油田结垢治理技术浅析
- 格式:doc
- 大小:25.00 KB
- 文档页数:6
浅谈计量间油井回油管线结垢结蜡防治措施探讨在油田生产过程中,油井回油管线结垢和结蜡是不可避免的问题。
而这些问题如果没有得到有效的防治,将会导致生产效率的降低,甚至是管线堵塞、生产中断等严重后果。
因此,本文将就计量间油井回油管线结垢和结蜡的防治措施进行探讨。
一、结垢的成因油井回油管线结垢主要有以下成因:1、水垢:随着油井的运行,因为地下水含有的碳酸盐、铁离子、硫化氢、氢氧化物和氯离子等元素,会导致管道内壁结垢,影响输油。
2、油垢:油井运营过程中,管道内液相组分可能与管壁形成化合物,形成类油垢。
它们形成的原因有三种:一是沉积物在管道内表面反应;二是油中的沉积物,如沉淀、钙、硝酸盐等油垢;三是化学反应,如钢管表面的化学反应。
3、微生物附着:水在管道内形成变质后,污染的水中就有很多细菌、微生物、藻类等生物附着在管道内表面,形成结垢。
二、结垢的危害结垢对管道的危害主要有以下几个方面:1、增加阻力和能量损失:管道内壁结垢,会增加液体流动的阻力,导致能量损失增加。
2、产生腐蚀:结垢能形成油道,油道的存在容易导致腐蚀。
3、堵塞管道:结垢堵塞管道,导致油井停产,生产效率降低。
三、结垢的防治措施为了防止管道结垢,可以采取以下措施:1、内部清洗:周期性清洗管道内壁,去除沉积、杂质,避免管道结垢的形成。
2、物理清除:采用物理方法对管道内的结垢进行清理,如挖除、冲刷、吸取等。
3、化学添加剂防垢:采用一定含量的化学添加剂对管道进行防垢,达到清除管道内结垢的目的。
4、机械清理:采用设备和工具巩固的清址管道内结垢、污渍等杂物。
结蜡是指在输送石油时,因温度变化而导致管道内形成的蜡沉淀物质。
当管道内油温度下降到引起自然结晶时,蜡会堵塞管道,在管道内形成异常阻力,严重影响了石油的生产、研究进口的效率。
1、油品成分:石油中含有很多分子量不同的物质,其中蜡烷是组成油品的重要成分。
2、温度:管道内油的温度与环境温度有很大的关系,高温会使蜡烷析出,形成结蜡。
油田结垢治理技术浅析【摘要】油田开采已经进入中后期阶段,注水采油仍然是维持地表压力提高油田采油率的重要方法之一。
然而油田回注水二氧化碳高、硫化氢含量高、矿化度高以及温度高等特点,部分油田钙镁离子浓度高,造成注水结垢现象严重,分析油田注水结垢的主要原因,做出相应对策尤为重要,本文从分析结垢原因到相应处理方案,对油田结垢治理做出简要分析概述。
【关键词】油田结垢注水系统水处理工艺防垢剂输油管道1 结垢原因分析1.1 水中杂质沉积结垢水中杂质主要集中在注水井、回注水输水管网等温度相对低的地方,注水井自上而下,结垢现象逐渐增强,而腐蚀产物的结垢因素相对递减。
1.2 水中矿化度高以大港油田为例。
油田典型污水的矿化度高,矿化度基本处于两万到三万mg/L之间,且硫化物浓度高,在5mg/L以上,是注水水质标准的2.5倍。
污水温度达到68摄氏度,PH值在7.2以上,属于偏碱性水,,不仅如此,污水中的SRB细菌含量严重超标。
1.3 碳酸盐析出结垢油田生产时,液体由高压底层向相对低压的井筒流动时,由于温度压力等变化,导致二氧化碳被释放,从而与钙离子反应生成碳酸钙垢。
像岭69井、中12井等油井,碳酸氢根离子浓度高,极易形成碳酸钙垢。
如加热炉、换热器等温度高的结垢,会促进碳酸钙垢的形成,碳酸钙垢多出现在抽油泵、尾管、筛管、油管内外壁和套管内壁等部位。
1.4 硫酸盐析出结垢部分油田水型为硫酸钠型和氯化钠型,主要产生硫酸钙结垢,原因是钙离子与硫酸根离子结合产生硫酸钙,造成硫酸钙垢,油井产生硫酸钙垢的主要部位井筒底部的套管内壁和油管外,地面站则收球筒和总机关出为主要结垢地点。
1.5 压力、PH、温度的影响碳酸钙的溶解度与温度、PH值和二氧化碳的分压有关,温度越高、升高PH、二氧化碳分压越小,碳酸钙的溶解度就越低,二氧化碳的分压影响更为重要,如果其降低,碳酸钙沉淀可以产生在系统的任意部位。
降低PH则可以使碳酸钙溶解度增大,大大减弱了成垢趋势。
试论油井井筒结垢及防治措施油井井筒结垢是指在石油开采过程中,井筒内部会出现结垢现象。
这些结垢物质主要是由井口的沉淀物、油气残余物以及地下水中的硬水垢等组成。
结垢会导致井筒直径变小,影响油水的流动,降低油气的开采效率。
因此,对油井井筒结垢及防治措施进行研究具有重要的实际意义。
油井井筒结垢主要有以下几种类型:硫化物结垢、铁锈结垢、石蜡结垢、矿物质结垢等。
针对不同类型的结垢,可以采取不同的防治措施。
下面将针对每一种结垢进行分析。
硫化物结垢主要是指井筒内部的硫化物与井口附近的油、水或气体反应产生的结垢。
硫化物结垢主要包括硫化铁和硫化锌。
防治硫化物结垢的方法主要有酸洗、高压清洗和用硫酸铁沉降法。
酸洗是一种常见的治理硫化物结垢的方法,主要是通过加入适量的酸来溶解硫化物结垢,将其从井筒中排除。
常用的酸洗剂有盐酸、硝酸等。
然而,酸洗存在腐蚀井筒的风险,需要严格控制酸的浓度和作用时间,以免对井筒造成不可逆的损害。
高压清洗是一种通过高压水流清除结垢的方法。
该方法可以有效地将硫化物结垢从井筒中冲刷出来,但需要选用合适的清洗工具和合适压力的水流。
硫酸铁沉降法是一种将硫化物转化成不溶性物质沉降下来,从而达到清除结垢的目的的方法。
在井筒中加入适量的硫酸铁后,硫化物会与其反应生成硫化铁沉淀,然后通过自然沉淀或过滤等方式将其排除。
铁锈结垢主要是指井筒中铁的氧化物与水和氧气的反应生成的结垢。
防治铁锈结垢的方法主要有酸洗、阳极保护和水合剂处理等。
酸洗在处理铁锈结垢时同样是一种常见的方法。
通过在井筒中加入酸洗剂,可以将铁锈溶解掉,从而达到清除结垢的效果。
阳极保护是一种将井筒内部的金属构件置于一定电位下,使其成为受保护金属,从而减缓铁的氧化速度的方法。
采用阳极保护可以有效防止铁的氧化现象,从而减少铁锈结垢。
水合剂处理是一种在井筒内加入特定的水化剂,通过与水结合形成水合团聚体,从而阻止铁离子的氧化反应,达到防治铁锈结垢的目的。
石蜡结垢是油井井筒中石油中的高沸点组分结垢。
1 腐蚀类型及成因1.1 腐蚀类型及腐蚀现状腐蚀的对象主要是油田开发过程中的金属设备,包括油井的井筒、油管和油杆等。
腐蚀可以分为物理腐蚀和化学腐蚀两种类型。
物理腐蚀一般是指金属物质在高温条件下发生熔化或者溶解,导致设备的损坏。
化学腐蚀是金属物质与某些酸性溶液接触并发生一些列化学反应,造成金属表面性质的改变。
物理腐蚀发生的情况较少,一般来说,油井的腐蚀主要是由化学腐蚀作用造成的。
随着开发开采的不断进行,井下设备,例如油井的油管、油杆和井筒都会遭受不同程度的腐蚀,导致其出现穿孔和断裂的情况。
以大港油田采油三厂专采作业区为例,发现泵杆接箍偏磨腐蚀断裂,通过捞杆发现,接箍处出现断裂,并且泵杆有腐蚀、偏磨的现象。
官912井在第120根以下泵杆全部出现腐蚀结垢碳化现象。
1.2 腐蚀成因机理及控制因素在油田开发开采过程中,造成油井腐蚀的原因复杂。
有井筒、油管等自身材质的因素,还有周围环境的因素。
本次研究,主要讨论周围环境对油井的腐蚀。
首先,在开发过程中,会产生一些酸性气体,例如二氧化碳和硫化氢,这类气体与地下水接触,可以形成具有强腐蚀性的酸性溶液,与油井的金属材质接触,造成油井的化学腐蚀。
其次,高矿化度的地层水会对油井造成不同程度的腐蚀。
高矿化度地层水中含有大量的氯离子,氯离子具有很强的穿透能力,可以破坏金属保护膜,造成金属的腐蚀。
研究表明,矿物度越高,腐蚀的速率越快,腐蚀的程度越大。
2 腐蚀治理措施2.1 腐蚀治理措施类型在地下水溶液长期接触的过程中,油井的金属设备易遭受腐蚀,在金属材质的表面涂非金属保护层,可以有效隔离金属和周围酸性腐蚀溶液环境,进而达到防腐蚀的作用。
耐腐蚀的非金属物质,例如油漆、沥青和一些高分子材料如塑料、橡胶等,都可以作为较好的保护屏障。
金属材质的耐腐蚀性有差异,但是受经济和技术等因素的制约,油井的设备不可能全部采用耐腐蚀材质的金属,因此,可以将耐腐蚀的金属材质,例如某些合金材料,覆盖于油管的表面。
试论油井井筒结垢及防治措施油井井筒结垢问题一直是油田开发中的难题之一,井筒结垢会影响油气开采效率,增加生产成本,甚至可能导致井眼堵塞等严重后果。
及时有效地防治井筒结垢,对于保障油田生产安全、提高产能和延长井寿具有十分重要的意义。
本文将从井筒结垢的成因、特点及主要防治措施等方面进行论述。
一、井筒结垢成因井筒结垢是指在油井井筒内壁上的油气流动过程中,由于各种原因导致井筒内部沉积了一定量的垢类物质。
井筒结垢的主要成因包括以下几点:1. 油气中含有悬浮颗粒物和胶体粒子,这些颗粒物在流动过程中容易沉积在井筒内壁上,形成结垢。
3. 水合物是油气中的一种水合物质,当水合物遇到流体流动时,容易发生结晶和结垢。
4. 井筒内壁的温度、压力、流速等因素也会影响井筒结垢的形成。
二、井筒结垢的特点井筒结垢在油气开采中表现出一些特点,需要我们在防治过程中有针对性地加以应对。
1. 井筒结垢对产能影响显著,导致油气流动受阻,降低井筒内部的有效直径,增加了流体的粘滞阻力,减少了油气的产量。
2. 井筒结垢还容易造成井筒压力增大,产生井下自喷等问题,增加了油田生产中的安全隐患。
3. 井筒结垢还会影响井下设备的运行稳定性,增加了设备的维护和更换频率,增加了生产成本。
三、井筒结垢的防治措施针对井筒结垢问题,我们需要采取一系列有效的防治措施,保障油田生产平稳高效。
1. 优化油气流动系统,减少悬浮颗粒和胶体物质的含量,采用合适的过滤器和分离器等设备去除杂质,降低结垢发生的概率。
2. 加强化学分析和统计,通过分析油气中的主要成分和结垢物质的特性,选择合适的防垢剂,进行在线注入,阻断结垢物质的形成过程。
3. 定期进行井筒清洗和除垢工作,采用高压水射流、超声波、化学溶解等方法,清除井筒内部的结垢物质,恢复井筒的原有通畅状态。
4. 推进新技术的研发应用,如采用纳米技术改性防垢剂、超声波清垢技术、微生物除垢技术等,提高防治效果和工作效率。
5. 加强油井综合管理,在水驱油田中做好水质管理,净化水质,减少井筒中水合物发生的机会,降低井筒结垢的风险。
浅析油井结垢机理及清防垢技术摘要:油田在开发过程中,随原油由油层被举升至地面,外界温度、压力、流体流速等因素的变化会引起无机盐类会在油井管网或地层上形成沉积,造成油井结垢。
本文主要阐述了油田开发过程中油井结垢的主要机理、结垢所带来后续问题及目前油田主要防垢对策,对油田防垢具有一定的借鉴意义。
关键词:油井结垢机理清垢防垢技术一、前言目前,我国大部分油田采用了注水补充能量的开发方式,油田注入水通常有三种:一是清水,即油区浅层地下水;二是污水,即与原油同时采出的地层水,经处理后可回注到油层;也有将不同水混合注入的。
随着注入水向油井推进,使油井含水率不断升高,同时伴随温度、压力和pH值等发生变化时,最终导致油井近井地带、采油井井筒、井下设备、地面管线及设备出现严重的结垢现象。
二、结垢对油井的危害首先,油田中油井中存在的结垢沉积会影响原油开采设备的功能,严重的油垢会造成设备的堵塞。
其次,油井中存在着不同程度的结垢,会造成油井井下附件及采油系统设备在沉积结垢下不同程度的腐蚀。
此外,油井上的结垢还可能导致缓蚀剂和金属表面无法形成表面膜,降低了缓蚀剂的作用,缩短了系统管道的寿命,严重情况下则会造成腐蚀穿孔现象,导致油井的管柱故障。
再次,结垢造成油层堵塞、产液量下降和能源浪费,阻碍了原油的正常生产,导致增加修井作业次数,缩短修井作业周期,严重时还会造成井下事故,导致油井关井,甚至报废,造成很大的经济损失。
三、油井结垢机理1.结垢机理油田中常见的结垢机理分为以下四种:1.1自动结垢油井中水和油一起存在,不同采油工艺会造成水油的比例的改变,在水油相溶中发生了不同程度的比例改变,就会使得水油成分多于某些油井中的矿物质溶解度,造成不同程度的结垢产生,这种情况称为自动结垢。
碳酸盐或者硫酸盐形成沉积结垢之后会因为井下流动形成阻碍、筒内自有压力、温度的高低变化发生沉积。
高矿化度盐水在温度严重不均衡的情况下也会产生氯化钠。
同时,含有酸气的采出流体会形成碳酸盐结垢,进行原油开采时,因为压力下降也会造成流体脱气,使得ph值增高,结垢程度加重。
第二部分油田防垢技术结垢是海上采油工程中常遇的问题,海上采油工程的很多领域都要接触各种类型的水如淡水、海水、地层水、水井水等,因此结垢的现象会出现在生产中的各个环节,给生产带来严重的影响,使生产中的问题更加复杂化。
地层结垢会造成地层堵塞,使注水井不能达到配注量,油井产能大大下降;在井筒中结垢增加了井下的起下维修作业,严重的造成注水井、油井的报废;结垢还会造成地面系统中管线、输送泵、热交换器的堵塞,影响原油处理系统、污水处理系统的正常操作,增加了设备、管线的清洗和更换费用;水垢的沉积还会引起设备和管道的局部腐蚀,在很短的时间内出现穿孔,大大减小了使用寿命。
一、油田水结垢机理结垢就是指在一定条件下,水相中对于某种盐出现了过饱和而发生的析出和沉积过程,析出的固体物质叫做垢,主要是溶解度小的Ca、Ba、Sr 等无机盐。
结垢分为三个阶段,即垢的析出、垢的长大和垢的沉积。
在这个过程中主要作用机理为结晶作用和沉降作用。
1、结晶作用当盐浓度达到过饱和时,首先发生晶核形成过程,溶液中形成了少量盐的微晶粒,然后发生晶格生长过程,形成较大的颗粒,较大的颗粒经过熟成竞争成长过程进一步聚集。
图1 碳酸钙的溶解与析出曲线1—溶解;2—析出对于微溶盐类如碳酸钙,通常析出浓度远大于饱和浓度。
图1是用等浓度的钙硬度和碱度(以CaCO2计)作纵坐标,以温度作横坐标,得到碳酸钙溶解度曲线和碳酸钙结晶析出曲线。
该图分成三个区域:沉淀区、介稳区和溶解区。
介稳区出现的原因是在晶格生长的过程中,由于受到水中离子或粒子的扩散速度的影响,或者说受传质过程的控制造成的。
若盐类在水中的溶解度较大,则水中溶解的离子和粒子浓度都较高,晶核形成后很容易生长,这时盐类的溶解度曲线和晶体析出曲线基本重合,因而不存在介稳区。
但在微溶或难溶盐类的饱和溶液中,由于离子和粒子的浓度都很低,因此晶核形成后晶格并不生长,只有在离子或粒子浓度较高的过饱和溶液中,晶格才开始生长和析出晶体。
油田结垢治理技术浅析
【摘要】油田开采已经进入中后期阶段,注水采油仍然是维持地表压力提高油田采油率的重要方法之一。
然而油田回注水二氧化碳高、硫化氢含量高、矿化度高以及温度高等特点,部分油田钙镁离子浓度高,造成注水结垢现象严重,分析油田注水结垢的主要原因,做出相应对策尤为重要,本文从分析结垢原因到相应处理方案,对油田结垢治理做出简要分析概述。
【关键词】油田结垢注水系统水处理工艺防垢剂输油管道
1 结垢原因分析
1.1 水中杂质沉积结垢
水中杂质主要集中在注水井、回注水输水管网等温度相对低的地方,注水井自上而下,结垢现象逐渐增强,而腐蚀产物的结垢因素相对递减。
1.2 水中矿化度高
以大港油田为例。
油田典型污水的矿化度高,矿化度基本处于两万到三万mg/l之间,且硫化物浓度高,在5mg/l以上,是注水水质标准的2.5倍。
污水温度达到68摄氏度,ph值在7.2以上,属于偏碱性水,,不仅如此,污水中的srb细菌含量严重超标。
1.3 碳酸盐析出结垢
油田生产时,液体由高压底层向相对低压的井筒流动时,由于温度压力等变化,导致二氧化碳被释放,从而与钙离子反应生成碳酸钙垢。
像岭69井、中12井等油井,碳酸氢根离子浓度高,极易形
成碳酸钙垢。
如加热炉、换热器等温度高的结垢,会促进碳酸钙垢的形成,碳酸钙垢多出现在抽油泵、尾管、筛管、油管内外壁和套管内壁等部位。
1.4 硫酸盐析出结垢
部分油田水型为硫酸钠型和氯化钠型,主要产生硫酸钙结垢,原因是钙离子与硫酸根离子结合产生硫酸钙,造成硫酸钙垢,油井产生硫酸钙垢的主要部位井筒底部的套管内壁和油管外,地面站则收球筒和总机关出为主要结垢地点。
1.5 压力、ph、温度的影响
碳酸钙的溶解度与温度、ph值和二氧化碳的分压有关,温度越高、升高ph、二氧化碳分压越小,碳酸钙的溶解度就越低,二氧化碳的分压影响更为重要,如果其降低,碳酸钙沉淀可以产生在系统的任意部位。
降低ph则可以使碳酸钙溶解度增大,大大减弱了成垢趋势。
2 结垢危害
注水结垢使采油系统堵塞严重,产量逐年递减,成为油田稳定持续发展的大问题,采油厂结垢油井数量的增多直接造成综合含水上升速度加快,导致集输系统堵塞加重,严重影响油田的正常生产和运营,同时又加重了结垢治理产生的高额费用,使石油开采成本上升。
3 油田结垢的防治3.1 控制物理条件
成垢离子浓度、ph、水中含盐量、压力、温度以及管线形状、水的流动状态等条件都会影响油田结垢,控制和改善其中的一些条件
就可能减小盐垢的析出程度,减少垢的形成,同时应该增加水的流速,输油管道内壁应该增加光滑程度并施以涂层。
3.2 除去成垢物质
一般的工业循环水,经过软化水的方法可以大幅度减少成垢离子,对于碳酸根离子及碳酸氢根离子,采用换热器、降低水的ph
则可以使其变为二氧化碳气体,再采用真空法或气提法除去二氧化碳,可以有效的抑制碳酸钙垢的形成。
3.3 避免不相容的水的混合
不相容水指水混合后会产生不溶性的物质,所以声场过程中尽量避免不相容水混合可以有效减少垢的生成,对于可能引起结垢的套管损坏井的不同层位井水互窜的情况,应该使用隔水采油工艺。
对于注入水与地层水不相容的情况,则应该选择优质的水。
同时应将清水和污水分别注入,避免发生腐蚀与结垢问题。
3.4 使用防垢剂
目前油田控制结垢措施最常用的是防垢剂,这种方法方便快捷,容易实现,但是使用时需要合理的选择,目前主要的防垢剂有有机膦酸盐(脂)类、高分子聚合物及其衍生物、有机膦酸盐与聚羧酸盐复合类、有机膦羧酸等。
兼具防垢、防蜡功能的固体防蜡块,使用时,将防垢块填装到一种自制的防垢工作筒中,下入井中,工作筒连接在筛管的上部、抽油泵的下部,当有液体流过的时候,防垢剂以及防蜡剂溶于水和油当中,有缓慢溶解、有效期时间长等特点。
这项技术的实施,大大延长了兼泵周期、减缓了油井的结垢,实验
表明,油井放入防垢块二十到三十块,使检泵周期由以前的16-23天增加到了现在的97-377天。
也可以使用环形空间使用防垢剂的方法。
效果十分理想。
4 工艺流程
根据油井情况和结垢情况,经常采取以下两种方法
4.1 一步发
施工具体步骤依次为:活性水洗井、挤前置液、挤防垢剂、挤清垢剂(浓度先低后高)、顶替液、关井48小时后充分洗井,瞎蹦生产。
此种方法适合结垢比较轻的油井。
4.2 二步发
施工具体步骤一次为:活性水洗井、挤高浓度清垢剂、关井反应24小时,二次洗井,挤前置液、挤防垢剂、挤低浓度清垢剂、顶替液、关井24小时。
此方法适合结垢块,井筒垢较重的油井。
5 防垢技术应用效果
通过各种防垢措施,对于减缓垢的形成有显著效果,大大提高了炉管的更新周期,大大降低了油田的开采成本。
5.1 马岭油田中区集中处理站
此地区油井结垢严重,为硫酸钙垢,加药前不出六个月,炉管和炉出口弯头就因为结垢堵死或穿孔报废,不得不将炉管更新,然而,在结垢部位上端加入乙二胺四甲叉磷酸(3ml/l)和马来酸酐
(2ml/l)的方式,阻止输油管线和加热炉管的结垢。
一年后,打开加热炉检查,炉管内依然光亮无垢,防垢效果显著。
5.2 马岭油田南107计量站
此地区油井的主要结垢产物为硫酸钡,含量达到75.19%,收球包和输油管线弯头处结垢尤为严重,基本两三个月就会导致管线堵塞,原来四英寸的管线直径居然到了不到1cm的小眼,严重影响石油的运输,后来此站采用美国的v-953防垢剂(10mg/l)和管产聚马来酸酐(40mg/l)进行防垢,原来以硫酸钡沉淀形式存在,从而钡离子和硫酸离子经常很低甚至测不出,变成现在的钡离子浓度192-349mg/l,硫酸根离子浓度229mg/ l,从而结垢量大大降低,除垢周期由以前的二到三个月增加到现在的半年至一年,而且垢质松散,极易除去,从而说明化学防垢降低或消除了流程中的结垢。
6 结束语
结垢问题一直是困扰各油田的重要问题,结合油田成垢原因,采用防垢剂等方法有效解决了大部分油田的成垢问题,从而解决了油田成垢造成输油管道堵塞,从而造成巨额的修补费用等带来的问题,同时也控制了油井由于成垢而导致的石油产量连年下降以及综合含水上升的趋势,给老油田稳定的产量开辟了新的道路,实际表明,这项技术拥有广阔的开发前景,提高油井的增产稳产、为未来石油的开发做出了不可估量的贡献。
参考文献
[1] 陆柱,郑士忠,钱滇子,等.油田水处理技术[m]. 北京:石油工业出版社,1992
[2] 王欣辉,王均同,等.胜沱油田钢质集输管线失效原因的调
查分析[j]. 油气田地面工程,1999
[3] 马宝歧.油田化学原理与技术[m].北京:石油工业出版社,1995。