感知器的学习算法
采用感知器学习规则进行训练。训练步骤为:
① 对各初始权值w0j(0),w1j(0),w2j(0),…,wnj(0),j=1,2,…,m(m为计算层的节点数) 赋予较小的非零随机数;
② 输入样本对{Xp,dp},其中Xp=(-1, x1p , x2p ,…, xnp ),dp为期望的输出向量(教师信 号),上标p代表样本对的模式序号,设样本集中的样本总数为P,则p=1,2,…,P;
③
计算各节点的实际输出
o
p j
(t
)
sgn[X
T j
(t)
X
],
j 1,2,, m
;
④
调整各节点对应的权值,Wj
(t
1)
Wj
(t)
[dLeabharlann p jop j
]X
p
,
j 1,2,, m
,其中η
为学习率,用于控制调整速度,太大会影响训练的稳定性,太小则使训练的收敛
速度变慢,一般取0<η ≤1;
x1
oj Wj
x2 ······ xi ······xn
由方程 w1 j x1 w2 j x2 Tj 0 确定的直线成为二维输入样本空间上的一条分界线。
② 设输入向量X=(x1,x2,x3)T,则三个输入分量在几何上构成一个三维空间。节点j的
输出为
1, o j 1,
w1 j x1 w2 j x2 w3 j x3 Tj 0 w1 j x1 w2 j x2 w3 j x3 Tj 0
智能信息处理技术
华北电力大学
1
第5章 人工神经网络
1 人工神经网络基础知识 2 前馈神经网络 3 自组织神经网络 4 反馈神经网络