新课
复习 新课 小结 作业
例4、判断下列问题中,p是q成立的什么条件?
pq (1)x2>1x<-1 (2)|x-2|<4-x2+4x+5>0 (3)xy≠0x≠0或y≠0
(1)、(2)pq,qp (3)pq,qp
(原问题qp)
新课
复习 新课 小结 作业
判别充要条件 问题的
6判别步骤:
①认清条件和结论。 ②考察pq和qp的真假。 7判别技巧:
(1)、(3)为真命题。
(2)、(4)为假命题。
判断下列命题的真假
1已知,a若,b,则, x . R, x a2 b2 x 2ab
2.若则ab 0, a 0
如果“若p,则q”是真命题,是指通过条 件p能得到结论q,即是由p可以推导出q。
记作,我p们就q说p是q的充分条件,反过来 q是p的必要条件。
(11)蜡炬成灰泪始干。
(12)玉不琢,不成器。
小结
复习 新课 小结 作业
定义:如果已知pq,则说p是q的充分条件, q是p的必要条件。
判别步骤:
①认清条件和结论。 ②考察pq和qp的真假。
判别技巧:
①可先简化命题。②否定一个命题只要举出一个反例即可。
③将命题转化为等价的逆否命题后再判断。
作业
复习 新课 小结 作业
新课
复习 新课 小结 作
例1、下列“若p,则q”形式的命题中, 哪些命题中的p是q的充分条件?
(1) 若x=1,则x2-4x+3=0; (2) 若f(x)=x,则f(x)为增函数; (3) 若x为无理数,则x2为无理数.
解:命题(1)(2)是真命题,命题(3)是假命题. 所以,命题(1)(2)中的p是q的充分条件.