第1章电路基本概念和基本定律
- 格式:doc
- 大小:460.00 KB
- 文档页数:29
1第1章电路的基本概念与基本定律1.11.1电路和电路模型电路和电路模型1.21.2电路中的基本物理量电路中的基本物理量 1.3 1.3 电阻电阻电阻、、电感电感、、电容元件 1.4 1.4 电压源和电流源电压源和电流源 1.5 1.5 基尔霍夫定律基尔霍夫定律2实际电路是实际电路是为实现某种应用目的由若干电器设备或器件按一定方式用导线连接而成的电流通路成的电流通路。
实现电能的传输和转换 电力电路或强电电路实现信号的传递和处理 电子电路或弱电电路1.1 电路和电路模型一、电路的定义3负载电源电源((或信号源或信号源):):):提供电能提供电能提供电能((或信号源或信号源))的部分的部分。
负载负载::吸收或转换电能的部分吸收或转换电能的部分。
中间环节中间环节::连接和控制它们的部分连接和控制它们的部分。
电路的组成中间环节4电路在工作时电路在工作时,,对电源来说对电源来说,,通常处于下列三种方式之一种方式之一::负载负载、、空载和短路。
负载与电源接通负载与电源接通,,负载中有电流通过有电流通过,,负载电流的大小与负载电阻有关与负载电阻有关。
负载都是并联负载都是并联。
因此当负,负载电阻减小负载电阻减小,,负,即功率增大即功率增大。
一般所说的负载的大小一般所说的负载的大小,,指的是负载电流或功率的大小的是负载电流或功率的大小,,而不是指负载电阻的大小不是指负载电阻的大小。
负载工作方式:5空载开路这时电源两端的外电阻等于零,电源输出的电流仅由电源内阻限制限制,,此电流称为短路电流此电流称为短路电流。
6为了保证电器设备和器件为了保证电器设备和器件((包括电线包括电线、、电缆电缆))可以安全、可靠和经济地工作可靠和经济地工作,,每种电器设备每种电器设备、、器件在设计时都对其规定了工作时允许的最大电流对其规定了工作时允许的最大电流、、最高电压和最大功率等参数值等参数值,,这些数值统称为额定值这些数值统称为额定值。
第一章 电路的基本概念和基本定律本章是学习电工技术的理论基础,介绍了电路的基本概念和基本定律:主要包括电压、电流的参考方向、电路元件、电路模型、基尔霍夫定律和欧姆定律、功率和电位的计算等。
主要内容: 1.电路的基本概念(1)电路:电流流通的路径,是为了某种需要由电工设备或电路元件按一定方式组合而成的系统。
(2)电路的组成:电源、中间环节、负载。
(3)电路的作用:①电能的传输及转换;②信号的传递及处理。
2.电路元件及电路模型(1)电路元件:分为独立电源和受控电源两类。
①无源元件:电阻、电感、电容元件。
②有源元件:分为独立电源和受控电源两类。
(2)电路模型:由理想电路元件所组成反映实际电路主要特性的电路。
它是对实际电路电磁性质的科学抽象和概括。
采用电路模型来分析电路,不仅使计算过程大为简化,而且能更清晰地反映该电路的物理本质。
(3)电源模型的等效变换①电压源及电阻串联的电路在一定条件下可以转化为电流源及电阻并联的电路,两种电源之间的等效变换条件为:0R I U S S =或0R U I SS =②当两种电源互相变换之后,除电源本身之外的其它外电路,其电压和电流均保持及变换前完全相同,功率也保持不变。
3.电路的基本物理量、电流和电压的参考方向以及参考电位 (1)电路的基本物理量包括:电流、电压、电位以及电功率等。
(2)电流和电压的参考方向:为了进行电路分析和计算,引入参考方向的概念。
电流和电压的参考方向是人为任意规定的电流、电压的正方向。
当按参考方向来分析电路时,得出的电流、电压值可能为正,也可能为负。
正值表示所设电流、电压的参考方向及实际方向一致,负值则表示两者相反。
当一个元件或一段电路上的电流、电压参考方向一致时,称它们为关联参考方向。
一般来说,参考方向的假设完全可以是任意的。
但应注意:一个电路一旦假设了参考方向,在电路的整个分析过程中就不允许再作改动。
(3)参考电位:人为规定的电路种的零电位点。
第一章电路的基本概念与基本定律知识要点一、内容提要直流电路的基本概念和基本定理是分析和计算电路的基础和基本方法。
这些基础和方法虽然在直流电路中提出,但原则上也适用于正弦交流电路及其它各种线性电路。
并且,这些方法也是以后分析电子线路的基础。
本章重点讲述电路中几个基本物理量、参考方向、电路的工作状态及基本定律。
二、基本要求1.了解电路模型及理想电路元件的意义;2.能正确应用电路的基本定侓;3.正确理解电压、电流正方向的意义;4.了解电路的有载工作、开路与短路状态,并能理解电功率和额定值的意义;5.熟练掌握分析与计算简单直流电路和电路中各点电位的方法。
三、学习指导本章重点讲述了三个问题:电压、电流和参考方向。
同时,对克希荷夫定律和电路中电位的概念及计算进行了详细的分析推导和计算。
虽然这些问题都比较简单,但由于它们贯穿电工学课程始终,所以读者应通过较多的例题和习题逐步建立并加深这些概念,使之达到概念清晰,运用自如灵活,能解决实际问题的目的。
1.1 电路的组成及作用在学习本课程中,首先应掌握电路的两大作用(即强电电路电的传输、分配和转换;弱电电路中是否准确地传递和处理信息),及其三大组成部分(即电源、中间环节、负载)。
要特别注意信号源与一般电源的概念与区别:信号源输出的电压与电流的变化规律取决于所加的信息;电源输出的功率和电流决定于负载的大小。
1.2 电路模型由理想电路元件组成的电路;其中理想电路元件包括电阻元件、电感元件、电容元件和电源元件等。
电源的电压或电流称为激励;激励在各部分产生的电压和电流称为响应。
1.3 电路的几个基本物理量若要正确地分析电路,必须先弄清楚电路中的几个基本物理量。
因为电流、电压和电动势这些物理量已在物理课中讲过,但是本章主要讨论它们的参考方向(正方向)和参考极性。
在本章学习的过程中应注意两点:第一,在分析任何一个电路中列关系式时,必须首先在电路图上标明电压、电动势和电流的参考方向和参考极性;第二,考虑电压和电流本身给定的正负,即要注意两套正负符号。
第一章电路的基本概念和基本定律电路的基本概念和基尔霍夫定律是电工技术和电子技术的基础。
§1-1 电路中的物理现象和电路模型一、实际电路电路:由电气器件或设备,按一定方式连接起来,完成能量的传输、转换或信息的处理、传递。
组成:电源、负载和中间环节。
日光灯实际电路二、理想电路元件、电路模型实际电路的分析方法:用仪器仪表对实际电路进行测量,把实际电路抽象为电路模型,用电路理论进行分析、计算。
1、理想电路元件实际的电路是由一些按需要起不同作用的元件或旗舰所组成,如发电机、变压器、电动机、电池、电阻器等,它们的电磁性质是很复杂的。
例如:一个白炽灯在有电流通过时,如下图所示:为了便于分析与计算实际电路,在一定条件下常忽略实际部件的次要因素而突出其主要电磁性质,把它看成理想电路元件。
2、电路模型将实际电路中的元件用理想电路元件表示、连接,称为实际电路的电路模型。
如下图所示:U S三、电路的分类1、分布参数电路电路本身的几何尺寸相对于工作波长不可忽略的电路。
2、集中参数电路如果电路本身的几何尺寸l相对于电路的工作频率所对应的波长λ小的多,则在分析电路时可以忽略元件和电路本身几何尺寸。
例如:工作频率为50Hz,波长λ=6000km,所以在工频情况下,多数电路满足l<<λ,可以认为是集中参数电路。
集中参数电路分为:线性电路(元件参数为常数)★非线性电路(元件参数不为常数)§1-2电路中的基本物理量一、电流及电流的参考方向1、电流:带电粒子或电荷在电场力作用下的定向运动形成的电流。
dtdqi =(单位时间内通过某一截面的电荷量) 电流的单位:A (安培)、kA (千安)、mA(毫安)、μA (微安)A 10A 1 , A 10mA 1 , A 10kA 1-633===-μ2、电流的参考方向电流的实际方向:正电荷运动的方向或负电荷运动的反方向(客观存在) 电流的参考方向:任意假定。
实际方向(2A )(参考方向与实际方向相同)A)2( 0=>i i 实际方向(2A )(参考方向与实际方向相反)A)2( 0-=<i i二、电压、电位及电压的参考方向1、电位(物理中的电势)电场力把单位正电荷从一点移到参考点所做的功。
第一章电路基本概念和基本定律知识要点·了解电路和电路模型的概念;·理解电流、电压和电功率;理解和掌握电路基本元件的特性;·掌握电位和电功率的计算;会应用基尓霍夫定律分析电路。
随着科学技术的飞速发展,现代电工电子设备种类日益繁多,规模和结构更是日新月异,但无论怎样设计和制造,几乎都是由各种基本电路组成的。
所以,学习电路的基础知识,掌握分析电路的规律与方法,是学习电工学的重要内容,也是进一步学习电机、电器和电子技术的基础。
本章的重点阐明有关电路的基本概念、基本元件特性和电路基本定律。
1.1电路和电路模型1.1.1 电路的概念1. 电路及其组成简单地讲,电路是电流通过的路径。
实际电路通常由各种电路实体部件(如电源、电阻器、电感线圈、电容器、变压器、仪表、二极管、三极管等)组成。
每一种电路实体部件具有各自不同的电磁特性和功能,按照人们的需要,把相关电路实体部件按一定方式进行组合,就构成了一个个电路。
如果某个电路元器件数很多且电路结构较为复杂时,通常又把这些电路称为电网络。
手电筒电路、单个照明灯电路是实际应用中的较为简单的电路,而电动机电路、雷达导航设备电路、计算机电路,电视机电路是较为复杂的电路,但不管简单还是复杂,电路的基本组成部分都离不开三个基本环节:电源、负载和中间环节。
电源是向电路提供电能的装置。
它可以将其他形式的能量,如化学能、热能、机械能、原子能等转换为电能。
在电路中,电源是激励,是激发和产生电流的因素。
负载是取用电能的装置,其作用是把电能转换为其他形式的能(如:机械能、热能、光能等)。
通常在生产与生活中经常用到的电灯、电动机、电炉、扬声器等用电设备,都是电路中的负载。
中间环节在电路中起着传递电能、分配电能和控制整个电路的作用。
最简单的中间环节即开关和联接导线;一个实用电路的中间环节通常还有一些保护和检测装置。
复杂的中间环节可以是由许多电路元件组成的网络系统。
图1-1所示的手电筒照明电路中,电池作电源,灯作负载,导线和开关作为中间环节将灯和电池连接起来。
图1-1手电筒照明实际电路2. 电路的种类及功能工程应用中的实际电路,按照功能的不同可概括为两大类:一是完成能量的传输、分配和转换的电路。
如图1-1中,电池通过导线将电能传递给灯,灯将电能转化为光能和热能。
这类电路的特点是大功率、大电流;二是实现对电信号的传递,变换、储存和处理的电路,如图1-2是一个扩音机的工作过程。
话筒将声音的振动信号转换为电信号即相应的电压和电流,经过放大处理后,通过电路传递给扬声器,再由扬声器还原为声音。
这类电路特点是小功率、小电流。
图1-2 扩音机电路1.1.2电路模型实际电路的电磁过程是相当复杂的,难以进行有效地分析计算。
在电路理论中,为了方便于实际电路的分析和计算,我们通常在工程实际允许的条件下对实际电路进行模型化处理,即忽略次要因素,抓住足以反映其功能的主要电磁特性,抽象出实际电路器件的“电路模型”。
例如电阻器、灯泡、电炉等,这些电气设备接受电能并将电能转换成光能或热能,光能和热能显然不可能再回到电路中,因此我们把这种能量转换过程不可逆的电磁特性称之为耗能。
这些电气设备除了具有耗能的电特性,当然还有其它一些电磁特性,但在研究和分析问题时,即使忽略其他这些电磁特性,也不会影响整个电路的分析和汁算。
因此,我们就可以用一个只具有耗能电特性的“电阻元件”作为它们的电路模型。
我们将实际电路器件理想化而得到的只具有某种单一电磁性质的元件,称为理想电路元件,简称为电路元件。
每一种电路元件体现某种基本现象,具有某种确定的电磁性质和精确的数学定义。
常用的有表示将电能转换为热能的电阻元件、表示电场性质的电容元件、表示磁场性质的电感元件及电压源元件和电流源元件等,其电路符号如图1-3所示。
本章后面将分别讲解这些常用的电路元件。
我们把由理想电路元件相互连接组成的电路称为电路模型。
例如图1-1所示,电池对外提供电压的同时,内部也有电阻消耗能量,所以电池用其电动势E 和内阻R 0的串联表示;灯除了具有消耗电能的性质(电阻性)外,通电时还会产生磁场,具有电感性。
但电感微弱,可忽略不计,于是可认为灯是一电阻元件,用R 表示。
图1-4是图1-1的电路模型。
图1-4 手电筒电路的的电路模型1.2电流、电压及其参考方向电路中的变量是电流和电压。
无论是电能的传输和转换,还是信号的传递和处理,都是这两个量变化的结果,因此,弄清电流与电压及其参考方向,对进一步掌握电路的分析与计算是十分重要的。
1.2.1电流及其参考方向1. 电流电阻 电感 电容电压源 电压源 电流源图1-3 理想电路元件的符号 负载 电源电荷的定向移动形成电流。
电流的大小用电流强度来衡量,电流强度亦简称为电流。
其定义为:单位时间内通过导体横截面的电荷量,用公式表示为:dtdq i = (1-1) 其中i 表示随时间变化的电流,dq 表示在dt 时间内通过导体横截面的电量。
在国际制单位中,电流的单位为安培,简称安(A )。
实际应用中,大电流用千安培(KA )表示,小电流用毫安培(mA )表示或者用微安培(μA )表示。
它们的换算关系是:μA 10m A 10A 101KA 963===在外电场的作用下,正电荷将沿着电场方向运动,而负电荷将逆着电场方向运动(金属导体内是自由电子在电场力的作用下定向移动形成电流),习惯上规定:正电荷运动的方向为电流的正方向。
电流有交流和直流之分,大小和方向都随时间变化的电流称为交流电流。
方向不随时间变化的电流称为直流电流;大小和方向都不随时间变化的电流称为稳恒直流。
2. 电流的参考方向简单电路中,电流从电源正极流出,经过负载,回到电源负极;在分析复杂电路时,一般难于判断出电流的实际方向,而列方程、进行定量计算时需要对电流有一个约定的方向;对于交流电流,电流的方向随时间改变,无法用一个固定的方向表示,因此引入电流的“参考方向”。
参考方向可以任意设定,如用一个箭头表示某电流的假定正方向,就称之为该电流的参考方向。
当电流的实际方向与参考方向一致时,电流的数值就为正值(即i >0),如图1-5a 所示;当电流的实际方向与参考方向相反时,电流的数值就为负值(即i >0),如图1-5b 所示。
需要注意的是,未规定电流的参考方向时,电流的正负没有任何意义,如图1-5c 所示。
1.2.2电压及其参考方向1. 电压如图1-6所示的闭合电路,在电场力的作用下,正电荷要从电源正极a 经过导线和负载流向负极b (实际上是带负电的电子由负极b 经负载流向正极a ),形成电流,而电场力就对电荷做了功。
电场力把单位正电荷从a 点经外电路(电源以外的电路)移送到b 点所作的功,叫做a 、b 两点之间的电压,记作U a b 。
因此,电压是衡量电场力做功本领大小的物理量。
若电场力将正电荷dq 从a 点经外电路移送到b 点所作的功是dw ,则a 、b 两点间的电压为:dqdw u ab (1-2) 在国际制单位中,电压的单位为伏特,简称伏(V )。
实际应用中,大电压用千伏(KV )表示,小电压用毫伏(mV )表示或者用微伏(μV )表示。
它们的换算关系是:E +U ab图1-6 定义电压示意图参考方向实际方向实际方向a )b )c ) 图1-5 电流及其参考方向μV 10m V 10V 101KV 963===电压的方向规定为从高电位指向低电位,在电路图中可用箭头来表示。
2. 电压的参考方向在比较复杂的电路中,往往不能事先知道电路中任意两点问的电压,为了分析和计算的方便,与电流的方向规定类似,在分析计算电路之前必须对电压标以极性(正、负号),或标以方向(箭头),这种标法是假定的参考方向,如图1-7所示。
如果采用双下标标记时,电压的参考方向意味着从前一个下标指向后一个下标,图1-7元件两端电压记作u ab ;若电压参考方向选b 点指向a 点,则应写成u ba ,两者仅差一个负号,即u ab =-u ba 。
分析求解电路时,先按选定的电压参考方向进行分析、计算,再由计算结果中电压值的正负来判断电压的实际方向与任意选定的电压参考方向是否一致;即电压值为正,则实际方向与参考方向相同,电压值为负,则实际方向与参考方向相反。
1.2.3电位的概念及其分析计算为了分析问题方便,常在电路中指定一点作为参考点,假定该点的电位是零,用符号“⊥”表示,如图1-6所示。
在生产实践中,把地球做为零电位点,凡是机壳接地的设备(接地符号是“⊥”),机壳电位即为零电位。
有些设备或装置,机壳并不接地,而是把许多元件的公共点做为零电位点,用符号“⊥”表示。
电路中其它各点相对于参考点的电压即是各点的电位,因此,任意两点a )b ) 图1-7 电压参考方向的表示方法间的电压等于这两点的电位之差,我们可以用电位的高低来衡量电路中某点电场能量的大小。
电路中各点电位的高低是相对的,参考点不同,各点电位的高低也不同,但是电路中任意两点之间的电压与参考点的选择无关。
电路中,凡是比参考点电位高的各点电位是正电位,比参考点电位低的各点电位是负电位。
【例1-1】 求图1-8中a 点的电位。
解 对于图1-8a 有()V V U a 24123050304=+⨯++-= 对于图1-8b ,因20Ω电阻中电流为零,故0=a U【例1-2】电路如图1-9所示,求开关S 断开和闭合时A 、B 两点的电位U A 、U B 。
解 设电路中电流为I ,如图所示。
开关S 断开时:()A I 7402322020=++--= 因为 I U A 220=-所以 V I U A 760740220220=⨯-=-= 图1-9 例1-2电路图 Ia50Ω 30Ω +12V -4V 40Ω 20Ω +12V a a )b 图1-8 例1-1电路同理()V I U B 7607405203220-=⨯-=+-= 开关S 闭合时: A I 432020=+-= V I U A 12433=⨯==V U B 0=1.3电功率及电能的概念和计算1.3.1电功率电流通过电路时传输或转换电能的速率,即单位时间内电场力所作的功,称为电功率,简称功率。
数学描述为:dqdw p = (1-3) 其中p 表示功率。
国际单位制中,功率的单位是瓦特(W),规定元件1秒钟内提供或消1焦耳能量时的功率为1W 。
常用的功率单位还有千瓦(kW )。
1kW=1000W将式(1-3)等号右边分子、分母同乘以d q 后,变为ui dtdq dq dw dt dw p =⨯== (1-4) 可见,元件吸收或发出的功率等于元件上的电压乘以元件上的电流。
为了便于识别与计算,对同一元件或同一段电路,往往把它们的电流和电压参考方向选为一致,这种情况称为关联参考方向,如图1-10a 所示。