趣味数学-幻方doc资料
- 格式:ppt
- 大小:3.81 MB
- 文档页数:48
幻方(一)1. 会用罗伯法填奇数阶幻方2. 了解偶数阶幻方相关知识点3. 深入学习三阶幻方一、幻方起源也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.二、幻方定义幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216三、解决这幻方常用的方法⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.⑵适用于三阶幻方的三大法则有: ①求幻和: 所有数的和÷行数(或列数)②求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3. ③角上的数=与它不同行、不同列、不同对角线的两数和÷2.四、数独知识点拨教学目标数独简介:(日语:数独すうどく)是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏。
三年级奥数--数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。
幻方1.概念简析:幻方:是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3×3的数阵称作三阶幻方,4×4的数阵称作四阶幻方,5×5的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样.2.构造幻方常用的方法:(1)适用于所有奇数阶幻方的填法—罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.(2)仅适用于三阶幻方—九宫格口诀.口诀是:九宫者,二四为肩,六八为足,左七右三,戴九履一,五居中央。
(3)适用于所有偶数阶幻方的填法—对称交换的方法1.将数依次填入方格中,对角线满足要求。
2.调整行,对角线数不动,对称行的其它数对调;调整列,对角线数不动,对称列的其它数对调。
3.三阶幻方的性质:1.幻和相等,幻和等于9个数的和除以3.2.中间数必位于幻方中心,中间数等于幻和除以3.3.黄金三角: 黄金三角顶点的数为两腰之和除以2.视频描述把0、2、4、6、8、10、12、14、16这9个数填在下面图中的方格内,使每行、每列和每条对角线上的三个数的和都相等。
1.1.请用11、13、15、17、19、21、23、25、27编制一个三阶幻方。
注:此题答案默认为0,正确答案见解析!2.2.把7—15这九个数构成一个三阶幻方。
注:此题答案默认为0,正确答案见解析!3.3.请用1、4、7、10、13、16、19、22、25编制一个三阶幻方。
注:此题答案默认为0,正确答案见解析!视频描述将下面左边方格中的9个数填入右边方格中,使每一行、每一列、每条对角线中的三个数相加的和都相等。
1.1.将图中的数重新排列,使横行、竖行、对角线上的三个数的和都相等。
注:此题答案默认为0,正确答案见解析!2.2.把3、4、5、8、9、10、13、14、15编成一个三阶幻方,并求出幻和是多少?3.3.将图中的数重新排列,使横行、竖行、对角线上的三个数的和都相等。
三年级趣味数学(8)九宫格与阵班级姓名1.在1——9这九个数中,取其中3个不同的数相加,使和为15,你能写出哪些三组数?(例如1,5,9。
1+5+9=15)1+5+9=15 2+4+9=15 3+4+8=15 1+6+8=15 2+5+8=15 3+5+7=15 2+6+7=15 4+5+6=153.探索三阶幻方的特点(1)对角线上三个数之间有什么关系?(2)“十”字形中纵列或横行三个数之间有什么关系? (3)中宫数(最中间的数)与九个数之间有什么关系? (4)研究特殊的等腰三角形数之间的关系。
4.利用掌握三阶幻方的特点制作三阶幻方。
2 9 4 7 5 3 6 1 86 7 2 1 5 9 8 3 48 1 6 3 5 7 4 9 24 3 8 9 5 1 2 7 6 6 1 8 7 5 3 2 9 42 7 6 9 5 1 43 87 22 13 22 16 10 19 4 257 8 12 14 9 4 6 10 1110 21 8 11 13 15 18 5 165.九宫阵(俗称数独)。
将1——9这九个数填入每行、每列、每个九宫格的小方格内。
每个数字在每行、每列、每个九宫格内只能出现一次。
13 15 108 11541057 4 13 981 6 92 3 68 2 95 7 46 47 23 1 982 7 1 68 4 532 5 9 7 3165 7342 48 9 1 73 9 16 8 2 4287 9 81 2 54 96 325 68 5 7 6 41 37 5 9294 8 7 637 1 56 5 3 14 298 5 67 74 1 3 9 8 2 56 52 3147 89。
幻方一般地说,在n×n的方格里,既不重复也不遗漏地填上n²个连续的自然数,每个数占一格,并使每行、每列及两条对角线上n个自然数的和都相等,这样排成的数表称为n阶幻方。
这个相等的和叫幻和。
奇数阶幻方奇数阶幻方的方法可以简单概括为方阵斜线对换法:(1)三阶幻方(九宫幻方):具体可以概括为以下几步:第一步:将1——9九个整数如图1那样排列成方阵;第二步:如图2,画斜线;第三部:如图3,将图2中得到的正方形外四角的数字1、3、7、9,分别向斜线对面数三格,把数字填入空格内,即1和9交换,3和7交换入幻方格内。
便得到了图4的三阶幻方(九宫幻方),横排、数列,对角线上每三个数字的和都为15。
(2)五阶幻方:五阶幻方具体可以概括为以下几步:第一步:将1——25这二十五个整数如图5排列成方阵;第二步:如图6,画斜线;第三部:如图7,将图2中得到的正方形外四角的数字(1、2、6),(4、5、10);(16、21、22),和(20、24、25)分别向斜线对面数五格,把数字填入空格内,即1 和25交换,2和20交换,6 和24交换,5和21交换,4和16交换,10和22交换填入幻方格内便得到了图8的五阶幻方,横排、数列,对角线上每三个数字的和都为65。
偶数阶幻方偶数阶幻方的方法可以简单概括为方阵对角线数字互换和对面数字互换的方法:比如四阶幻方四阶幻方比较简单,只需要交换对角线上的数字就能使横排、竖列、对角线上的和分别都等于34。
具体步骤为:第一步:将1——16十六个整数如图9排列成方阵;第二步:如图10那样画出对角线和方框;第三步:如图10—图11,将方阵中对角线上的数字1和16,4和13,6和12,以及7和10 对换,便得到了图12的四阶幻方,而六阶幻方就要复杂得多了,不仅仅需要交换对角线上的数字,还需要横排对面交换,竖列对面交换。
反幻方将1~9九个自然数,填在3×3正方形表格内,使其中每一横行、每一竖列及任一条对角线上的三数之和都不等,并且相邻的两个数在图中位置也相邻。
趣味数学游戏——幻方当你还是个小学生的时候,也许就玩过这样一种数学益智游戏,就是把1、2、3、4、5、6、7、8、9这九个数字,分别填在3×3的方格里,使之横、竖、对角线的数字相加都等于15(如下图),这样的“填数”的问题,在数学语言里就叫“幻方”。
而填在3×3方格里的,就叫3阶幻方。
3阶幻方是最简单的幻方。
历代数学家们,都喜欢研究幻方,现在的幻方种类很多,有平面幻方,还有立体幻方、高次幻方等,平面幻方又分三角幻方,六角幻方(蜂窝幻方)等。
这里要重点介绍的,还是平面正方形幻方,3阶正方形幻方的等值是15,,这个等值是不可改变的,即是说你永远都无法设计出等值是14或者16的3阶幻方,对于4阶、5阶幻方乃至n阶幻方都一样,其等值都是唯一的、确定的。
其中4阶幻方的等值是34,5阶幻方的等值是65,对于任意n阶幻方,其等值为(n3+n)÷2。
其实,任意阶幻方构造法,任意维幻方构造法,任意次幻方构造法,数学家们都早已找到,不存在最大阶幻方的世界纪录之类的说法。
对平面幻方的构造,分为三种情况:N为奇数、N为4的倍数、N为其它偶数(4n+2的形式)1、N 为奇数时,最简单(1)将1放在第一行中间一列;(2)从2开始直到n×n止各数依次按下列规则存放:按45°方向行走,如向右上,每一个数存放的行比前一个数的行数减1,列数加1(3)如果行列范围超出矩阵范围,则回绕。
例如1在第1行,则2应放在最下一行,列数同样加1;(4) 如果按上面规则确定的位置上已有数,或上一个数是第1行第n列时,则把下一个数放在上一个数的下面。
2、N为4的倍数时采用对称元素交换法。
首先把数1到n×n按从上至下,从左到右顺序填入矩阵然后将方阵的所有4×4子方阵中的两对角线上位置的数关于方阵中心作对称交换,即a(i,j)与a(n-1-i,n-1-j)交换,所有其它位置上的数不变。