一种改进的自适应遗传算法
- 格式:pdf
- 大小:932.68 KB
- 文档页数:6
基于改进自适应遗传算法的配电网重构王永辰;肖伸平;刘先亮【期刊名称】《新型工业化》【年(卷),期】2015(000)008【摘要】Distribution network reconfiguration as self-healing smart grid is an important part of distribution network in fault plays an important role. Whereas some of the methods in the distribution network reconfiguration of various shortcomings. This article in view of the traditional adaptive crossover and mutation in genetic algorithm prone to premature phenomenon. An improved adaptive genetic algorithm is proposed to protect the excellent individuals from the parameters of the crossover rate and mutation rate, and select a suitable parameter value. The majority of the inferior individuals in the sub generation improve the convergence, effectively retain the excellent individual in the sub generation, and consider the number of switches. The simulation results of IEEE33 system show that the algorithm has fast convergence and applicability.%配电网络重构作为智能电网自愈性的一个重要组成部分,在多故障发生的配电网中起着重要的作用,而以往的一些方法在配电网重构中存在着各种不足,本文针对传统自适应遗传算法中交叉和变异环节易早熟现象。
一种改进的自适应遗传算法
黄涛;邓斌;何栋;许冠麟
【期刊名称】《计算机仿真》
【年(卷),期】2024(41)3
【摘要】针对现有遗传算法在求解多参数问题时出现收敛精度低、收敛速度慢、易陷入局部最优等问题,提出一种改进的自适应遗传算法。
该算法引入复制算子、种群密集度函数和精英选择策略,提出根据种群迭代次数和个体适应度的自适应策略调节交叉概率和变异概率,很好地平衡了遗传算法的全局搜索能力和局部寻优能力。
总结出具有代表意义的测试函数,通过求解测试函数和旅行商问题,证明改进的自适应遗传算法的收敛精度、收敛速度等均有明显的提高。
【总页数】6页(P347-351)
【作者】黄涛;邓斌;何栋;许冠麟
【作者单位】西南交通大学机械工程学院
【正文语种】中文
【中图分类】TP301.6
【相关文献】
1.一种异型改进的自适应遗传算法
2.一种基于改进型自适应遗传算法的MEMS三轴加速度计标定方法
3.一种改进的自适应遗传算法
4.一种改进的自适应免疫遗传算法
5.一种结合混沌搜索的改进云自适应遗传算法
因版权原因,仅展示原文概要,查看原文内容请购买。
自适应遗传算法
自适应遗传算法是一种改进的遗传算法,它是一种自适应机制,用于提高遗传算法的收敛速度和搜索能力。
它主要用于优化复杂的多目标函数、多约束条件和变分问题。
自适应遗传算法的核心思想是通过模拟生物进化的过程,模拟种群中个体的遗传进化,从而寻求最优解,最终实现目标函数的优化。
自适应遗传算法的基本过程是:首先,从初始种群中初始化一组可行解;其次,根据遗传算法的基本原理,依次执行变异、交叉和选择操作,从而生成新的种群;然后,根据变量的取值范围,采用自适应策略调整变量的值,使其符合约束条件;最后,根据适应度函数的值,选择出最优解,作为下一次迭代的初始种群,重复执行上述过程,直至收敛为止。
自适应遗传算法的优点在于:它可以在解的搜索过程中自动调整参数,使算法能够快速收敛,从而提高搜索效率;其次,它可以更好地处理多目标函数和多约束条件的问题;此外,它可以有效地控制变量的取值范围,避免出现取值范围过大的情况。
总而言之,自适应遗传算法是一种有效的优化算法,它可以提高搜索效率并有效地控制变量的取值范围,使得搜索过程更加高效、准确。
它已经被广泛应用于多目标优化、多约束优化和变分优化等领域。
自适应遗传算法交叉变异算子的改进
自适应遗传算法交叉变异算子的改进是一种能够更好地适应复杂环境的遗传算法变异
算法。
传统的遗传算法变异算子需要在交叉变异的过程中设置固定的参数以及变异概率,
这一流程给实施遗传算法带来了很多困难,经常无法得到期望的结果。
为了解决这一问题,目前提出了自适应遗传算法交叉变异算子的改进思想。
自适应遗传算法交叉变异算子的改进,使用学习方法根据环境条件,动态调整变异参
数和变异概率。
这样能够有效地根据实际情况,调节算子的参数,获得最优的变异参数和
变异概率,从而提高遗传算法的求解效率。
最后,自适应遗传算法交叉变异算子的改进同时带来了另一个优势:可以更好地调整
遗传算法交叉变异算子参数和变异概率,帮助合理匹配算法参数,减少求解运行过程中的
误差和损失,从而提高遗传算法的求解质量。