高三基础知识天天练 物理1-4人教版
- 格式:doc
- 大小:145.00 KB
- 文档页数:6
2019年高考物理一轮复习基础夯实练(1)(含解析)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考物理一轮复习基础夯实练(1)(含解析)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考物理一轮复习基础夯实练(1)(含解析)新人教版的全部内容。
2019年高考物理(人教)一轮基础夯实练(1)李仕才一、选择题1、在研究二力合成的实验中,AB是一根被拉长的橡皮筋,定滑轮是光滑的,如图所示,若改变拉力F而保持O点位置不变,则下列说法中正确的是()A.要使θ减小,减小拉力F即可B.要使θ减小,增大拉力F即可C.要使θ减小,必须改变α,同时改变F的大小才有可能D.要减小θ而保持α不变,则只改变F的大小是不可能保持O点的位置不变的解析:绳子对O点的拉力F2与F的合力和F1等大、反向,如图所示,O点位置不变,则橡皮筋的拉力F1不变,绳子拉力F2的方向不变,即α角不变,若要减小θ,必使F的大小和方向以及F2的大小发生改变,故D选项正确.答案:D2、如图所示,水平传送带以恒定速度v向右运动.将质量为m的物体Q 轻轻放在水平传送带的左端A处,经过t秒后,Q的速度也变为v,再经t秒物体Q到达传送带的右端B处,则()A.前t秒内物体做匀加速运动,后t秒内物体做匀减速运动B.后t秒内Q与传送带之间无摩擦力C.前t秒内Q的位移与后t秒内Q的位移大小之比为1:1D.Q由传送带左端运动到右端的平均速度为错误!v解析:前t秒内物体Q相对传送带向左滑动,物体Q受向右的滑动摩擦力,由牛顿第二定律F f=ma可知,物体Q做匀加速运动,后t秒内物体Q相对传送带静止,做匀速运动,不受摩擦力作用,选项A错误、B正确;前t秒内Q的位移x1=错误!t,后t秒内Q的位移x2=vt,故错误!=错误!,选项C 错误;Q由传送带左端运动到右端的平均速度错误!=错误!=错误!=错误!v,选项D正确.答案:BD3、甲、乙两物体分别在恒力F1、F2的作用下,沿同一直线运动.它们的动量随时间变化如图所示.设甲在t1时间内所受的冲量为I1,乙在t2时间内所受的冲量为I2,则F、I的大小关系是( )A.F1>F2,I1=I2 B.F1<F2,I1〈I2C.F1>F2,I1>I2 D.F1=F2,I1=I2解析:冲量I=Δp,从题图上看,甲、乙两物体动量变化的大小I1=I2,又因为I1=F1t1,I2=F2t2,t2〉t1,所以F1>F2.答案:A4、在如图所示电路中E为电源,其电动势E=9。
第一模块第1章第1单元一、选择题1.2008年的奥运圣火经珠穆朗玛峰传至北京,观察图5中的旗帜和甲、乙两火炬手所传递的圣火火焰,关于甲、乙两火炬手相对于静止旗杆的运动情况,下列说法正确的是(旗杆和甲、乙火炬手在同一地区)()图5A.甲、乙两火炬手一定向左运动B.甲、乙两火炬手一定向右运动C.甲火炬手可能运动,乙火炬手向右运动D.甲火炬手可能静止,乙火炬手向左运动解析:红旗左飘,说明有向左吹的风,由于甲火炬手的火炬向左偏,无法确定甲火炬手的运动状态,甲可能静止,也可能向右运动,也可能向左运动,运动速度小于风速.乙火炬手的火炬向右偏,乙火炬手一定向左运动,且速度大于风速.答案:D2.用同一张底片对着小球运动的路径每隔110s拍一次照,得到的照片如图6所示,则小球在图中过程运动的平均速度是()图6A.0.25 m/s B.0.2 m/sC.0.17 m/s D.无法确定解析:由于此过程小球的位移为5 cm,所经时间为t=3×110s=0.3 s,所以v=5×10-20.3m/s=0.17 m/s,故C项正确.答案:C3.足球以8 m/s的速度飞来,运动员把它以12 m/s的速度反向踢出,踢球时间为0.2 s,设球飞来的方向为正方向,则足球在这段时间内加速度是() A.-200 m/s2B.200 m/s2C.-100 m/s2D.100 m/s2解析:根据加速度的定义可得:a=v-v0t-12-80.2m/s2=-100 m/s2答案:C4.在2008年北京奥运会中,牙买加选手博尔特(如图7所示)是一公认的世界飞人,在男子100 m决赛和男子200 m决赛中分别以9.69 s和19.30 s的成绩破两项世界纪录,获得两枚金牌.关于他在这两次决赛中的运动情况,下列说法正确的是( )A .200 m 决赛中的位移大小是100 m 决赛中位移大小的两倍B .200 m 决赛中的平均速度大小约为10.36 m/sC .100 m 决赛中的平均速度大小约为10.32 m/sD .100 m 决赛中的最大速度约为20.64 m/s解析:位移指的是从初位置指向末位置的有向线段,结合100 m 和200 m 的起点、终点设置,故A 、B 错.100 m 比赛中,博尔特做变速运动,最大速度无法判断,D 错.而位移Δx 一定,Δt 一定,则v =Δx /Δt =1009.69m/s ≈10.32 m/s ,所以选C.答案:C5.参加汽车拉力赛的越野车,先以平均速度v 1跑完全程的2/3,接着又以v 2=40 km/h 的平均速度跑完剩下的1/3路程.已经测出在全程内的平均速度v =56 km/h ,那么v 1应是( )A .60 km/hB .65 km/hC .48 km/hD .70 km/h解析:设全程为x ,以平均速度v 1跑完全程的23的时间为t 1,则t 1=2x3v 1.以平均速度v 2跑完全程的13的时间为t 2,则t 2=x3v 2.以平均速度v =56 km/h 跑完全程所用的时间为t ,则t =xv.由t =t 1+t 2得x v =2x 3v 1+x3v 2,解得v 1=3vv 23v 2-v.代入数据得v 1=70 km/h.故选项D 是正确的. 答案:D6.在平直公路上行驶着的公共汽车,用固定于路旁的照相机连续两次拍摄,得到清晰的照片如图8所示.对照片进行分析,知道如下结果.(1)对间隔2 s 所拍摄的照片进行比较,可知公共汽车在2 s 的时间里前进了12 m. (2)在两张照片中,悬挂在公共汽车顶棚上的拉手均向后倾斜着. 根据这两张照片,下列说法正确的是( )A .可求出拍摄的2 s 末公共汽车的瞬时速度B .公共汽车在加速运动C .可知在拍第一张照片时公共汽车的速度D .公共汽车做匀速运动解析:根据题设条件只能求出公共汽车在2 s 时间内的平均速度,但不能求出2 s 末及拍第一张照片时公共汽车的瞬时速度,所以选项A 、C 错误;由于悬挂在公共汽车顶棚上的拉手一直向后倾斜,知汽车的加速度向前,即汽车做加速运动,所以选项B 正确,D 错误.答案:B7.有以下几种情景,根据所学知识选择对情景分析和判断正确的说法( )①点火后即将升空的火箭②高速公路上沿直线高速行驶的轿车为避免事故紧急刹车 ③运动的磁悬浮列车在轨道上高速行驶 ④太空的空间站在绕地球做匀速圆周运动 A .因火箭还没运动,所以加速度一定为零B .轿车紧急刹车,速度变化很快,所以加速度很大C .高速行驶的磁悬浮列车,因速度很大,所以加速度也一定很大D .尽管空间站匀速转动,加速度也不为零解析:点火后虽然火箭速度为零,但由于合外力很大而具有很大的加速度,所以选项A 错误;判断加速度存在的依据是看合外力是否为零,看速度变化的快慢,而不是看速度的大小,所以选项B 正确;一个物体运动速度大,但速度不发生变化(如匀速直线运动),则加速度为零,所以选项C 错误;曲线运动的速度方向发生了变化,速度就发生了变化,所以一定有加速度,选项D 正确.答案:BD 8.一物体做匀变速直线运动,某时刻速度的大小为4 m/s,1 s 后速度的大小变为10 m/s ,在这1 s 内该物体的( )A .速度变化的大小可能小于4 m/sB .速度变化的大小可能大于10 m/sC .加速度的大小可能小于4 m/s 2D .加速度的大小可能大于10 m/s 2解析:题中只给出1 s 初、末的速度的大小,这就隐含了两速度方向可能相同,也可能相反.若两速度方向相同,物体做匀加速运动,Δv =6 m/s ,a =6 m/s 2;若两速度方向相反,则物体运动必须是往复运动.取初速度的方向为正方向,则v t =-10 m/s ,全过程时间t =1s ,代入运动学公式即得a =v t -v 0t =-10-41m/s 2=-14 m/s 2,负号说明a 的方向与初速度方向相反,即选项B 、D 正确.答案:BD9.客车运能是指一辆客车单位时间内最多能够运送的人数.某景区客运索道的客车容量为50人/车,它从起始站运行至终点站(图9)单程用时10分钟.该客车运行的平均速度和每小时的运能约为( )A .5米/秒,300人B .5米/秒,600人C .3米/秒,300人D .3米/秒,600人解析:从图中可看出数据,其平均速度v =xt≈5 m/s ,因单程用时10分钟,则1小时运送6次,其运能为:50人×6=300人.答案:A 二、计算题 10.一架飞机水平匀速地在某同学头顶飞过.当他听到飞机的发动机声从头顶正上方传来时,发现飞机在他前上方与地面成60°角的方向上,据此可估算出此飞机的速度约为声速的多少倍.解析:飞机做匀速直线运动,设其速度为v 1,经过时间t ,其水平位移为x =v 1·t ,① 声波向下匀速传播,设其传播速度为v 2,则经过时间t ,传播距离为h =v 2t ,② 且x 与h 满足关系h =x tan60°,③由①②③式解得v 1=33v ,即飞机的速度约为声速的33倍.答案:3311.如图10是高速摄影机拍摄的子弹头射过扑克牌的照片,子弹头的平均速度是900 m/s.(1)这种情况下,子弹头可看成质点吗? (2)请你估算子弹穿过扑克牌的时间.(设扑克牌的宽度为5.7 cm ,子弹头的长度为1.9 cm) 解析:(1)由于扑克牌的宽度只有子弹头长度的3倍,所以子弹头不能看成质点. (2)子弹头穿过扑克牌所走位移为:x =5.7 cm +1.9 cm =7.6 cm ,所以子弹头穿过扑克牌的时间t =x v=7.6×10-2900≈8.4×10-5 s.答案:(1)不可以 (2)8.4×10-5 s12.有些国家的交管部门为了交通安全,特制定了死亡加速度为500g (g =10 m/s 2)这一数值以警示世人.意思是如果行车加速度超过此值,将有生命危险.这么大的加速度,一般车辆是达不到的,但是如果发生交通事故时,将会达到这一数值.试判断:两辆摩托车以36 km/h 的速度相向而撞,碰撞时间为2×10-3s ,驾驶员是否有生命危险?解析:摩托车的初速度v 0=36 km/h =10 m/s , 末速度v t =0这一碰撞过程的时间Δt =2×10-3 s由加速度的定义式a=Δv Δt得加速度的大小为a=ΔvΔt=102×10-3m/s2=5×103 m/s2=500 g,所以驾驶员有生命危险.答案:有生命危险。
第二模块 第5章 第4单元一、选择题图71.如图7所示,物体A 的质量为m ,置于水平地面上,A 的上端连一轻弹簧,原长为L ,劲度系数为k ,现将弹簧上端B 缓慢地竖直向上提起,使B 点上移距离为L ,此时物体A 也已经离开地面,则下列论述中正确的是( )A .提弹簧的力对系统做功为mgLB .物体A 的重力势能增加mgLC .系统增加的机械能小于mgLD .以上说法都不正确解析:由于将弹簧上端B 缓慢地竖直向上提起,可知提弹簧的力是不断增大的,最后等于A 物体的重力,因此提弹簧的力对系统做功应小于mgL ,A 选项错误.系统增加的机械能等于提弹簧的力对系统做的功,C 选项正确.由于弹簧的伸长,物体升高的高度小于L ,所以B 选项错误.答案:C图82.如图8所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物块从静止释放到相对静止这一过程,下列说法正确的是( )A .电动机做的功为12m v 2B .摩擦力对物体做的功为m v 2C .传送带克服摩擦力做的功为12m v 2D .电动机增加的功率为μmg v解析:由能量守恒,电动机做的功等于物体获得的动能和由于摩擦而产生的热量,故A错;对物体受力分析,知仅有摩擦力对物体做功,由动能定理,知B 错;传送带克服摩擦力做功等于摩擦力与传送带对地位移的乘积,而易知这个位移是木块对地位移的两倍,即W =m v 2,故C 错;由功率公式易知传送带增加的功率为μmg v ,故D 对.答案:D图93.轻质弹簧吊着小球静止在如图9所示的A 位置,现用水平外力F 将小球缓慢拉到B 位置,此时弹簧与竖直方向的夹角为θ,在这一过程中,对于整个系统,下列说法正确的是( )A .系统的弹性势能不变B .系统的弹性势能增加C .系统的机械能不变D .系统的机械能增加解析:根据三力平衡条件可得F =mg tan θ,弹簧弹力大小为F 弹=mgcos θ,B 位置比A 位置弹力大,弹簧伸长量大,所以由A 位置到B 位置的过程中,系统的弹性势能增加,又由于重力势能增加,动能不变,所以系统的机械能增加.答案:BD图104.如图10所示,一小球从光滑圆弧轨道顶端由静止开始下滑,进入光滑水平面又压缩弹簧.在此过程中,小球重力势能和动能的最大值分别为E p 和E k ,弹簧弹性势能的最大值为E p ′,则它们之间的关系为( )A .E p =E k =E p ′B .E p >E k >E p ′C .E p =E k +E p ′D .E p +E k =E p ′解析:当小球处于最高点时,重力势能最大;当小球刚滚到水平面时重力势能全部转化为动能,此时动能最大;当小球压缩弹簧到最短时动能全部转化为弹性势能,弹性势能最大.由机械能守恒定律可知E p =E k =E p ′,故答案选A.答案:A5.节日燃放礼花弹时,要先将礼花弹放入一个竖直的炮筒中,然后点燃礼花弹的发射部分,通过火药剧烈燃烧产生的高压燃气,将礼花弹由炮筒底部射向空中.若礼花弹在由炮筒底部出发至炮筒口的过程中,克服重力做功W1,克服炮筒阻力及空气阻力做功W2,高压燃气对礼花弹做功W3,则礼花弹在炮筒内运动的过程中(设礼花弹发射过程中质量不变)() A.礼花弹的动能变化量为W3+W2+W1B.礼花弹的动能变化量为W3-W2-W1C.礼花弹的机械能变化量为W3-W2D.礼花弹的机械能变化量为W3-W1解析:由动能定理,动能变化量等于合外力做的功,即W3-W2-W1,B正确.除重力之外的力的功对应机械能的变化,即W3-W2,C正确.答案:BC6.飞船返回时高速进入大气层后,受到空气阻力的作用,接近地面时,减速伞打开,在距地面几米处,制动发动机点火制动,飞船迅速减速,安全着陆.下列说法正确的是() A.制动发动机点火制动后,飞船的重力势能减少,动能减小B.制动发动机工作时,由于化学能转化为机械能,飞船的机械能增加C.重力始终对飞船做正功,使飞船的机械能增加D.重力对飞船做正功,阻力对飞船做负功,飞船的机械能不变解析:制动发动机点火制动后,飞船迅速减速下落,动能、重力势能均变小,机械能减小,A正确,B错误;飞船进入大气层后,空气阻力做负功,机械能一定减小,故C、D均错误.答案:A图117.如图11所示,具有一定初速度的物块,沿倾角为30°的粗糙斜面向上运动的过程中,受一个恒定的沿斜面向上的拉力F作用,这时物块的加速度大小为4 m/s2,方向沿斜面向下,那么,在物块向上运动过程中,正确的说法是() A.物块的机械能一定增加B.物块的机械能一定减小C.物块的机械能可能不变D.物块的机械能可能增加也可能减小解析:机械能变化的原因是非重力、弹簧弹力做功,本题亦即看成F与Fμ做功大小问题,由mg sin α+F μ-F =ma ,知F -F μ=mg sin30°-ma >0,即F >F μ,故F 做正功多于克服摩擦力做功,故机械能增大.答案:A8.如图12所示,分别用恒力F 1、F 2先后将质量为m 的物体由静止开始沿同一粗糙的固定斜面由底端拉至顶端,两次所用时间相同,第一次力F 1沿斜面向上,第二次力F 2沿水平方向,则两个过程( )A .合外力做的功相同B .物体机械能变化量相同C .F 1做的功与F 2做的功相同D .F 1做的功比F 2做的功多图12解析:两次物体运动的位移和时间相等,则两次的加速度相等,末速度也应相等,则物体的机械能变化量相等,合力做功也应相等.用F 2拉物体时,摩擦力做功多些,两次重力做功相等,由动能定理知,用F 2拉物体时拉力做功多.答案:AB9.一物体沿固定斜面从静止开始向下运动,经过时间t 0滑至斜面底端.已知在物体运动过程中物体所受的摩擦力恒定.若用F 、v 、x 和E 分别表示该物体所受的合力、物体的速度、位移和机械能,则如下图所示的图象中可能正确的是( )解析:物体在沿斜面向下滑动的过程中,受到重力、支持力、摩擦力的作用,其合力为恒力,A 正确;而物体在此合力作用下做匀加速运动,v =at ,x =12at 2,所以B 、C 错;物体受摩擦力作用,总的机械能将减小,D 正确.答案:AD二、计算题图1310.如图13所示,斜面的倾角为θ,质量为m 的滑块距挡板P 的距离为s 0,滑块以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于重力沿斜面向下的分力.若滑块每次与挡板相碰均无机械能损失,求滑块经过的总路程.解析:滑块最终要停在斜面底部,设滑块经过的总路程为s ,对滑块运动的全程应用功能关系,全程所产生的热量为Q =12m v 20+mgs 0sin θ又全程产生的热量等于克服摩擦力所做的功,即 Q =μmgs cos θ解以上两式可得s =1μ(v 22g cos θ+s 0tan θ).答案:1μ(v 22g cos θ+s 0tan θ)11.如图14甲所示,在倾角为30°的足够长光滑斜面AB 前,有一粗糙水平面OA ,OA 长为4 m .有一质量为m 的滑块,从O 处由静止开始受一水平向右的力F 作用.F 只在水平面上按图乙所示的规律变化.滑块与OA 间的动摩擦因数μ=0.25,g 取10 m/s 2,试求:(1)滑块到A 处的速度大小.(2)不计滑块在A 处的速率变化,滑块冲上斜面的长度是多少?图14解析:(1)由图乙知,在前2 m 内,F 1=2mg ,做正功,在第3 m 内,F 2=0.5mg ,做负功,在第4 m 内,F 3=0,滑动摩擦力F f =μmg =0.25mg ,始终做负功,由动能定理全程列式得:F 1l 1-F 2l 2-F f l =12m v 2A-0即2mg ×2-0.5mg ×1-0.25mg ×4=12m v 2A解得v A =5 2 m/s(2)冲上斜面的过程,由动能定理得-mg ·L ·sin30°=0-12m v 2A所以冲上AB 面的长度L =5 m 答案:(1)5 2 m/s (2)5 m12.电机带动水平传送带以速度v 匀速传动,一质量为m 的小木块由静止轻放在传送带上(传送带足够长),若小木块与传送带之间的动摩擦因数为μ,如图15所示,当小木块与传图15送带相对静止时,求: (1)小木块的位移; (2)传送带转过的路程; (3)小木块获得的动能; (4)摩擦过程产生的摩擦热;(5)电机带动传送带匀速转动输出的总能量. 解析:(1)小木块的加速度a =μg 小木块的位移l 1=v 22a =v 22μg .(2)小木块加速运动的时间t =v a =vμg传送带在这段时间内位移l 2=v t =v 2μg .(3)小木块获得的动能E k =12m v 2.(4)因摩擦而产生的热等于摩擦力(f )乘以相对位移(ΔL ),故Q =f ·ΔL =μmg (l 2-l 1)=12m v 2.(注:Q =E k 是一种巧合,但不是所有的问题都这样).(5)由能的转化与守恒定律得,电机输出的总能量转化为小木块的动能与摩擦热,所以E总=E k +Q =m v 2.答案:(1)v 22μg (2)v 2μg (3)12m v 2 (4)12v 2 (5)m v 2。
第三模块第6章第3单元一、选择题1.一带电粒子在电场中只受电场力作用时,它不可能出现的运动状态是() A.匀速直线运动B.匀加速直线运动C.匀变速曲线运动D.匀速圆周运动解析:带电粒子只在电场力作用下可以被加速,可以偏转,(例如沿电场方向进入匀强电场和垂直电场进入匀强电场中),B、C可能;也可以做匀速圆周运动(例如电子绕原子核的高速旋转),D可能出现;不能做匀速直线运动,A不可能出现.答案:A图132.如图13所示,从F处释放一个无初速度的电子向B板方向运动,指出下列对电子运动的描述中哪句是错误..的(设电源电动势为U)() A.电子到达B板时的动能是UeB.电子从B板到达C板动能变化量为零C.电子到达D板时动能是3UeD.电子在A板和D板之间做往复运动解析:电子在AB之间做匀加速运动,且eU=ΔE k,A正确;在BC之间做匀速运动,B正确;在CD之间做匀减速运动,到达D板时,速度减为零,C错误,D正确.答案:C图143.如图14所示,带等量异号电荷的两平行金属板在真空中水平放置,M、N为板间同一电场线上的两点,一带电粒子(不计重力)以速度v M经过M点在电场线上向下运动,且未与下板接触,一段时间后,粒子以速度v N折回N点,则() A.粒子受电场力的方向一定由M指向NB.粒子在M点的速度一定比在N点的大C.粒子在M点的电势能一定比在N点的大D.电场中M点的电势一定高于N点的电势解析:两平行金属板间的电场为匀强电场.带电粒子先向下运动又折回说明粒子先向下做匀减速运动,折回后向上做匀加速运动.整个过程具有对称性,由此可知B项正确.答案:B4.如图15所示的示波管,当两偏转电极XX′、YY′电压为零时,电子枪发射的电子经加速电压加速后会打在荧光屏上的正中间(图示坐标的O点,其中x轴与XX′电场的场强方向重合,x轴正方向垂直于纸面指向纸内,y轴与YY′电场的场强方向重合).若要电子打在图示坐标的第Ⅲ象限,则()图15A.X、Y极接电源的正极,X′、Y′接电源的负极B.X、Y′极接电源的正极,X′、Y接电源的负极C.X′、Y极接电源的正极,X、Y′接电源的负极D.X′、Y′极接电源的正极,X、Y接电源的负极解析:若要电子打在图示坐标的第Ⅲ象限,电子在x轴上向负方向偏转,则应使X′接正极,X接负极;电子在y轴上也向负方向偏转,则应使Y′接正极,Y接负极,所以选项D正确.答案:D5.如图16所示,两平行金属板水平放置并接到电源上,一个带电微粒P位于两板间恰好平衡,现用外力将P固定,然后使两板各绕其中点在竖直平面内逆时针转过α角,如图中虚线所示,撤去外力,则P在两板间()图16A.保持静止B.水平向左做直线运动C.向左下方运动D .不知α角的值无法确定P 的运动状态解析:设初状态极板间距是d ,旋转α角度后,极板间距变为d cos α,所以电场强度E ′=E cos α,而且电场强度的方向也旋转了α,由受力分析可知,竖直方向仍然平衡,水平方向有电场力的分力,所以微粒水平向左做匀加速直线运动,故B 选项正确.解决本题的关键是确定新场强与原来场强在大小、方向上的关系.答案:B图176.平行板间有如图17所示的周期性变化的电压.重力不计的带电粒子静止在平行板中央,从t =0时刻开始将其释放,运动过程无碰板情况.在图17所示的图象中,能正确定性描述粒子运动的速度图象的是( )解析:0~T 2时间内粒子做初速度为零的匀加速直线运动.T2~T 时间内做加速度恒定的匀减速直线运动,由对称性可知,在T 时速度减为零.此后周期性重复,故A 对.答案:A7.传感器是一种采集信息的重要器件,如图18所示为测定压力的电容式传感器,将电容器、零刻度在中间的灵敏电流计和电源串联成闭合回路.当压力F 作用于可动膜片电极上时膜片产生形变,引起电容的变化,导致灵敏电流计指针偏转.从对膜片施加恒定的压力开始到膜片稳定之后,灵敏电流计指针的偏转情况为(已知电流从电流表正接线柱流入时指针向右偏)( )图18A .向左偏到某一刻度后回到零刻度B .向右偏到某一刻度后回到零刻度C .向右偏到某一刻度后不动D .向左偏到某一刻度后不动解析:由题意可知,电容器始终与电源相连,所以两极板间的电压U 不变,压力F 作用于可动膜片电极上时,两极板间距离d 减小,电容C =εr S 4πkd 增大,由C =QU 可知,两极板带电荷量增加,即对电容器有一短暂的充电过程,又因为上极板带正电,所以灵敏电流计指针向右偏;当压力使膜片稳定后,电容不变,两极板带电荷量不变,电流计指针重新回到零刻度处.综上所述,B 选项正确.答案:B图198.竖直放置的平行金属板A 、B 连接一恒定电压,两个电荷M 和N 以相同的速率分别从极板A 边缘和两板中间沿竖直方向进入板间电场,恰好从极板B 边缘射出电场,如图19所示,不考虑电荷的重力和它们之间的相互作用,下列说法正确的是( )A .两电荷的电荷量可能相等B .两电荷在电场中运动的时间相等C .两电荷在电场中运动的加速度相等D .两电荷离开电场时的动能相等解析:带电粒子在电场中的类平抛运动可分解为沿电场方向的匀加速运动与垂直电场方向的匀速运动两个分运动,所以两电荷在电场中的运动时间相等,B 对;又因为d =12at 2,a=qE m ,因为偏转量d 不同,故a 一定不同,C 错.由a =qEm ,因不知m 的关系,q 可能相等,也可能不相等,故A 正确.当q 相等时,电荷从进入到离开,电场力做的功不同,由动能定理可知,两电荷离开电场时的动能不同,D 错.9.图20中虚线为匀强电场中与场强方向垂直的等间距平行直线,两粒子M、N质量相等,所带电荷的绝对值也相等.现将M、N从虚线上的O点以相同速率射出,两粒子在电场中运动的轨迹分别如图中两条实线所示.点a、b、c为实线与虚线的交点,已知O点电势高于c点.若不计重力,则()图20A.M带负电荷,N带正电荷B.N在a点的速度与M在c点的速度大小相同C.N在从O点运动至a点的过程中克服电场力做功D.M在从O点运动至b点的过程中,电场力对它做的功等于零解析:由O点电势高于C点电势知,场强方向垂直虚线向下,由两粒子运动轨迹的弯曲方向知N粒子所受电场力方向向上,M粒子所受电场力方向向下,故M粒子带正电、N 粒子带负电,A错误.N粒子从O点运动到a点,电场力做正功.M粒子从O点运动到c 点电场力也做正功.因为U aO=U Oc,且M、N粒子质量相等,电荷的绝对值相等,由动能定理易知B正确.因O点电势低于a点电势,且N粒子带负电,故N粒子运动中电势能减少,电场力做正功,C错误.O、b两点位于同一等势线上,D正确.答案:BD10.一平行板电容器的两个极板水平放置,两极板间有一带电荷量不变的小油滴,油滴在极板间运动时所受空气阻力的大小与其速率成正比.若两极板间电压为零,经一段时间后,油滴以速率v匀速下降;若两极板间的电压为U,经一段时间后,油滴以速率v匀速上升.若两极板间电压为—U,油滴做匀速运动时速度的大小、方向将是() A.2v、向下B.2v、向上C.3v、向下D.3v、向上解析:当不加电场时,油滴匀速下降,即F f=k v=mg;当两极板间电压为U时,油滴向上匀速运动,即F电=k v+mg,解之得:F电=2mg,当两极间电压为—U时,电场力方向反向,大小不变,油滴向下运动,当匀速运动时,F电+mg=k v′,解之得:v′=3v,C项正确.答案:C图2111.如图21所示,一光滑斜面的直角点A 处固定一带电荷量为+q 、质量为m 的绝缘小球,另一同样小球置于斜面顶点B 处,已知斜面长为L ,现把上部小球从B 点由静止自由释放,球能沿斜面从B 点运动到斜面底端C 处,求:(1)小球从B 处开始运动到斜面中点D 处时的速度; (2)小球运动到斜面底端C 处时,球对斜面的压力是多大?解析:由于小球沿斜面下滑过程中所受电场力为变力,因此不能用功的定义来求解,只能用动能定理求解(1)由题意知:小球运动到D 点时,由于AD =AB ,所以有电势φD =φB ,即U DB =φD -φB=0①则由动能定理得:mg L 2sin30°=12m v 2D -0②联立①②解得:v D =gL2③ (2)当小球运动至C 点时,对球受力分析如图22所示,则由平衡条件得:图22F N +F 库sin30°=mg cos30°④ 由库仑定律得: F 库=kq 2(L cos30°)2⑤联立④⑤得: F N =32mg -23kq 2L2由牛顿第三定律得:F N ′=F N =32mg -2kq 23L 2.答案:(1)gL 2 (2)32mg -2kq 23L2图2312.如图23所示,两块长3 cm 的平行金属板AB 相距1 cm ,并与300 V 直流电源的两极相连接,φA <φB .如果在两板正中间有一电子(m =9×10-31kg ,e =-1.6×10-19C),沿着垂直于电场线方向以2×107m/s 的速度飞入,则:(1)电子能否飞离平行金属板?(2)如果由A 到B 分布宽1 cm 的电子带通过此电场,能飞离电场的电子数占总数的百分之几?解析:(1)当电子沿AB 两板正中央以v 0=2×107m/s 的速度飞入电场时,若能飞出电场,则电子在电场中的运动时间为t =l v 0① 在沿AB 方向上,电子受电场力的作用,在AB 方向上的位移为 y =12at 2② 又a =F m =eE m =eU ABmd ③由①②③式得 y =12eU AB md (l v 0)2=12×1.6×10-19×3009×10-31×1×10-2×(3×10-22×107)2m =6×10-3m =0.6 cm ,而d 2=0.5 cm ,所以y >d2,故粒子不能飞出电场. (2)从(1)的求解可知,与B 板相距为y 的电子带是不能飞出电场的,而能飞出电场的电子带宽度为x =d -y =(1-0.6) cm =0.4 cm.故能飞出电场的电子数占总电子数的百分比为: n =x d ×100%=0.41×100%=40%. 答案:(1)不能 (2)40%。
第一章分层作业3动量守恒定律A级必备知识基础练1.(2023湖南雅礼中学高二期中)如图所示,A、B两物体质量之比m A∶m B=1∶2,静止在平板小车C 上,A、B间有一根被压缩的弹簧,地面光滑,当弹簧突然释放后,下列说法正确的是()A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统动量守恒B.若A、B与平板车上表面间的动摩擦因数不同,A、B、C组成的系统动量不守恒C.若A、B所受的摩擦力大小不相等,A、B、C组成的系统动量不守恒D.无论A、B所受的摩擦力大小是否相等,A、B、C组成的系统动量守恒2.(多选)在光滑的水平面上,一个质量为2 kg的物体A与另一物体B发生弹性碰撞,碰撞时间不计,两物体的位置随时间变化规律如图所示,以物体A碰前速度方向为正方向,则()A.碰撞后物体A的动量为6 kg·m/sB.碰撞后物体A的动量为2 kg·m/sC.物体B的质量为2 kgD.碰撞过程中外力的矢量和对物体B的冲量为6 N·s3.如图所示,质量为m的人立于平板车上,人与车的总质量为m0,人与车以速度v1在光滑水平面上向右匀速运动,当此人相对于车以速度v2竖直跳起时,车的速度变为()A.m0v1-m0v2m0-m ,向右 B.m0v1m0-m,向右C.m0v1+m0v2m0-m,向右 D.v1,向右4.(2023山西大同高二月考)如图所示,质量为m0的导弹运动到空中最高点时速度为v0,突然炸成两块,质量为m的一块以速度v沿v0的方向飞去,则另一块()A.一定沿v0的方向飞去B.一定沿v0的反方向飞去C.可能做自由落体运动D.以上说法都不对5.质量相等的三个小球a、b、c,在光滑的水平面上以相同的速度v0运动,它们分别与原来静止的A、B、C三球发生碰撞,如图甲、乙、丙所示,碰撞后a继续沿原方向运动,b静止,c沿反方向弹回,则碰撞后A、B、C三球中动量数值最大的是()A.A球B.B球C.C球D.不能确定6.质量为1 000 kg的轿车与质量为4 000 kg的货车迎面相撞,碰撞后两车绞在一起,并沿货车行驶方向运动一段路程后停止(如图所示)。
答案1C 2C 3D 4C 5BD 64 或 4/3 , 9或 37 5 ; 50/9(5.6)8B D 9解答:(1)初速度为20m/s ,由图线知滑块作匀减速直线运动,ma mg mg -=+-)cos sin (θμθ (2分) tv a ∆∆=,代入数据,解得25.0=μ(1分) (2) 上滑时经历时间t 1动能等于势能,滑至最高点后由于θsin mg >θμcos mg ,滑块将下滑,下滑经历时间为t /时动能等于势能。
由题设条件及能量关系,上滑时:201cos 22mv mgS mgh μθ-= S 为上滑路程,代入数据求得S = m 7100 (2分) 2111021t a t v S -=, 即 211821207100t t ⨯-= 解得s t 86.01= (2分) 下滑时经/S 路程时动能等于势能,由题设条件及动能定律得 ////sin cos ()sin k k m mgS mgS E E mg S S θμθθ-=∆==-即 m m S S m 158.025.06.026.025cos sin 2sin /=⨯-⨯⨯=-=θμθθ (2分) 2/2/21t a S =, 即 2/42115t ⨯= 解得74.2/=t s , 从上滑开始计时有: s s t 24.574.25.22=+= (2分)(3) 滑块滑行的总路程为S 总=2S m =50m20/21cos mv E S mg k -=-总θμ (2分) 代入数据,求得50/=k E J (1分)10解答:(1) s m s m at v /2/21=⨯==, N N R v L B BIL F 2122.052222=⨯⨯===安(3分)(2)ma F F =-安,代入数据得到 1+=t F (2分)由此方程画出图线 (2分) (若直接准确画出图线给4分) (3) 当F =4N 时,由图线求得t =3s此时速度v / = at =3m/s ,相应的安培力为F /安=3N ,安培力的功率即为电路消耗的功率:P = F /安v /=3×3w =9w (3分)(4) 若拉力最大为5N ,则当F 安 = F 时,加速度为零,此时速度最大,电路中感应电流最大,F 安m = BI m L ,代入数据求得最大电流为I m =5A (4分)0NF /s t /1 1 2 23 3 4-1。
高三基础知识天天练物理6-1人教版a第三模块第6章第1单元一、选择题kQ1.下面是对点电荷的电场强度公式E=的几种不同理解,正确的是r()A.当r→0时,E→∞B.当r→∞时,E→0C.某点的场强大小与距离r成反比D.以点电荷Q为中心、r为半径的球面上各处的场强相同kQ解析:当r→0时,E=,不再适用,A错B对.某点场强的大小应与距离r的平方r成反比,C错误.以点电荷Q为中心,r为半径的球面上各处的场强大小相等,方向不同,故场强不同,D错.答案:B图192.如图19所示实线是一簇未标明的由点电荷产生的电场线,虚线是某一带电粒子通过该电场区域时的运动轨迹,a、b是轨迹上的两点.若带电粒子在运动中只受电场力作用,根据此图可作出正确判断的是()A.带电粒子所带电荷的性质B.带电粒子在a、b两点的受力方向C.带电粒子在a、b两点的速度何处较大D.带电粒子在a、b两点的加速度何处较大解析:由轨迹的弯曲情况,可知电场力应沿电场线向左,但因不知电场线的方向,故带电粒子所带电荷符号不能确定.设粒子从a运动到b(也可分析从b到a的情形,两种分析不影响结论),速度方向与电场力夹角大于90°,故速度减小,由电场线的疏密程度知a点场强大于b点场强,带电粒子在a点受电场力较大,从而加速度较大,综上所述B、C、D正确.答案:BCD3.有一负电荷自电场中的A点自由释放,只受电场力作用,沿电场线运动到B,它运动的速度图象如图20所示,则A、B所在电场区域的电场线分布可能是图中的a()图20解析:由v—t图象可知,电荷的a和v均增加,故E增加,且电场力与v同向,所以E与v反向,应选B.答案:B图214.如图21所示,实线为不知方向的三条电场线,从电场中M点以相同速度垂直于电场线方向飞出a、b两个带电粒子,运动轨迹如图21中虚线所示.则()A.a一定带正电,b一定带负电B.a的速度将减小,b的速度将增加C.a的加速度将减小,b的加速度将增加D.两个粒子的动能,一个增加一个减小解析:设电场线为正点电荷的电场线,则由轨迹可判定a带正电,b 带负电.若电场线为负点电荷的电场线,则a为负电荷,b为正电荷,A 错.由粒子的偏转轨迹可知电场力对a、b均做正功,动能增加,B、D 错.但由电场线的疏密可判定,a受电场力逐渐减小,加速度减小.b正好相反,选C.答案:C5.带负电的粒子在某电场中仅受电场力作用,能分别完成以下两种运动:①在电场线上运动,②在等势面上做匀速圆周运动.该电场可能由()aA.一个带正电的点电荷形成B.一个带负电的点电荷形成C.两个分立的带等量负电的点电荷形成D.一带负电的点电荷与带正电的无限大平板形成解析:在仅受电场力的作用下在电场线上运动,只要电场线是直线的就可能实现,但是在等势面上做匀速圆周运动,就需要带负电的粒子在电场中所受的电场力提供向心力,根据题目中给出的4个电场,同时符合两个条件的是A答案.答案:A6.两个固定的异种点电荷,电荷量给定但大小不等.用E1和E2分别表示两个点电荷产生的电场强度的大小,则在通过两点电荷的直线上,E1=E2的点()A.有三个,其中两处合场强为零B.有三个,其中一处合场强为零C.有两个,其中一处合场强为零D.只有一个,该处合场强为零解析:本题主要考查场强的矢量性,同一直线上两点电荷产生场强的叠加则变成了代数的加或减.由于两个点电荷带异种电荷且电荷量不等,则E1=E2的点必有两个,其中一处合场强为零,另一处合场强为2E1,应选C.答案:C图227.如图22所示,一电子沿等量异种电荷的中垂线由A→O→B匀速飞过,电子重力不计.则电子所受另一个力的大小和方向变化情况是()A.先变大后变小,方向水平向左B.先变大后变小,方向水平向右C.先变小后变大,方向水平向左D.先变小后变大,方向水平向右解析:先画出等量异种电荷的电场线分布,再判断中垂线上各点的电场强度的变化情况及电子受电场力的情况,最后,确定另一个力的大小和方向.a图23等量异种电荷电场分布如图23所示,由图(a)中电场线的分布可以看出,从A到O,电场线由疏到密;从O到B,电场线由密到疏,所以从A→O→B,电场强度应由小变大,再由大变小,而电场强度方向沿电场线切线方向,为水平向右,如图(b)所示..由于电子处于平衡状态,所受合外力必为零,故另一个力应与电子所受电场力大小相等方向相反.电子受的电场力与场强方向相反,即水平向左,电子从A→O→B过程中,电场力由小变大,再由大变小,故另一个力方向应水平向右,其大小应先变大后变小,所以选项B正确.答案:B图248.如图24所示,在真空中上、下两个区域均有竖直向下的匀强电场,下面区域的场强是上面区域场强的2倍.有一带负电的粒子,从上面区域沿电场线方向以速率v0匀速下落,并进入下面区域(该区域的电场足够大).在下图所示的速度—时间图象中,符合粒子在电场内的运动情况的是()解析:粒子在E中匀速下落,则qE=mg2qE-mg粒子在2E中:a=g,方向向上m则粒子先向下减速,后向上加速进入E中又以v0匀速上升.故C正确.答案:C图259.如图25所示,质量分别为m1和m2的两小球,分别带电荷量q1和q2,用同等长度的绝缘线悬于同一点,由于静电斥力使两悬线与竖直方向张开相同的角度则()A.q1必等于q2B.m1必等于m2C.q1/m1必等于q2/m2aD.q1=q2和m1=m2必须同时满足图26解析:依据题意对两个带电小球受力分析如图26,据平衡条件得:F =m1gtanθF=m2gtanθ所以有m1=m2.故B正确答案:B图2710.如图27所示,质量为m的带负电的小物块处于倾角为37°的光滑斜面上.当整个装置处于竖直向下的匀强电场中时,小物块恰处于静止.现将电场方向突然改为水平向右,而场强大小不变,则()A.小物块仍静止B.小物块沿斜面加速上滑C.小物块沿斜面加速下滑D.小物块将脱离斜面运动图28解析:当场强向下时,物块m受重力和电场力两个力作用下处于静止状态,可知F电=mg.当电场方向改为向右时,受力分析如图28,在垂直于斜面方向上,有:mgco37°=FN+F电in37°FN=0.2mg,所以物块不可能离开斜面;沿斜面方向上:F电co37°+mgin37°=ma,得a=1.4g,故物块沿斜面向下做匀加速直线运动.所以C正确.答案:C二、计算题11.电荷量为q=1某104C的带正电小物块置于绝缘水平面上,所在空间存在方向沿水-a平向右的电场(如图29图甲所示).电场强度E的大小与时间t的关系、物块运动速度v与时间t的关系分别如图29乙、丙所示,取重力加速度g=10m/2.求:图29(1)物块质量m;(2)物块与水平面之间的动摩擦因数μ.解析:0~2,由题图丙可知,物块做匀加速运动,加速度a=1m/2由牛顿第二定律有:E1q-μmg=ma2~4,由题图丙可知,物块做匀速直线运动由平衡条件有:E2q=μmg结合以上几式代入数据,解得:m=1kgμ=0.2.答案:(1)1kg(2)0.2图3012.如图30所示,两根长均为L的绝缘细线下端各悬挂质量均为m 的带电小球A和B,带电荷量分别为+q和-q,若加上水平向左的场强为E的匀强电场后,使连接AB的长也为L的绝缘细线绷紧,且两球均处于平衡状态.则匀强电场的场强大小E应满足什么条件?图31解析:由于A、B均处于平衡,隔离A分析,受力如图31所示,设OA绳拉力F1,AB绳拉力F2,正交分解F1,F1co60°+F2+F库=qE①F1in60°=mg②q2F库=k③L解①②③得:aEmgkqF+3qLq3mgkq+.3qL因为F2≥0,所以E答案:E3mgkq+3qL。
第七模块 第16章 第1单元一、选择题图81.在做光电效应实验中,某金属被光照射发生了光电效应,实验测出了光电子的最大初动能E K 与入射光的频率ν的关系如图8所示,由实验图象可求出( )A .该金属的逸出功B .该金属的极限频率C .单位时间内逸出的光电子数D .普朗克常量解析:根据爱因斯坦光电效应方程E K =hr -W ,任何一种金属的逸出功W 一定,说明E K 随r 的变化而变化,且是线性关系(与y =ax +b 类似),直线的斜率等于普朗克常量,直线与横轴的截距QA 表示E K =0时的频率r 0,即为金属的极限频率,还可由波速公式C =r 0λ0.求该金属发生光电效应照射光的极限波长.E K =hν-W ,E K =0时,有hν0-W =0,r 0=W h ,又由波速公式,得C =r 0λ0,λ0=hCW.答案:ABD图92.氢原子能级的示意图如图9所示,大量氢原子从n =4的能级向n =2的能级跃迁时辐射出可见光a ,从n =3的能级向n =2的能级跃迁时辐射出可见光b ,则( )A .氢原子从高能级向低能级跃迁时可能会辐射出γ射线B .氢原子从n =4的能级向n =3的能级跃迁时会辐射出紫外线C .在水中传播时,a 光较b 光的速度小D.氢原子在n=2的能级时可吸收任意频率的光而发生电离解析:由题意a光光子能量大于b光光子能量,a光频率大于b光频率,由v水=cn,可知C正确.γ射线是原子核衰变而产生的,A错.E43<E32,而紫外线光子的能量大于可见光,故B错.能量大于或等于3.40 eV的光才能使氢原子在n=2的能级时发生电离,故D错.答案:C3.硅光电池是利用光电效应原理制成的器件.下列表述正确的是() A.硅光电池是把光能转变为电能的一种装置B.硅光电池中吸收了光子能量的电子都能逸出C.逸出的光电子的最大初动能与入射光的频率无关D.任意频率的光照射到硅光电池上都能产生光电效应解析:电池是把其他形式的能转化成电能的装置.而硅光电池即是把光能转变成电能的一种装置.答案:A4.氦原子核由两个质子与两个中子组成,这两个质子之间存在着万有引力、库仑力和核力,则3种力从大到小的排列顺序是() A.核力、万有引力、库仑力B.万有引力、库仑力、核力C.库仑力、核力、万有引力D.核力、库仑力、万有引力解析:核力是强相互作用力,氦原子核内的2个质子是靠核力结合在一起的.可见核力远大于库仑力;微观粒子的质量非常小,万有引力小于库仑力.故D选项正确.答案:D二、计算题5.已知钠原子在A、B、C、D、E几个能级间跃迁时辐射的波长分别为:589 nm(B―→A),330 nm(C―→A),285 nm(D―→A),514 nm(E―→B).试作出钠原子在这几个能量范围的能级图.作图时注意,表示能级的横线间的距离和相应能级差成正比,并在线旁以电子伏为单位标出这个能级的值(设最高能级为0).图10解析:根据ΔE =hcλ可以由辐射的波长得到几个能级差;E B -E A =2.1 eV ;E C -E A =3.8 eV ; E D -E A =4.4 eV ;E E -E B =2.4 eV ;根据以上能级差所作能级图如答案图10所示. 答案:如图10所示6.根据巴尔末公式,指出氢原子光谱在可见光范围内最长波长与最短波长所对应的n ,并计算其波长.解析:当n =3时,波长最长,1λ=R (122-132)λ=1R ×365 m =11.1×107×365 m =6.55×10-7m 当n =∞时,波长最短,1λ=R (122-1n 2)=R ×14λ=4R m =41.1×107m =3.64×10-7m 答案:n =3时,波长最长 6.55×10-7 m n =∞时,波长最短 3.64×10-7 m7.波长为λ=0.17 μm 的紫外线照射至金属筒上能使其发射光电子,光电子在磁感应强度为B 的匀强磁场中,做最大半径为r 的匀速圆周运动时,已知r ·B =5.6×10-6 T·m ,光电子质量m =9.1×10-31kg ,电荷量e =1.6×10-19C ,求:(1)光电子的最大动能; (2)金属筒的逸出功.解析:光电子做半径最大的匀速圆周运动时,它的动能即是最大动能. (1)由eB v =m v 2r 得v =eBr m所以12m v 2=12m ·(eBr m )2=(eBr )22m代入数据得12m v 2≈4.41×10-19 J(2)由爱因斯坦光电效应方程得 W =hν-12m v 2=h c λ-12m v 2代入数据得W ≈7.3×10-19J.答案:(1)4.41×10-19J (2)7.3×10-19J8.已知原子的基态能量为-13.6 eV ,核外电子的第一轨道半径为0.53×10-10m ,电子质量m e =9.1×10-31kg ,电量为1.6×10-19C ,求:电子跃迁到第三轨道时,氢原子的能量、电子的动能和电子的电势能各多大?解析:本题考查了氢原子的核外电子绕核运动时相关的物理量与轨道半径的关系. 氢原子能量E 3=E 1/32=-13.6 eV/32=-1.51 eV. 电子在第3轨道时半径为r 3=n 2r 1=32r 1① 电子绕核做圆周运动向心力即库仑力,所以ke 2/r 23=m v 23/r 3②由①②可得电子动能为 E k 3=12m v 23=ke 22×32r 1=9×109×(1.6×10-19)22×9×0.53×10-10×(1.60×10-19)eV =1.51 eV由于E 3=E k 3+E p 3,故电子的电势能为: E p 3=E 3-E k 3=-1.51 eV -1.51 eV =-3.02 eV 答案:-1.51 eV 1.51 eV -3.02 eV 9.氢原子在基态时轨道半径r 1=0.53×10-10m ,能量E 1=-13.6 eV.求氢原子处于基态时:(1)电子的动能. (2)原子的电势能.(3)用波长是多少的光照射可使其电离?解析:(1)设处于基态的氢原子核外电子速度为v 1,则:k ·e 2r 21=m v 21r 1∴电子动能E k 1=12m v 21=ke 22r 1=9×109×(1.6×10-19)22×0.53×10-10×1.6×10-19eV =13.6 eV (2)E 1=E k 1+E p 1∴E p 1=E 1-E k 1=-13.6 eV -13.6 eV =-27.2 eV (3)设用波长λ的光照射可使氢原子电离:hcλ=0-E 1∴λ=-hc E 1=-6.63×10-34×3×108-13.6×1.6×10-19m =0.9141×10-7m答案:(1)13.6 eV (2)-27.2 eV (3)0.9141×10-7m10.在β衰变中常伴有一种称为“中微子”的粒子放出.中微子的性质十分特别,因此在实验中很难探测.1953年,莱尼斯和柯文建造了一个由大水槽和探测器组成的实验系统,利用中微子与水中11H 的核反应,间接地证实了中微子的存在.(1)中微子与水中的11H 发生核反应,产生中子(10n)和正电子(0+1e),即中微子+11H ―→10n +0+1e可以判定,中微子的质量数和电荷数分别是________.(填写选项前的字母) A .0和0 B .0和1 C .1和0D .1和1(2)上述核反应产生的正电子与水中的电子相遇,与电子形成几乎静止的整体后,可以转变为两个光子(γ),即+1e +0-1e ―→2γ 已知正电子和电子的质量都为9.1×10-31kg ,反应中产生的每个光子的能量约为________J .正电子与电子相遇不可能只转变为一个光子,原因是________________________________________________________________________________________________________________________________________________. (3)试通过分析比较,具有相同动能的中子和电子的物质波波长的大小. 解析:(1)由核反应中质量数守恒和电荷数守恒可知A 正确. (2)由能量守恒有2E =2m e c 2,所以E =m e c 2=9.1×10-31×(3.0×108)2J =8.2×10-14J.反应过程中动量守恒且总动量为零. (3)粒子的动量p =2mE k ,物质波的波长λ=hp由m n >m e ,知p n >p e ,则λn <λe . 答案:(1)A (2)8.2×10-14遵循动量守恒 (3)λn <λe11.根据巴耳末公式,指出氢原子光谱在可见光范围内波长最长的两条谱线所对应的n ,它们的波长各是多少?氢原子光谱有什么特点?解析:根据巴耳末公式1λ=R (122-1n 2),得当n =3,4时氢原子发光所对应的波长最长 当n =3时有1λ1=1.10×107×(122-132)解得λ1=6.5×10-7m当n =4时有1λ2=1.10×107×(122-142)解得λ2=4.8×10-7 m.除巴耳末系外,在红外和紫外光区的其他谱线也都是满足与巴耳末公式类似的关系式,即1λ=R (1a 2-1n2).其中a 分别为1,3,4,…对应不同的线系,由此可知氢原子光谱是由一系列线系组成的不连续的线状谱.答案:6.5×10-7 m 4.8×10-7 m 不连续的线状谱图1112.原子可以从原子间的碰撞中获得能量,从而发生能级跃迁(在碰撞中,动能损失最大的是完全非弹性碰撞).一个具有13.6 eV 动能、处于基态的氢原子与另一个静止的、也处于基态的氢原子发生对心正碰.(1)是否可以使基态氢原子发生能级跃迁(氢原子能级如图11所示)?(2)若上述碰撞中可以使基态氢原子发生电离,则氢原子的初动能至少为多少? 解析:(1)设运动氢原子的速度为v 0,完全非弹性碰撞后两者的速度为v ,损失的动能ΔE 被基态氢原子吸收.若ΔE =10.2 eV ,则基态氢原子可由n =1跃迁到n =2.由动量守恒和能量守恒有:m v 0=2m v ①12m v 20=12m v 2+12m v 2+ΔE ② 12m v 2=E k ③ E k =13.6 eV ④解①②③④得,ΔE =12·12m v 20=6.8 eV因为ΔE =6.8 eV<10.2 eV .所以不能使基态氢原子发生跃迁.(2)若使基态氢原子电离,则ΔE =13.6 eV ,代入①②③得E k =27.2 eV . 答案:(1)不能 (2)27.2 eV。
高中物理学习材料唐玲收集整理物理选修1-1部分基础训练第一节电荷库仑定律学习目标:(1)知道两种电荷及其相互作用,知道电量的概念(2)知道摩擦起电、感应起电的本质(3)知道元电荷、点电荷的概念(4)知道电荷守恒定律(5)理解库仑定律的含义及其表达式、适用条件,知道静电力常量(6)会用库仑定律进行简单计算思考与练习A组:1.关于元电荷的理解,下列说法正确的是:A.元电荷就是电子B.元电荷是表示跟电子所带电荷量数值相等的电荷量C.元电荷就是质子D. 物体所带的电荷量只能是元电荷的整数倍2. 5个元电荷的电荷量是;16C电荷量等于元电荷3. 关于点电荷的说法,正确的是:A.只有体积很小的带电体才能看成点电荷B.体积很大的带电体一定不能看成点电荷C.当两个带电体的大小及形状对它们之间相互作用力的影响可忽略时,两个带电体可看成点电荷D.一切带电体都可以看成点电荷4. 如图1-1-1所示,两个互相接触的导体A 和B 原来不带电,现在将带正电的导体 球C 靠近A 端放置,三者均有绝缘支架,若先将A 、B 分开,再移走C ,则A 带 电,B 带 电,若先将C 移走,再把A 、B 分开,则A 电,B 电。
5. 设相距1m ,电荷量均为1C 的两个点电荷之间的静电力为F 1,相距1m ,质量均为1kg 的两个物体之间的万有引力为F 2,F 1是F 2的多少倍?通过计算你会发现F 1比F 2大得多,也就是说,通常在有静电力的计算中万有引力可以忽略。
6. 在光滑的绝缘水平面上放着带电小球甲和乙,若它们的带电荷量的关系是q 甲=4q 乙,质量关系电 m 甲=3m 乙,则它们在库仑力的作用下产生的加速度之比是:A. a 甲:a 乙=1:12B. a 甲:a 乙=12:1C. a 甲:a 乙=1:3D. a 甲:a 乙=3:47. 如图1-1-2所示,在长度相同的绝缘细线上挂着质量均为m 的带同种电荷的点电荷q 1和q 2,若它们所带电荷量间的关系为q 1>q 2,则两细线与竖直方向间的夹角θ1 Q 2(填">""<"或"=")B 组:1. 如图1-1-3,A 、B 、C 三点在同一直线上,各点上都有一个点电荷,它们所带电荷量相等,A 、B 两处为正电荷,C 处为负电荷,且BC=2AB ,那么A 、B 、C 三个点电荷所受库仑力的大小之比为 。
阶段检测(五)(测试范围:第三章相互作用—力、第四章运动和力的关系)一、选择题I(本题共13小题,每小题3分,共39分,每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.下列说法正确的是()A.物体的速度为零时,加速度一定为零B.位移、速度、加速度、力都是矢量,进行矢量运算时遵循平行四边形定则C.均匀木球的重心在球心,挖去球心部分后,木球就没有重心了D.斜抛出的石块在空中轨迹是曲线,说明石块所受的重力方向发生了改变2.如图所示,在足球比赛中头球是一种常见的现象。
关于运动员与球之间的弹力,下列说法正确的有()A.头对球有弹力作用,球对头没有弹力的作用B.头对球的弹力是由球的形变产生的C.头对球的弹力使头发生形变D.头对球的弹力可以改变球的运动方向3.下列说法正确的是()A.不同的运动员掷同一个铅球,成绩不同,说明铅球的惯性除和铅球的质量有关外还和运动员有关B.跳高运动员能跳离地面,说明运动员没有惯性C.为防止柴油机的震动往往将其固定在地面上,是为了增大柴油机的惯性D.机车飞轮都设计的质量很大,其惯性也很大4.某学校教室里的磁性黑板上通常粘挂一些小磁铁,小磁铁被吸在黑板上可以用于“粘”挂图或试题答案,如图所示。
关于小磁铁,下列说法中正确的是()A.磁铁受到的磁吸引力大于受到的弹力才能被吸在黑板上B.磁铁受到的五个力的作用C.磁铁受到的支持力与黑板受到的压力是一对平衡力D.磁铁受到的支持力与黑板受到的压力是一对相互作用力5.如图所示,A、B物块静止于固定的斜面上。
B物块的受力个数是()A.2个B.3个C.4个D.5个6.如图所示,一根弹性杆的一端固定在倾角为30°的斜面上,杆的另一端固定一个重量是2 N的小球,小球处于静止状态时,弹性杆对小球的弹力()A.大小为2 N,方向平行于斜面向上B.大小为2 N,方向竖直向上C.大小为2 N,方向垂直于斜面向上D.由于未知形变大小,无法确定弹力的方向和大小7.某消防员从一平台上跳下,下落2 m后双脚触地,接着他用双腿弯曲的方式缓冲,使自身重心又下降了0.5 m,在着地过程中地面对他双腿的平均作用力估计为()A.自身所受重力的2倍B.自身所受重力的5倍C.自身所受重力的8倍D.自身所受重力的10倍8.物体以初速度v0沿粗糙斜面向上滑行,达到最高点后自行返回原点,在这一过程中,物体的速度—时间图线是()A B C D9.如图所示,A、B两物体的质量分别为m A、m B,且m A>m B,整个系统处于静止状态,滑轮的质量和一切摩擦均不计,如果绳一端由Q点缓慢地向左移到P点,整个系统重新平衡后,物体A的高度和两滑轮间绳与水平方向的夹角θ变化情况是()A.物体A的高度升高,θ角不变B.物体A的高度降低,θ角变小C.物体A的高度升高,θ角变大D.物体A的高度不变,θ角变小10.如图所示,一质量为m的金属球,固定在一轻质细钢丝下端,能绕悬挂点O在竖直平面内转动。
一、选择题1.(2011·茂名模拟)关于竖直上抛运动,以下说法正确的是( )A.上升过程的加速度大于下降过程的加速度B.当物体到达最高点时处于平衡状态.从抛出点上升到最高点的时间和从最高点回到抛出点的时间相等D.抛出时的初速度大小等于物体回到抛出点时的速度大小[答案] D[解析] 竖直上抛运动上升过程的加速度等于下降过程的加速度,A项错误;当物体到达最高点时受重力,不是处于平衡状态,B 项错误;从抛出点上升到最高点的时间和从最高点回到抛出点的时间相等,项正确;抛出时的初速度大小等于物体回到抛出点时的速度大小,D项正确.2.(2011·重庆)某人估测一竖直枯井深度,从井口静止释放一石头并开始计时,经2听到石头落底声,由此可知井深约为(不计声音传播时间,重力加速度g取10/2)( )A.10 B.20.30 D.40[答案] B[解析] 石头下落看作自由落体,则=g2=203.(2011·上海模拟)从某高处释放一粒小石子,经过1从同一地点再释放另一粒小石子,则在它们落地之前,两粒石子间的距离将( )A.保持不变B.不断增大.不断减小D.有时增大,有时减小[答案] B[解析] 设第1粒石子运动的时间为,则第2粒石子运动的时间为(-1),则经过时间,两粒石子间的距离为Δ=g2-g(-1)2=g -g,可见,两粒石子间的距离随的增大而增大,故B正确.4.以35/的初速度竖直向上抛出一个小球.不计空气阻力,g=10/2以下判断不正确的是( )A.小球到达最大高度时的速度为0B.小球到达最大高度时的加速度为0.小球上升的最大高度为6125D.小球上升阶段所用的时间为35[答案] B[解析] 小球到达最大高度时的速度一定为零,否则该点不是最大高度,A正确;小球上抛过程中只受重力作用,故加速度始终为g,B错;由v错误!未定义书签。
-v错误!未定义书签。
=2(-g)知,=错误!未定义书签。
高三物理天天练一(物体的平衡)1、水平地面上有一木箱,木箱与地面之间的动摩擦因数为(01)μμ<<。
现对木箱施加一拉力F ,使木箱做匀速直线运动。
设F 的方向与水平面夹角为θ,如图,在θ从0逐渐增大到90°的过程中,木箱的速度保持不变,则( )A.F 先减小后增大B.F 一直增大C.F 的功率减小D.F 的功率不变2、如图所示,三个质量不计的完全相同的测力计,各小球重力相同,一切摩擦均不计, 平衡时各弹簧秤的示数分别为F 1,F 2,F 3,其大小关系是( )A .F 1=F 2=F 3B .F 1=F 2<F 3C .F 1=F 2>F 3D .F 3>F 1>F 23、如图所示,两个完全相同的光滑球的质量为m ,放在竖直挡板和倾角为α的固定斜面间。
若缓慢转动挡板至斜面垂直,则在此过程中( )A.A 、B 两球间的弹力不变;B.B 球对挡板的压力逐渐减小;C.B 球对斜面的压力逐渐增大;D.A 球对斜面的压力逐渐增大。
4、如图所示,用轻质细杆连接的A 、B 两物体正沿着倾角为θ的斜面匀速下滑,已知斜面的粗糙程度是均匀的,A 、B 两物体与斜面的接触情况相同.试判断A 和B 之间的细杆上是否有弹力.若有弹力,求出该弹力的大小;若无弹力,请说明理由.(思考:如果A 、B 与斜面的接触情况不同呢)5、如图所示,物体受水平力F 作用,物体和放在水平面上的斜面都处于静止,若水平力F 增大一些,整个装置仍处于静止,则:( )A .斜面对物体的弹力一定增大B .斜面与物体间的摩擦力一定增大C .水平面对斜面的摩擦力不一定增大D .水平面对斜面的弹力一定增大6、如图所示,物体A 靠在竖直墙面上,在力F 作用下,A 、B 保持静止.物体B 的受力个数为( )(思考:A 的受力情况)A .2B .3C .4D .57.两倾斜的滑杆上分别套A 、B 两圆环,两环上分别用细线悬吊着两物体,如图所示.当它们都沿滑杆向下滑动时,A 的悬线与杆垂直,B 的悬线竖直向下,则( )A .A 环与杆无摩擦力B .B 环与杆无摩擦力C .A 环做的是匀速运动D .B 环做的是匀速运动8、木块A 、B 分别重50 N 和60 N ,它们与水平地面之间的动摩擦因数均为0.25.夹在A 、B 之间的轻弹簧被压缩了2 cm ,弹簧的劲度系数为400 N/m ,系统置于水平地面上静止不动.现用F =1 N 的水平拉力作用在木块B 上,如图所示,力F 作用后( ) A .木块A 所受摩擦力大小是12.5 N B .木块A 所受摩擦力大小是11.5 N C .木块B 所受摩擦力大小是9 N D .木块B 所受摩擦力大小是7 N9、如图所示,一质量为M 、倾角为θ的斜面体静止放在水平地面上,质量为m 的小木块(可视为质点)放在斜面上,现用一平行于斜面、大小恒定的拉力F 作用于小木块,拉力在斜面所在的平面内绕小木块旋转一周的过程中,斜面体和木块始终保持静止状态,下列说法中正确的是( )A .小木块受到斜面的最大摩擦力为22)sin (θmg F +B .小木块受到斜面的最大摩擦力为F - mg sin θC .斜面体受到地面的最大摩擦力为FD .斜面体受到地面的最大摩擦力为F cos θ10、一个底面粗糙、质量为M 的劈放在粗糙的水平面上,劈的斜面光滑且与水平面成30°角;现用一端固定的轻绳系一质量为m 的小球,小球放在斜面上,小球静止时轻绳与竖直方向的夹角也为30°,如图所示,试求:(1)当劈静止时绳子的拉力大小.(2)若地面对劈的最大静摩擦力等于地面对劈支持力的k 倍,为使整个系统静止,k 值必须满足什么条件?高三物理天天练二(牛顿运动定律)1、一个质量为2kg 的物体,在5个共点恒力作用下匀速直线运动.现同时撤去大小分别为10N 和15N 的两个力,其余的力保持不变,关于此后该物体运动的说法中正确的是( )A .可能做匀减速直线运动,加速度大小是10m/s 2B .可能做匀速圆周运动,向心加速度大小是5m/s 2C .可能做匀变速曲线运动,加速度大小可能是5m/s 2D .一定做匀变速直线运动,加速度大小可能是10m/s 22、如图所示,一质量为m 的物块A 与直立的轻弹簧的上端连接,弹簧的下端固定在地面上,一质量也为m 的物块叠放在A 的上面,A 、B 处于静止状态。
第二模块 第4章 第5单元一、选择题1.发射人造卫星是将卫星以一定的速度送入预定轨道.发射场一般选择在尽可能靠近赤道的地方,如图3所示,这样选址的优点是,在赤道附近( )A .地球的引力较大B .地球自转线速度较大C .重力加速度较大D .地球自转角速度较大解析:若将地球视为一个球体,则在地球上各处的引力大小相同,A 错;在地球上各处的角速度相同,D 错;在地球的表面附近,赤道的半径较大,由公式v =ωr 可知,半径越大线速度越大,B 对;在赤道上的重力加速度最小,C 错.答案:B2.我国探月的“嫦娥工程”已启动,在不久的将来,我国宇航员将登上月球.假如宇航员在月球上测得摆长为l 的单摆做小振幅振动的周期为T ,将月球视为密度均匀、半径为r 的球体,则月球的密度为( )A.πl 3GrT 2B.3πl GrT 2C.16πl 3GrT 2D.3πl 16GrT 2解析:由单摆的振动可求得月球表面的重力加速度g ′,根据月球表面的物体所受的重力等于月球对物体的万有引力即可求得月球的密度.设月球表面的重力加速度为g ′,则T =2πl g ′.根据万有引力F =GMmr 2和重力近似相等,GMm r 2=mg ′,即g ′=GM r 2,ρ=M V =M 43πr 3,联立可得ρ=3πl GrT 2.答案:B3.宇宙飞船到了月球上空后以速度v 绕月球做圆周运动,如图4所示,为了使飞船落在月球上的B 点,在轨道A 点,火箭发动器在短时间内发动,向外喷射高温燃气,喷气的方向应当是( )A .与v 的方向一致B .与v 的方向相反C .垂直v 的方向向右D .垂直v 的方向向左解析:因为要使飞船做向心运动,只有减小速度,这样需要的向心力减小,而此时提供的向心力大于所需向心力,所以只有向前喷气,使v 减小,从而做向心运动,落到B 点,故A 正确.答案:A4.宇宙中两个星球可以组成双星,它们只在相互间的万有引力作用下,绕球心连线的某点做周期相同的匀速圆周运动.根据宇宙大爆炸理论,双星间的距离在不断缓慢增加,设双星仍做匀速圆周运动,则下列说法错误..的是 ( )A .双星间的万有引力减小B .双星做圆周运动的角速度增大C .双星做圆周运动的周期增大D .双星做圆周运动的半径增大解析:距离增大万有引力减小,A 正确;由m 1r 1ω2=m 2r 2ω2及r 1+r 2=r 得r 1=m 2rm 1+m 2,r 2=m 1r m 1+m 2,可知D 正确.F =G m 1m 2r 2=m 1r 1ω2=m 2r 2ω2,r 增大F 减小,因r 1增大,故ω减小,B 错;由T =2πω知C 正确.答案:B5.据报道,最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的6.4倍,一个在地球表面重量为600 N 的人在这个行星表面的重量将变为960 N .由此可推知,该行星的半径与地球半径之比约为( )A .0.5B .2C .3.2D .4解析:设人的质量为m ,在地球上重力为G 地′,在星球上重力为G 星′.由G Mm R 2=G ′得R =GMm G ′,则R 星R 地=M 星·G 地′M 地·G 星′= 6.4×600960=2,故选B.答案:B6.某星球的质量约为地球的9倍,半径约为地球半径的一半,若从地球表面高h 处平抛一物体,射程为60 m ,则在该星球上,从同样的高度以同样的初速度平抛同一物体,射程应为( )A .10 mB .15 mC .90 mD .360 m解析:由平抛运动公式可知,射程s =v 0t =v 02h g ,即v 0、h 相同的条件下s ∝1g,又由g =GM R 2,可得g 星g 地=M 星M 地(R 地R 星)2=91×(21)2=361,所以s 星s 地=g 地g 星=16,选项A 正确.答案:A7.土星外层上有一个环,为了判断它是土星的一部分还是土星的卫星群,可以通过测量环中各层的线速度v 与该层到土星中心的距离R 之间的关系来判断( )A .若v ∝R ,则该层是土星的一部分B .若v 2∝R ,则该层是土星的卫星群C .若v 2∝1R ,则该层是土星的一部分D .若v 2∝1R,则该层是土星的卫星群解析:如果土星外层的环是土星的一部分,它们是一个整体,角速度固定,根据v =ωR ,可知v ∝R ,选项A 正确.如果环是卫星群,则围绕土星做圆周运动,则应满足G Mm R 2=m v 2R ,可得v 2=GM R ,即v 2∝1R,选项D 正确.答案:AD8.据报道“嫦娥一号”和“嫦娥二号”绕月飞行器的圆形工作轨道距月球表面分别约为200 km 和100 km ,运行速率分别为v 1和v 2.那么,v 1和v 2的比值为(月球半径取1700 km)( )A.1918B.1918C.1819D.1819解析:万有引力提供向心力GMm r 2=m v 2r ,v =GMr.v 1/v 2=r 2/r 1=18/19,故选C. 答案:C9.宇航员在月球上做自由落体实验,将某物体由距月球表面高h 处释放,经时间t 后落到月球表面(设月球半径为R ).据上述信息推断,飞船在月球表面附近绕月球做匀速圆周运动所必须具有的速率为( )A.2Rh tB.2Rh tC.Rh tD.Rh 2t解析:设月球表面处的重力加速度为g 0,则h =12g 0t 2,设飞船在月球表面附近绕月球做匀速圆周运动所必须具有的速率为v ,由牛顿第二定律得mg 0=m v 2R ,两式联立解得v =2Rht,选项B 对.答案:B10.下表是卫星发射的几组数据,其中发射速度v 0是燃料燃烧完毕时火箭具有的速度,之后火箭带着卫星依靠惯性继续上升,到达指定高度h 后再星箭分离,分离后的卫星以环绕速度v 绕地球运动.根据发射过程和表格中的数据,下面哪些说法是正确的( )A.B .离地越高的卫星机械能越大 C .离地越高的卫星环绕周期越大D .当发射速度达到11.18 km/s 时,卫星能脱离地球到达宇宙的任何地方解析:由机械能守恒定律知,A 正确.对B 选项,由于卫星的机械能除了与高度有关外,还与质量有关,所以是错误的;由G Mm r 2=m 4π2T2r 知,离地面越高的卫星周期越大,C正确;从列表中可以看出,11.18 km/s 的发射速度是第二宇宙速度,此速度是使卫星脱离地球围绕太阳运转,成为太阳的人造行星的最小发射速度,但逃逸不出太阳系,D 错误.答案:AC 二、计算题11.2008年9月25日21时10分,“神舟”七号载人飞船发射升空,然后经飞船与火箭分离准确入轨,进入椭圆轨道,再经实施变轨进入圆形轨道绕地球飞行.飞船在离地面高度为h 的圆形轨道上,飞行n 圈,所用时间为t .已知地球半径为R ,引力常量为G ,地球表面的重力加速度为g . 求地球的质量和平均密度.解析:设飞船的质量为m ,地球的质量为M ,在圆轨道上运行周期为T ,飞船绕地球做匀速圆周运动,由万有引力定律和牛顿第二定律得G Mm (R +h )2=m (R +h )4π2T 2 ①由题意得T =tn②解得地球的质量M =4n 2π2(R +h )3Gt 2③又地球体积V =43πR 3 ④所以,地球的平均密度ρ=M V =3πn 2(R +h )3Gt 2R 3.答案:4n 2π2(R +h )3Gt 2,3πn 2(R +h )3Gt 2R 312.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间.解析:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有GMmr2=mrω2.航天飞机在地面上,有G MmR 2=mg .联立解得ω=gR2r 2,若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π所以t =2πω-ω0=2πgR 2r 3-ω0若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π所以t=2πω0-ω=2πω0-gR2 r3答案:2πgR2r3-ω0或2πω0-gR2r3。
寒假作业⑺功和能(二)选择题:1.下列关于运动物体所受合外力和动能变化的关系正确的是()A.如果物体所受合外力为零,则合外力对物体做的功一泄为零B.如果合外力对物体所做的功为零,则合外力一泄为零C.物体在合外力作用下做变速运动,动能一沱发生变化D.物体的动能不变,所受合外力一定为零2.在2008年北京奥运会上,跳水运动员陈若琳取得了女子10米跳台的金牌。
假设她的质量为m,进入水后受到水的阻力而做匀减速运动,设水对她的阻力大小恒为F,那么在她减速下降h的过程中,下列说法正确的是()A.她的动能减少了FhB.她的机械能减少了FhC.她的机械能减少了(F-mg)hD.她的重力势能减少了mgh3.运动员跳伞将经历加速下降和减速下降两个过程,将人和伞看成一个系统,在这两个过程中,下列说法正确的是()A.阻力对系统始终做负功B.系统受到的合外力始终向下C.重力做功使系统的重力势能增加D.任意相等的时间内重力做的功相等4•如图所示,倾角为30。
的斜而体置于水平地而上.一根不可伸长的轻绳两端分别系着小球A和物块B,跨过固立于斜而体顶端的小滑轮O, A的质量为B的质量为4m.开始时,用手托住A,使OA段绳恰处于水平伸直状态(绳中无拉力),OB绳平行于斜而,此时B静止不动.将A由静止释放,任英下摆过程中,斜而体始终保持静止,下列判断中正确的是()A.物块B受到的摩擦力先减小后增大°B.地而对斜而体的摩擦力方向一直向右4 ? 率、、C.小球A的机械能守恒'、、§D.小球A的机械能不守恒,A、B系统的机械能守恒、二5.如图,一轻绳的一端系在固龙粗糙斜而上的O点,另一端系一头的初速度,使小球在斜面上做圆周运动.在此过程中(A.小球的机械能守恒B.重力对小球不做功C.绳的张力对小球不做功D.在任何一段时间内,小球克服摩擦力所做的功总是等于小球动能的减少6.光滑地而上放一长木板,质量为M,木板上表面粗糙且左端放一木块m,如图所示,现用水平向右的恒力F拉木块.使它在木板上滑动且相对地而位移为s (木块没有滑下长木板)。
天天练141.在国际单位制(SI)中,下列物理量单位属于基本单位的是 ( )(A )牛顿(N) (B )焦耳(J) (C )摩尔(mol) (D )库仑(C)2. 下列关于布朗运动的说法中,正确的是 ( )(A )布朗运动是液体分子的无规则运动(B )布朗运动是组成悬浮颗粒的固体分子无规则运动的表现(C )布朗运动是由于液体各个部分的温度不同而引起的(D )布朗运动是由于液体分子从各个方向对悬浮颗粒撞击作用的不平衡引起的3.如图所示,在绝缘水平面上静止着两个质量均为m ,电荷量均为+Q 的物体A 和B (A 、B 均可视为质点),它们间的距离为r ,与水平面间的动摩擦因数为μ,则物体A 受到的摩擦力为 ( )(A )μmg (B )0 (C )k Q 2r (D )k Q 2r 2 4.现将一定质量的某种理想气体进行等温压缩,下列图像中能表示该气体在压缩过程中的压强p 和体积的倒数1/V 的关系是 ( )pO(A ) (B ) (C ) (D )5. 如图,固定半球面由两种材料做成,球右侧是光滑的,而左侧是粗糙的,O 点为其球心,A 、B 为两个完全相同的小物块(可视为质点),小物块A 静止在球面的左侧,小物块B 在水平力F 作用下静止在球的右侧,两球处在同一高度,两小物块与球心连线和水平方向的夹角均为θ,则左右两物块对斜面的压力大小之比为 ( )(A )sin 2θ :1 (B )cos 2θ :1(C )sin θ :1 (D )cos θ :16.如右图所示,一列简谐横波沿x 轴正方向传播,实线和虚线分别表示t 1=0和t 2=0.5s 时的波形(已知波的周期T>0.5s ),则能正确反映t 3=7.5s 时波形的图是( )7.某人骑摩托车匀速前进,突遇正面恒定强风作用,他保持发动机功率不变,之后在运动过程中关于车的速度和加速度,下列说法中正确的是( )(A )速度和加速度均减小 (B )速度增大,加速度减小(C )速度减小,加速度增大 (D )速度和加速度均增大8.(多项选择题)某次地震的震源离地面深度为10km 。
α βO ab1.人站在自动扶梯的水平踏板上,随扶梯斜向上匀速运动,如图所示,以下说法正确的是( )A .人受到重力和支持力的作用B .人受到重力、支持力和摩擦力的作用C .人受到的合外力不为零D .人受到的合外力方向与速度方向相同2.如图所示是为汽车发动机的冷却风扇设计的一个控制电路。
要 求发动机的点火开关开启,并且温度过高时,风扇才自动开启。
关于该电路的自动控制工作过程,以下判断正确的是( ) A .图中A 一定是热敏电阻 B .图中B 一定是点火开关 C .图中C 可能是一块电磁铁 D .虚线框内的门电路是“非”门3.所受的合外力F 随时间t 变化的规律如图所示。
力的方向始终在同一条直线上, 0时刻质点的速度为零。
下列说法中正确的是( ) A .在t 1时刻质点的速度最大 B .在t 2时刻质点的动能最大 C .在t 4时刻质点刚好返回出发点 D .0- t 1与0- t 2期间质点加速度的方向相反4.如下图所示,条形磁铁放在桌子上,一根通电直导线由S 极的上端平移到N 极的上端的过程中,导线保持与磁铁垂直,导线的通电方向如图,则在这个过程中磁铁(保持静止)受到的摩擦力()A .为零B .方向由左变为向右C .方向保持不变D .方向由右变为向左5.在粗糙水平地面上与墙平行放着一个截面为半圆的柱状物体A ,A 与竖直墙之间放一光滑圆球B ,整个装置处于静止状态。
现对B 加一竖直向 下的力F ,F 的作用线通过球心,设墙对B 的作用力为F 1,B 对A 的作用 力为F 2,地面对A 的作用力为F 3。
若F 缓慢增大而整个装置仍保持静止, 截面如图所示,在此过程中( )A .F 1保持不变,F 3缓慢增大B .F 1缓慢增大,F 3保持不变C .F 2缓慢增大,F 3缓慢增大D .F 2缓慢增大,F 3保持不变 6.两根绝缘细线分别系住a 、b 两个带电小球,并悬挂在O点,当两个小球静止时,它们处在同一水平面上,两细线与竖直方向间夹角分 别为α、β,α<β,如图所示。
第一模块 第1章 第3单元一、选择题1.自由下落的物体第n 秒内通过的位移与第(n -1)秒内通过的位移之差为( )A .9.8 mB .4.9(2n +1) mC .3(n +1) m D.n 2n 2-1m解析:Δx =x n -x n -1=aT 2(a =g ,T =1 s) Δx =9.8 m. 答案:A2.伽利略在研究自由落体运动性质的时候,为了排除物体自由下落的速度v t 随着下落高度h (位移大小)是均匀变化(即:v t =kh ,k 是个常数)的可能性,设计了如下的思想实验:在初速为零的匀变速的直线运动中,∵v =v t2(式中v 表示平均速度);①而h =v ·t ② 如果v t =kh ③成立的话,那么,必有:h =12kht ,即t =2k=常数.t 竟然是与h 无关的常数,这显然与常识相矛盾.于是,可以排除速度v t 是随着下落高度h 均匀变化的可能性.关于伽利略这个思想实验的逻辑及逻辑片语,你做出的评述是( )A .全部正确B .①式错误C .②式错误D .③式以后的逻辑片语错误解析:本实验是为了研究自由落体运动的性质,因此自由落体运动的性质不明确,①式不能直接使用.B 正确.答案:B3.我国是一个能源消耗的大国,节约能源刻不容缓.设有一架直升机以加速度a 从地面由静止开始竖直向上起飞,已知飞机在上升过程中每秒钟的耗油量V 0=pa +q (p 、q 均为常数).若直升机欲上升到某一定高度处,且耗油量最小,则其加速度大小应为( )A .p /qB .q /p C.p +q p D.p +q q解析:直升飞机以恒定加速度上升到某一高度,所用时间和加速度的表达式为h =12at 2,t =2h a ,总耗油量V =V 0t =p 2ha +q 2h a =q 2h ⎝⎛⎭⎫p q a +1a ,当p q a =1a时总耗油量最小,此时a =qp,B 正确.答案:B4.从地面竖直上抛物体A ,同时在某高度有一物体B 自由下落,两物体在空间相遇(并非相碰)的速率都是v ,则下列叙述正确的是( )A .物体A 的上抛初速度大小是相遇时速率的2倍B .相遇时物体A 上升的高度和物体B 已下落的高度相同C .物体A 和B 的落地时间相同D .物体A 和B 的落地速度相等解析:A 、B 两物体加速度相同(同为g ),故在相同的时间内速度变化的大小相同.两物体从开始运动到相遇,B 的速度增加了v ,A 的速度相应减少了v ,所以知A 上抛时速度为2v ,即A 对.由竖直上抛运动全过程的对称性知,落地时A 、B 两物体速度相等,即D 也对.答案:AD5.一物体从高x 处做自由落体运动,经时间t 到达地面,落地速度为v ,那么当物体下落时间为t3时,物体的速度和距地面的高度分别是( )A.v 3,x 9B.v 9,x 9C.v 3,89xD.v 9,33x 解析:根据运动学公式v =gt 得,速度v 与时间t 成正比,所以下落t3时的速度为v ′=v ·t 3t =v 3. 根据公式x =12gt 2得,下落位移h 与时间的平方t 2成正比,所以下落t3时下落的高度为x ′=x ·⎝⎛⎭⎫t 32t 2=19x .所以距地面高度x 距=x -x ′=x -19x =89x .答案:C6.四个小球在离地面不同高度处,同时从静止释放,不计空气阻力,从开始运动时刻起每隔相等的时间间隔,小球依次碰到地面.则刚刚开始运动时各小球相对地面的位置可能是图5中的( )解析:因为各个球是间隔相等时间落地的,且都做自由落体运动,由h =12gt 2可得各球初始离地高度之比h 1∶h 2∶h 3=…=12∶22∶32∶…故C 图正确.答案:C7.滴水法测重力加速度的过程是这样的:让水龙头的水一滴一滴地滴在正下方的盘子里,调节水龙头,让前一滴水滴到盘子而听到声音时后一滴水恰好离开水龙头,测出n 次听到水击盘声的总时间为t ,用刻度尺量出水龙头到盘子的高度差为h ,即可算出重力加速度.设人耳区别两个声音的时间间隔为0.1 s ,声速度为340 m/s ,则( )A .水龙头距人耳的距离34 mB .水龙头距盘子的距离为34 mC .重力加速度的计算式为2hn 2t2D .重力加速度的计算式为2h (n -1)2t 2解析:设听到两次声音的时间间隔为Δt ,此即每滴水下落的运动时间Δt =tn -1,又因为h =12gΔt 2,则g =2h Δt 2=2h (n -1)2t 2.注意,人耳距水龙头及水龙头距盘子的距离对测量都没有影响,故选项D 正确.答案:D8.某物体以30 m/s 的初速度竖直上抛,不计空气阻力,g 取10 m/s 2,5 s 内物体的( ) A .路程为65 mB .位移大小为25 m ,方向向上C .速度改变量的大小为10 m/sD .平均速度大小为13 m/s ,方向向上解析:初速度为30 m/s ,只需要3 s 即可上升到最高点,位移为h 1=302/20 m =45 m ,再自由下落2 s ,下降高度为h 2=0.5×10×22 m =20 m ,故路程为65 m ,A 对;此时离地面高25 m ,位移方向竖直向上,B 对;此时速度为v =10×2 m/s =20 m/s ,速度改变量为50 m/s ,C 错;平均速度为255m/s =5 m/s ,D 错.答案:AB 二、填空题 9.用打点计时器研究物体的自由落体运动,得到如图6的一段纸带.测得AB =7.65 cm ,BC =9.17 cm.已知交流电频率是50 Hz ,则打B 点时物体的瞬时速度为________ m/s.如果实验测出的重力加速度值比公认值偏小,可能的原因是____________.解析:B 点的速度就是AC 段内的平均速度.v B =AB +BC 2t =(7.65+9.17)×10-2 m2×0.02 s =2.10m/s.图7答案:2.10 下落过程中存在阻力等10.伽利略通过研究自由落体和物块沿光滑斜面的运动,首次发现了匀加速运动规律.伽利略假设物块沿斜面运动与物块自由下落遵从同样的法则,他在斜面上用刻度表示物块滑下的路程,并测出物块通过相应路程的时间,然后用图线表示整个运动过程,如图7所示.图中OA 表示测得的时间,矩形OAED 的面积表示该时间内物块经过的路程,则图中OD 的长度表示______________________.P 为DE 的中点,连接OP 且延长交AE 的延长线于B ,则AB 的长度表示________________.解析:以OD 为速度轴,以OA 为时间轴建立坐标系,由几何知识可知矩形OAED 和△AOB 面积相等,故OB 为物块运动的v -t 图线,由图线特点可知OD 、AB 的物理意义.答案:OA 段时间中点时刻的速度 物块到达路程末端时的速度 三、计算题11.有一种“傻瓜”相机的曝光时间(快门打开到关闭的时间)是固定不变的.为估测相机的曝光时间,有位同学提出了下述实验方案:他从墙面上A 点的正上方与A 相距H 0=1.5 m 处,使一个小石子自由落下,在小石子下落通过A 点时,立即按动快门,为小石子照相,得到如图8所示的照片.由于石子的运动,它在照片上留下一条模糊的径迹CD ,已知每块砖的平均厚度是6 cm.请从上述信息和照片上选取估算相机曝光时间必要的物理量,用符号表示,如H 等.推算出计算曝光时间的关系式,并估算出这个“傻瓜”相机的曝光时间.(g 取9.8 m/s 2,要求保留1位有效数字)解析:该题考查了自由落体的位移公式等知识.由图示信息结合文字说明求出下落点至C 点或D 点的距离.由自由落体运动可求解出落到C 、D 两点的时间差,此时间差即为该相机的曝光时间.设A 、C 两点间的距离为H 1,A 、D 两点间的距离为H 2,曝光时间为t ,则:H 1+H 0=12gt 21① H 2+H 0=12gt 22②其中t =t 2-t 1③ 解①②③得:t =2(H 0+H 2)g -2(H 0+H 1)g代入数据得t =2×10-2 s 答案:0.02 s12.在北京奥运会上,一跳水运动员从离水面10 m 高的平台上向上跃起,举双臂直体离开台面,此时重心位于从手到脚全长的中点,跃起后重心升高0.45 m 达到最高点,落水时身体竖直,手先入水,从离开平台到手接触水面,运动员可以用于完成动作的时间为多长?在此过程中,运动员水平方向的运动忽略不计,运动员可视作全部质量集中在重心的一个质点,取g =10 m/s 2.解析:如图9所示,从平台跃起,到手接触水面,运动员重心的高度变化为h =10 m解法1:将整个过程分上升和下降两个阶段考虑,设运动员跃起的初速度为v 0,则v 202g =Hv 0=2gH =2×10×0.45 m/s =3 m/s故上升时间为:t 1=v 0g=0.3 s设运动员从最高点到手接触水面所用时间为t 2,则: 12gt 22=h +H t 2=2(H +h )g =2(10+0.45)10s =1.4 s故用于完成动作的时间t 为t =t 1+t 2=1.7 s 综上所述,本题正确的答案为1.7 s解法2:运动员的整个运动过程为竖直上抛运动,设总时间为t ,由于运动员入水时位于跃起位置下方10 m 处,故该过程中位移为x =-h ,即:x =v 0t -12gt 2=-h其中v 0=3 m/s代入数据得:5t 2-t -10=0 t =3+20910 s =1.7 s(另一根舍去)答案:1.7 s。
浙江省江山实验中学高考物理一轮复习每天一题6.一吊桥由六对钢杆悬吊着,六对钢杆在桥面上分列成两排,其上端挂在两根钢缆上,如图为其一截面图.图中相邻两杆间距离均为9m,靠近桥面中心的钢杆长度为2m〔即AA'=DD'=2m〕,BB'=EE',CC'=PP',又两端钢缆与水平成45°角.假设钢杆自重不计,为使每根钢杆承受负荷一样,试求每根钢杆的长度应各为多少?1.如下列图,半径为R的环状非金属管竖直放置,AB为该环的水平直径,且管的内径远小于环的半径,环的AB以下处于水平向右的匀强电场中。
现将一质量为m,带电量为q的小球从管中A点由静止释放,小球恰好能通过最高点C,求:〔1〕匀强电场的场强E;〔2〕小球第二次通过C点时,小球对管壁压力的大小和方向。
6.如下列图,l1和l2为距离d=0.lm的两平行的虚线,l1上方和l2下方都是垂直纸面向里的磁感应强度均为B=0.20T的匀强磁场,A、B两点都在l2上.质量m=1.67×10-27kg、电量q=1.60×10-19C的质子,从A点以V0=5.0×105m/s的速度与l2成θ=45°角斜向上射出,经过上方和下方的磁场偏转后正好经过B点,经过B点时速度方向也斜向上.求〔结果保存两位有效数字〕:〔1〕质子在磁场中做圆周运动的半径;〔2〕A上两点间的最短距离;〔3〕质子由A运动到B的最短时间.5.如下列图,水平虚线上方有场强为E1的匀强电场,方向竖直向下,虚线下方有场强为E2的匀强电场,方向水平向右;在虚线上、下方均有磁感应强度一样的匀强磁场,方向垂直纸面向外,ab是一长为L的绝缘细杆,竖直位于虚线上方,b端恰在虚线上,将一套在杆上的带电小环从a端由静止开始释放,小环先加速而后匀速到达b端,环与杆之间的动摩擦因数μ=0.3,小环的重力不计,当环脱离杆后在虚线下方沿原方向做匀速直线运动,求: (1)E 1与E 2的比值;(2)假设撤去虚线下方的电场,小环进入虚线下方后的运动轨迹为半圆,圆周半径为3L,环从a 到b 的过程中抑制摩擦力做功W f 与电场做功W E 之比有多大?6.如下列图的区域中,左边为垂直纸面向里的匀强磁场,磁感应强度为B ,右边是一个电场强度大小未知的匀强电场,其方向平行于OC 且垂直于磁场方向。
分层规范快练(四) 重力弹力摩擦力[双基过关练]1.一辆拖拉机停在水平地面上,下列说法中正确的是( )A.地面受到了向下的弹力,是因为地面发生了弹性形变;拖拉机没有发生形变,所以拖拉机不受弹力B.地面受到了向下的弹力,是因为地面发生了弹性形变;拖拉机受到了向上的弹力,是因为拖拉机也发生了形变C.拖拉机受到向上的弹力,是因为地面发生了形变;地面受到向下的弹力,是因为拖拉机发生了形变D.以上说法都不正确解析:拖拉机停在水平地面上,拖拉机受到的弹力是因为地面发生弹性形变而有复原原状的趋势从而对阻碍其复原原状的拖拉机产生了力的作用.地面受到的弹力是由于拖拉机发生了弹性形变,而对阻碍其复原原状的地面产生了力的作用,故选项C正确,A、B、D错误.答案:C2.关于静摩擦力,下列说法中正确的是( )A.两个表面粗糙的物体,只要干脆接触就会产生静摩擦力B.静摩擦力总是阻碍物体的运动C.静摩擦力的方向跟物体间相对运动趋势的方向相反D.两个物体之间的静摩擦力总是一个定值解析:由于静摩擦力产生在彼此干脆接触且相互挤压、接触面粗糙又有相对运动趋势的物体之间,所以A错误;静摩擦力的作用是阻碍物体间的相对运动趋势,方向与物体间相对运动趋势的方向相反,不能说成阻碍物体的运动,所以B错误,C正确;两物体间静摩擦力的大小随物体所受外力的变更而变更,因此D错误.答案:C3.在半球形光滑碗内斜搁一根筷子,如图所示,筷子与碗的接触点分别为A、B,则碗对筷子A、B两点处的作用力方向分别为( )A.均竖直向上B.均指向球心OC.A点处指向球心O,B点处竖直向上D.A点处指向球心O,B点处垂直于筷子斜向上解析:在A 点处,当筷子滑动时,筷子与碗的接触点在碗的内表面(半球面)上滑动,所以在A 点处的接触面是球面在该点的切面,此处的弹力与切面垂直,即指向球心O .在B 点处,当筷子滑动时,筷子与碗的接触点在筷子的下表面上滑动,所以在B 点处的接触面与筷子平行,此处的弹力垂直于筷子斜向上.故选项D 正确.答案:D4.[2024·江苏单科]一轻质弹簧原长为8 cm ,在4 N 的拉力作用下伸长了2 cm ,弹簧未超出弹性限度.则该弹簧的劲度系数为( )A .40 m/NB .40 N/mC .200 m/ND .200 N/m解析:依据胡克定律有F =kx ,则k =F x =42×10-2N/m =200 N/m ,故D 正确. 答案:D5.如下图所示,物块受到摩擦力的是( )A .甲中物体沿粗糙竖直面下滑B .乙中物体沿光滑斜面对上滑动C .丙中A 随B 一起向右匀速运动D .丁中物体在斜面上静止不动解析:本题考查摩擦力的产生条件.A 项中无弹力,B 项中斜面光滑,C 项中A 无相对运动的趋势,D 项中物体与斜面间有弹力且有沿斜面下滑的趋势,有摩擦力,故D 项正确.答案:D6.如图所示,一个人站在放于水平地面上的长木板上用力F 向右推箱子,木板、人、箱子均处于静止状态,三者的质量均为m ,重力加速度为g ,则( )A .箱子受到的摩擦力方向向右B .地面对木板的摩擦力方向向左C .木板对地面的压力大小为3mgD .若人用斜向下的力推箱子,则木板对地面的压力会大于3mg解析:将木板、人、箱子看成整体,水平方向上不受摩擦力作用,竖直方向上支持力与重力平衡,即F N =3mg ,与人推箱子的内力无关,选项B 、D 错误,C 正确;对箱子,向左的静摩擦力与向右的推力平衡,选项A 错误.答案:C7.[2024·衡阳模拟](多选)四个完全相同的弹簧测力计,外壳通过绳子分别与四个完全相同的物体相连,挂钩一端施加沿轴线方向的恒力F,以下四种状况中关于弹簧测力计读数的说法正确的是( )A.假如图甲中的物体静止在水平地面上,那么弹簧测力计的读数可能小于FB.假如图乙中的物体静止在斜面上,那么弹簧测力计的读数肯定等于FC.假如图丙中的物体静止在粗糙水平地面上,那么弹簧测力计的读数肯定等于FD.假如已知图丁中水平地面光滑,则由于物体的质量未知,无法判定弹簧测力计的读数与F的大小关系解析:题图甲中的物体静止在水平地面上,依据平衡原理,弹簧测力计的读数等于F,故A错误;不论物体静止在斜面上,还是静止在粗糙水平地面上,由平衡条件可知,弹簧测力计的读数肯定等于F,故B、C正确;已知题图丁中水平地面光滑,虽然物体的质量未知,但是弹簧测力计的读数与F的大小仍相等,故D错误.答案:BC8.[2024·玉林模拟]如图所示,物体A静止在粗糙水平面上,左边用一轻质弹簧和竖直墙相连,弹簧的长度大于原长.现用从零起先渐渐增大的水平力F向右拉A,直到A被拉动,在A被拉动之前的过程中,弹簧对A的弹力F1的大小和地面对A的摩擦力F f大小的变更状况是( )A.F1减小 B.F1增大C.F f先减小后增大 D.F f始终减小解析:在A被拉动之前的过程中,弹簧仍处于原状,因此弹力F1不变,静止时弹簧的长度大于原长,则弹簧对A的拉力向左,由于水平面粗糙,因此物体受到水平向右的静摩擦力F f,当再用一个从零起先渐渐增大的水平力F向右拉A,直到把A拉动前过程中,物体A 受到的静摩擦力F f从向右变为水平向左,所以F f大小先减小后增大,故C正确,A、B、D错误.答案:C9.如右图所示,两块木板紧紧夹住木块,始终保持静止,木块重为30 N,木块与木板间的动摩擦因数为0.2.若左右两端的压力F都是100 N,则每块木板对木块的摩擦力大小和方向是( )A.30 N,方向向上 B.20 N,方向向上C.40 N,方向向下 D.15 N,方向向上解析:对木块而言,处于静止状态,受到平衡力的作用,在竖直方向上,所受重力与摩擦力是平衡力,故F f=G=30 N,方向向上,所以每块木板对木块的摩擦力大小为15 N,竖直向上.故选D.答案:D10.[2024·鹤壁模拟]如图所示,水平传送带上放一物体,当传送带沿顺时针方向以速度v匀速转动时,物体在轻弹簧水平拉力的作用下处于静止状态,此时弹簧的伸长量为Δx;当传送带沿顺时针方向的转动速度变为2v时,物体处于静止状态时弹簧的伸长量为Δx′,则关于弹簧前后两次的伸长量,下列说法中正确的是( )A.弹簧的伸长量将减小,即Δx′<ΔxB.弹簧的伸长量将增加,即Δx′>ΔxC.弹簧的伸长量不变,即Δx′=ΔxD.无法比较Δx和Δx′的大小解析:物体所受的滑动摩擦力大小为F f=μF N=μmg,F f与传送带的速度大小无关,当传送带的速度方向不变时,不管速度大小如何变更,物体所受的滑动摩擦力方向向右,大小不变,仍与弹簧弹力平衡,依据平衡条件有kx=F f,知弹簧的伸长量不变,则有Δx′=Δx,故C正确.答案:C[技能提升练]11.[2024·郑州质检]如图所示,用轻质弹簧将篮球拴在升降机底板上,此时弹簧竖直,篮球恰好与光滑的侧壁和光滑的倾斜天花板接触.在篮球与侧壁之间装有压力传感器,当升降机沿竖直方向运动时,压力传感器的示数渐渐增大.某同学对此现象给出了下列分析与推断,其中可能正确的是( )A.升降机正在匀加速上升B.升降机正在匀减速上升C.升降机正在加速下降,且加速度越来越大D.升降机正在减速下降,且加速度越来越大解析:篮球在水平方向上受力平衡,即侧壁对篮球的弹力与倾斜天花板对篮球的弹力在水平方向的分力平衡,随着压力传感器的示数渐渐增大,篮球受到倾斜天花板的弹力增大,其在竖直方向的分力增大,而弹簧弹力不变,则篮球可能有竖直向下且增大的加速度,C正确.答案:C12.如图所示,将两相同的木块a、b置于粗糙的水平地面上,中间用一轻弹簧连接,两侧用细绳系于墙壁.起先时a、b均静止,弹簧处于伸长状态,两细绳均有拉力,a所受摩擦力Ff a≠0,b所受摩擦力Ff b=0,现将右侧细绳剪断,则剪断瞬间( ) A.Ff a大小不变 B.Ff a方向变更C.Ff b仍旧为零 D.Ff b方向向左解析:右侧细绳剪断的瞬间,弹簧弹力来不及发生变更,故a的受力状况不变,a左侧细绳的拉力、静摩擦力的大小方向均不变,A项正确,B项错误;而在剪断细绳的瞬间,b 右侧细绳的拉力马上消逝,静摩擦力向右,C、D项错误.答案:A13.(多选)如图所示为位于水平面上的小车,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆的下端固定有质量为m的小球.下列关于杆对球的作用力F的推断中,正确的是( )A.小车静止时,F=mg sinθ,方向沿杆向上B.小车静止时,F=mg cosθ,方向垂直于杆向上C.小车向右匀速运动时,肯定有F=mg,方向竖直向上D.小车向右匀加速运动时,肯定有F>mg,方向可能沿杆向上解析:小球受重力和杆的作用力F处于静止状态或匀速直线运动状态时,由力的平衡条件知,二力必等大反向,则F=mg,方向竖直向上.小车向右匀加速运动时,小球有向右的恒定加速度,依据牛顿其次定律知,mg和F的合力应水平向右,如图所示.由图可知,F>mg,方向可能沿杆向上,选项C、D正确.答案:CD14.如图所示,甲、乙、丙三个质量相同的物体分别在不同外力的作用下沿水平地面做匀速直线运动,地面与物体间的动摩擦因数均相同.下列推断正确的是( )A.三个物体所受的摩擦力大小相等B.丙物体所受的摩擦力最大C.乙物体所受的摩擦力最大D.甲物体所受的摩擦力最大解析:设外力F1与水平方向的夹角为θ,F3与水平方向的夹角为β,因为三个物体相对地面做匀速直线运动,所以受到的摩擦力为滑动摩擦力.对于甲,在竖直方向上有F N1=mg-F1sinθ,故受到的摩擦力F f1=μF N1=μ(mg-F1sinθ);对于乙,在竖直方向上有F N2=mg,故受到的摩擦力F f2=μF N2=μmg;对于丙,在竖直方向上有F N3=mg+F3sinβ,故受到的摩擦力F f3=μF N3=μ(mg+F3sinβ),所以F f3>F f2>F f1,B正确.选B.答案:B。
第一模块第1章第4单元
一、选择题
1.一物体做匀变速直线运动,经P点时开始计时,取向右为正方向,其速度—时间图象如图10所示,则物体在4 s内
()
A.始终向右运动
B.前2 s向左运动,后2 s向右运动
C.2 s前位于P点左侧,2 s后位于P点右侧
D.2 s末离P点最远,4 s末又回到了P点
解析:根据题设条件知,向右为正方向,故在前2 s向左运动,后2 s向右运动,A错;B正确;2 s前位于P点左侧10 m处,后向右运动2 s,位移为10 m.4 s末又回到了P点,所以C错误,D正确.
答案:BD
2.如图11所示,甲、乙、丙三物体从同一地点沿同一方向做直线运动,在t1时刻,三物体比较
()
①v甲=v乙=v丙②x甲>x乙>x丙③a丙>a乙>a甲
④甲丙之间距离最大⑤甲、乙、丙相遇
A.只有①②③正确
B.只有②③④正确
C.只有①②③④正确
D.全正确
解析:t1时刻三图线相交,说明速度相同,①对⑤错.图线与坐标轴围成“面积”表示位移大小,②④对;由斜率表示加速度知③对,故选C.
答案:C
3.在一条宽马路上某一处有A、B两车,它们同时开始运动,取开始运动时刻为计时零点,它们的速度—时间图象如图12所示,在0~t4这段时间内的情景是
()
A.A在0~t1时间内做匀加速直线运动,在t1时刻改变运动方向
B.在t2时刻A车速度为零,然后反向运动,此时两车相距最远
C.在t2时刻A车追上B车
D.在t4时刻两车相距最远
解析:A车的运动情况是:0~t1,A做与B速度方向相反的匀加速直线运动;t1~t2,A 车做与B速度方向相反的匀减速运动,到t2时刻速度减为零;t2~t4,A车做与B速度方向相同的匀加速直线运动,至t4时刻两者速度相等.在整个过程中两车距离不断增大,综上分析,只有D选项正确.
答案:D
4.如图13所示是两个由同一地点出发,沿同一直线向同一方向运动的物体A和B的速度图象.运动过程中A、B的情况是
()
A.A的速度一直比B大,B没有追上A
B.B的速度一直比A大,B追上A
C.A在t1后改做匀速直线运动,在t2 s时B追上A
D.在t2时,A、B的瞬时速度相等,A在B的前面,尚未被B追上,但此后总是要被追上的
解析:t2时刻前v A>v B,t2时刻后v B>v A,t2时刻时x A>x B.A在B前,t2时刻以后,由于v B>v A,所以B总是要追上A的,故A、B、C均错,D对.
答案:D
5.某物体沿直线运动,其v—t图象如图14所示,下列说法正确的是
()
A.第1 s内和第6 s内的速度方向相反
B .第1 s 内和第6 s 内的加速度方向相反
C .第2 s 内的加速度为零
D .第6 s 末物体回到原出发点
解析:由v —t 图线可知,第1 s 内和第6 s 内速度均大于0,即速度方向相同,A 项错;第1 s 内和第6 s 内斜率分别为正值和负值,所以加速度方向相反,B 项正确;第2 s 内的加
速度为a =v -v 0t =10-0
2
m/s 2=5 m/s 2≠0,C 项错;自t =0至t =6 s 整个过程中速度方向不
变,D 项错.
答案:B 6.如图15所示,一同学沿一直线行走,现用频闪照相记录了他行走中9个位置的图片,观察图片,能比较正确反映该同学运动的速度—时间图象的是下图中的
( )
解析:要注意该同学运动的方向,在到达最右端后,该同学掉头向左运动,即如果以初速度方向为正方向,则向左的速度是负的.由图片知,向右运动是加速运动、向左运动是匀速运动.
答案:C
7.汽车由甲地开出,沿平直公路开到乙地时,刚好停止运动.它的速度—时间图象如图16所示.在0~t 0和t 0~3t 0两段时间内,汽车的
( )
A .加速度大小之比为2∶1
B .位移大小之比为1∶2
C .平均速度大小之比为2∶1
D .平均速度大小之比为1∶1
解析:v -t 图象中斜率表示加速度,故a 1∶a 2=v t 0∶v
2t 0
=2∶1,A 对;v -t 图线与时间
轴围成的面积表示位移,故x 1∶x 2=1∶2,B 对;平均速度之比为:v 1∶v 2=v 2∶v
2
=1∶1,
D 对,C 错.
答案:ABD
8.汽车的加速性能是反映汽车性能的重要指标.速度变化得越快,表明它的加速性能越好.图17为研究甲、乙、丙三辆汽车加速性能得到的v -t 图象,根据图象可以判定
( )
A.甲车的加速性能最好
B.乙比甲的加速性能好
C.丙比乙的加速性能好
D.乙、丙两车的加速性能相同
解析:图象的斜率表示加速度,加速度越大,加速性能越好,由图象可知B、D正确.答案:BD
9.如图18所示,为甲、乙两物体相对于同一坐标的x-t图象,则下列说法正确的是()
图18
A.甲、乙均做匀变速直线运动
B.甲比乙早出发时间t0
C.甲、乙运动的出发点相距x0
D.甲的速率大于乙的速率
解析:图象是x-t图象,甲、乙均做匀速直线运动;乙与横坐标的交点表示甲比乙早出发时间t0;甲与纵坐标的交点表示甲、乙运动的出发点相距x0;甲、乙运动的速率大小用图线的斜率的绝对值大小表示,由题图可知甲的速率小于乙的速率,故B、C正确.答案:BC
10.图19是一娱乐场的喷水滑梯.若忽略摩擦力,人从滑梯顶端滑下直到入水前,速度大小随时间变化的关系图象最接近下图中的
()
解析:从滑梯图可以看出,人从滑梯顶端滑下到入水前,可分为四个物理过程,即:斜面、水平面、斜面、水平面,在斜面上物体做加速运动,在水平面上物体做匀速运动,故B 选项正确.
答案:B 二、计算题
11. 1935年在苏联的一条直铁轨上,有一列火车因蒸汽不足而停驶,驾驶员把货车厢甲(如图20所示)留在现场,只拖着几节车厢向前方不远的车站开进,但他忘了将货车厢刹好,使车厢在斜坡上以4 m/s 的速度匀速后退,此时另一列火车乙正以16 m/s 的速度向该货车厢驶来,驾驶技术相当好的驾驶员波尔西列夫立即刹车,紧接着加速倒退,结果恰好接住了货车厢甲,从而避免了相撞.设列车乙刹车过程和加速倒退过程均为匀变速直线运动,且加速度大小均为2 m/s 2,求波尔西列夫发现货车厢甲向自己驶来而立即开始刹车时,两车相距多远?
解析:取向右为正方向 t =v 1-v 2a =4-(-16)2
s =10 s ,
x 1=v 1t =4×10 m =40 m
x 2=v 2t +12at 2=-16×10 m +1
2
×2×102 m
=-60 m
x =x 1+|x 2|=40 m +60 m =100 m 答案:100 m
12.交叉路口处有一辆静止的小汽车等候信号灯,当绿灯亮时,它以2 m/s 2的加速度起动,与此同时,一辆大卡车以10 m/s 的速度从小汽车旁边驶过.此后小汽车保持加速度不变做匀加速直线运动,大卡车仍以原来速度直线行驶.问:
(1)小汽车追上大卡车时距起动位置多远? (2)小汽车追上大卡车时的速度是多大?
(3)小汽车追上大卡车以前,两车之间的最大距离是多少?
解析:以小汽车起动位置为坐标的起点,并从它起动时开始计时,则小汽车的位移x 1
与大卡车的位移x 2随时间t 的变化关系式如下:
x 1=12at 21
, ① x 2=v 0t 2. ②
(1)小汽车追上大卡车的条件是:运动相同时间且位移相同. x 1=x 2=x , ③ t 1=t 2=t . ④
由①~④式解得t =2v 0a =2×10
2
s =10 s ,
x =v 0t =10×10 m =100 m.
(2)小汽车追上大卡车时的速度为 v t =at =2×10 m/s =20 m/s.
(3)两车之间的距离大小与两车的相对速度有关,当两车的相对速度为零时,两车间的距离最大.设两车速度相等的时刻为t ′,则有v 0=at ′.⑤
由⑤式解得t ′=v 0a =10
2
s =5 s.
故两车间的最大距离为
x m =v 0t ′-12at ′2=10×5 m -1
2
×2×25 m =25 m.
答案:(1)100 m (2)20 m/s (3)25 m。