2021-2020学年第一学期东城区初二期末数学参考答案
- 格式:pdf
- 大小:500.79 KB
- 文档页数:5
2020-2021学年第一学期八年级数学上册期末模拟测试题一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( )A .1B .2C .3D .52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( ) A .13 B .8 C .25 D .643.如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则此“QQ ”笑脸右眼B 的坐标是( )A .(0,3)B .(0,1)C .(-1,2)D .(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( )A .a =4,b =0B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( ) A .该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分7.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP =20°,∠ACP=50°,则∠A+∠P的度数是( )A.70°B.80°C.90°D.100°8.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③不等式kx+b<x+a的解集为x<3中,正确的个数是( )A.0 B.1 C.2 D.39.下列说法:①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c(a>b=c),那么a2∶b2∶c2=2∶1∶1,其中正确的是( )A.①②B.①③C.①④D.②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是( )A.y=4n-4 B.y=4n C.y=4n+4 D.y=n2二、填空题(每小题3分,共18分)11.16的平方根是____;-125的立方根是____.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为____.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为____.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是____.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为____m .16.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2;(3)23(375-12-27); (4)(3+2-1)(3-2+1).18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题:(1)请分别计算甲、乙、丙的得票数;(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.22.在△ABC中,∠BAC=∠BCA,CD平分∠ACB,CE⊥AB,交AB的延长线于点E,∠BCE=48°,求∠CDE的度数.23.如图,在数轴上与3,5对应的点分别是A,B,点C也在数轴上,且AB=AC,设点C表示的数为x.(1)求x的值;(2)计算|x-3|+6x+5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案?25.如图,一次函数y=-34x+3的图象与x轴和y轴分别交于点A和点B,将△AOB沿直线CD对折,使点A和点B重合,直线CD与x轴交于点C,与直线AB交于点D.(1)求A,B两点的坐标;(2)求OC的长;(3)设P是x轴上一动点,若使△PAB是等腰三角形,写出点P的坐标.参考答案一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( C )A.1 B.2 C.3 D.52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( B )A.13 B.8 C.25 D.643.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则此“QQ”笑脸右眼B的坐标是( A)A.(0,3) B.(0,1) C.(-1,2) D.(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( C )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( A ) A .a =4,b =0 B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( D )A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分7.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP =20°,∠ACP =50°,则∠A +∠P 的度数是( C )A .70°B .80°C .90°D .100°8.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③不等式kx +b <x +a 的解集为x <3中,正确的个数是( B )A .0B .1C .2D .39.下列说法:①如果a ,b ,c 为一组勾股数,那么4a ,4b ,4c 仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a ,b ,c(a >b =c),那么a 2∶b 2∶c 2=2∶1∶1,其中正确的是( C )A .①②B .①③C .①④D .②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y 为第n 层(n 为正整数)圆点的个数,则下列函数关系中正确的是( B )A .y =4n -4B .y =4nC .y =4n +4D .y =n 2二、填空题(每小题3分,共18分)11.16的平方根是__±2__;-125的立方根是__-5__.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为__-1__.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为__152__.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是__2.5__.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为__480__m .17.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2; 解:- 2. 解:95.(3)23(375-12-27); (4)(3+2-1)(3-2+1). 解:60. 解:2 2.18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.解:⎩⎨⎧x =2,y =-1. 解:⎩⎨⎧x =9,y =6. 解:⎩⎨⎧x =1,y =1.解:⎩⎨⎧x =1,y =-2,z =-1.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;解:因为点P (a -1,-b +2)关于x 轴的对称点为M ,所以M (a -1,b -2),因为点P (a -1,-b +2)关于y 轴的对称点为N ,所以N (-a +1,-b +2),因为点M 与点N 的坐标相等,所以a -1=-a +1,b -2=-b +2,解得a =1,b =2.(2)猜想点P 的位置并说明理由.解:点P 的位置是原点.理由:因为a =1,b =2,所以点P (a -1,-b +2)的坐标为(0,0),即P 点为原点.20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.解:由题意,易知AD ∥BC ,所以∠2=∠3.因为△BC′D 与△BCD 关于直线BD 对称,所以∠1=∠2.所以∠1=∠3.所以EB =ED.设EB =x ,则ED =x ,AE =AD -ED =8-x.在Rt △ABE 中,AB 2+AE 2=BE 2,所以42+(8-x )2=x 2.所以x =5.所以DE =5.所以S △BED =12DE·AB =12×5×4=10.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题: (1)请分别计算甲、乙、丙的得票数;解:甲的票数是200×34%=68(票),乙的票数是200×30%=60(票),丙的票数是200×28%=56(票).(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.解:甲的平均成绩:68×2+92×5+85×32+5+3=85.1(分),乙的平均成绩:60×2+90×5+95×32+5+3=85.5(分),丙的平均成绩:56×2+95×5+80×32+5+3=82.7(分),因为乙的平均成绩最高,所以应该推荐乙.22.在△ABC 中,∠BAC =∠BCA ,CD 平分∠ACB ,CE ⊥AB ,交AB 的延长线于点E ,∠BCE =48°,求∠CDE 的度数.解:∵CE ⊥AB ,∴∠E =90°.在△BEC 中,∠CBE =180°-∠E -∠BCE =42°,∵∠BAC =∠BCA ,∠CBE =∠BAC +∠BCA ,∴∠BAC =∠BCA =12∠CBE =21°,又∵CD平分∠ACB ,∴∠ACD =12∠ACB =10.5°,∴∠CDE =∠ACD +∠BAC =10.5°+21°=31.5°.23.如图,在数轴上与3,5对应的点分别是A ,B ,点C 也在数轴上,且AB =AC ,设点C 表示的数为x.(1)求x 的值;解:因为数轴上A ,B 两点表示的数分别为3和5,且AB =AC ,所以3-x =5-3,解得x =23- 5.(2)计算|x -3|+6x +5.解:原式=|23-5-3|+623-5+5=5-3+3= 5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;解:设y 1=k 1x (k 1≠0),将点(30,600)代入,可得k 1=20,所以y 1=20x.设y 2=k 2x +b (k 2≠0),将点(0,300),(30,600)代入,即⎩⎨⎧b =300,30k 2+b =600,解得⎩⎨⎧k 2=10,b =300.所以y 2=10x +300.(2)解释图中表示的两种方案是如何付推销费的;解:y 1是不推销产品没有推销费,每推销10件产品得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.(3)如果你是推销员,应如何选择付费方案?解:若业务能力强,平均每月推销都为30件时,两种方案都可以;平均每月推销大于30件时,就选择y 1的付费方案;平均每月推销小于30件时,选择y 2的付费方案.25.如图,一次函数y =-34x +3的图象与x 轴和y 轴分别交于点A 和点B ,将△AOB沿直线CD 对折,使点A 和点B 重合,直线CD 与x 轴交于点C ,与直线AB 交于点D.(1)求A ,B 两点的坐标;解:令y =0,则x =4;令x =0,则y =3,故点A 的坐标为(4,0),点B 的坐标为(0,3).(2)求OC 的长;解:设OC =x ,则AC =CB =4-x ,∵∠BOA =90°,∴OB 2+OC 2=CB 2,32+x 2=(4-x )2,解得x =78,∴OC =78.(3)设P 是x 轴上一动点,若使△PAB 是等腰三角形,写出点P 的坐标.解:设P 点坐标为(x ,0),当PA =PB 时,(x -4)2=x 2+9,解得x =78;当PA =AB 时,(x -4)2=42+32,解得x =9或x =-1;当PB =AB 时,x 2+32=42+32,解得x =-4(x =4,舍去).∴P 点坐标为(错误!,0),(-1,0)或(9,0),(-4,0).1、三人行,必有我师。
2021-2022学年北京市东城区景山学校八年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1.下列标志中,只是中心对称图形,不是轴对称图形的是()A. B. C. D.2.用配方法解方程x2+2x−3=0,下列配方结果正确的是()A. (x−1)2=2B. (x−1)2=4C. (x+1)2=2D. (x+1)2=4,y1),B(1,y2),则下列说法正确的是() 3.一次函数y=−x+4的图象上有两点A(−12A. y1≤y2B. y1>y2C. y1≥y2D. y1<y24.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A. 点AB. 点BC. 点CD. 点D5.某市严格落实国家节水政策,2018年用水总量为6.5亿立方米,2020年用水总量为5.265亿立方米.设该市用水总量的年平均降低率是x,那么x满足的方程是()A. 6.5(1−x)2=5.265B. 6.5(1+x)2=5.265C. 5.265(1−x)2=6.5D. 5.265(1+x)2=6.56.在爱心一日捐活动中,我校八年级50名学生参与献爱心,捐款情况如下表,则50名学生捐款金额的中位数,众数分别是()金额/元50100150200300人数4181486A. 100,100B. 100,150C. 150,100D. 150,1507.如图,将长方形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为∠α(0°<∠α<90°).若∠1=112°,则∠α的大小是()A. 68°B. 20°C. 28°D. 22°8.如图,点O为矩形ABCD的对称中心,AD>AB,点E从点B出发(不含点B)沿BC向点C运动,移动到点C停止,延长EO交AD于点F,则四边形BEDF形状的变化依次为()A. 平行四边形→菱形→正方形→矩形B. 平行四边形→正方形→菱形→矩形C. 平行四边形→菱形→平行四边形→矩形D. 平行四边形→正方形→平行四边形一矩形二、填空题(本大题共8小题,共24.0分)9.请写出一个图象经过第一、第三象限的一次函数关系式______.(写出一个即可).10.菱形的两条对角线长分别是方程x2−7x+12=0的两实根,则菱形的面积为______ .11.已知a是x2+x−2=0的根,则代数式2a2+2a+3的值为______.12.关于x的一元二次方程(m−3)x2+(2m−1)x+m2−9=0的一个根是0,则m的值是______.13.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为______度.14.为庆祝中国共产党建党100周年,某高校组织党史知识竞赛.根据小明、小刚5次预赛成绩绘制成统计图.下面有三个推断:①与小刚相比,小明5次成绩的极差大;②与小刚相比,小明5次成绩的方差小;③与小刚相比,小明的成绩比较稳定.其中,所有合理推断的序号是______.15.已知A(2,1),B(2,4).若直线l:y=x+b与线段AB有一个交点,则b的取值范围为______.16.如图,在△ABC中,∠BAC=90°,AB=AC=2,点D为BC中点,且以D为一个顶点作正方形DEFG,且DE=BC,连接AE,将正方形DEFG绕点D旋转一周,在整个旋转过程中,AE的最大值为______.三、解答题(本大题共12小题,共96.0分)17.解方程:(1)x−2=x(x−2);(2)2x2−7x+6=0.18.下面是小东设计的“作矩形”的尺规作图过程已知:Rt△ABC中,∠ABC=90°.求作:矩形ABCD.作法:如图,①作线段AC的垂直平分线交AC于点O;②连接BO并延长,在延长线上截取OD=OB③连接AD,CD所以四边形ABCD即为所求作的矩形根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OA=______,OD=OB,∴四边形ABCD是平行四边形(______)(填推理的依据).∵∠ABC=90°,四边形ABCD是矩形(______)(填推理的依据)19.已知:在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(5,4),B(0,3),C(2,1).(1)画出△ABC关于原点成中心对称的△A1B1C1,并写出点C1的坐标;(2)画出将A1B1C1绕点C1按顺时针旋转90°所得的△A2B2C1.20.已知关于x的一元二次方程x2+(2m+1)x+m2=0有两个不相等的实数根.(1)求m的取值范围;(2)若该方程的两个根都是整数,写出一个符合条件的m的值,并求此时方程的根.21.疫情结束后,某景区推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=(销售单价−成本价)×销售数量)(1)若该商品的销售单价为43元,则当天的销售量是______件,当天销售利润是______元;(2)求销售单价增加多少元时,该商品的当天销售利润是3450元.22.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG//EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.23.在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当x>−2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.24.第24届冬季奥林匹克运动会,又称2022年北京冬奥会,将于2022年2月4日至2月20日,在北京市和张家口市同时举行,为了调查同学们对冬奥知识的了解情况,小冬从初中三个年级各随机抽取10人,进行了相关测试,获得了他们的成绩(单位:分),并对数据(成绩)进行了整理、描述和分析,下面给出了相关信息:a.30名同学冬奥知识测试成绩的统计图如下:b.30名同学冬奥知识测试成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x<100).c.测试成绩在70≤x<80这一组的是:7073747475757778.d.小明的冬奥知识测试成绩为78分.根据以上信息,回答下列问题:(1)小明的测试成绩在抽取的30名同学的成绩中从高到低排名第______;(2)抽取的30名同学的成绩的中位数为______;(3)序号(见图1横轴)为1−10的学生是七年级的,他们的成绩的方差记为s12;序号为11−20的学生是八年级的,他们的成绩的方差记为s22;序号为21−30的学生是九年级的,他们的成绩的方差记为s32.直接写出s12,s22,s32中最小的是______;(4)成绩80分及以上记为优秀,若该校初中三个年级1500名同学都参加测试,估计成绩优秀的同学约为______人.25.关于x的一元二次方程x2+bx+c=0经过适当变形,可以写成(x−m)(x−n)=p(m≤n)的形式.现列表探究x2−6x−7=0的变形:回答下列问题:(1)表格中t的值为______;(2)观察上述探究过程,表格中m与n满足的等量关系为______;(3)记x2+bx+c=0的两个变形为(x−m1)(x−n1)=p1和(x−m2)(x−n2)=p2(p1≠p2),求n1−n2的值.m1−m226.定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2−2x=0,求出该方程的衍生点M的坐标;(2)若关于x的一元二次方程x2−(2m+1)x+2m=0(m<0)的衍生点为M,过点M向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值;(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M始终在直线y=kx+1的图象上,若有请直接写出b,c的值,若没有说明理由.27.已知点P为线段AB上一点,将线段AP绕点A逆时针旋转60°,得到线段AC;再将线段BP绕点B逆时针旋转120°,得到线段BD;连接AD,取AD中点M,连接BM,CM.(1)如图1,当点P在线段CM上时,求证:PM//BD;(2)如图2,当点P不在线段CM上,写出线段BM与CM的数量关系与位置关系,并证明.28.在平面直角坐标系xOy中,对于直线l及点P给出如下定义:过点P作y轴的垂线交直线l于点Q,若PQ≤1,则称点P为直线l的关联点,当PQ=1时,称点P为直线l的最佳关联点,当点P与点Q重合时,记PQ=0.例如,点P(1,2)是直线y=x的最佳关联点.根据阅读材料,解决下列问题.如图,在平面直角坐标系xOy中,已知直线l1:y=−x+3,l2:y=2x+b.,1),C(2,3),上述各点是直线l1的关联点是______ ;(1)已知点A(0,4),B(32(2)若点D(−1,m)是直线l1的最佳关联点,则m的值是______ ;(3)点E在x轴的正半轴上,以OA、OE为边作正方形AOEF.若直线l2与正方形AOEF相交,且交点中至少有一个是直线l1的关联点,则b的取值范围是______ .答案和解析1.【答案】A【解析】解:A、不是轴对称图形,是中心对称图形,故此选项正确;B、是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形又是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:A.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】D【解析】【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:∵x2+2x−3=0∴x2+2x=3∴x2+2x+1=1+3∴(x+1)2=4故选:D.3.【答案】B【解析】解:∵k=−1<0,∴y随x的增大而减小,又∵点A(−12,y1),B(1,y2)均在一次函数y=−x+4的图象上,且−12<1,∴y1>y2.故选:B.由k=−1<0,利用一次函数的性质可得出y随x的增大而减小,结合−12<1,即可得出y1>y2.本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.4.【答案】B【解析】【分析】本题考查了学生的理解能力和观察图形的能力,重点掌握旋转的性质,注意:旋转时,对应顶点到旋转中心的距离应相等且旋转角也相等,对称中心在连接对应点线段的垂直平分线上.连接PP1、NN1、MM1,分别作PP1、NN1、MM1的垂直平分线,看看三线都过哪个点,那个点就是旋转中心.【解答】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.5.【答案】A【解析】解:设该市用水总量的年平均降低率是x,则2019年的用水量为6.5(1−x),2020年的用水量为6.5(1−x)2,故选:A.首先根据降低率表示出2019年的用水量,然后表示出2020年的用水量,令其等5.265即可列出方程.本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.6.【答案】C【解析】解:由表知,这组数据的第25、26个数据分别为150、150,=150,众数为100,所以其中位数为150+1502故选:C.根据中位数和众数的定义求解即可.本题主要考查众数和中位数,解题的关键是掌握众数与中位数的定义.7.【答案】D【解析】【分析】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.先根据长方形的定义得∠BAD=∠ABC=∠ADC=90°,再根据旋转的性质得∠BAB′=∠α,∠B′AD′=∠BAD=90°,∠AD′C′=∠ADC=90°,然后根据两个三角形的内角和得到∠3=68°,再利用互余即可得到∠α的大小.【解答】解:∵四边形ABCD为长方形,∴∠BAD=∠ABC=∠ADC=90°,∵长方形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为∠α,∴∠BAB′=∠α,∠B′AD′=∠BAD=90°,∠AD′C′=∠ADC=90°,∵∠2=∠1=112°,连接BD′,而∠ABC=∠AD′C′=90°,∴∠3=180°+180°−∠2−∠ABD′−∠CBD′−∠AD′B−∠C′D′B=360°−90°−90°−112°=68°,∴∠BAB′=90°−68°=22°,即∠α=22°.故选:D.8.【答案】C【解析】解:连接BD.∵点O为矩形ABCD的对称中心,∴BD经过点O,OD=OB,∵AD//BC,∴∠FDO=∠EBO,在△DFO和△BEO中,{∠FDO=∠EBO OD=OB∠DOF=∠BOE,∴△DFO≌△BEO(ASA),∴DF=BE,∵DF//BE,∴四边形BEDF是平行四边形,观察图形可知,四边形AECF形状的变化依次为平行四边形→菱形→平行四边形→矩形.故选:C.根据对称中心的定义,根据矩形的性质,全等三角形的判定和性质,可得四边形AECF形状的变化情况.考查了中心对称,矩形的性质,平行四边形的判定与性质,菱形的判定,根据EF与AC的位置关系即可求解.9.【答案】y=x【解析】解:∵一次函数的图象经过第一、三象限,∴所填函数x的系数大于0,常数项为0.如:y=x(答案不唯一).一次函数的图象经过第一、三象限,则x的系数大于0,常数项为0,据此写出一次函数.本题考查的知识点为:一次函数图象经过第一、三象限,说明函数为增函数.10.【答案】6【解析】解:设菱形的两条对角线长分别是a、b,∵菱形的两条对角线长分别是方程x2−7x+12=0的两实根,∴ab=12,ab=6.∴菱形的面积=12故答案为6.设菱形的两条对角线长分别是a、b,根据一元二次方程根与系数的关系得出ab=12,再根据菱形的面积等于两对角线乘积的一半即可求解.本题考查了菱形的性质,一元二次方程根与系数的关系,掌握菱形的面积等于两对角线乘积的一半是解题的关键.11.【答案】7【解析】解:∵a是方程x2+x−2=0的根,∴a2+a−2=0,∴a2+a=2,∴2a2+2a+3=2(a2+a)+3=2×2+3=7.故答案为:7.把x=a代入已知方程,得到a2+a=2,然后代入所求的代数式进行求值即可.本题考查的是一元二次方程的解,把方程的解代入方程,得到关于a的式子,代入代数式化简求值.12.【答案】−3【解析】解:把x=0代入方程(m−3)x2+(2m−1)x+m2−9=0,得m2−9=0,解得:m=±3,∵m−3≠0,∴m=−3,故答案为−3.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把0代入方程求解可得m的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.13.【答案】15【解析】解:根据旋转的性质△ABC≌△EDB,BC=BD,则△CBD是等腰三角形,∠BDC=∠BCD,∠CBD=180°−∠DBE=180°−30°=150°,∠BDC=1(180°−∠CBD)=15°.2故答案为15°.根据旋转的性质△ABC≌△EDB,BC=BD,求出∠CBD的度数,再求∠BDC的度数.根据旋转的性质,确定各角之间的关系,利用已知条件把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转求出即可.=94(分),【解析】解:小明5次预赛成绩的平均数为:92+94+100+91+935极差为:100−91=9(分),[(92−94)2+(94−94)2+(100−94)2+(91−94)2+(93−94)2]=10,方差为:15=94(分),小刚5次预赛成绩的平均数为:88+100+93+98+915极差为:100−88=12(分),[(88−94)2+(100−94)2+(93−94)2+(98−94)2+(91−94)2]=19.6,方差为:15因此①不正确;②正确;③小明的方差较小,其成绩比较稳定,因此③正确;所以正确的有:②③,故答案为:②③.分别求出小刚和小明的平均数、方差、极差后进行判断即可.本题考查平均数,极差、方差,理解平均数、极差、方差的意义,掌握平均数、极差、方差的计算方法是正确判断的前提.15.【答案】−1≤b≤2.【解析】解:把A(2,1),B(2,4)分别代入y=x+b,得1=2+b,此时b=−1;4=2+b,此时b=2.所以,b的取值范围为:−1≤b≤2.故答案是:−1≤b≤2.将点A、B的坐标分别代入一次函数解析式,求得相应的b值,由此得到b的取值范围.本题主要考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,属于基础题.【解析】解:∵∠BAC=90°,AB=AC=2,∴BC=√AB2+AC2=2√2,∵点D为BC中点,∴BD=CD=AD=√2,∵DE=BC=2√2,∴DE−AD≤AE≤DE+AD,如图,当点A、D、E在同一条直线上时,AE取得最大值.∴AE=AD+DE=√2+2√2=3√2,∴在整个旋转过程中,AE的最大值为3√2.故答案为:3√2.当点A、D、E在同一条直线上时,AE取得最大值,画出图形,由勾股定理求出BC的长度,利用等腰直角三角形的性质求出AD的长,进而可得AE的长.本题主要考查旋转的性质、等腰直角三角形的性质等知识的综合运用,解决此题的关键是明确当点A、D、E在同一条直线上时,AE有最大值.17.【答案】解:(1)方程整理得:(x−2)−x(x−2)=0,分解因式得:(1−x)(x−2)=0,解得:x1=2,x2=1;(2)分解因式得:(2x−3)(x−2)=0,可得x−2=0或2x−3=0,解得:x1=2,x2=3.2【解析】(1)方程整理后,利用因式分解法求出解即可;(2)方程利用因式分解法求出解即可.此题考查了解一元二次方程−因式分解法,熟练掌握因式分解的方法是解本题的关键.18.【答案】OC对角线互相平分的四边形是平行四边形有一个角是直角的平行四边形是矩形【解析】解:(1)如图,矩形ABCD即为所求.(2):∵OA=OC,OD=OB,∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形),∵∠ABC=90°,四边形ABCD是矩形(有一个角是直角的平行四边形是矩形)故答案为:OA=OC,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.(1)根据要求作出图形即可.(2)根据有一个角是直角的平行四边形是矩形即可判断.本题考查作图−复杂作图,平行四边形的判定和性质,矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【答案】解:(1)如图所示,△A1B1C1即为所求,其中点C1的坐标为(−2,−1).(2)如图所示,△A2B2C1即为所求.【解析】此题主要考查了图形的旋转变换,正确得出对应点位置是解题关键.(1)分别作出三顶点关于原点的对称点,再顺次连接即可得;(2)分别作出点A1、B1绕点C1按顺时针旋转90°所得的对应点,再顺次连接即可得.20.【答案】解:(1)∵关于x的一元二次方程x2+(2m+1)x+m2=0有两个不相等的实数根,∴(2m+1)2−4m2>0,.解得:m>−14(2)利用求根公式表示出方程的解为x=−2m−1±√4m+1,2∵方程的解为整数,∴4m+1为完全平方数,则当m的值为0时,方程为:x2+x=0,解得:x1=0,x2=−1(不唯一).【解析】(1)根据关于x的一元二次方程x2+(2m+1)x+m2=0有两个不相等的实数根,则△>0,列出不等式,即可求出m的取值范围.(2)根据方程的两个根都是整数,确定出m的值,经检验即可得到满足题意的m的值,并求出方程的根(答案不唯一).本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.21.【答案】2503250【解析】解:(1)当该商品的销售单价为43元时,当天的销售量是280−10×(43−40)= 250(件),当天销售利润是(43−30)×250=3250(元).故答案为:250;3250.(2)设销售单价增加x元,则每件的销售利润是(40+x−30)元,当天的销售量是(280−10x)件,依题意得:(40+x−30)(280−10x)=3450,整理得:x2−18x+65=0,解得:x1=5,x2=13.答:销售单价增加5元或13元时,该商品的当天销售利润是3450元.(1)利用当天的销售量=280−10×上涨的价格,即可求出当该商品的销售单价为43元时当天的销售量;利用该商品的当天的销售利润=(销售单价−成本价)×当天的销售量,即可求出当该商品的销售单价为43元时当天销售利润;(2)设销售单价增加x元,则每件的销售利润是(40+x−30)元,当天的销售量是(280−10x)件,利用该商品的当天的销售利润=(销售单价−成本价)×当天的销售量,即可得出关于x的一元二次方程,解之即可得出结论.本题考查了一元二次方程的应用以及有理数的混合运算,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)找准等量关系,正确列出一元二次方程.22.【答案】解:(1)∵四边形ABCD是菱形,∴BD⊥AC,∠DAO=∠BAO,∵E是AD的中点,AD,∴AE=OE=12∴∠EAO=∠AOE,∴∠AOE=∠BAO,∴OE//FG,∵OG//EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴四边形OEFG是矩形;(2)∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,∴OE=AE=1AD=5;2由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF=√AE2−EF2=3,∴BG=AB−AF−FG=10−3−5=2.【解析】本题考查了矩形的判定和性质,菱形的性质,勾股定理,直角三角形的性质,正确的识别图形是解题的关键.AD,推出OE//FG,(1)根据菱形的性质得到BD⊥AC,∠DAO=∠BAO,得到AE=OE=12求得四边形OEFG是平行四边形,根据矩形的判定定理即可得到结论;AD=5;由(1)知,(2)根据菱形的性质得到BD⊥AC,AB=AD=10,得到OE=AE=12四边形OEFG是矩形,求得FG=OE=5,根据勾股定理得到AF=√AE2−EF2=3,于是得到结论.23.【答案】解:(1)函数y=x的图象向下平移1个单位长度得到y=x−1,∵一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移1个单位长度得到,∴这个一次函数的表达式为y=x−1.(2)把x=−2代入y=x−1,求得y=−3,∴函数y=mx(m≠0)与一次函数y=x−1的交点为(−2,−3),,把点(−2,−3)代入y=mx,求得m=32∵当x>−2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=2x−1的值,∴1≤m≤3.2【解析】(1)根据平移的规律即可求得.(2)根据点(−2,−3)结合图象即可求得.本题考查了一次函数图象与几何变换,一次函数与系数的关系,数形结合是解题的关键.24.【答案】1174s32500【解析】解:(1)由频数分布直方图可知,成绩在80≤x<90的有7人,成绩在90≤x< 100的有3人,结合70≤x<80这组的数据可得,成绩为78分处在第11名,故答案为:11;(2)将这30名学生的成绩从小到大排列后,处在中间位置的两个数都是74分,因此中位数是74分,故答案为:74;(3)从图1中,1~10号,11~20号,21~30号学生成绩分布的离散程度可以直观看出,21~30号学生的成绩分布的离散程度较小,比较整齐,即它的方差较小,因此九年级的方差s32中最小,故答案为:s32;=500(名),(4)1500×7+330故答案为:500.(1)根据成绩的频数分布直方图以及成绩在70≤x<80这组的数据进行判断即可;(2)根据中位数的定义进行判断即可;(3)从图1的数据分布的离散程度进行判断即可;(4)从样本中得出“优秀”所占的百分比进行估算即可..本题考查频数分布直方图,中位数、方差以及样本估计总体,理解中位数、方差的定义,掌握样本估计总体的方法是解决问题的前提.25.【答案】5m+n=6【解析】解:(1)x2−6x−7+12=12,x2−6x+5=12,(x−1)(x−5)=12,所以t=5;故答案为5;(2)−1+7=6,0+6=6,1+5=6,3+3=6,所以m+n为一次项系数的相反数,即m+n=6;故答案为m+n=6;(3)由(2)的结论得到m1+n1=−b,m2+n2=−b,所以m1+n1=m2+n2,即n1−n2=−(m1−m2),=−1.∴n1−n2m1−m2(1)先把方程两边加上12,然后把方程左边因式分解,从而得到t的值;(2)利用表中数据得到m与n的和为一次项系数的相反数;(3)由(2)的结论得到m1+n2=−b,m2+n2=−b,则m1+n1=m2+n2,从而得到n1−n2的值.m1−m2本题考查了解一元二次方程,熟练掌握利用公式法、因式分解法和配方法解一元二次方程.26.【答案】解:(1)∵x2−2x=0,∴x(x−2)=0,解得:x1=0,x2=2故方程x2−2x=0的衍生点为M(0,2);(2)关于x的一元二次方程x2−(2m+1)x+2m=0(m<0)的衍生点为M,∵m<0,∴2m<0解x2−(2m+1)x+2m=0(m<0)得:x1=2m,x2=1,∴方程x2−(2m+1)x+2m=0(m<0)的衍生点为M(2m,1).∴点M在第二象限内且纵坐标为1,由于过点M向两坐标轴作垂线,两条垂线与x轴y轴恰好围成一个正方形,所以2m=−1,解得m=−1;2(3)存在.直线y=kx+1,过定点M(0,1),∴x2+bx+c=0两个根为x1=0,x2=1,∴0+1=−b,0×1=c,∴b=−1,c=0.【解析】(1)求出方程的两根,根据一元二次方程的衍生点即可解决问题;(2)求出方程的两根,根据一元二次方程的衍生点的定义,再利用正方形的性质构建方程即可解决问题;(3)求出定点,利用根与系数的关系解决问题即可.本题考查一次函数综合题、一元二次方程的根与系数的关系、正方形的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考压轴题.27.【答案】解:(1)有题意可得,∠CAP=60°,且AP=AC,∴△APC是等边三角形,∴∠APC=60°,∴∠BPM=60°,又∵∠PBD=120°,∴∠BPM+∠PBD=180°,∴PM//BD.(2)猜想,CM⊥MB,CM=√3MB,理由如下:如图2,延长BM至点G,使得MG=MB,连接AG,BC,GC,PC,GD,∵AM=MD,GM=BM,∴四边形AGDB是平行四边形,∴AG=BD,AG//BD,∴∠BAG=180°−∠ABD=60°,∴∠CAG=120°,∵△APC是等边三角形,∴AC=CP,∠CPB=120°,∵PB=DB=AG,∴△CAG≌△CPB(SAS),∴CG=CB,∠ACG=∠PCB,∴∠GCB=60°,∴△CBG是等边三角形,∵GM=BM,∴CM⊥BM,CM=√3MB.【解析】(1)由旋转可得,△APC是等边三角形,∠PBD=120°,则∠BPM+∠PBD=180°,所以PM//BD.(2)延长BM至点G,使得MG=MB,连接AG,BC,GC,PC,可证△CBG是等边三角形且点M是BG的中点,则有CM⊥BM,CM=√3MB.本题主要考查旋转的性质,等边三角形的性质与判定等;构造合适辅助线是解题关键.28.【答案】A,B3或52≤b≤4或−8≤b≤−4【解析】解:(1)如图1,将点A(0,4)的纵坐标分别代入直线l1:y=−x+3,得:x=−1,∴过点A垂直于y轴的直线与l1的交点横坐标是−1,0−(−1)=1,∴点A是直线l1的关联点;将点B(32,1)的纵坐标分别代入直线l1:y=−x+3,得:x=2,∴2−32=12<1,∴点B是直线l1的关联点;将点C(2,3)的纵坐标分别代入直线l1:y=−x+3,得:x=0,∴过点A垂直于y轴的直线与l1的交点横坐标是0,2−0=2>1,∴点C不是直线l1的关联点;故答案为:A,B;(2)将点D的纵坐标分别代入直线l1:y=−x+3,得:x=3−m,∴过点D垂直于y轴的直线与l1的交点横坐标是3−m,∵点D(−1,m)是直线l1的最佳关联点,∴丨3−m−(−1)丨=丨4−m丨=1,解得:m=3或5,故答案为:3或5;(3)如图2,由图可得,直线l2的位置l3与l4之间或l5与l6之间时,符合要求,直线与l3正方形AOEF相交于A(0,4)时,b=4,直线l4与正方形AOEF相交于A(0,2)时,b=2,直线l5与正方形AOEF相交于F(4,4)时,b=−4,直线l6与正方形AOEF相交于E(4,0)时,b=−8,∴b的取值范围为2≤b≤4或−8≤b≤−4.故答案为:2≤b≤4或−8≤b≤−4.(1)将点A,B,C的纵坐标分别代入直线l1:y=−x+3,分别求出过点A,B,C垂直于y轴的直线与l1的交点横坐标,根据关联点的定义即可求解;(2)将点D的纵坐标分别代入直线l1,求出过点D垂直于y轴的直线与l1的交点横坐标,根据最佳关联点的定义列出关于m的方程,解方程即可;(3)如图,若直线l2与正方形AOEF相交,且交点中至少有一个是直线l1的关联点,则直线l2的位置l3与l4之间或l5与l6之间,根据点A,E的坐标即可得b的取值范围.本题考查一次函数综合题、P为直线l的关联点的定义等知识,解题的关键是理解题意,学会利用特殊位置解决问题,属于中考压轴题.。
北京市朝阳区2020-2021学年八年级上学期期末数学试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.新版《北京市生活垃圾管理条例》于2020年5月1日实施,条例规定生活垃圾应按照厨余垃圾、可回收物、有害垃圾、其他垃圾的分类,分别投入相应标识的收集容器.下图为某小区分类垃圾桶上的标识,其图标部分可以看作轴对称图形的有( )A .1个B .2个C .3个D .4个 2.下列计算正确的是( )A .235a a a ⋅=B .325()a a =C .2336(2)6ab a b =D .223344a a a ÷= 3.一个多边形的内角和等于外角和的两倍,那么这个多边形是( )A .三边形B .四边形C .五边形D .六边形 4.下列因式分解变形正确的是( )A .22242(2)a a a a -=-B .2221(1)a a a -+=-C .24(2)(2)a a a -+=+-D .256(2)(3)a a a a --=-- 5.把分式方程11122x x x--=--化为整式方程正确的是( ) A .1(1)1x --= B .1(1)1x +-=C .1(1)2x x --=-D .1(1)2x x +-=- 6.如图,要测量池塘两岸相对的两点A ,B 的距离,可以在池塘外取AB 的垂线BF 上的两点C ,D ,使BC =CD ,再画出BF 的垂线DE ,使E 与A ,C 在一条直线上,可得△ABC ≌△EDC ,这时测得DE 的长就是AB 的长.判定△ABC ≌△EDC 最直接的依据是( )A .HLB .SASC .ASAD .SSS7.如图,在3×3的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC 为格点三角形,在图中最多能画出( )个格点三角形与△ABC 成轴对称.A .6个B .5个C .4个D .3个8.n m ,1m n +,1n 都有意义,下列等式①22n n m m=;②111m n m n =++;③22n n m m =;④22n n m m +=+中一定不成立.....的是( ) A .②④B .①④C .①②③④D .②二、填空题9.分解因式:328x x -=______.10.若分式21x +有意义,则x 的取值范围是_________. 11.若20a b -=,且0b ≠,则分式a b a b +-的值为______. 12.如图,两个阴影图形都是正方形,用两种方式表示这两个正方形的面积和,可以得到的等式为______.13.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC=CD=DE,点D 、E 可在槽中滑动.若∠BDE=75°,则∠CDE 的度数是__________14.如图,在平面直角坐标系xOy 中,点B 的坐标为(2,0),若点A 在第一象限内,且AB =OB ,∠A =60°,则点A 到y 轴的距离为______.15.对于一个四边形的四个内角,下面四个结论中,①可以四个角都是锐角;②至少有两个角是锐角;③至少有一个角是钝角;④最多有三个角是钝角;所有正确结论的序号是______.16.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.三、解答题17.计算:3232()a a a a ⋅+-÷.18.解分式方程:22111x x x =--. 19.解分式方程:31(1)(2)1x x x x +=-+-. 20.已知2277x x -=,求代数式2(23)(3)(21)x x x ---+的值.21.如图,在△ABC 中,AB >AC >BC ,P 为BC 上一点(不与B ,C 重合).在AB 上找一点M ,在AC 上找一点N ,使得△AMN 与△PMN 全等,以下是甲、乙两位同学的作法.甲:连接AP ,作线段AP 的垂直平分线,分别交AB ,AC 于M ,N 两点,则M ,N 两点即为所求;乙:过点P 作PM ∥AC ,交AB 于点M ,过点P 作PN ∥AB ,交AC 于点N ,则M ,N 两点即为所求.(1)对于甲、乙两人的作法,下列判断正确的是 ;A .两人都正确B .甲正确,乙错误C .甲错误,乙正确(2)选择一种你认为正确的作法,补全图形并证明.22.如图,在△ABC 中,AD 平分∠BAC ,BD ⊥AD 于点D ,过点D 作DE ∥AC 交AB 于点E .求证:E 为AB 的中点.23.2020年12月17日,中国研制的嫦娥五号返回器成功携带月球样品着陆地球,在接近大气层时,它的飞行速度接近第二宇宙速度,约为某列高铁全速行驶速度的112倍.如果以第二宇宙速度飞行560千米所用时间比该列高铁全速行驶10千米所用时间少50秒,那么第二宇宙速度是每秒多少千米?24.已知22a m n =+,2b m =,c mn =,且m >n >0.(1)比较a ,b ,c 的大小;(2)请说明以a ,b ,c 为边长的三角形一定存在.25.在△ABC 中,∠C =90°,AC =BC =2,直线BC 上有一点P ,M ,N 分别为点P 关于直线AB ,AC 的对称点,连接AM ,AN ,BM .(1)如图1,当点P 在线段BC 上时,求∠MAN 和∠MBC 的度数;(2)如图2,当点P 在线段BC 的延长线上时,①依题意补全图2;②探究是否存在点P ,使得3BM BN=,若存在,直接写出满足条件时CP 的长度;若不26.在学习了“等边对等角”定理后,某数学兴趣小组的同学继续探究了同一个三角形中边与角的数量关系,得到了一个正确的结论:“在同一个三角形中,较长的边所对的角较大”,简称:“在同一个三角形中,大边对大角”.即,如图:当AB>AC时,∠C >∠B.该兴趣小组的同学在此基础上对等腰三角形“三线合一”性质的一般情况,继续进行了深入的探究,请你补充完整:(1)在△ABC中,AD是BC边上的高线.①如图1,若AB=AC,则∠BAD=∠CAD;②如图2,若AB≠AC,当AB>AC时,∠BAD∠CAD.(填“>”,“<”,“=”)证明:∵AD是BC边上的高线,∴∠ADB=∠ADC=90°.∴∠BAD=90°-∠B,∠CAD=90°-∠C.∵AB>AC,∴(在同一个三角形中,大边对大角).∴∠BAD∠CAD.(2)在△ABC中,AD是BC边上的中线.①如图1,若AB=AC,则∠BAD=∠CAD;②如图3,若AB≠AC,当AB>AC时,∠BAD∠CAD.(填“>”,“<”,“=”)证明:参考答案1.B【分析】根据轴对称图形的概念判断即可.【详解】解:厨余垃圾是轴对称图形;可回收物不是轴对称图形,注意箭头;有害垃圾是轴对称图形;其他垃圾不是轴对称图形,注意箭头.所以是轴对称图形的有2个.故选:B .【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.A【分析】根据幂的运算法则和整式的除法法则对各选项进行计算,即可作出判断.【详解】A 、232+35=a a a a ⋅=,故本选项正确;B 、32236=()a a a ⨯=,故本选项错误;C 、23336368()2=2ab a b a b =,故本选项错误;D 、223344a a ÷=,故本选项错误; 故选:A【点睛】本题主要考查了同底数幂的乘法,幂的乘方,积的乘方,整式的除法,正确掌握相关运算法则是解题关键.3.D【分析】根据多边形的外角和为360°得到内角和的度数,再利用多边形内角和公式求解即可.【详解】解:设多边形的边数为x ,∵多边形的内角和等于外角和的两倍,∴多边形的内角和为360°×2=720°,∴180°(n ﹣2)=720°,解得n=6.故选D.【点睛】本题主要考查多边形的内角和与外角和,n 边形的内角的和等于: (n - 2)×180°(n 大于等于3且n 为整数);多边形的外角和为360°.4.B【分析】根据提公因式分解因式可得出A 错误;根据完全平方公式可得B 正确;根据平方差公式可得C 错误;根据十字相乘法可判断D 错误.【详解】A 、2242(2)a a a a -=-,故此选项错误;B 、2221(1)a a a -+=-,故此选项正确;C 、24(2)(2)a a a -+=+-,故此选项错误;D 、256(6)(+1)a a a a --=-,故此选项错误.故选:B【点睛】本题主要考查了因式分解,要灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要提取公因式,再考虑运用公式法分解.5.D【分析】两边同时乘以最简公分母2x -即可化为整式方程,再依次判断即可.【详解】解:两边同时乘以2x -得1(1)2+-=-,x x故选:D.【点睛】本题考查解分式方程.注意去分母两边同时乘以最简公分母时两边都要乘,每一项都要乘.6.C【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,再根据已知选择判断方法.【详解】解:根据题意,∠ABC=∠EDC,BC=CD,∠ACB=∠ECD,∴能证明△ABC≌△EDC最直接的依据是ASA.故选:C.【点睛】本题考查证明三角形全等.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.A【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.【详解】解:如图,可以画6个.【点睛】本题考查了轴对称变换,能确定对称轴的位置是解题关键.8.D【分析】根据题意,判断出0m ≠,0n ≠,+0m n ≠,根据分式的性质逐个判断即可.【详解】解:∵ n m ,1m n +,1n都有意义, ∴ 0m ≠,0n ≠,+0m n ≠, ①222=n n n m mm ⎛⎫= ⎪⎝⎭,仅需10n n m m ⎛⎫-= ⎪⎝⎭,即=1n m 时成立; ②111=m n m n++,不成立; ③22n n m m=,(右侧分子分母同时除以2),因此成立; ④22n n m m +=+,()()2=2n m m n ++即2=2n m ,当=n m 时成立; 故仅有②一定不成立,故选D【点睛】本题综合考查了分式的基本性质,解题关键是根据题意得出m 、n 和+m n 的范围. 9.()()222+-x x x【分析】原式提取2x ,再利用平方差公式分解即可.【详解】解:328x x -22(4)x x =-2(2)(2)x x x =+-,故答案为:()()222+-x x x .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.【解析】 ∵分式21x +有意义, ∴10x +≠,解得1x ≠-.故答案为1x ≠-.11.3-【分析】由已知2a−b =0,可知b =2a ;将所得结果代入所求的式子中,经过约分、化简即可得到所求的值.【详解】解:∵2a−b =0,∴b =2a ; ∴23=32a b a a a a b a a a++==----. 故答案为−3.【点睛】正确对式子进行变形,化简求值是解决本题的关键.在解题过程中要注意思考已知条件的作用.12.(a+b )2-2ab = a 2+b 2【分析】利用各图形的面积求解即可.【详解】解:两个阴影图形的面积和可表示为:a 2+b 2或 (a+b )2-2ab ,故可得: (a+b )2-2ab = a 2+b 2故答案为:(a+b )2-2ab = a 2+b 2【点睛】本题主要考查了完全平方公式的几何背景,解题的关键是明确四块图形的面积.13.80°【分析】根据OC=CD=DE ,可得∠O=∠ODC ,∠DCE=∠DEC ,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC 据三角形的外角性质即可求出∠ODC 数,进而求出∠CDE 的【详解】∵OC CD DE ==,∴O ODC ∠=∠,DCE DEC ∠=∠,设O ODC x ∠=∠=,∴2DCE DEC x ∠=∠=,∴180CDE DCE DEC ∠=︒-∠-∠1804x =︒-,∵75BDE ∠=︒,∴180ODC CDE BDE ∠+∠+∠=︒,即180475180x x +-+=︒︒︒,解得:25x =︒,180480CDE x ︒∠=-=︒.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.14.1【分析】过A 作AC ⊥OB ,首先证明△AOB 是等边三角形,再求出OC 的长即可.【详解】解,过A 作AC ⊥OB 于点C ,∵AB=OB ,∠A=60°∴∠AOB=60°且△AOB 是等边三角形,∵点B 的坐标为(2,0)∴OB=2∵AC ⊥OB∴112122OC OB ==⨯= 故答案为:1.【点睛】此题主要考查了坐标与图形的性质,掌握等边三角形的性质是解答此题的关键.15.④【分析】四边形的内角和是360︒,根据四边形内角的性质选出正确选项.【详解】解:①错误,如果四个角都是锐角,那么内角和就会小于360︒;②错误,可以是四个直角;③错误,可以是四个直角;④正确.故选:④.【点睛】本题考查四边形内角的性质,解题的关键是掌握四边形内角的性质.16.5或4.【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h ===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可.【详解】解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么 222,,412S S S a b c h===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<, 解得3<h <6,∴h=4或h=5,故答案为:5或4.【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.17.0.【分析】原式先计算积的乘方,再计算同底数幂的乘除法即可.【详解】解:3232()a a a a ⋅+-÷=462a a a -÷=44a a -=0.【点睛】此题主要考查了积的乘方和同底数幂的乘除法,熟练掌握运算法则是解答此题的关键. 18.方程无解.【分析】先两边同乘以(1)(1)x x +-将分式方程化为整式方程,再按照移项、合并同类项、系数化为1的步骤解方程即可得.【详解】 22111x x x =--,即211(1)(1)x x x x =-+-, 方程两边同乘以(1)(1)x x +-化成整式方程,得12x x +=,移项,得21x x -=-,合并同类项,得1x -=-,系数化为1,得1x =,经检验,1x =时,原分式方程的分母等于0,即1x =不是原方程的解,故方程无解.【点睛】本题考查了解分式方程,熟练掌握分式方程的解法是解题关键.19.方程无解【分析】去分母将分式方程化为整式方程,求解并验证根即可.【详解】解:去分母得:3(1)(2)(2)x x x x +-+=+,去括号得:22322x x x x ++-=+,移项合并得:1x -=-,解得:1x =.经检验1x =是该方程的增根,即方程无解.【点睛】本题考查解分式方程.解分式方程的思路就是去分母两边乘以最简公分母,将分式方程化为整式方程求解.解分式方程一定不要忘了验根.20.19【分析】先通过整式的运算法则将代数式化简成22712x x -+,再整体代入求值.【详解】解:原式()()224129263x x x x x =-+-+-- 224129253x x x x =-+-++22712x x =-+∵2277x x -=,∴2277x x -=,∴原式71219=+=.【点睛】本题考查整式的化简求值,解题的关键是掌握整体代入的思想求值.21.A .【分析】(1)如图1,根据线段垂直平分线的性质得到MA=MP,NA=NP,则根据“SSS”可判断△AMN≌△PMN,则可对甲进行判断;如图2,根据平行四边形的判定方法先证明四边形AMPN为平行四边形,则根据平行四边形的性质得到MA=PN,MP=AN,则根据“SSS”可判断△AMN≌△PNM,则可对乙进行判断.(2)根据(1)即可得出证明过程【详解】(1)解:如图1,∵MN垂直平分AP,∴MA=MP,NA=NP,而MN=MN,∴△AMN≌△PMN(SSS),所以甲正确;如图2,∵MN∥AN,PN∥AM,∴四边形AMPN为平行四边形,∴MA=PN,MP=AN,而MN=MN,∴△AMN≌△PNM(SSS),所以乙正确.故选:A.(2)正确做法的证明同(1)【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质、平行四边形的判定与性质和三角形全等的判定.22.见解析【分析】证明AE=DE,EB=DE即可解决问题【详解】证明:∵AD平分∠BAC∴∠CAD=∠EAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠EAD=∠ADE,∴DE=AE,∵BD⊥AD,∴∠ADB=90°,∴∠ADE+∠BDE=90°,∠EAD+∠ABD=90°,∵∠EAD=∠ADE,∴∠BDE=∠ABD,∴BE=DE,∴AE=BE,∴E是AB的中点.【点睛】本题考查等腰三角形的判定和性质、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题.23.第二宇宙速度是每秒11.2千米.【分析】设第二宇宙速度是每秒xkm,则高铁全速行驶的速度是每秒1112x km,根据第二宇宙速度飞行560千米所用时间+50=该列高铁全速行驶10千米所用时间,列出方程求解即可.【详解】解:设第二宇宙速度是每秒xkm ,则高铁全速行驶的速度是每秒1112x km , 根据题意, 11125601050x x+=, 解得11.2x =,经检验11.2x =是该方程的解.所以,第二宇宙速度是每秒11.2千米.【点睛】本题考查分式方程的应用.能结合题意找出等量关系列出方程是解题关键.不要忘记验根哦. 24.(1)a >b >c ;(2)见解析【分析】(1)a 、b 、c 两两作差可得出a 、b 、c 之间的大小关系;(2)对于任意一个三角形的三边a ,b ,c ,满足任意两边之和大于第三边,任意两边之差小于第三边.【详解】(1)∵a -b =m 2+n 2-m 2=n 2>0;a -c =m 2+n 2-mn =(m -n )2+mn >0;b -c = m 2-mn =m (m -n )>0∴a >b >c ;(2)由(1)a >b >c 可得,a +b >c∵a -b = m 2+n 2-m 2=n 2<mn∴a -b <c∴以a 、b 、c 为边长的三角形一定存在.【点睛】本题主要考查了利用差比法比较代数式的大小和用三角形三边关系证明三角形的存在. 25.(1)∠MAN =90°,∠MBC =90°;(2)补全图形见解析;(3)存在,CP=1.【分析】(1)连接CN ,AP ,MP ,根据轴对称的性质和等腰三角形三线合一可得∠NAC=∠CAP ,∠PAB=∠MAB ,∠ABC=∠ABM ,再根据等腰直角三角形的性质即可求得∠MAN 和∠MBC ;(2)①依据轴对称图形对应点的连线被对称轴垂直平分补全图即可;②根据垂直平分线的性质可得PB=BM ,PC=CN ,再设BN 长为x ,利用3BM BN和线段的和差列出方程求解即可.【详解】解:(1)如图,连接CN ,AP ,MP ,∵N 、P 关于AC 对称,∴C 为PN 的中点,且AC 为NP 的中垂线,∴AN=AP ,∴△ANP 为等腰三角形,∴∠NAC=∠CAP (三线合一),同理可证∠PAB=∠MAB ,∠ABC=∠ABM ,∵AC=BC=2,∠ACB=90°,∴∠CAB=∠ABC=45°,∴∠MAN=∠NAC+∠CAP+∠PAB+∠BAM=2∠CAB=90°,∠MBC=∠ABC+∠ABM=2∠ABC=90°;(2)①补全图2如下,②由(1)知B 在PM 的中垂线上,A 在PN 的中垂线上,∴PB=BM ,PC=CN ,设BN 长为x ,则BM 的长为3x ,CN 长为2-x ,∴PC=CN=2-x ,∵PB=BM=PC+BC,∴322x x =-+,解得x=1,∴满足条件的P 点存在,且CP=2-1=1.【点睛】本题考查轴对称的性质,作轴对称图形,等腰三角形三线合一,垂直平分线的性质等.理解轴对称图形对应点连线被对称轴垂直平分是解题关键.26.(1)①见解析,②∠B<∠C ,>;(2)①见解析;②<【分析】(1)①由HL 证明Rt △ABD ≌Rt △ACD 可得结论;②由AB >AC 得∠C >∠B 即可得出结论;(2)①由SSS 证明△ABD ≌△ACD 可得结论;②作辅助线证明△BDE CDA ≅∆,得BE CA =,∠BED CAD =∠,证得∠BAD BED <∠,即可得到结论.【详解】解:(1)①证明:∵AD 是BC 边上的高线∴∠ADB=∠ADC=90°,在Rt △ADB 和Rt △ADC 中AB AC AD AD =⎧⎨=⎩∴Rt △ABD ≌Rt △ACD∴∠BAD =∠CAD ;②证明:∵ AD 是BC 边上的高线,∴∠ADB =∠ADC =90°.∴ ∠BAD =90°-∠B ,∠CAD =90°-∠C . ∵AB >AC ,∴ ∠B<∠C (在同一个三角形中,大边对大角).∴∠BAD > ∠CAD .故答案为:∠B<∠C ,>;(2)①证明:∵AD 是BC 边上的中线∴BD=CD在△ABD 和△ACD 中AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD∴∠BAD=∠CAD②如图,延长AD 至点E ,使AD=ED ,连接BE ,∵AD 是△ABC 的BC 边上的中线,∴BD CD =在△BDE 和△CDA 中,BD CD BDE CDA ED AD =⎧⎪∠=∠⎨⎪=⎩∴△BDE CDA ≅∆∴BE CA =,∠BED CAD =∠,又AB AC >,则AB BE >∴∠BAD BED <∠∴∠BAD CAD <∠.故答案为:<.【点睛】此题主要考查了全等三角形的判定与性质,作出辅助线构造全等三角形是解答此题的关键.。
2020-2021学年北京市东城区八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)下面各题均有四个选项,符合题意的选项只有一个。
1.(3分)函数y=1x+1中自变量x的取值范围是()A.x≥﹣1B.x≤﹣1C.x≠﹣1D.x=﹣12.(3分)如图,数轴上点B表示的数为1,AB⊥OB,且AB=OB,以原点O为圆心,OA 为半径画弧,交数轴正半轴于点C,则点C所表示的数为()A.√2B.−√2C.√2−1D.1−√23.(3分)为筹备学校元旦联欢晚会,在准备工作中,班长先对全班同学喜爱的水果做了民意调查,再决定最终买哪种水果.下面的统计量中,他最关注的是()A.众数B.平均数C.中位数D.方差4.(3分)下列各组数中,能作为直角三角形边长的是()A.1,2,3B.6,7,8C.1,1,√3D.5,12,13 5.(3分)一次函数y=3x+1的图象经过点(1,y1),(2,y2),则以下判断正确的是()A.y1>y2B.y1<y2C.y1=y2D.无法确定6.(3分)在平面直角坐标系xOy中,将直线y=2x+1向上平移2个单位长度后,所得的直线的解析式为()A.y=2x﹣1B.y=2x+2C.y=2x+3D.y=2x﹣2 7.(3分)菱形和矩形都具有的性质是()A.对角线互相垂直B.对角线长度相等C.对角线平分一组对角D.对角线互相平分8.(3分)甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位平均成绩较高且状态稳定的同学参加数学比赛,那么应选()甲乙丙丁平均数80858580方差42455459 A.甲B.乙C.丙D.丁9.(3分)如图,在△ABC中,点D、点E分别是AB,AC的中点,点F是DE上一点,且∠AFC=90°,若BC=12,AC=8,则DF的长为()A.1B.2C.3D.410.(3分)若定义一种新运算:a⊗b={2a−b(a≥b)2a+b−12(a<b),例如:3⊗1=2×3﹣1=5;4⊗5=2×4+5﹣12=1.则函数y=(x+2)⊗(2x﹣2)的图象大致是()A.B.C .D .二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)请写出一个图象经过第一、三象限的正比例函数的解析式 .12.(2分)在▱ABCD 中,∠A +∠C =100°,则∠C = .13.(2分)某手表厂抽查了10只手表的日走时误差,数据如表所示:日走时误差 (单位:秒)0 1 2 3只数 4 3 2 1 则这10只手表的平均日走时误差是 秒.14.(2分)如图,在平面直角坐标系xOy 中,函数y 1=kx 与y 2=ax +3的图象交于点A (﹣1,2),则关于x 的不等式kx >ax +3的解集是 .15.(2分)如图,已知P 是正方形ABCD 对角线BD 上一点,且BP =BC ,则∠ACP度数是度.16.(2分)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为.17.(2分)如图,把矩形ABCD沿直线BD向上折叠,使点C落在点C′的位置上,BC′交AD于点E,若AB=3,BC=6,则DE的长为.18.(2分)如图,菱形ABCD的边长为4,∠ABC=60°,点E是CD的中点,点M是AC 上一动点,则MD+ME的最小值是.三、解答题(第19题4分,第20-25题每题5分,第26题6分,第27-28题每题7分,共54分)解答应写出文字说明、演算步骤或证明过程。
高一数学(东城) 第 1 页(共 8 页)东城区2020-2021学年度第一学期期末统一检测高一数学 2021.1本试卷共4页,满分100分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题:共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{1,0,1}A =-,集合{}21B x x =∈=N ,那么AB =(A ){1}(B ){0,1}(C ){1,1}-(D ){1,0,1}-(2)已知()f x 为奇函数,且当0x >时,()2f x x =-,则1()2f -的值为(A )52-(B )32- (C ) 32 (D )52(3)若扇形的半径为1,周长为π,则该扇形的圆心角为(A )π (B )π-1 (C )π-2 (D )12π- (4)下列命题为真命题的是 (A )若a b >,则22a b > (B )若0a b >>,则22ac bc > (C )若a b <,0c >,则ac bc > (D ) 若0a b <<,0c >,则c c a b> (5)已知tan 1α=-,则222sin3cos αα-=(A ) 74-(B ) 12- (C ) 12 (D ) 34(6)若函数)(x f 是R 上的减函数,0a >,则下列不等式一定成立的是(A )2()()f a f a < (B )1()()f a f a< (C )()(2)f a f a <(D )2()(1)f a f a <-(7)已知2log 3a =,4log 5b =,8log 7c =,则(A)a b c<<(B)c a b<<(C)c b a<<(D)b c a<<(8)“,k kαβ=π+∈Z”是“tan tanαβ=”成立的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(9)如图所示,单位圆上一定点A与坐标原点重合.若单位圆从原点出发沿x轴正向滚动一周,则A点形成的轨迹为(A)(B)(C)(D)(10)已知函数()af x xx=+,给出下列结论:①a∀∈R,()f x是奇函数;②a∃∈R,()f x不是奇函数;③a∀∈R,方程()f x x=-有实根;④a∃∈R,方程()f x x=-有实根.其中,所有正确结论的序号是(A)①③(B)①④(C)①②④(D)②③④第二部分(非选择题共60分)二、填空题:共5小题,每小题4分,共20分。
2020-2021北京市初二数学上期末试题(附答案)一、选择题1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学 记数法表示为() A. 5.6x10 1B. 5.6x10 2C. 5.6x10 3D. 0.56x10 12.如图,R3ABC 中,AD 是NBAC 的平分线,DE±AB,垂足为E,若AB=10cm, AC=6cm,则BE 的长度为()( 4/n + 4那么代数式〃? +I mA. -2B. -1C. 2D. 34 .计算:Ex ,-2x ) + ( _ 2x )的结果是( )A. 2x 2- 1B. -2x2-1 c. -2x2+l D , - 2x 25.2019年7月30 口阳朔至鹿寨高速公路建成通车,已知从阳朔至鹿寨国道的路程为150E1,现在高速路程缩短了 20k 〃,若走高速的平均车速是走国道的2.5倍,所花时间 比走国道少用L5小时,设走国道的平均车速为双〃/〃,则根据题意可列方程为()7 .已知关于x 的分式方程匕"-1 =?一的解是正数,则/〃的取值范围是() X-l 1-XA. 〃?V4且〃?彳3B. m<4C.加9 且阳#3D.加>5且加r6nrm + 2的值是(♦寺) 150-20 150 f _ A. -------------- ——= 1.5 x 2.5x 150 150-20 ♦ . B. -------- - ----- = 1.52.5% x150 150-20 C. --- - -------- 二 1.3150-20 150 D. ------- - --- =1.2)6.如图,在^ABC 中,ZACB=90°,分别以点A 和B 为圆心,为半径作弧,两弧相交于点M 和N,作直线MN 交AB 于点D,以相同的长(大于?AB ) 2交BC 于点E,连接CD,C. ZA=ZBEDD. ZECD=ZEDC3.如果,/ +2m —2 = 0轴于点N,再分别以点M 、N 为圆心,大于L MN 的长为半径画弧,两弧在第二象限交于2 点P.若点P 的坐标为(2a, b+1),则a 与b 的数量关系为()A. a=bB. 2a+b= - 1C. 2a - b=l 9 .如图,在△ABC 中,以点8为圆心,以84长为半径画弧交边8c 于点。
2020-2021北京第二十中学初二数学上期末试题(附答案)一、选择题1.如果a c b d =成立,那么下列各式一定成立的是( ) A .a d c b = B .ac c bd b= C .11a c b d ++= D .22a b c d b d ++= 2.下列因式分解正确的是( ) A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 3.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+ 4.若b a b -=14,则a b 的值为( ) A .5 B .15 C .3 D .135.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是()n n A .2-B .1-C .2D .3 6.如果一个正多边形的一个外角为30°,那么这个正多边形的边数是( ) A .6B .11C .12D .18 7.如图,在△ABC 中,∠C=90°,AD 平分∠CAB,DE⊥AB 于E ,DE 平分∠ADB,则∠B=( )A .40°B .30°C .25°D .22.5〫8.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,DE AC ⊥于点E ,DF BC ⊥于点F ,且BC=4,DE=2,则△BCD 的面积是( )A .4B .2C .8D .69.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a +b)2-(a -b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )A .a 2-b 2=(a +b)(a -b)B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .(a -b)(a +2b)=a 2+ab -b 210.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D ,连接AD .若∠B =40°,∠C =36°,则∠DAC 的度数是( )A .70°B .44°C .34°D .24° 11.若关于x 的方程244x a x x =+--有增根,则a 的值为( ) A .-4 B .2 C .0 D .412.如图,Rt △ABC 中,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB=10cm ,AC=6cm ,则BE 的长度为( )A .10cmB .6cmC .4cmD .2cm二、填空题13.如果24x kx ++是一个完全平方式,那么k 的值是__________.14.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.15.∠A=65º,∠B=75º,将纸片一角折叠,使点C•落在△ABC外,若∠2=20º,则∠1的度数为_______.16.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD=_____.17.若a m=5,a n=6,则a m+n=________.18.分式293xx--当x__________时,分式的值为零.19.若n边形内角和为900°,则边数n= .20.如图,AC=DC,BC=EC,请你添加一个适当的条件:______________,使得△ABC≌△DEC.三、解答题21.为了改善生态环境,某乡村计划植树4000棵.由于志题者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?22.如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=40°,∠DAE=15°,求∠C的度数.23.我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.(1)文学书和科普书的单价各多少钱?(2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?24.在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的6位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x 3+2x 2﹣x ﹣2因式分解的结果为(x ﹣1)(x +1)(x +2),当x =18时,x ﹣1=17,x +1=19,x +2=20,此时可以得到数字密码171920.(1)根据上述方法,当x =21,y =7时,对于多项式x 3﹣xy 2分解因式后可以形成哪些数字密码?(写出两个)(2)若多项式x 3+(m ﹣3n )x 2﹣nx ﹣21因式分解后,利用本题的方法,当x =27时可以得到其中一个密码为242834,求m 、n 的值.25.解方程:121x -=12-342x -.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】 已知a c b d=成立,根据比例的性质可得选项A 、B 、C 都不成立;选项D ,由2a b b +=2c d d +可得22a c b d +=+,即可得a c b d=,选项D 正确,故选D. 点睛:本题主要考查了比例的性质,熟练运用比例的性质是解决问题的关键.2.C解析:C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解;选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确.故选C .【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.3.A解析:A【分析】根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积. 4.A解析:A【解析】 因为b a b -=14, 所以4b=a-b .,解得a=5b , 所以a b =55b b=. 故选A. 5.C解析:C【解析】分析:先把括号内通分,再把分子分解后约分得到原式22m m =+,然后利用2220m m +-=进行整体代入计算. 详解:原式2222244(2)(2)222m m m m m m m m m m m m m +++=⋅=⋅=+=+++, ∵2220m m +-=,∴222m m ,+= ∴原式=2.故选C.点睛:考查分式的混合运算,掌握运算法则是解题的关键.注意整体代入法的应用.6.C解析:C【解析】试题分析:这个正多边形的边数:360°÷30°=12,故选C .考点:多边形内角与外角.7.B解析:B【分析】利用全等直角三角形的判定定理HL 证得Rt △ACD ≌Rt △AED ,则对应角∠ADC=∠ADE ;然后根据已知条件“DE 平分∠ADB”、平角的定义证得∠ADC=∠ADE=∠EDB=60°;最后由直角三角形的两个锐角互余的性质求得∠B=30°.【详解】∵在△ABC 中,∠C=90°,AD 是角平分线,DE ⊥AB 于E ,∴CD=ED,在Rt △ACD 和Rt △AED 中,{AD AD CD ED== , ∴Rt △ACD ≌Rt △AED (HL ),∴∠ADC=∠ADE (全等三角形的对应角相等).∵∠ADC+∠ADE+∠EDB=180°,DE 平分∠ADB ,∴∠ADC=∠ADE=∠EDB=60°.∴∠B+∠EDB=90°,∴∠B=30°.故选:B .【点睛】本题考查了角平分线的性质.角平分线的性质:角的平分线上的点到角的两边的距离相等.8.A解析:A【解析】【分析】根据角平分线的性质定理可得DF=DE ;最后根据三角形的面积公式求解即可.【详解】:∵CD 平分∠ACB ,DE ⊥AC ,DF ⊥BC ,∴DF=DE=2, ∴1•124242BCD S BC DF =⨯=⨯⨯=V ; 故答案为:A .【点睛】此题主要考查了角平分线的性质和应用,解答此题的关键是要明确:角的平分线上的点到角的两边的距离相等.9.B解析:B【解析】图(4)中,∵S 正方形=a 2-2b (a-b )-b 2=a 2-2ab+b 2=(a-b )2,∴(a-b )2=a 2-2ab+b 2.故选B10.C解析:C【解析】【分析】易得△ABD 为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC【详解】∵AB=BD ,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB ﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.11.D解析:D【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4.【详解】解:由分式方程的最简公分母是x-4,∵关于x 的方程244x a x x =+--有增根, ∴x-4=0,∴分式方程的增根是x=4. 关于x 的方程244x a x x =+--去分母得x=2(x-4)+a, 代入x=4得a=4 故选D .【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.12.C解析:C【解析】试题解析:∵AD 是∠BAC 的平分线,∴CD=DE ,在Rt △ACD 和Rt △AED 中,{CD DE AD AD==, ∴Rt △ACD ≌Rt △AED (HL ),∴AE=AC=6cm ,∵AB=10cm ,∴EB=4cm .故选C .二、填空题13.±4【解析】【分析】这里首末两项是x 和2的平方那么中间项为加上或减去x 和2的乘积的2倍也就是kx 由此对应求得k 的数值即可【详解】∵是一个多项式的完全平方∴kx=±2×2⋅x ∴k=±4故答案为:±4【解析:±4.【解析】【分析】这里首末两项是x 和2的平方,那么中间项为加上或减去x 和2的乘积的2倍也就是kx ,由此对应求得k 的数值即可.【详解】∵24x kx ++是一个多项式的完全平方,∴kx=±2×2⋅x , ∴k=±4. 故答案为:±4. 【点睛】此题考查完全平方式,解题关键在于掌握计算公式.14.30【解析】【分析】根据角平分线的定义可得∠PBC=20°∠PCM=50°根据三角形外角性质即可求出∠P 的度数【详解】∵BP 是∠ABC 的平分线CP 是∠ACM 的平分线∠ABP=20°∠ACP=50°∴解析:30【解析】【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P 的度数.【详解】∵BP 是∠ABC 的平分线,CP 是∠ACM 的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为:30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.15.100°【解析】【分析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°再利用三角形的内角和定理以及外角性质得∠3+解析:100°【解析】【分析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.【详解】如图,∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,∴∠3+20°+∠4+40°+40°=180°,∴∠3+∠4=80°,∴∠1=180°-80°=100°.故答案是:100°.【点睛】考查了折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及外角性质.16.40°【解析】试题分析:延长DE交BC于F点根据两直线平行内错角相等可知ABC==80°由此可得然后根据三角形的外角的性质可得=-=40°故答案为:40°解析:40°【解析】试题分析:延长DE 交BC 于F 点,根据两直线平行,内错角相等,可知∠ABC=BFD ∠=80°,由此可得100DFC ∠=︒,然后根据三角形的外角的性质,可得BCD ∠=EDC ∠-FD C ∠=40°. 故答案为:40°.17.【解析】【分析】根据同底数幂乘法性质am·an=am+n 即可解题【详解】解:am+n=am·an=5×6=30【点睛】本题考查了同底数幂乘法计算属于简单题熟悉法则是解题关键解析:【解析】【分析】根据同底数幂乘法性质a m ·a n =a m+n ,即可解题.【详解】解:a m+n = a m ·a n =5×6=30. 【点睛】本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.18.=-3【解析】【分析】根据分子为0分母不为0时分式的值为0来解答【详解】根据题意得:且x-30解得:x=-3故答案为:=-3【点睛】本题考查的是分式值为0的条件易错点是只考虑了分子为0而没有考虑同时解析:= -3【解析】【分析】根据分子为0,分母不为0时分式的值为0来解答.【详解】根据题意得:290x -= 且x-3≠ 0解得:x= -3故答案为:= -3.【点睛】本题考查的是分式值为0的条件,易错点是只考虑了分子为0而没有考虑同时分母应不为0.19.【解析】【分析】利用多边形内角和公式建立方程求解【详解】根据题意得:180(n ﹣2)=900解得:n=7故答案为7【点睛】本题考查多边形内角和公式熟记公式是解题的关键解析:【解析】【分析】利用多边形内角和公式建立方程求解.【详解】根据题意得:180(n ﹣2)=900,解得:n=7.故答案为7.【点睛】本题考查多边形内角和公式,熟记公式是解题的关键.20.CE=BC 本题答案不唯一【解析】再加利用SSS 证明≌故答案为解析:C E =BC .本题答案不唯一.【解析】AC DC =,BC EC =,再加AB DE =,利用SSS,证明ABC V ≌DEC V .故答案为AB DE =.三、解答题21.原计划植树20天.【解析】【分析】设原计划每天种x 棵树,则实际每天种(1+20%)x 棵,根据题意可得等量关系:原计划完成任务的天数﹣实际完成任务的天数=3,列方程即可.【详解】解:设原计划每天种x 棵树,则实际每天种(1+20%)x 棵, 依题意得:4004000803(120%)x x+-=+ 解得x=200,经检验得出:x=200是原方程的解. 所以4000200=20. 答:原计划植树20天.【点睛】此题主要考查了分式方程的应用,正确理解题意,找出题目中的等量关系,列出方程是解题关键.22.70°【解析】试题分析:由AD 是BC 边上的高可得出∠ADE =90°.在△ADE 中利用三角形内角和可求出∠AED 的度数,再利用三角形外角的性质即可求出∠BAE 的度数;根据角平分线的定义可得出∠BAC 的度数.在△ABC 中利用三角形内角和可求出∠C 的度数.试题解析:解:∵AD 是BC 边上的高,∴∠ADE =90°.∵∠ADE +∠AED +∠DAE =180°,∴∠AED =180°-∠ADE -∠DAE =180°-90°-15°=75°.∵∠B +∠BAE =∠AED ,∴∠BAE =∠AED -∠B =75°-40°=35°.∵AE 是∠BAC 平分线,∴∠BAC =2∠BAE =2×35°=70°.∵∠B +∠BAC +∠C =180°,∴∠C =180°-∠B -∠BAC =180°-40°-70°=70°.点睛:本题考查了三角形内角和定理以及三角形外角的性质,解题的关键是:在△ADE 中利用三角形内角和求出∠AED 的度数;利用角平分线的定义求出∠BAC 的度数. 23.(1)文学书和科普书的单价分别是8元和12元.(2)至多还能购进466本科普书.【解析】【详解】(1)设文学书的单价为每本x 元,则科普书的单价为每本(x+4)元,依题意得: 8000120004x x =+ , 解得:x=8,经检验x=8是方程的解,并且符合题意.∴x+4=12.∴购进的文学书和科普书的单价分别是8元和12元.②设购进文学书550本后至多还能购进y 本科普书.依题意得550×8+12y≤10000, 解得24663y ≤, ∵y 为整数, ∴y 的最大值为466∴至多还能购进466本科普书.24.(1)可以形成的数字密码是:212814、211428;(2)m 的值是56,n 的值是17.【解析】【分析】(1)先将多项式进行因式分解,然后再根据数字密码方法形成数字密码即可;(2)设x 3+(m ﹣3n )x 2﹣nx ﹣21=(x +p )(x +q )(x +r ),当x =27时可以得到其中一个密码为242834,得到方程解出p 、q 、r ,然后回代入原多项式即可求得m 、n【详解】(1)x 3﹣xy 2=x (x 2﹣y 2)=x (x +y )(x ﹣y ),当x =21,y =7时,x +y =28,x ﹣y =14,∴可以形成的数字密码是:212814、211428;(2)设x 3+(m ﹣3n )x 2﹣nx ﹣21=(x +p )(x +q )(x +r ),∵当x =27时可以得到其中一个密码为242834,∴27+p =24,27+q =28,27+r =34,解得,p =﹣3,q =1,r =7,∴x 3+(m ﹣3n )x 2﹣nx ﹣21=(x ﹣3)(x +1)(x +7),∴x 3+(m ﹣3n )x 2﹣nx ﹣21=x 3+5x 2﹣17x ﹣21,∴ 3517m n n -=⎧⎨-=-⎩得,5617m n =⎧⎨=⎩即m 的值是56,n 的值是17.【点睛】本题属于阅读理解题型,考查知识点以因式分解为主,本题第一问关键在于理解题目中给到的数字密码的运算规则,第二问的关键在于能够将原多项式设成(x +p )(x +q )(x +r ),解出p 、q 、r25.3x =【解析】【分析】先确定最简公分母是42x -,将方程两边同时乘以最简公分母约去分母可得: 2213x =--,然后解一元一次方程,最后再代入最简公分母进行检验.【详解】去分母得:2213x =--,解得:3x =,经检验3x =是分式方程的解.【点睛】本题主要考查解分式方程的方法,解决本题的关键是要熟练掌握解分式方程的方法和步骤.。
宣城市2020—2021学年度第一学期期末素质调研测试八年级数学试题考试时间:100分钟,试卷满分100分一、选择题(本题共10小题,每小题3分,共计30分)1.点P(-2,-5)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限2.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中,其中轴对称图形的是A B C D3.函数y x的取值范围是A.x ≥-7B.x>-7且x ≠ 0C.x ≠ 0D.x≥-7且x ≠ 04.如图,△ABC的三边的中线AD,BE,CF相交于点G,且AG:GD=2:1,若S△ABC =18,则图中阴影部分的面积是第4题图第5题图第7题图A.6B.7C.8D.95.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点,过点P分别作两坐标轴的垂线段PC,PD,且PC+PD=5,则直线AB的函数表达式为A.y=x+5B.y=-x+5C.y=x-5D.y=-x-56.一次函数y=(3n-15)x+2n-8的图象不经过第三象限,则n的取值范围是A.4≤n<5B.4<n<5C.n<5D.n>47.如图,点C,F在AD上,AB=DE,AF=DC,要使△ABC△△DEF,可以添加的一个条件是A.AB△DE B.EF△BC C.△B=△E D.△ACB=△DFE8.如图,在Rt△ACB中,△C=90°,△A=36°,线段AB的垂直平分线分别交线段AB、线段AC于D、E两点,则△CBE的度数为A.10°B.12°C.18°D.20°第8题图第10题图9.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为A.45°B.135°C.45°或67.5°D.45°或135°10.如图,△ABC是边长为8的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,点Q同时以相同的速度由B向CB的延长线方向运动(Q与B不重合),过P作PE△AB于E,连接PQ交AB于D,运动过程中线段DE 的长A.3B.4C.5D.不能确定二、填空题(本题共6小题,每题3分,共18分)11.若点P(2x,3x+5)在第二象限,且点P到两坐标轴的距离相等,则点P的坐标是________。
东城区2019-2020学年度第一学期期末教学统一检测
初二数学参考答案及评分标准2020.1
一、选择题(本题共20分,每小题2分)
题号12345678910答案
A
C
D
A
B
C
C
A
D
C
二、填空题(本题共16分,每小题2分)
11.()()
33a a a +-12.2
13.答案不唯一,但必须是一组对应边,如:
AC =AD 14.5915.416.5;128
三.解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)
17.解:原式
()()
()()
332=
223x x x x x -+++- 分
()()2336423x x x x x -++=+- 分()()
26523x x x +=+- 分18.(1)BD ,MN ;……………………1分
(2)三边对应相等的两个三角形全等;全等三角形的对应角相等;……………………3分(3)小明没有对已知中的边和角的位置关系分类讨论.……………………5分
19.解:()-2
0116+π55-3
3⎛⎫
- ⎪⎝⎭
941+3-5=-+……………………4分9-5=.……………………5分
20.证明:∵∠BAC =∠DAE,
∴∠BAC -∠CAD =∠DAE -∠CAD.
即∠BAD =∠CAE.……………………2分在△BAD 和△CAE 中,
,BAD CAE ABD ACE AD AE ∠∠∠∠⎧⎪
⎨⎪⎩
=,=,=∴△BAD ≌△CAE (AAS ).……………………4分∴AB =AC.……………………5分
2
222222()()()4()2(243454)2m (22)2m n m n m n m m n m
m n m mn n m mn m mn m m n ⎡⎤+-+---÷⎣⎦=-+-+-+÷=-+⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯÷=-+⋯⋯⋯⋯⋯⋯⋯21.解:分
分分
()()()2221245324531
1
2343
x x x x x x x x ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯++--=++-+==-=-⋯⋯⋯⋯⋯⋯⋯⋯⋯22.解:分分
分
经检验:1
3
x =-是原方程的解.∴1
3
x =-
.……………………5分23.解:(1)∵∠A =30°,
∴∠A '=30°.……………………1分
∵∠A BF '=90°,
∴∠A FB '=60°.……………………2分∵∠CFE =∠A FB ',
∴∠CFE =60°.……………………3分
(2)∵点A 与点A '关于直线DE 对称,∴DE ⊥AA '.
∵∠A =30°,AE =3,∴1322
DE AE =
=.……………………4分
由(1)知,∠CFE =60°,∠C =60°,
∴△CFE 是等边三角形.
∴EF =CE =AC -AE =1.……………………5分同理,△EFG 也是等边三角形,
图2
图1
∴1
2
DG DE EG =-=DG =DE -EG =.……………………6分24.解:(1)
……………………………………………………………………………………2分(2)D (-3,0);……………………4分
(3)13927
=
=
2228
ACD S ⨯⨯△.……………………6分2
22222212
25.[
](2)(2)4
4(1)2[(2)(2)442(2124)4231a a a a a a a a a a a a a a a a a a a a a a a
--+=-⋅++---+=-⋅++--+=⋅+-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+解:原式分分分分∵a 是满足|3|3a a -=-的最大整数,∴30a -≥.∴3a ≤.∴=3a .……………………5分
∴1
=
15
原式.……………………6分26.解:(1)
届别
总面积(平方米)
参展企业数量
企业展平均面积(平方米)
首
届
270000
270 000
x
x
第二届330
000
330000112.8%x
+()112.8%)x
+(……………………………………………………………………………………4分
(2)
270 000330000
+300=
(1+12.8%)x x
.……………………6分27.解:(1)①补全图形;
……………………1分
②结论:∠BAD +∠BCD =180°.……………………2分
证明:过点D 作DE ⊥AB 于E ,作DF ⊥BC 交BC 的延长线于F ,
则∠AED =∠CFD =90°.∵BD 平分∠ABC ,∴DE =DF.
∵直线l 垂直平分AC ,
∴DA =DC.……………………3分在Rt ADE 和Rt CDF 中,
DA DC DE DF =⎧⎨
=⎩,,
∴Rt ADE ≌Rt CDF.∴∠BAD =∠FCD.
∵∠FCD +∠BCD =180°,
∴∠BAD +∠BCD =180°.……………………4分(2)结论:∠BAD =∠BCD.……………………5分证明:过点D 作DN ⊥AB 于N ,作DM ⊥BE 于M,则∠AND =∠CMD =90°.∵BD 平分∠ABE ,∴DM =DN .
∵直线l 垂直平分AC ,
∴DA =DC.……………………6分在Rt ADN 和Rt CDM 中,
DA DC DN DM =⎧⎨
=⎩,,
∴Rt ADN ≌Rt CDM.
∴∠BAD =∠BCD.……………………7分28.解:(1)①是,不是;……………………2分
②
……………………3分
(2)如图,DC =2,或DC =1;……………………5分
(3)
32
a a
PC <<.……………………7分。