简单的轴对称图形第三课时
- 格式:ppt
- 大小:995.50 KB
- 文档页数:20
第3节简单的轴对称图形(三)教学目标:知识与技能:1.经历探索角的轴对称性的过程,进一步体验轴对称的特征.2.探索并了解角的轴对称性及相关性质.3.会用尺规作角的平分线.过程与方法:1.通过独立思考,小组合作探究,主动展示,经历角的平分线性质的形成与初步应用过程,从而增强应用数学知识的意识与解决实际问题的能力.2.通过观察、折叠等活动,发展空间观念,培养有条理的思考和规范的数学语言.情感态度与价值观:1.通过活动体验学数学的快乐,增强学生学习数学的求知欲和数学活动的经验,并在合作学习中获得成功的体验,增强自信心,提高学习数学的兴趣,培养学生的合作、探究精神.2.培养学生自主学习、主动参与、主动交流合作的意识和能力,在小组合作交流活动中互相激发灵感,取长补短,培养学生团结合作的学习精神.教学重难点:【重点】掌握角平分线的性质,会用尺规作已知角的平分线.【难点】角平分线的性质的应用.教学准备:【教师准备】课件、基本作图工具.【学生准备】笔记本、基本作图工具等.教学过程:导入:前面我们学习了基本图形“线段”是轴对称图形,那么,我们之前学过的另一个基本图形“角”是不是轴对称图形?如果是,对称轴是怎样的直线?【活动内容】不利用工具,请你将一张用纸片做的角分成两个相等的角.你有什么办法?对折,再打开纸片,看看折痕与这个角有何关系?[处理方式]学生实验:通过折纸的方法作角的平分线;教师与学生一起动手操作,展示学生作品.通过折纸及作图过程,由学生自己去发现结论.教师要有足够的耐心,要为学生的思考留有时间和空间.通过探究,学习新知:角是轴对称图形,角平分线所在的直线是它的对称轴.新课教学:探究活动1角平分线的性质【活动内容】(多媒体出示)请同学们按要求继续前面的折纸活动,并与同伴交流.折纸要求:1.在折痕(即∠AOB的角平分线)上任意找一点C;2.过点C折OA边的垂线,得到新的折痕CD,点D是折痕与OA边的交点,即垂足;3.过点C折OB边的垂线,得到新的折痕CE,点E是折痕与OB边的交点,即垂足;4.将∠AOB再次对折.【问题】在上述的操作过程中,折痕CD与CE能重合吗?改变点C的位置,CD与CE还相等吗?你能解释其中的道理吗?小组交流展示成果.(教师动画展示)已知:如图∠AOC=∠BOC,CD⊥OA,垂足为D,CE⊥OB,垂足为E,CD与CE相等吗?试说明理由.解:因为CD⊥OA,CE⊥OB,所以∠CDO=∠CEO=90°.在△CDO和△CEO中,∠CDO=∠CEO,∠COD=∠COE,OC=OC,所以△CDO≌△CEO.所以CD=CE.(教师板书)结论:角平分线上的点到这个角的两边的距离相等.符号语言:因为OC平分∠AOB,CD⊥OA,CE⊥OB,所以CD=CE.[处理方式]学生动手折叠,教师在多媒体上演示折叠过程.学生分组讨论、交流,并用文字语言阐述得到的性质.教师要给学生充分思考的时间和空间.教师通过几何画板演示,让学生形象感受角平分线的性质.【即时训练】判断下列说法是否正确.如图所示.1.因为OC平分∠BOA,所以CD=CE.()2.因为CD⊥OA,CE⊥OB,所以CD=CE.()3.因为OC平分∠AOB,CD⊥OA,CE⊥OB,所以CD=CE.()注意事项:角平分线性质中的距离,对应的必须是垂线段,不能认为是任意线段.探究活动2尺规作角的平分线对这种可以折叠的角可以用折叠方法得到角平分线,对不能折叠的角怎样得到其角平分线呢?下面我们探究用尺规作角的平分线.已知:∠AOB.求作:射线OC,使∠AOC=∠BOC.作法:(1)在∠AOB的两边OA和OB上分别截取OD,OE,使OD=OE.DE的长为半径作弧,两弧在∠AOB内交于点C.(2)分别以D,E为圆心,以大于12(3)作射线OC.则OC是∠AOB的平分线.你能说明这样作的道理吗?想一想:在作图的过程中有哪些相等的线段?学生交流后得到:OD=OE,CD=CE.△COD和△COE全等吗?全等的依据是什么?[处理方式]教师口述作法步骤,学生根据教师的口述完成作图过程.不要求学生写作法,教师可以引导学生分析在作图的过程中哪些线段相等,学生可以通过交流讨论明确这样作的道理.[知识拓展]“角平分线上的点到这个角的两边的距离相等”这句话逆过来说“到这个角的两边的距离相等的点在这个角的平分线上”也是正确的.课堂总结:1.角的轴对称性:角是轴对称图形,角平分线所在的直线是它的对称轴.2.角平分线的性质:角平分线上的点到这个角的两边的距离相等.3.尺规作角平分线.检测反馈:1.如图所示,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1B.2C.3D.4答案:B2.如图所示,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PBB.PO平分∠APBC.OA=OBD.AB垂直平分OP答案:D3.如图所示,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6 cm,则△DEB的周长为()A.4 cmB.6 cmC.10 cmD.不能确定答案:B4.如图所示,MP⊥NP,MQ为△MNP的角平分线,MT=MP,连接TQ,则下列结论中不正确的是 ()A.TQ=PQB.∠MQT=∠MQPC.∠QTN=90°D.∠NQT=∠MQT答案:D板书设计:布置作业:一、教材作业【必做题】教材第127页习题5.5知识技能第1题.【选做题】教材第127页习题5.5数学理解第2,3题.二、课后作业【基础巩固】1.如图所示,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C,D为圆CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是心,大于12()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C,D两点关于OE所在直线对称D.O,E两点关于CD所在直线对称2.如图所示,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4B.3C.6D.5【能力提升】3.如图所示,两个班的学生分别在M,N两处参加植树劳动,现要在道路AB,AC的交叉区域内设一个茶水供应点P,使P到两条道路的距离相等,且使PM=PN,请你通过尺规作图找出这一P点(不写作法,保留作图痕迹).【拓展探究】4.如图所示,在△ABC中,∠C=90°,∠A=30°,作AB的垂直平分线,交AB于点D,交AC于点E,连接BE,则BE 平分∠ABC,你能说明理由吗?【答案与解析】1.D(解析:根据角的平分线作图步骤可以得到答案,A,B,C 都是正确的.)2.B(解析:因为AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,所以DF =DE =2.又因为S △ABC =S △ABD+S △ACD ,AB =4,所以7=12×4×2+12×AC ×2,所以AC =3.故选B.)3.解:如图所示,P 点即为所求.4.解:因为在△ABC 中,∠C =90°,∠A =30°,所以∠ABC =90°- ∠A =60°.因为DE 是AB 的垂直平分线,所以EA =EB ,所以∠ABE =∠A =30°,所以∠EBC =∠ABC - ∠ABE =30°,所以∠ABE =∠EBC ,即BE 平分∠ABC.教后反思: 成功之处:通过折纸操作,从而得到启发,在教师的引导下,让学生悟出角平分线的性质和用尺规作角的平分线,培养学生实践操作能力;学生在经历观察、类比、归纳等过程的基础上,再让学生实践用尺规作角的平分线的过程,进一步提升了学生的感性和理性的融合,通过本节课的学习,让学生了解了在现实生活中,角及角的平分线在现实中的广泛应用.在本课时中,营造了一个和谐的课堂学习氛围,达到了预期的教学效果. 不足之处:对学生的操作和实验关注不够,这就要求在课堂教学时,应走下讲台,深入到学生中去,与他们一起合作探究,对需要指导的学生给予适当的指导,应当在教学方法和教学语言的选择上,尽可能多地关注学困生. 再教设计:今后应该大胆让学生讲解并且板书,真正落实到纸上,扎根到心底,才能真正体现我的课堂我做主的学习理念.。
第三课时轴对称教学内容:冀教版小学数学三年级上册第40、41页轴对称。
教学提示:在自然界和日常生活中具有轴对称性质的图形很多。
学生已认识了一些基本图形特征。
学生学习这些知识,一方面可以加深对一些已学过的图形特征的认识,另一方面,可以认识自然界和日常生活具有轴对称性质的一些事物,并为以后进一步学习数学研究一些问题的基本性质打下基础。
教学目标:1、知识与技能:初步认识轴对称图形,理解轴对称图形的含义,能找出对称图形的对称轴,并能用自己的方法创造出轴对称图形。
2、过程与方法:通过观察、思考和动手操作,培养学生探索与实践能力,发展学生的空间观念。
3、情感态度与价值观:引导学生领略自然世界的美妙与对称世界的神奇,激发学生的数学审美情趣。
重点、难点教学重点:(1)认识轴对称图形的特点,建立轴对称图形的概念;(2)准确判断生活中哪些物体是轴对称图形。
教学难点:找轴对称图形的对称轴。
教具准备:多媒体教学课件等。
学具准备:白纸、彩纸、剪刀等学习材料一份。
教学过程一、创设情境,导入新课。
拿出一张彩纸,对折后描出“爱心”图的一半。
谈话:老师把这张彩纸对折一下,沿着这条边剪一个图形,你能猜出老师剪的是什么图形吗?(演示:剪出图形并展开),原来是一个“爱心”图。
我希望同学们每人都有一颗爱心。
(把“爱心”图贴在黑板上)请你们仔细观察一下,这个图形的左右两边是怎样的?生:(1)左右两边是一样的;(2)左右两边是对称的……小结:像这样的图形,两边是对称的。
有趣吗?今天我们就来学习像这样的图形。
(板书:轴对称图形)【设计意图:同学在日常的学习生活中已经接触到一些对称的物体,对对称现象有了一定的感性认识。
在课的开头,用剪纸的形式导入,容易吸引同学的注意,营造愉悦的课堂氛围,为认识轴对称图形的教学作好铺垫。
】二师生互动、探究新知。
1、教学轴对称图形。
师:现在请同学们认真观察这些图形,看看有什么发现?(出示教材第40页的图片课件)生:我发现蝴蝶的左右两边是一样的。
三年级上册《轴对称图形》教案苏教版三年级上册《轴对称图形》教案(通用5篇)在教学工作者实际的教学活动中,常常要写一份优秀的教案,借助教案可以提高教学质量,收到预期的教学效果。
那么写教案需要注意哪些问题呢?下面是小编为大家整理的苏教版三年级上册《轴对称图形》教案(通用5篇),欢迎阅读与收藏。
三年级上册《轴对称图形》教案1教学目标:1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象,认识轴对称图形的一些基本特征。
2、使学生能根据自己对轴对称图形的初步认识,在一组实物图案和平面图形中识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。
3、使学生在认识和制作简单的轴对称图形的过程中,感受到物体或图形的对称美。
激发对数学学习的积极情感。
教学重点:使学生初步认识轴对称图形的一些基本特征,能识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。
教学难点:引导学生在自己的操作活动中发现和认识轴对称图形的一些基本特征。
教学准备:多媒体课件一套,每组有不同的图形一套,想想做做2所要求的字母一套,小剪刀,彩纸,水彩画颜料,钉子板等等一、猜一猜——激趣导入师:今天,老师带来了一些有趣的物体,不过只有一部分,请你猜一猜,它们分别是什么?(多媒体出示:枫叶、蜻蜓、天平等物体的一半,让学生猜一猜,猜中就出示物体的全幅图)师:是啊,这些物体可真有趣,你知道它们有趣在哪里吗?(让学生自由说)小结:是的,它们可以分为两个完全相同的部分。
设计意图:有趣的“猜一猜”游戏,不但激发了学生的好奇,而且让学生初步感受到:有些物体可以分为两个完全相同的部分,同时也为学生感知轴对称图形的特征作了铺垫。
二、观察、操作——探究特征1、观察,初步感知师:老师还带来了一组物体的图片,请小朋友仔细观察这三个物体,你能发现它们共同特征的吗?(多媒体出示天安门、飞机、奖杯,让学生自由说一说)师:(小结)是的,这些物体都是对称的。
《轴对称图形》教案学情分析:本课的知识点是在学生以认识轴对称图形的基础上进一步学习的,重点是掌握对称轴的知识,能画全轴对称图形所有的对称轴。
四年级的学生已具有一定的操作能力,所以对学生来说并不难,只要抓住重难点,指导如何正确的画出轴对称图形的对称轴,就能顺利的完成教学任务。
教学目标:1.学生通过观察、探究、操作等活动,初步认识轴对称现象,了解轴对称图形和对称轴的概念,并会识别简单的轴对称图形,找出所有的对称轴,并会设计简单的轴对称图案。
2.经历对生活中具有轴对称性质的图形的观察、分析、判断、归纳和创造的过程,理解轴对称图形的基本性质,并进一步发展学生的观察、归纳、操作和探究能力,进一步发展学生的空间观念。
3.引导学生领略自然世界的美妙与对称世界的神奇,在欣赏丰富多彩的轴对称图形的过程中,培养学生的审美意识,提高自我的审美情操和审美价值,从而认识数学应用的广泛性,在合作交流的过程中体验与他人合作的快乐,形成良好的学习品质和思维品质,并体验探究学习带来的快乐。
教学重、难点:教学重点:认识和确定轴对称图形的对称轴。
教学难点:找出一些轴对称图形的所有对称轴,以及对轴对称图形基本性质的透彻把握和理解。
教学过程:一、通过剪纸活动,引入新课。
(一)谈话引入剪纸,激发学生兴趣。
1.剪纸是我们中国古老的民间传统艺术之一,那些剪纸艺术家们用一把小小的剪刀和一张小小的纸片,就能剪出许多生动的艺术形象。
今天,同学们,一起来跟着老师学剪纸,请拿出事先准备好的剪刀和白纸。
2.课件展示剪纸步骤先把一张纸对折,折好的一侧画出图形,用剪刀剪下来,再把纸打开,看一看能得到一个什么样的图形?大家也可以画上自己喜欢的图案。
3.师生共同剪纸教师提示学生剪纸时要注意安全,剪好后举起自己的作品,向大家展示,师边欣赏边请同学们观察大家剪好的作品有什么共同特征。
学生可能会说:两边一样,左右相等,都是对称的、两边可以重合,轴对称等。
4.引入新课,这节课我们就来学习轴对称图形,板书课题:“轴对称图形”。
四年级轴对称教案(优秀11篇)四年级轴对称教案篇一教学目标:1.初步认识轴对称的概念,能找出轴对称图形的对称轴。
2.在画、折、剪等自主探索的活动中培养学生的观察、表达、思维、空间想象能力,同时进一步培养学生的探索意识和合作精神。
3.联系生活实际,通过感知、认识、欣赏、制作轴对称图形,渗透美育,感悟学习的价值。
教学准备:教具:多媒体课件、剪刀、彩纸。
学具:图片、剪刀、彩纸。
教学过程:一、创设情境,初步感知1.小游戏师:今天我们先来做一个小游戏,老师这里有一些图形只能看到一半,你能不能猜出来它原来是什么?(出示图案的一半,随着学生的回答逐一显示整个图形)师:你们是怎么猜出来的?2.师:它们的两边真的都是一样的吗?我们来动手折一折。
师:你发现了什么?师:对折以后,图形左右或上下两边完全合在一起,我们叫作“完全重合”。
3.揭示课题:像这样沿一条直线对折,两侧的图形能够完全重合的图形叫作“轴对称图形”。
师:你认识“轴”这个字吗?师:和你的同桌说一说你手中的图形是什么图形?二、自主探究,体验新知1.想一想:如果沿着其它的线折,两边会不会完全重合?师:所以只有沿着这条折痕对折,两侧的图形才能够完全重合,你知道这条特殊的线的名字吗?板书:对称轴(齐读)2.介绍生活中的“轴”。
出示汽车模型上的两个轮胎中间的“轴”。
3.师:你能画出手中的图形(游戏中的图形)的对称轴吗?学生画完后交流并展示。
4.出示生活中的轴对称图形,找找它的对称轴在哪里?师:看,我们的许多汉字都是“轴对称图形”,像“中、品、田”等,还有数字“8、0”也是。
5.判断图中的线是不是对称轴?为什么?出示图片,想一想怎样画的线才是对称轴?你能画几条?6.师:大家一起来试一试,看书第5题,是对称轴的打勾,不是的打叉。
师:为什么茶壶上的红线不是对称轴呢?生:左边是壶嘴,右边是壶柄,两边不一样。
出示一个茶壶,请4个小朋友从不同的角度观察它,其他同学猜一猜哪个小朋友看到的茶壶是轴对称图形,哪个小朋友看到的不是?师:是呀,不同的物体,从不同的角度去看,会有不同的发现。
小学数学《轴对称图形》教案小学数学《轴对称图形》教案(通用11篇)作为一名老师,常常需要准备教案,教案是保证教学取得成功、提高教学质量的基本条件。
教案应该怎么写才好呢?以下是小编精心整理的小学数学《轴对称图形》教案,希望对大家有所帮助。
小学数学《轴对称图形》教案篇1【教材分析】本课教学苏教版《义务教育课程标准实验教科书数学》三年级(下册)第56~61页的内容,内容分属于空间与图形领域。
《数学课程标准》关于“空间与图形”部分特别强调了内容的现实背景,强调关注学生的生活经验和活动经验。
在日常生活中,有很多的轴对称图形,这充分体现了数学知识与生活的密切联系,通过观察生活中的对称,使学生体验“对称美”。
通过学生动手创作轴对称图形,在创作中感知轴对称图形的特点,激发学生的兴趣。
【学情分析】本节的教学对象是小学中年级学生,在此之前学生已经学过一些平面图形的特征,形成了一定的空间观念,自然界和生活中具有轴对称性质的事物有很多,也为学生奠定了感性基础。
他们的思维特点是以具体形象思维为主,同时具有初步的抽象思维能力,对于具体、直观的的内容有较大的依赖性。
所以,本课尽量营造一种轻松愉悦的氛围,让学生在玩中学,在观察、操作中探索研究,让学生自主探索,在探索中发现,在探索中学习。
【教学目标】1.使学生联系生活中的具体物体,通过观察和动手操作,使学生初步体会到生活中的对称现象,初步认识轴对称图形的一些基本特征。
并初步知道对称轴。
2.使学生能根据对轴对称图形的初步认识,在一组实物图案或简单平面图形中正确识别轴对称图形;能用一些方法“做”出一些简单的轴对称图形。
3.使学生在认识、制作和欣赏轴对称图形的过程中,感受到物体或图形的对称美,激发对数学学习的积极情感。
【教学重点】理解轴对称图形的特征。
【教学难点】掌握判别轴对称图形的方法。
【教学准备】:多媒体课件、剪刀、彩色笔两支、彩色纸。
学生预习:1.预习书本56—61页,在看书的过程中,把你认为主要的画出来,并反复读一读,想一想是什么意思?2.在看书的过程中,如有不认识的图形,请上网查一查或向他人询问,知道它的名称,并写在图下3.生活中哪些物体也具有对称的性质,请你写在横线上。