x ln |x |=-2xln |x |=-f (x ),∴排除C ;当x =2时,y =4ln 2>0,故排除D.故选B.5.(2015·湖南高考)设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是( )A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数 答案 A解析 解法一:函数f (x )的定义域为(-1,1),任取x ∈(-1,1),f (-x )=ln (1-x )-ln (1+x )=-f (x ),则f (x )是奇函数.当x ∈(0,1)时,f ′(x )=11+x +11-x =21-x 2>0,所以f (x )在(0,1)上是增函数.综上,故选A.解法二:同解法一知f (x )是奇函数.当x ∈(0,1)时,f (x )=ln 1+x 1-x =ln 2-(1-x )1-x =ln ⎝ ⎛⎭⎪⎫21-x -1.∵y =21-x (x ∈(0,1))是增函数,y =ln x 也是增函数,∴f (x )在(0,1)上是增函数.综上,故选A.6.已知函数f (x )=log 12(x 2-ax -a )在⎝ ⎛⎦⎥⎤-∞,-12上是增函数,则实数a 的取值范围是( )A .[-1,+∞)B .⎣⎢⎡⎭⎪⎫-1,12C.⎣⎢⎡⎦⎥⎤-1,12 D .(-∞,-1]答案 B解析 f (x )=log 12(x 2-ax -a )在⎝ ⎛⎦⎥⎤-∞,-12上是增函数,说明内层函数μ(x )=x 2-ax -a 在⎝ ⎛⎦⎥⎤-∞,-12上是减函数且μ(x )>0成立,只需对称轴x =a 2≥-12且μ(x )min =μ⎝ ⎛⎭⎪⎫-12>0,∴解得a ∈⎣⎢⎡⎭⎪⎫-1,12.故选B.7.(2017·安徽安庆二模)已知函数y =f (x )是定义在R 上的偶函数,当x ∈(-∞,0]时,f (x )为减函数,若a =f (20.3),b =f (log 124),c =f (log 25),则a ,b ,c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b答案 B解析 函数y =f (x )是定义在R 上的偶函数,当x ∈(-∞,0]时,f (x )为减函数,∴f (x )在[0,+∞)上为增函数,∵b =f (log 124)=f (-2)=f (2),1<20.3<2<log 25,∴c >b >a .故选B.8.(2017·广东模拟)若函数f (x )=(e x -e -x )x ,f (log 5x )+f (log 15x )≤2f (1),则x 的取值范围是( )A.⎣⎢⎡⎦⎥⎤15,1 B .[1,5]C.⎣⎢⎡⎦⎥⎤15,5 D.⎝⎛⎦⎥⎤-∞,15∪[5,+∞) 答案 C解析 ∵f (x )=(e x -e -x )x ,∴f (-x )=-x (e -x -e x )=(e x -e -x )x =f (x )(x ∈R ),∴函数f (x )是偶函数.∵f ′(x )=(e x -e -x )+x (e x +e -x )>0在(0,+∞)上恒成立, ∴函数f (x )在(0,+∞)上单调递增. ∵f (log 5x )+f (log 15x )≤2f (1),∴2f (log 5x )≤2f (1),即f (log 5x )≤f (1), ∴|log 5x |≤1,∴15≤x ≤5.故选C.9.(2017·河北五校质检)函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +2=0上,其中m >0,n >0,则2m +1n 的最小值为( )A .2 2B .4 C.52 D.92 答案 D解析 由函数y =log a (x +3)-1(a >0,且a ≠1)的解析式知:当x=-2时,y =-1,所以点A 的坐标为(-2,-1),又因为点A 在直线mx +ny +2=0上,所以-2m -n +2=0,即2m +n =2,又m >0,n >0,所以2m +1n =2m +n m +2m +n 2n =2+n m +m n +12≥52+2=92,当且仅当m =n =23时等号成立,所以2m +1n 的最小值为92.故选D.10.(2017·江西红色七校二模)已知函数f (x )=lne xe -x,若f ⎝ ⎛⎭⎪⎫e 2017+f ⎝ ⎛⎭⎪⎫2e 2017+…+f ⎝ ⎛⎭⎪⎫2016e 2017=504(a +b ),则a 2+b 2的最小值为( ) A .6 B .8 C .9 D .12答案 B解析 ∵f (x )+f (e -x )=ln e x e -x +ln e (e -x )x =ln e 2=2,∴504(a +b )=f⎝ ⎛⎭⎪⎫e 2017+f⎝ ⎛⎭⎪⎫2e 2017+…+f ⎝ ⎛⎭⎪⎫2016e 2017=12⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫e 2017+f ⎝ ⎛⎭⎪⎫2016e 2017+f ⎝ ⎛⎭⎪⎫2e 2017+f ⎝ ⎛⎭⎪⎫2015e 2017+…+f ⎝ ⎛⎭⎪⎫2016e 2017+f ⎝ ⎛⎭⎪⎫e 2017=12×(2×2016)=2016,∴a +b =4,∴a 2+b 2≥(a +b )22=422=8,当且仅当a =b =2时取等号.∴a 2+b 2的最小值为8.故选B. 二、填空题11.(2018·禅城区月考)已知函数f (x )=|lg x |,若0<a <b ,且f (a )=f (b ),则2a +b 的取值范围是________.答案 [22,+∞)解析 画出y =|lg x |的图象如图: ∵0<a <b ,且f (a )=f (b ), ∴|lg a |=|lg b |且0<a <1,b >1,∴-lg a =lg b ,∴ab =1,∴2a +b ≥22ab =2 2.当2a =b 时等号成立, ∴2a +b ≥2 2.12.函数f (x )=log 2x ·log 2(2x )的最小值为________.答案 -14解析 显然x >0,∴f (x )=log 2x ·log2(2x )=12log 2x ·log 2(4x 2)=12log 2x ·(log 24+2log 2x )=log 2x +(log 2x )2=⎝ ⎛⎭⎪⎫log 2x +122-14≥-14,当且仅当x =22时,取“=”,故f (x )min =-14.13.(2017·山西质检)已知函数f (x )=⎩⎪⎨⎪⎧|2x +1|,x <1,log 2(x -m ),x >1,若f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),且x 1+x 2+x 3的取值范围为(1,8),则实数m 的值为________.答案 1解析 作出f (x )的图象,如图所示,可令x 1<x 2<x 3,则由图知点(x 1,0),(x 2,0)关于直线x =-12对称,所以x 1+x 2=-1.又1<x 1+x 2+x 3<8,所以2<x 3<9.由f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),结合图象可知点A 的坐标为(9,3),代入函数解析式,得3=log 2(9-m ),解得m =1.14.(2017·辽宁沈阳一模)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则n m =________.答案 9解析 ∵f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),∴m <1<n ,-log 3m =log 3n ,∴mn =1.∵f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,∴-log 3m 2=2或log 3n =2.若-log 3m 2=2,则m =13,从而n =3,此时log 3n =1,符合题意,则n m =3÷13=9.若log 3n =2,则n =9,从而m =19,此时-log 3m 2=4,不符合题意.三、解答题15.已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式;(2)解不等式f (x 2-1)>-2.解 (1)当x <0时,-x >0,则f (-x )=log 12(-x ).因为函数f (x )是偶函数, 所以f (-x )=f (x )=log 12(-x ),所以函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,0,x =0,log 12(-x ),x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数, 所以不等式f (x 2-1)>-2转化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为(-5,5).16.设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0且a ≠1)的最大值是1,最小值是-18,求a 的值.解 由题意知f (x )=12(log a x +1)·(log a x +2)=12[(log a x )2+3log a x +2]=12⎝ ⎛⎭⎪⎫log ax +322-18.当f (x )取最小值-18时,log a x =-32.又∵x ∈[2,8],∴a ∈(0,1). ∵f (x )是关于log a x 的二次函数,∴函数f (x )的最大值必在x =2或x =8时取得. 若12⎝ ⎛⎭⎪⎫log a 2+322-18=1,则a =2-13,此时f (x )取得最小值时,x =(2-13 )-32=2∉[2,8],舍去.若12⎝ ⎛⎭⎪⎫log a 8+322-18=1,则a =12, 此时f (x )取得最小值时,x =⎝ ⎛⎭⎪⎫12-32=22∈[2,8],符合题意,∴a=12.。