同步辐射的基本知识第一讲同步辐射光源的原理_构造和特征.
- 格式:doc
- 大小:782.00 KB
- 文档页数:15
同步辐射百科名片同步辐射 synchrotron radiation ,相对论性带电粒子在电磁场的作用下沿弯转轨道行进时所发出的电磁辐射。
至今同步辐射装置的建造及在其上的研究、应用,经历了三代的发展。
目录编辑本段同步辐射简介synchrotron radiation相对论性带电粒子在电磁场的作用下沿弯转轨道行进时所发出的电磁辐射。
同步辐射是速度接近光速(v≈c)的带电粒子在磁场中沿弧形轨道运动时放出的电磁辐射,由于它最初是在同步加速器上观察到的,便又被称为“同步辐射”或“同步加速器辐射[1]”。
长期以来,同步辐射是不受高能物理学家欢迎的东西,因为它消耗了加速器的能量,阻碍粒子能量的提高。
但是,人们很快便了解到同步辐射是具有从远红外到X光范围内的连续光谱、高强度、高度准直、高度极化、特性可精确控制等优异性能的脉冲光源,可以用以开展其它光源无法实现的许多前沿科学技术研究。
于是在几乎所有的高能电子加速器上,都建造了“寄生运行”的同步辐射光束线及各种应用同步光的实验装置。
至今,同步辐射装置的建造及在其上的研究、应用,经历了三代的发展。
编辑本段第一代同步辐射光源是在世界各国为高能物理研究建造的储存环和加速器上“寄生地”运行的。
很快地,不仅物理学家,而且化学家、生物学家、冶金学家、材料科学家、医学家和几乎所有学科的基础研究及应用研究的专家,都从这个新出现的光源看到巨大的机会。
然而,在对储存环性能的要求上,同步辐射的用户与高能物理学家的观点是矛盾的,表现在主要是由电子束的发射度所决定的同步辐射的亮度上。
它使同步辐射的用户们要求建造专门为同步辐射的应用而设计的第二代同步光源。
发射度由第一代装置的几百nm.rad降低到第二代同步光源的50-150nm.rad。
编辑本段第二代同步辐射光源第二代同步辐射装置对科学技术研究的巨大推动,促使世界各国政府支持建造新一代具有更高亮度的第三代同步辐射光源。
第三代同步辐射光源的储存环的发射度一般为10nm.rad量级,并籍助于安装大量的插入件(波荡器和扭摆器),产生准相干的同步辐射光,这不但使光谱的耀度再提高了几个数量级,而且可以灵活地选择光子的能量和偏振性。
同步辐射光源原理
同步辐射光源是一种高亮度、高空间分辨率和高波长分辨率的光源,
具有广泛的应用前景。
它的产生原理是由于电子在弯曲或加速的过程
中会辐射出电磁波,这种电磁波的能量与电子的运动状态、质量和速
度有关,称之为辐射能量谱。
同步辐射光源是通过在电子加速器上产
生高能电子束,利用电子在弯曲磁场中运动产生的同步辐射辐射出来
的光源。
同步辐射光源主要有弯线光源和直线光源两种类型。
弯线光源利用电
子在弯曲磁场中运动产生同步辐射,产生的光子在正面的凸透镜上成
为聚焦的平行光束,这里我们可以得到高亮度的光线。
直线光源则是
利用极高速运动的电子辐射出的光源,整个加速器就像是一个直线,
使得超高亮度的光线产生并传播。
由于电子在加速器中运动的速度非常快,通常超过了0.99C(光速的99%),所以同步辐射光源的波长非常短,甚至可以达到纳米级别。
这样的高波长分辨率和高空间分辨率特性为很多现代科学和工业实验提
供了一些前所未有的实验条件。
总之,同步辐射光源的原理是由于加速器中的高能电子在弯曲或加速
的过程中会产生同步辐射,这种辐射的谱在波长和能量方面都很广泛,
并有着非常好的性质。
同步辐射光源的优点非常突出,因此它的应用前景广泛,未来将有更多的相关技术的应用和发展。
同步辐射光源的原理、构造和特征一、引言同步辐射光源是用于研究物质及其性质的实验设备,具有较高的光强、高的光能、独特的光谱结构和极高的时间分辨率等优势。
本文将介绍同步辐射光源的原理、构造和特征。
二、同步辐射光源的原理同步辐射是指将一个瞬态电子束与一束恒定的光束相互作用,从而产生一束“同步辐射”光。
同步辐射光源的原理是利用加速器束流通过铁磁材料,产生高度双极性轴向磁场而产生的光。
同步辐射源是通过制造同步辐射光的装置而实现的。
同步辐射源由四个模块组成:加速器、储存环、辐射与探针线和探测器。
三、同步辐射光源的构造同步辐射光源的构造包括以下部分:1. 加速器加速器是同步辐射光源的核心部分。
它主要提供电子束,使的电子束在磁铁的作用下形成粒子束,在交替加速和弯曲作用下被带到储存环中运动。
2. 储存环储存环是一种特殊的加速器装置,电子束在其中被稳定运动。
储存环中有许多磁铁,在磁场中粒子将被弯曲,形成轨道,从而形成减速器所需的同步辐射光子束。
3. 辐射与探针线辐射和探针线由许多磁铁和探针组成,探针的位置、数量和类型可以根据需要变化。
主要作用是控制同步辐射光子的强度和能量分布。
4. 探测器同步辐射光源的探测器主要用于检测同步辐射光子,通过探测器可以获得同步辐射光的能量、时间分辨率和频率等信息。
四、同步辐射光源的特征同步辐射光源具有以下特征:1. 高光强同步辐射光源的光强比传统光源高出几个数量级。
2. 高光能同步辐射光源在200eV到10MeV的范围内具有广谱能量,可以用于各种应用领域。
3. 独特的光谱结构同步辐射光源的光谱结构具有非常高的能量分辨率,可用于分析物质中微小区域的结构和成分。
4. 高时间分辨率同步辐射光源的时间分辨率高于其他光源,可以获得物质的动态过程。
5. 可调控性同步辐射光源可根据需要调节光强、能量和时间分辨率等参数。
五、同步辐射光源是一种重要的实验设备,具有很高的科研价值。
本文介绍了同步辐射光源的原理、构造和特征,希望能对相关领域的研究者有所帮助。
同步辐射光源原理
一、同步辐射光源的概念
同步辐射光源(synchrotron radiation sources)是一种由加速带
和放大器构成的超高速电子束在特定路径被激发出的强大的射线,它具有
非常高的能量,频谱非常宽,空间分布密度很高,多模态衍射和偏振特别
强等特点,可以提供研究物理、材料科学、生物科学以及多种前沿应用
领域的超强同步辐射。
二、同步辐射光源的工作原理
同步辐射光源通常由加速带、放大器和激发器等组成。
当高能电子束
以足够大的能量流过加速带时,会产生强大的电磁辐射。
这种电磁辐射可
以被激发器控制,可以被放大器产生更高能量水平。
随着加速带中电子束
能量的变化,辐射的波长和频谱也会发生变化,从而形成各种轻度至非常
强的同步辐射光源。
三、同步辐射光源的应用
同步辐射光源可以用于各种研究领域,其中最重要的应用之一是研究
电磁场特性。
它可以用于图像分析,可以帮助研究者理解和检测电磁场的
模式、随机性以及微观和宏观结构变化。
同时,同步辐射光源还可以用于
材料特性的评估,可以帮助研究者解决结构、物性等方面的问题。
同步辐
射光源还可以用于化学物性研究,可以帮助研究者实现高精度的物性测量,这对于了解分子结构和活性有着重要意义。
同步辐射及其应用一、同步辐射世间万物都是由原子组成的,而原子是由原子核和核外电子构成的。
原子核带正电荷,核外电子带负电荷,并且正电荷和负电荷的数值相等,因此原子是呈中性的。
原子中的电子以很快的速度绕原子核旋转,如同行星绕太阳运动一样。
原子的尺寸是很小的,只有一亿分之一厘米;原子核的尺寸更小,只有十万亿分之一厘米,但原子的绝大部分质量都集中在原子核中。
原子的激发会产生光。
红外光、可见光、紫外光,是原子的外层电子受到激发后产生的;X 光是原子的内层电子受到激发后产生的;伽傌光是原子核受到激发后产生的。
由于每一种元素的原子发出的光都有它自己的特征光谱,因此可以根据物体发射的光谱来分析它的化学组分。
运动着的电子具有加速度时,它会放出电磁辐射,或者说它会发光。
因为光也是一种电磁辐射。
当电子在磁场中作圆周运动时,因为有向心加速度,所以也会发光。
电子在同步加速器中绕着磁场作圆周运动时发出的电磁辐射叫同步加速器辐射,简称同步辐射,或叫同步光。
其实电子在电子感应加速器,或电子回旋加速器中作圆周运动时也会发出这种电磁辐射。
但是因为这种辐射是1947年在美国通用电器公司的一台70MeV的电子同步加速器上首先发现的,所以大家都叫它同步辐射,而不叫它感应辐射,或回旋辐射。
现代的同步辐射光源是一台电子储存环。
电子储存环也是一种同步加速器,因此它也能发出同步辐射,而且是一种更稳定、性能更好的同步辐射。
接近光速的电子在储存环中作回旋运动,同时不断的发出同步光。
电子储存环并不能直接把电子从很低的速度加速到接近光速,而需要一台、有时需要两台较低能量的加速器把电子的速度提高到接近光速,然后注入到储存环中。
譬如我们合肥光源(HLS)就有一台200MeV的电子直线加速器作为注入器,把电子从80keV(速度为0.5倍的光速,光速为每秒30万公里)加速到200MeV(速度达到0.999997倍的光速),再注入到储存环中,然后电子再在储存环中从200MeV加速到800MeV(速度达到0.9999998倍的光速)。
/wiki/%E5%90%8C%E6 %AD%A5%E8%BE%90%E5%B0%84%E5%85%89%E6%BA %90同步辐射光源目录∙•名称∙•简介∙•特点∙•发展同步辐射光源-名称同步辐射光源——神奇的光同步辐射光源-简介人类文明史是利用和开发光资源的历史人类生存和发展从来就离不开对“光”的利用和开发,人类的文明史是一部利用和开发“光资源”的历史。
“光”是一个很大的家族,其中“可见光”只是“光家族”中的一员。
光可依其波长不同,分为无线电波、微波、红外、可见光、紫外、真空紫外、软 X射线、硬 X射线和伽马(γ)射线等。
光的波长或能量决定了它与物质的相互作用类型,如“可见光”照射人体时,会被反射到我们的眼睛,并被视网膜/视神经所感觉而“看到”人体;而当 X射线光照射人体时,则会穿透过人体,并在 X光底片上留下透过程度的影像纪录,医院里给病人做 X光透视就是这样。
光波具有衍射现象,用光探测物体或分辨两物体时,光的波长应当与物体的大小或两物体的间距相近或更短。
因此,天文学家要探测宇宙星球,可以选用无线电波;航空管理者要跟踪飞机,可以选用微波(雷达)。
而科学家要研究比“可见光”波长更短的物体,要“看清”病毒、蛋白质分子甚至金属原子等微观物体,必须选用与这些微观物体大小相近或更短的波长的光束,来照射微观物体,利用光束在物质中的衍射、折射、散射等能够检测到的特性,或者利用光束与物体相互作用产生的光激发、光吸收、荧光、光电子发射等特性,来探究未知的微观世界。
新人工光源带来人类文明的新进步光是由光源产生的,如太阳、蜡烛和电灯。
其中太阳是天然光源,蜡烛和电灯是人工光源。
由于可利用的天然光源所产生的光仅占整个光家族的很小部分,所以人类一直在努力开发和利用各种各样的人工光源。
任何一种新人工光源的发明和利用,都标志着人类文明新的进步,如伦琴发明?X射线、爱迪生发明的电灯、二次大战中发明的微波、20世纪60年代发明的激光等,都是人工光源发展史上的重大里程碑,它们都极大地促进了人类文明的进步。
专题综述同步辐射的基本知识第一讲杨传铮1,22(1.中国科学院,;上海硅酸盐研究所,上海200050) FSYNCHROTRONRADIATION———LRE1PRINCIPLE,CONSTRUCTIONANDCHARACTERS OFSYNCHROTRONRADIATIONSOURCEYANGChuan2zheng1,CHENGGuo2feng2,HUANGYue2hong2(1.ShanghaiInstituteofMicro2SystemandInformationTechnology,ChineseAcademyofSci ence,Shanghai200050,China;2.ShanghaiInstituteofCeramicsChineseAcademyofSciences,Shanghai200050,China)中图分类号:O434.11文献标识码:A文章编号:100124012(2008)01200282051同步辐射光源的原理和发展简史同步辐射是电子在作高速曲线运动时沿轨道切线方向产生的电磁波,因是在电子同步加速器上首次观察到,人们称这种由接近光速的带电粒子在磁场中运动时产生的电磁辐射为同步辐射,由于电子在图形轨道上运行时能量损失,故发出能量是连续分布的同步辐射光。
关于由带电粒子在圆周运动时发出同步辐射的理论考虑可追溯到1889年Lienard的工作,进一步的理论工作由Schott,Jassinsky,Kerst及Ivanenko,Arzimovitch和Pomeranchuk等直至1946年才完成,Blewett的研究工作首次涉及同步辐射对电子加速器操作的影响,并观察到辐射对电子轨道的影响,Lee和Blewett较详细地给出了发展史的评论。
至今,同步辐射光源的建造经历了三代,并向第四代发展。
(1)第一代同步辐射光源是在为高能物理研究建造与电子加速器和储存环上的副产品。
(2)第二代同步辐射光源是专门为同步辐射的应用而设计建造的,美国的Brokhaven 国家实验室(BNL)两位加速器物理学家Chasman和Green[1]收稿日期:2007209217作者简介:杨传铮(1939-),男,教授。
专题综述同步辐射的基本知识第一讲杨传铮1,22(1.中国科学院,;上海硅酸盐研究所,上海200050) FSYNCHROTRONRADIATION———LRE1PRINCIPLE,CONSTRUCTIONANDCHARACTERS OFSYNCHROTRONRADIATIONSOURCEYANGChuan2zheng1,CHENGGuo2feng2,HUANGYue2hong2(1.ShanghaiInstituteofMicro2SystemandInformationTechnology,ChineseAcademyofSci ence,Shanghai200050,China;2.ShanghaiInstituteofCeramicsChineseAcademyofSciences,Shanghai200050,China)中图分类号:O434.11文献标识码:A文章编号:100124012(2008)01200282051同步辐射光源的原理和发展简史同步辐射是电子在作高速曲线运动时沿轨道切线方向产生的电磁波,因是在电子同步加速器上首次观察到,人们称这种由接近光速的带电粒子在磁场中运动时产生的电磁辐射为同步辐射,由于电子在图形轨道上运行时能量损失,故发出能量是连续分布的同步辐射光。
关于由带电粒子在圆周运动时发出同步辐射的理论考虑可追溯到1889年Lienard的工作,进一步的理论工作由Schott,Jassinsky,Kerst及Ivanenko,Arzimovitch和Pomeranchuk等直至1946年才完成,Blewett的研究工作首次涉及同步辐射对电子加速器操作的影响,并观察到辐射对电子轨道的影响,Lee和Blewett较详细地给出了发展史的评论。
至今,同步辐射光源的建造经历了三代,并向第四代发展。
(1)第一代同步辐射光源是在为高能物理研究建造与电子加速器和储存环上的副产品。
(2)第二代同步辐射光源是专门为同步辐射的应用而设计建造的,美国的Brokhaven 国家实验室(BNL)两位加速器物理学家Chasman和Green[1]收稿日期:2007209217作者简介:杨传铮(1939-),男,教授。
把加速器上使电子弯转、散热等作用的磁铁按特殊的序列组装成Chasman2Green 阵列(Lattice),这种阵列在电子储存环中采用标志着第二代同步辐射的建造成功。
(3)第三代同步辐射光源的特征是大量使用插入件(InserctionDevices),即扭摆磁体(Wiggler)和波荡磁体(Undulator)而设计的低发散度的电子储存环。
表1为三代同步辐射光源的重要参数比较,其中表征性能的指标是同步辐射亮度,发散度以及相干性。
目前,世界上已使用的第一代光源19台,第二代24台,第三代11台。
正在建设或设计中的第三代14台,遍及美、英、欧、德、俄、日、中、印度、韩、瑞典、西班牙和巴西等国家。
大概可分为三类:第一类,是建立以VUV(真空紫外)为主的光源,借助储存环直线部分的扭摆磁体把光谱扩展到硬X射线范围,台湾新竹SRRC和合肥NSRC光源属此类。
第二类,是利用同步电子加速器能在高能和中能两种能模式下操作,可在同一台电子同步加速器(增强器)下,建立VUV和X射线两个电子储存环,位于美国长岛Brookhaven国家实验室(BNL)的国家同步辐光源(NSLS)属于此类。
第三类,是建立以X射线环为主同时兼顾・28・杨传铮:同步辐射的基本知识第一讲同步辐射光源的原理、构造和特征表1三代同步辐射光源主要性能指标的比较Tab.1Comparisonofmainpropertiesofthethreegenerationsynchrotronradiationsources 代数电子储存环工作模式兼用电子能量/GeV1~30(由高能物理决定)电子束发散度/nm・rad<1000同步辐射亮度发光元件光的干涉性开发年代第一代1013~1014二极弯曲磁铁和为主20世纪60年代第二代专用约为1,产生真空紫外及软X射线低能约为1,中能1~3.5,高能640~1501015~1020世纪70年代第三代专用~1710部分空间相干20世纪90年代VUVXX射线、软X,但长1022ph・S-1・mrad・mm-2・(0.1BW)-1;②相干性。
要求空间全相干,即横向全相干;③光脉冲长度要求到皮秒级,甚至小于皮秒级;④多用户和高稳定性。
同步辐射光源的一大特点是多用户和高稳定性,可同时有数百人进行试验。
因此有人认为,同步辐射光源就像能量广泛分布的一台超大型激光光源,特别是光的相干大大改善的第三代和第四代同步辐射光源更是如此。
关于同步辐射理论和装置方面的文献太多,文献[2-4]为该方面较新的书籍,可供需要者进一步查阅。
波部分的亮度较VUV环低些,当然也可用长波段进行工作,上海同步辐射装置(SSRF)就属此类。
图1为上海同步辐射装置(SSRF)的平面示意图,如果增强器能分别采用高能和中能两种模式工作,在中能模式下操作,注入储存环提供光子通量较高,主要进行VUV环的工作;在高能模式下操作,只要光束线和实验站作合理布置,既能进行硬X射线、软X射线方面的工作,也能进行很多VUV方面的工作。
2同步辐射光源构造由图1可见,同步辐射光源由一台直线加速器、一台电子同步加速器(又称增强器,Booster)和电子储存环三大部件组成。
在直线加速器产生并加速后注入增强器继续加速到设定能量后,再注入电子储存环中作曲线运动而在运行的切线方向射出同步辐射光。
2.1直线加速器一般采用电子行波直线加速器,由以下几部分图1上海同步辐射装置(SSRF)结构的平面示意图Fig.1Planarmapofstructureforshanghaisynchtronradiationfacility(SSRF)组成:(1)电子枪它提供加速用的电子束,由发射电子的阴极、对电子束聚焦的聚焦极和吸出电子的阳极组成。
通常阴极负高压为40~120keV,脉冲电流强度约几百毫安。
(2)低能电子束流输运线它将从电子枪出来的电子束注入到加速波导中,输运线上还有束流导向、聚焦、测量及聚束等装置。
(3)盘荷波导是电子直线加速器的主体,行波电子直线加速器的盘荷波导可分常阻抗和常梯度两种,前者将波导的阻抗设计得各处相同,后者则使・29・(4)近些年来,由于自由电子激光(FEL)技术的发展和成功应用,以及在电子储存环的应用,从自由电子激光(FEL)中引出同步辐射已经实现,这就是第四代同步辐射光源。
第四代同步辐射光源的标志性参数为:①亮度要比第三代大两个量级以上。
第三代光源最高亮度已达1020ph・S-1・mrad・mm-2・(0.1BW)-1,目前第四代光源的亮度达杨传铮:同步辐射的基本知识第一讲同步辐射光源的原理、构造和特征波导上各处的加速场速度不变,通常采用前者。
现在加速波导几乎都用无氧铜制成,盘荷波导的加工精度及表面粗糙度等工艺要求很高。
(4)微波功率源与微波传输系统前者提供在电子直线加速器工作频率波段建立加速电场所需的微波功率,把微波功率传输到加速波导的传输系统包括隔离器、耦合器、真空窗和吸收载荷等元件。
(5)真空系统加速波导的真空度一般应为1.3×10-3~6.7×10-5Pa。
(6)聚焦系统镍,真空度一般要求10-5Pa。
(5)高频加速腔电子加速是通过高频加速腔来实现的,并在固定频率下工作。
电子回旋加速器(Microtron)又称微加速器,是用改变倍频系数的方法保证电子谐频加速的回旋式谐振加速器,、跑道式和超。
,是把多腔结构的直线电子,于是在圆形轨道的基础上增加了直线段,形状像跑道,故称跑道式电子回旋加速器。
当采用超导电子直线加速器作加速设备时称超导跑道式电子回旋加速器。
2.3电子储存环(7)电子行波直线加速器对温度的稳定度和温度梯度要求都很严格。
(8)束流检测系统对电子束的强度、剖面、发散度、能量、能谱、束团相宽和相位能等进行测量。
(9)控制系统负责管理和控制加速器系统的运行、保护和调整等。
(10)束流输出系统把已加速的电子束输运到增强器继续加速。
2.2电子同步加速器和电子回旋加速器电子储存环是同步辐射光源的核心设备,它不仅主要用于积累电子,即不断地让具有所需能量电子注入并进行积累,使储存的电子流到达要求值,并较长时间在储存环里循环运动,还要使储存环的能量及磁铁、聚焦结构布局符合同步辐射光源用户的需要。
储存环的特征波长λ同步辐射的亮度和用c、户的可容纳度是三个重要参数。
一般分为X射线环和VUV环两种。
储存环中的主要部件如下:(1)真空室真空度要求在10-7Pa左右。
(2)弯曲磁铁使电子在圆弧中运动。
(3)四极磁铁因储存环往往可被设计成多种同步加速器的作用是把直线加速器出来的电子束继续加速到所需的能量,同时使束流强度和束流品质得到改善。
一般采用强聚焦电子同步加速器,由下列几部分组成: (1)主导磁铁(即二极磁铁)引导电子束弯曲作近似圆周运动,很多块二极磁铁安放在电子束的π角度。
理想轨道上,使电子回转2(2)聚焦磁铁在组合作用的同步加速器中设方式运行,即可在不同工作点上工作,因此四极磁铁的磁场梯度在较大范围内变化时都应使四极磁铁有足够好的场区。
(4)插入元件是指在储存环的直线段上插入的扭摆磁铁(Wiggler)多极多周期的扭摆器(multi2polewiggler)和波荡磁体(Undulator)等,它们的作用是在不提高储存环的能量和束流强度的条件下能得到更短波长和更高通量的同步辐射光,以扩大应用范围。
(5)射频腔和有关供电系统以补充电子束到同步辐射过程的能量损失。
有独立的聚焦磁铁,是靠二极磁铁极面形状来实现聚焦的;对于分离作用的加速器,聚焦作用由四极磁铁来承担。
无论是那种加速器,聚焦和散焦磁铁都是交替排列在电子的封闭轨道上,用F,D和O分别表示聚焦磁铁、散焦磁铁和自由空间。
同步加速器的磁铁结构可写为FOFDOD,有时用B表示弯曲磁铁,故可写成FOBOD等形式。
(3)校正磁铁二极磁铁和四极磁铁制造和安装都会偏离设计要求,故引起理想封闭电子轨道的畸变,所以必须对电子轨道进行测量和校正。
校正是采用小型二极磁铁或附加在四极磁铁上的二极场绕组进行的。
(4)真空室对磁场变化速率较快的加速器,其真空室选用高纯氧化铝陶瓷管,内壁镀一层金属・30・3同步辐射光束线(Beamline)和线束设备3.1同步辐射光的引出和前段区从储存环引出同步辐射光,可从一般弯曲磁铁处、超导磁体处、Wiggler处、多重Wiggler处或Un2dulator处引出,也就是说,从储存环光束引出口到光束线最前段的屏蔽墙称为前端区,其作用主要是杨传铮:同步辐射的基本知识第一讲同步辐射光源的原理、构造和特征对储存环真空的保护、对实验站工作人员的安全保护以及对光束位置的初步确定与监控。