第三章圆的进一步认识复习
- 格式:ppt
- 大小:1.08 MB
- 文档页数:51
第三章《对圆的进一步认识》(知识梳理)【思维导图】⎧⎪⎧⎪⎪⎪⎧⎪⎪⎨⎪⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩⎧⎪⎨⎪⎩⎧⎪⎧⎪⎪⎪⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩圆的有关概念轴对称性,垂径定理圆心角、弧、弦、弦心距之间的关系有关概念及性质圆的有关性质圆心角定理旋转不变性圆周角定理圆内接四边形点和圆的位置关系点和圆的位置关系过不在同直线上的三点作圆三角形的外接圆相离\相交切线的性质直线和圆的位置关系切线的判定相切切线长及切线长定理三角形的内切圆圆正多边正多边形和圆2222ππ11802ππ360ππR n C R n l R S lR R n S R n S R S rl S S S r ⎧⎪⎪⎨⎪⎪⎩⎫⎫︒⎧⎪⎪=⎨⎪⎪⎪⎩=⎬︒⎧⎪⎪⎪=⎨⎪=⎪⎩⎭=⎫⎪=+⎬=⎪⎭扇形扇形侧全侧底底形的定义正多边形和圆正多边形的判定及性质正多边形的有关计算正多边形及有关计算半径为的圆中,的圆心角圆的周长所对的弧长为=半径为的圆中,圆心角为圆中的有关计算圆的面积的扇形面积为圆锥的侧面积圆锥的全面积圆锥的底面积S ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎪⎩⎩实际应用【知识清单】知识点一:圆的定义(一)描述性定义:在平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫作圆。
固定的端点O 叫作圆心,线段OA 叫作半径。
以点O 为圆心的圆,记作“⊙O”,读作“圆O”.A(二)集合性定义:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。
(三)圆的特征1.圆上各点到定点(圆心)的距离都等于定长(半径);2.到定点的距离等于定长的点都在同一个圆上。
点拨(1)圆指的是“圆周”,即一条封闭的曲残,而不是“圆面”。
圆的整理和复习教案.doc教案章节:一、圆的基本概念教学目标:1. 理解圆的定义及特点2. 掌握圆的半径、直径、弧、扇形等基本概念3. 能够运用圆的基本概念解决实际问题教学内容:1. 圆的定义及特点2. 圆的半径、直径的概念及计算3. 圆的弧、扇形的概念及计算4. 实际问题解答教学活动:1. 复习圆的定义及特点,引导学生通过图形加深理解2. 讲解圆的半径、直径的概念及计算方法,举例说明3. 讲解圆的弧、扇形的概念及计算方法,举例说明4. 布置练习题,让学生巩固所学内容教学评价:1. 课堂提问,检查学生对圆的基本概念的理解程度2. 练习题的正确率,检查学生对圆的基本概念的掌握程度教案章节:二、圆的周长和面积教学目标:1. 理解圆的周长和面积的计算公式2. 掌握圆的周长和面积的计算方法3. 能够运用圆的周长和面积解决实际问题教学内容:1. 圆的周长和面积的计算公式2. 圆的周长和面积的计算方法3. 实际问题解答教学活动:1. 复习圆的周长和面积的计算公式,引导学生通过公式加深理解2. 讲解圆的周长和面积的计算方法,举例说明3. 布置练习题,让学生巩固所学内容教学评价:1. 课堂提问,检查学生对圆的周长和面积计算公式的理解程度2. 练习题的正确率,检查学生对圆的周长和面积计算方法的掌握程度教案章节:三、圆的画法教学目标:1. 理解圆的画法原理2. 掌握圆的画法步骤3. 能够运用圆的画法解决实际问题教学内容:1. 圆的画法原理2. 圆的画法步骤3. 实际问题解答教学活动:1. 复习圆的画法原理,引导学生通过图形加深理解2. 讲解圆的画法步骤,举例说明3. 布置练习题,让学生巩固所学内容教学评价:1. 课堂提问,检查学生对圆的画法原理的理解程度2. 练习题的正确率,检查学生对圆的画法步骤的掌握程度教案章节:四、圆的实际应用教学目标:1. 理解圆在实际生活中的应用2. 掌握圆的相关计算方法3. 能够运用圆解决实际问题教学内容:1. 圆在实际生活中的应用2. 圆的相关计算方法3. 实际问题解答教学活动:1. 复习圆的定义及特点,引导学生通过图形加深理解2. 讲解圆在实际生活中的应用,举例说明3. 讲解圆的相关计算方法,举例说明4. 布置练习题,让学生巩固所学内容教学评价:1. 课堂提问,检查学生对圆在实际生活中的应用的理解程度2. 练习题的正确率,检查学生对圆的相关计算方法的掌握程度教案章节:五、圆的拓展与延伸教学目标:1. 了解圆的拓展与延伸知识2. 掌握圆的倍径、圆周率等概念3. 能够运用圆的拓展与延伸知识解决实际问题教学内容:1. 圆的倍径的概念及计算2. 圆周率的概念及计算3. 实际问题解答教学活动:1. 讲解圆的倍径的概念及计算,举例说明2. 讲解圆周率的概念及计算,举例说明3. 布置练习题,让学生巩固所学内容教学评价:1. 课堂提问,检查学生对圆的拓展与延伸知识的理解程度2. 练习题的正确率,检查学生对圆的拓展与延伸知识的掌握程度教案章节:六、圆的方程教学目标:1. 理解圆的方程及其表示方法2. 掌握圆的标准方程和一般方程的转换3. 能够运用圆的方程解决实际问题教学内容:1. 圆的标准方程和一般方程2. 圆的方程的性质和转换3. 实际问题解答教学活动:1. 复习圆的定义及特点,引导学生通过图形加深理解2. 讲解圆的标准方程和一般方程,举例说明3. 讲解圆的方程的性质和转换,举例说明4. 布置练习题,让学生巩固所学内容教学评价:1. 课堂提问,检查学生对圆的方程的理解程度2. 练习题的正确率,检查学生对圆的方程的掌握程度教案章节:七、圆与直线的关系教学目标:1. 理解直线与圆的位置关系2. 掌握直线与圆相交、相切、相离的判定条件3. 能够运用直线与圆的关系解决实际问题教学内容:1. 直线与圆的位置关系2. 直线与圆相交、相切、相离的判定条件3. 实际问题解答教学活动:1. 复习圆的定义及特点,引导学生通过图形加深理解2. 讲解直线与圆的位置关系,举例说明3. 讲解直线与圆相交、相切、相离的判定条件,举例说明4. 布置练习题,让学生巩固所学内容教学评价:1. 课堂提问,检查学生对直线与圆的位置关系的理解程度2. 练习题的正确率,检查学生对直线与圆相交、相切、相离的判定条件的掌握程度教案章节:八、圆的组合图形教学目标:1. 理解圆的组合图形及其特点2. 掌握圆的组合图形的计算方法3. 能够运用圆的组合图形解决实际问题教学内容:1. 圆的组合图形的概念及特点2. 圆的组合图形的计算方法3. 实际问题解答教学活动:1. 复习圆的定义及特点,引导学生通过图形加深理解2. 讲解圆的组合图形的概念及特点,举例说明3. 讲解圆的组合图形的计算方法,举例说明4. 布置练习题,让学生巩固所学内容教学评价:1. 课堂提问,检查学生对圆的组合图形的理解程度2. 练习题的正确率,检查学生对圆的组合图形的掌握程度教案章节:九、圆的优化问题教学目标:1. 理解圆的优化问题的意义2. 掌握圆的优化问题的解决方法3. 能够运用圆的优化问题解决实际问题教学内容:1. 圆的优化问题的概念及意义2. 圆的优化问题的解决方法3. 实际问题解答教学活动:1. 复习圆的定义及特点,引导学生通过图形加深理解2. 讲解圆的优化问题的概念及意义,举例说明3. 讲解圆的优化问题的解决方法,举例说明4. 布置练习题,让学生巩固所学内容教学评价:1. 课堂提问,检查学生对圆的优化问题的理解程度2. 练习题的正确率,检查学生对圆的优化问题的掌握程度教案章节:十、圆的综合应用教学目标:1. 理解圆的综合应用的意义2. 掌握圆的综合应用的解决方法3. 能够运用圆的综合应用解决实际问题教学内容:1. 圆的综合应用的概念及意义2. 圆的综合应用的解决方法3. 实际问题解答教学活动:1. 复习圆的定义及特点,引导学生通过图形加深理解2. 讲解圆的综合应用的概念及意义,举例说明3. 讲解圆的综合应用的解决方法,举例说明4. 布置练习题,让学生巩固所学内容教学评价:1. 课堂提问,检查学生对圆的综合应用的理解程度2. 练习题的正确率,检查学生对圆的综合应用的掌握程度重点和难点解析一、圆的基本概念重点关注环节:理解圆的定义及特点,掌握圆的半径、直径、弧、扇形等基本概念。
课题:对圆的进一步认识的复习教案教材分析:学生在已经直观地认识了圆,对圆有了初步的感性知识,在此基础上这一单元又进一步学习圆的知识。
这是学生研究曲线图形的开始,是学生认识发展的又一次飞跃。
教材注重从学生已有的生活经验和知识背景出发,通过“借助生活经验—利用动手操作—解释生活现象”的线索,体会到圆的本质特征:圆是到定点的距离等于定长的点的集合。
虽然教材并没有给出圆的本质特征的描述,但本课的概念建立可通过观察思考、动手操作、讨论等活动,帮助学生逐步对此加以体会,为学生后续学习提供了感性认识和直观经验。
学情分析:虽然已是初三学生,但部分学生数学语言不能正确运用,因此理解和证明本章的定理可能是本节课的难点,尤其学生在求解院内有关线段长度问题时比较吃力,语言表达不好。
教学目标:1、了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.2、探索并理解点和圆、直线与圆以及圆与圆的位置关系;了解切线的概念,探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.3、熟练掌握弧长和扇形面积公式及其它们的应用;理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.教学重难点:重点:1、垂径定理;2、与圆有关的位置关系;3、弧长公式和扇形面积公式的应用.难点:1、垂径定理;2、切线的性质与判定.A.2√2,B.4C.4√2D.82.如图,水平放置的圆柱形排水管的截面直径为1m,,其中水面宽AB 为0.8m,则排水管内水的深度为 m3.如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙的半径等于( )A.8B.4C.10 知识点2 弧、弦、圆心角之间的关系4、如图,在△ABC 中,∠C=90AC 于点D,交AC 于点E ,则、如图,A,B,C,D,为⊙O 上的四点(1)若⌒AB =2⌒CD ,试判断弦AB 与CD 的数量关系,并说明理由。
圆的概念的教学设计北师版九年级下册第三章圆第一节车轮为什么做成圆形*知识与技能目标:了解圆在生活中的广泛运用;理解圆的概念;会利用点到圆心的距离和圆的半径之间的数量关系判定点和圆的位置关系.*过程与方法目标:在探索实例的过程中,经历圆的概念的形成过程,理解圆的概念;探索点与圆的位置关系,感受观察、分析、归纳、抽象概括等获得知识的重要方法.*情感态度与价值观:在探索交流实践中享受“用数学”的快乐、体验“圆的完美”、激发质疑的欲望.经历圆的概念的形成过程,发展学生发现问题、提出问题、分析问题、解决问题的能力.探索实例形成圆的概念,数形理解点与圆的位置关系.体育课上,4个同学站在不同位置投圈,去套取同一件奖品,请你设计方案使得游戏公平.画出你的方案并在图中用点表示出4个同学和奖品的位置.1.出示骑车动画:设计意图:在有趣的动画中激发学生的提出问题、探究问题的欲望,使学生在不知不觉中进入知识的发生过程中学生问题预设:1.三角形、四边形、多边形的车轮会是什么感觉?2.车轮做成圆形都有哪些好处?为什么平稳、省力?2.游戏天地体育课上,老师组织同学们进行投圈游戏,老师规定4个同学一组,呈“一”字排开你觉得这样的队形对每个人公平吗?全班共有57个同学,老师发现4人一组最后多出1个人,于是老师想让最后一组由5个同学一起进行,你的方案还可行吗?你又有什么新的办法?上课时老师发现4人一组效率比较低,所以想改良为10人一组进行游戏,你又有什么看法?如果是大家一起进行呢?活动建议:独立思考:前置作业中学生已做.小组合作:汇总各种方案,思考所用知识.集中展示:中心发言人代表小组展示,用实物投影仪呈现方案设计图.教师主导:①对于学生没有想到的情况,图示,但不直接讲;②引导学生通过看图,思考设计意图,想象设计原理,最好由思考出来的学生展示;鼓励学生的创新③进一步的引导学生根据原理归纳类别.师生共思:不同的人数,有没有一种通用的简捷的方法?设计意图:在常见游戏中体味学生再一次在不知不觉中进入知识的发生过程中,初步从集合的角度感知圆是“到定点的距离等于定长的点的集合”学生问题预设:3.人数不同,会有哪些不同方案?用到哪些知识?4.为什么圆是不同人数的都适合的方案?3.方案设计现在体育老师想利用一根3m长的绳子在操场上画一个半径为3m的圆,你能帮他想想办法吗?设计意图:依据建构主义理论,学习的过程是自我建构、自我生成的过程,在不同的背景下进一步感受圆的形成过程,从运动的角度认识圆:“一条线段绕着它的一个端点旋转一周,另一个端点形成的图形”学生问题预设:5.什么是圆?游戏天地中形成了圆,方案设计中做出了圆,这两个定义的本质一致吗?4.寻找生活中的圆设计意图:依据学生的学习是在原有的知识和经验基础上自我生成的过程的教学理念,让学生感受到数学与实际生活紧密相连,体验数学源于生活,用于生活,营造一个充满“磁性”的课堂环境,体验圆的完美乐在其中小憩片刻祥子1.深度思考如何描述一个圆?确定一个圆需要哪些条件?平面上,一个点与圆有哪几种位置关系?如何判断点与圆的位置关系?2.归纳、沉淀圆的定义:集合观点----运动观点----点与圆的位置关系:设点到圆心距离为d点在圆外?d_____r;?点在_____d=r;点在圆内?d_____r.活动建议:独立思考:带着探究交流的收获自学课本,总结归纳圆的概念;对平面进行分类,探究平面内点与圆的位置关系关系的确定因素.同伴互助:兵教兵,每个学生都能明确本节课的知识点.点拨完善:教师适时引导点拨总结提升,学生形成对本节课知识的清晰认识.设计意图:经历了探究知识的发生过程,进行深度思考,师生质疑、交流、点拨提升,澄清概念,形成本节课的知识链,体会数与形的相互转化,在知识的发展过程中加深对知识的理解深化.学生问题预设:6.圆是封闭的曲线还是一个面?圆心属不属于圆?7.如何表示同心圆?8.判断点与圆的位置关系的步骤有哪些?9.直线与圆、多边形与圆、圆与圆各有怎样的位置关系?*知识固化1.⊙O的直径为6,⊙O所在的平面内有一点P,当PO____时,点P在⊙O上;当PO____时,点P在⊙O内;当PO____时,点P在⊙O外.2.已知⊙O的面积为25π,判断点P与⊙O的位置关系:若PO=,则点P在;若PO=4,则点P在______;若PO=,则点P在⊙O上.3.矩形ABCD的边长AB=3cm,AD=4cm,以A为圆心,4cm长为半径作⊙A,点B在⊙A,点C在⊙A,点D在⊙A.4.按要求作图:已知线段AB=3cm,分别以点A和点B为圆心,2cm长为半径作圆.结合所作图形,找到符合下列条件的图形:到点A和点B的距离都等于2cm的所有点组成的图形.到点A和点B 的距离都小于2cm的所有点组成的图形.到点A距离小于2cm,且到点B距离大于2cm的所有点组成的图形.活动建议:独立完成:从数到形、从形到数理解点与圆的位置关系.同伴互助:兵教兵,每个学生掌握本节课的知识点.师生释疑:规范学习品质,重视审题、用严密的语言描述要表达的图形,数形结合学习圆.设计意图:本节课从知识上看,落脚点在于点与圆的位置关系的数形转化,设置不同角度的题目帮助学生强化落实对知识的理解.学生问题预设:10.怎样又快又准地做题?11.怎样描述问题4中的图形?边缘线包括不包括时如何处理?*拓展思维1.如图,一根3m长的绳子,一端栓在柱子上,另一端栓着一只羊(羊只能在草地上活动),请画出羊的活动区域.你能提出哪些问题?2.证明:矩形ABCD的四个顶点在同一个圆上.C活动建议:各取所能,同伴互助,教师搭把手.设计意图:思维是数学的体操,开发一切能拓宽学生思维的素材,让每个学生在每节课上有不同的发展.学生问题预设:12.绳长不大于4m、大于4m不大于5m、大于5m,小羊的活动区域有何不同?13.满足什么条件的点一定在同一个圆上?如何说明呢?从知识、方法、情感方面七嘴八舌说收获、话疑惑.设计意图:学生回顾、总结、梳理及反思所学知识及知识的形成过程,将所学知识与已有的知识进行紧密联系,使知识系统化,条理化,培养学生归纳反思的的良好学习习惯学生问题预设:14.吗?还是有不同于三角形、四边形的其它研究?1.点A的坐标为(3,0),点B的坐标为(0,4),则点B在以A为圆心,6为半径的圆的_______.2.圆心为的甲、乙两圆,半径分别是r,R(r<R).若r<OP<R,则点P在甲圆______,乙圆_______.3.在△ABC中,∠C=90°,AC=BC=4cm,D是AB的中点,以C 为圆心,4cm长为半径作圆,则A、B、C、D四点中,在圆内的有个个个个 4.与圆心的距离不大于半径的点所组成的图形是A.圆的外部(包括边界)B.圆的内部(不包括边界)C.圆D.圆的内部(包括边界)5.已知⊙O的半径为6cm,P为线段OA 的中点,若点P在⊙O上,则OA的长()A.等于6cmB.等于12cmC.小于6cmD.大于12cm6.⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2),则点P与⊙O的位置关系是A.点P在⊙O内B.点P的⊙O上C.点P在⊙O外D.点P 在⊙O上或⊙O外7.如图,点O到直线AB的距离为8cm,点C、D都在直线AB上,OA⊥AB.若AD=6cm,CD=2cm,AB=5cm.以O为圆心,10cm为半径作圆,试判断A、B、C、D四点与⊙O的位置关系.1.教学设计力求接近学生的最近发展区我将本节课定位为探究式教学活动,通过对教材进行适当的整合,让学生带着原有的知识背景和理解走进学习活动,通过自主探索、同伴互助交流、师生释疑点拨等建构知识的形成与运用.即从数学知识结构和学生原有的认知结构出发,以完善学生的认知结构为目标,充分体现数学思维的合理性、自然性.2.在问题中探究,在探究中发现各个环节通过教师的设问引导学生自然、合理地提出问题,带着师生的问题,学生自主探究、同伴协作,形成完善圆的概念,突出数学教学的问题性、自主性、探究性.龙文教育个性化辅导教案提纲(第次课)教师学生日期时段1教育是一项良心工程——深圳龙文教育教育是一项良心工程——深圳龙文教育教育是一项良心工程——深圳龙文教育教育是一项良心工程——深圳龙文教育教育是一项良心工程——深圳龙文教育教学设计思想圆是初中几何中重要的内容之一本节通过第一课时建立圆的基本概念,认识圆的轴对称性与中心对称性讲解时将观察与思考、操作与实践等活动贯穿于教学全过程,使学生积累一定的数学活动经验;第二课时在第一课时的基础上,掌握垂径定理及其逆定理;第三课时加深学生对弦、弧、圆心角之间关系的认识;第四课时的重点是圆周角,通过圆周角定理及其推理的推理论证,从而把圆周角、圆心角、弧和弦之间的关系展现出来,从而使学生全面了解和掌握圆的基本性质教学时先让学生动手操作来发现结论,再通过推理的方式说明结论的正确性数学源于生活,又服务于生活,最终要解决生活中的问题利用电子白板教学帮助学生理解和学习数学,探索与分析,讨论与归纳等数学活动是学习的主要方式教学目标圆的基本概念和性质总目标:1、理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念,理解弧、弦、圆心角、圆周角之间的关系;2、掌握垂径定理及推论的意义及应用,掌握圆心角与弧、弦关系定理意义及应用,掌握圆周角定理及推论的意义和应用;3、探索圆周角与圆心角、弧、弦的关系,理解并会证明圆周角定理及其推论,理解圆内接四边形的对角互补第一课时教学目标知识与技能:1、经历圆的形成过程,理解圆的概念,2、能在图形中准确识别圆、圆心、半径、直径、圆弧、半圆、等圆、等弧等;3、认识圆的对称性,知道圆既是轴对称图形,又是中心对称图形;过程与方法:1、经历抽象和建立圆的概念、探究圆的对称性及相关性质的过程,熟记圆及有关概念;2、通过折叠、旋转的动手实验,多观察、探索、发现圆中圆心、弧、弦之间的关系,体会研究几何图形的各种方法;情感态度价值观:经历探索圆及其有关结论的过程,发展学生的数学观察及思考能力以及问题的提出能力教学重难点重点:了解圆的概念的形成过程;揭示与圆有关的本质属性难点:圆的概念的形成过程和圆的定义学情分析学生在小学已经学过圆的一些知识,对于圆已经有初步的了解,并会利用圆规画园,经历了在操作活动中探索圆的性质的过程初步了解圆所具有的一些性质,并会用自己的语言加以简单描述,初步具有了有条理地思考与表达的能力,为本章的深入学习奠定了基础当然105班的学生基础普遍偏差,接受能力较弱,而本课时概念较多,容易混淆,因此在教学中也不能盲目,必须一步一个脚印的走,务必让学生实实在在的理清概念,这样才可能为后面内容的学习打好基础教学方法启发式教学教学媒体电子白板,课件,圆规,直尺,半透明纸课时安排1课时教学过程设计第一课时活动一、观察与思考课件展示:第一章幻灯片生活中的圆;第二章幻灯片自行车和皮带转动轮教师提问:车轮是什么形状的?学生回答:圆形设计意图:通过实际情景,展现生活中圆的存在、应用及价值,从而引起学生的兴趣教师又问:“为什么车轮要做成圆形呢?难道不可以做成别的形状,比方说三角形、四边形等?”学生回答:“不能!”“它们无法滚动!”课件展示:小人骑不同轮子小车教师追问1:那我们这样吧,把轮子作成椭圆的,可不可以,同时在黑板上画一椭圆学生回答:不行,这样一来,车子前进时,就会一忽儿高,一忽儿低教师追问2:为什么做成圆形就不会一下高,一下低呢?学生思考,同桌讨论,并回答:因为车轮上的任何一点到轴心的距离都相等的设计意图:通过对车轮的观察及认识,感知圆的定义及特性活动二、概念探索教师启发:同学们知道怎样画出一个圆么?你都有哪些方法?师生活动:学生畅所欲言,然后教师课件演示动画画圆的过程,之后学生自己动手画圆设计意图:学生知道怎么画圆,让学生亲身体会圆的形成过程,为定义的顺利产生做好铺垫圆的概念:在一个平面内,线段OA绕它固定的一端点O旋转一周,另一个端点A所形成的图形叫做圆以O为圆心的圆,记做⊙O,读作:圆O,确定圆的两个要素:圆心和半径有关圆的几个概念:1、弦和直径:利用上述图形,让学生任意连结圆上两点,就得到一条线段指出:连结圆上任意两点的线段叫做弦如线段CD,AB,EF,DF都叫做⊙O的弦进一步指出:图中弦AB经过圆心O,我们把经过圆心的弦叫做直径最后让学生观察,得出:直径等于半径的2倍,并且强调直接是最长的弦2、弧:继续引导学生观察图2,发现,连结圆上任意两个点可以得到一条弦同时,这两个点还将圆分成两部分,我们把每一部分叫做圆弧,即:圆上任意两点间的部分叫做圆弧,简称弧用符号“⌒”表示,如以C、D为端点的弧,记做继续引导学生观察会进一步发现,圆的任意一条直径的两个端点分圆成两条弧,每一条弧我们把它叫做半圆;大于半圆的弧叫做优弧,如图中的弧弧叫做劣弧,如图中的3、等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆,等、等,小于半圆的4、等弧:课件演示两段弧重合的过程,指出:在同圆或等圆中,能够互相重合的弧叫做等弧概念辨析:、直径是弦,弦是直径这句话正确吗?教师强调:直径是弦,但在一般情况下弦不是直径,只有在弦经过圆心时,这弦才叫做直径,是最长的弦、半圆是弧吗?弧是不是半圆?教师强调:半圆是弧,但在一般情况下弧不是半圆,只有直径的两个端点分圆成的两条弧才是半圆教师强调:长度相等的弧不一定是等弧,等弧必须是在同圆或等圆中的弧,此处师用两根长度相等的铁丝,变成弧度不同的两条弧加以比较,此难点很容易被突破设计意图:通过课件的动画效果以及实物教具,可以让学生获得更加直观的知识,同时对本节繁多的系列概念认识更清晰,掌握更牢活动三、实践操作,探究结论教师提出问题:1、让学生在一张半透明的纸上以O为圆心画一个圆,将这张纸片沿过点O的直线对折,你发现了什么?2、将一个圆绕圆心旋转180°后,是否与原图形重合?这能说明什么事实?学生活动:动手操作,探索圆的对称性设计意图:培养学生观察、动手能力,能不能发现结论的能力学生归纳结论:圆是轴对称图形,过圆心的每一条直线都是它的对称轴圆也是中心对称图形,圆心是它的对称中心活动四、课堂练习1、课件练习;2、教材P81练习1,2,3设计说明:通过不同形式的练习,从不同角度帮助学生进一步加深对圆的定义及相关概念的认识,形成初步的技能活动五、课堂小结这节课我们学习了哪些主要概念?知道了圆的什么性质?在学生回答的基础上,教师强调:本节课学习了圆的有关概念在这些概念中,要特别注意“直径和弦”、“弧和半圆”,以及“同圆、等圆和同心圆”这些概念的区别和联系另外还要注意,等圆和等弧的概念,是建立在“能够完全重合”这一前提条件下的,它将作为今后判断两圆或两弧相等的依据六、板书设计圆的基本概念一、圆的有关概念二、圆的对称性三、练习圆弦半径直径………………活动二、概念探索教师启发:同学们知道怎样画出一个圆么?你都有哪些方法?师生活动:学生畅所欲言,然后教师课件演示动画画圆的过程,之后学生自己动手画圆设计意图:学生知道怎么画圆,让学生亲身体会圆的形成过程,为定义的顺利产生做好铺垫圆的概念:在一个平面内,线段OA绕它固定的一端点O旋转一周,另一个端点A所形成的图形叫做圆以O为圆心的圆,记做⊙O,读作:圆O,确定圆的两个要素:圆心和半径有关圆的几个概念:1、弦和直径:利用上述图形,让学生任意连结圆上两点,就得到一条线段指出:连结圆上任意两点的线段叫做弦如线段CD,AB,EF,DF都叫做⊙O的弦进一步指出:图中弦AB经过圆心O,我们把经过圆心的弦叫做直径最后让学生观察,得出:直径等于半径的2倍,并且强调直接是最长的弦2、弧:继续引导学生观察图2,发现,连结圆上任意两个点可以得到一条弦同时,这两个点还将圆分成两部分,我们把每一部分叫做圆弧,即:圆上任意两点间的部分叫做圆弧,简称弧用符号“⌒”表示,如以C、D为端点的弧,记做继续引导学生观察会进一步发现,圆的任意一条直径的两个端点分圆成两条弧,每一条弧我们把它叫做半圆;大于半圆的弧叫做优弧,如图中的弧、等,小于半圆的弧叫做劣弧,如图中的,等3、等圆:。
圆知识点复习讲义第1 节圆的认识一、知识梳理1.圆的基本概念弦:连接圆上任意两点的线段叫作弦.直径:经过圆心的弦叫作直径.圆弧:圆上任意两点间的部分叫作圆弧 .弧包括优弧和劣弧,大于半圆的弧叫作优弧,小于半圆的弧叫作劣弧.半圆:圆的任意一条直径的两个端点将圆分成两条弧,每一条弧都叫作半圆.等圆:能够重合的两个圆叫作等圆.等弧:在同圆或等圆中,能够互相重合的弧叫作等弧.2.圆的对称性圆是轴对称图形,其对称轴是任意一条过圆心的直线.圆是中心对称图形,对称中心为圆心.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.3.点与圆的位置关系设⊙O的半径为r,点P到圆心O的距离为d,则有:①点在圆外⇔d>r;②点在圆上⇔d=r;③点在圆内⇔d<r.【例】如图1-1所示,AB是⊙O 的直径,四边形ABCD 内接于⊙O. 若BC=CD=DA=4cm,则⊙O的周长为( ).A. 5πcmB. 6πcmC. 9πcmD. 8πcm解:如图1-2所示,连接OD,OC.∵AB是⊙O的直径,四边形ABCD 内接于⊙O, BC=CD=DA=4cm,̂=CD̂=BĈ.∴AD∴∠AOD=∠DOC=∠COB=60°.又∵OA=OD,∴△AOD是等边三角形.∴OA=AD=4cm.∴⊙O 的周长=2π×4=8π(cm).故选 D.二、分层练习☆万丈高楼平地起1.下列命题正确的个数是( )个.①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④面积相等的两个圆是等圆;⑤同一条弦所对的两条弧一定是等弧;A. 2B. 3C. 4D. 52.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图1-3 所示 .为了在商店配到与原来大小一样的圆形玻璃,小明要选择携带的应该是( ).A. 第①块B. 第②块C. 第③块D. 第④块3. 如图1-4所示,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为点D.已知CD=4,OD=3,则AB的长为 .4. 如图1-5所示,AB是⊙O的直径,点C,D在AB的异侧,连接AD,OD,OC. 若∠AOC=70°,且AD∥OC,则∠AOD的度数为 .欲穷千里目,更上一层楼5. 如图1-6所示,AB,CD是⊙O的直径, AÊ=BD̂.若∠AOE=32°,则∠COE的度数是( ).A. 32°B. 60°C. 68°D. 64°6. 如图1-7所示,AB是⊙O的直径, BĈ=CD̂=DÊ,∠COD=35∘,则∠AOE 的度数是( ).A. 65°B. 70°C. 75°D. 85°̂=DĈ=CB̂,则四边7. 如图1-8所示,已知⊙O的半径为2cm,AB是⊙O的直径,点C,D是⊙O 上的两点,且AD形ABCD的周长为( ).A. 8cmB. 10cmC. 12cmD. 16cm̂=2AĈ,那么( ).8. 如图1-9所示,在⊙O 中,如果ABA.AB=ACB.AB=2ACC.AB<2ACD.AB>2AC9. 如图1-10 所示,在矩形ABCD中, AB=8,BC=3√5,点 P 在边 AB 上,且BP=3AP.如果圆P 是以点 P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).A. 点B,C均在圆P外B. 点 B在圆 P 外,点 C在圆 P 内C. 点B在圆P内,点C在圆P外D. 点 B,C均在圆P内10. 如图1-11所示,城市A的正北方向50km的B处,有一无线电信号发射塔,该发射塔发射的无线电信号的有效半径为100km,AC 是一条直达C 城的公路,从A城开往C城的班车速度为60km/h.(1)当班车从A城出发开往C城时,有人立即打开无线电收音机,班车行驶了0.5h时接收信号最强,则此时班车到发射塔的距离是多少?(离发射塔越近,信号越强)(2)班车从 A城到C城共行驶2h,请你判断,班车到C城后还能接收到信号吗?请说明理由.会当凌绝顶,一览众山小̂的中点,点P 是直径MN上一动点,⊙O 的半径11.如图1-12所示,已知点A是半圆上的三等分点,点B是AN为1.请问:点 P 在MN上什么位置时,AP+BP的值最小?并给出AP+BP的最小值.第2 节垂径定理一、知识梳理(一)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的弧.如图2-1所示,垂径定理的条件与结论理解如下:∵AB是直径,AB⊥CD于点 E,∴CE=DE,CB̂=DB̂,AĈ=AD̂.(二)垂径定理推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.【例】如图2-2所示,AB是⊙O 的弦,点 C,D是直线AB上的两点,且AC=BD,求证:OC=OD.证明:如图2-3所示,过点O作OE⊥AB于点E.∵OE⊥AB,∴AE=BE.又∵AC=BD,∴CE=DE.∴OE是CD的中垂线.∴OC=OD.二、分层练习☆万丈高楼平地起1.下列判断中正确的是( ).A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦2.某蔬菜基地的圆弧形蔬菜大棚的剖面如图2-4所示,已知AB=16m,,半径OA为10m,则中间柱CD的高度为( )m.A. 6B. 4C. 8D. 53. 如图2-5所示,点A,B是⊙O上的两点,AB=10,点P是⊙O上的动点(点 P与点A,B不重合). 连接AP,PB,过点O 分别作OE⊥AP于点E,( OF⊥PB于点F,连接EF,则EF长为( ).A. 4B. 5C. 5.5D. 64. 点P为⊙O内一点,且OP=4. 若⊙O的半径为6,则过点P的弦长不可能为( ).A. 12B.2√30C. 8D. 10.5欲穷千里目,更上一层楼5.刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.如图2-6所示,设⊙O的半径为2,若用⊙O的内接正六边形的面积来估计⊙O的面积,则⊙O的面积约为 (结果保留根号).6. 如图2-7所示,已知⊙O的半径为2,四边形ABCD为⊙O的内接四边形,且AD=2√2,AB=2√3,则∠DAB的度数为( ).A.105°B.60°C.75°D.70°7. 如图2-8所示, ∠PAC=30°,,在射线AC 上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O 交射线AP于点 E,F.(1)求圆心 O到AP的距离;(2)求弦 EF的长.8. 如图2-9所示,AB是⊙O的直径,弦CD交AB于点 P, AP=2,BP=6,∠APC=30°,,则 CD的长为( ).A.√15B.2√5C.2√15D. 89. 如图2-10所示,在半径为√5的⊙O中,AB,CD是互相垂直的两条弦,垂足为点 P,且AB=CD=4,则OP的长为( ).A. 1B.√2C. 2D.2√210. 如图2-11所示,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为y=x2√3,,则a的值是( ).A.2√2B.2+√2C.2√3D.2+√311. 如图2-12所示,△ABC外接圆的半径为5,其圆心O恰好在中线CD上.若AB=CD,则△ABC的面积为( ).A. 36B. 32C. 24D.1812.圆柱形油槽内装有一些油,截面如图2-13所示,油面宽AB 为6dm,再注入一些油后,油面 AB 上升1dm,油面宽变为 8dm,则圆柱形油槽直径 MN 为( ).A. 6dmB. 8dmC. 10dmD. 12dm会当凌绝顶,一览众山小13.如图2-14所示,在平面直角坐标系中,以原点O 为圆心的圆过点A(13,0),直线y=kx-3k+44与⊙O 相交于点B,C,则弦BC的长的最小值为 .第3 节圆周角定理(1)一、知识梳理圆心角:顶点在圆心的角叫作圆心角.圆周角:顶点在圆上,并且两边都和圆相交的角叫作圆周角.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.推论3:圆内接四边形对角互补,并且任何一个外角都等于它的内对角.【例】如图3-1所示,直径为10的⊙A经过点C(0,5)和点O(0,0),点B 是y轴右侧⊙A优弧上的一点,则∠OBC的余弦值为( ).A.12B.34C.√32D.54解:如图3-2 所示,连接CA 并延长交⊙A 于点D.∵CD为直径,∴∠COD=∠yOx=90°.∵直径为10的⊙A经过点C(0,5)和点O(0,0),∴CD=10,CO=5.∴DO=√CD2−CO2=5√3.∵∠OBC=∠CDO,∴cos∠OBC=cos∠CDO=ODCD =5√310=√32.故选 C.二、分层练习☆万丈高楼平地起1. 如图3-3所示,AB是⊙O的直径,点C,D是⊙O 上的两点. 若∠CAB=25°,则∠ADC 的度数为 .2.如图3-4所示,在边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则tan∠CBD 的值等于( ).A.2√55B.3√55C. 2D.123. 如图3-5 所示,△ABC 是⊙O 的内接三角形,AC是⊙O的直径, ∠C=50°,∠ABC的角平分线BD交⊙O 于点D,则∠BAD的度数为( ).A. 45°B. 85°C. 90°D. 95°4. 如图3-6所示,△ABC内接于⊙O, AB=AC,,连接BO 并延长交AC 于点 D. 若∠A=50°,,则∠BDC 的度数为( ).A. 75°B.76°C.65°D.70°5. 如图3-7所示,点A,B,C,D在⊙O上,直径AB交CD于点E. 已知∠C=57°,∠D=45°,则∠CEB=.6. 如图3-8所示,AB是半圆的直径,点D是AĈ的中点,∠ABC=50°,则∠DAB等于( ).A.55°B.60°C.65°D.70°欲穷千里目,更上一层楼7. 如图3-9所示,若△ABC内接于半径为R的⊙O,且∠A=60°,,连接OB,OC,则边 BC的长为( ).A.√2RRB.√32RC.√22D.√3R8. 如图3-10所示,在⊙O中, AC‖OB,∠BOC=50°,则∠OAB的度数为( ).A.25°B. 50°C. 60°D. 30°9. 如图3-11 所示,AD 是半圆的直径,点 C 是弧 BD 的中点, ∠ADC=55°,则∠BAD 等于( ).A. 50°B. 55°C. 65°D. 70°̂=2BĈ,∠C=20∘, 10. 如图3-12所示,AB为⊙O的直径,点C,D在⊙O上,连接AC,CD,CD交AB于点 E.若BD则∠AED的度数为( ).A. 50°B. 53°C. 55°D. 58°11. 如图3-13所示,AB是⊙O的弦,( OH⊥AB于点H,点P是优弧上的一点.若AB=2√3,OH=1,则∠APB的度数为 .12. 如图3-14所示,⊙O的半径为2,. △ABC是⊙O的内接三角形,连接OB,OC.若∠BAC 与∠BOC 互补,则弦BC的长为( ).A.4√3B.3√3C.2√3D.√3☆会当凌绝顶,一览众山小13. 如图3-15所示,在Rt△ABC中,. ∠ACB=90°,∠A=56°.. 以 BC 为直径的⊙O交AB 于点 D. 点 E 是⊙O 上的一点,且CÊ=CD̂,连接 OE. 过点 E 作. EF⊥OE,交AC的延长线于点F,则∠F的度数为( ).A. 92°B. 108°C. 112°D. 124°14. 如图3-16所示,点B,C在⊙A上,AB的垂直平分线交⊙A于点E,F,交线段AC 于点 D. 若∠BFC=20°,则∠DBC=(A. 30°B.29°C.28°D. 20°。