生理学第二章.
- 格式:ppt
- 大小:3.95 MB
- 文档页数:55
生理学第二章细胞的基本功能细胞是生命的基本单位,而细胞的基本功能则是维持生命活动的关键。
在生理学中,第二章着重探讨了细胞的这些基本功能,包括细胞膜的结构与功能、细胞的跨膜物质转运、细胞的信号转导、细胞的生物电现象以及肌细胞的收缩功能等。
细胞膜,作为细胞的“边界守护者”,其结构和功能至关重要。
细胞膜主要由脂质、蛋白质和少量糖类组成。
脂质双分子层构成了膜的基本骨架,赋予了膜的流动性和稳定性。
而膜蛋白则承担着各种各样的功能,比如通道蛋白能形成离子通道,让特定的离子通过;载体蛋白则能够协助物质进行跨膜转运。
糖类通常分布在膜的外表面,参与细胞识别和信号传递等过程。
细胞的跨膜物质转运是细胞与外界环境进行物质交换的重要方式。
简单扩散是一种顺浓度梯度、无需耗能的转运方式,像氧气、二氧化碳等气体分子就通过这种方式进出细胞。
而协助扩散则需要借助膜蛋白的帮助,比如葡萄糖进入红细胞就是通过协助扩散进行的。
主动转运则是逆浓度梯度进行,需要消耗能量,常见的有钠钾泵,它能够维持细胞内高钾、细胞外高钠的状态。
细胞的信号转导就像是细胞与外界交流的“语言”。
细胞通过接收外界的信号,然后将其转化为细胞内的一系列反应。
信号分子可以分为内分泌信号、旁分泌信号和自分泌信号等。
当信号分子与受体结合后,会引发细胞内一系列的信号转导通路,最终导致细胞的生理功能发生改变。
细胞的生物电现象是细胞功能的重要体现。
静息电位是指细胞在安静状态下存在于细胞膜两侧的电位差,主要是由于钾离子的外流所形成。
动作电位则是细胞受到刺激时产生的快速、可逆的电位变化,它包括去极化、反极化和复极化等过程。
动作电位的产生与钠离子和钾离子的跨膜流动密切相关。
肌细胞的收缩功能是肌肉运动的基础。
肌肉由肌纤维组成,而肌纤维的收缩是由肌节的缩短实现的。
当神经冲动传到肌细胞时,会引发钙离子的释放,从而启动肌肉收缩的过程。
肌肉收缩的形式有等长收缩和等张收缩,它们在不同的生理活动中发挥着重要作用。
《生理学》各章知识点总结生理学是研究生物体生命活动的科学,是医学专业和生物学专业中的重要学科之一、生理学主要研究生物体的器官、组织和细胞等机能活动,以及这些活动的调节和控制机制。
第一章:绪论这一章主要介绍了生理学的基本概念和研究方法,包括生理学的定义、历史发展和分类等内容。
同时还介绍了生物体内部环境的概念和稳态调节原理。
第二章:细胞生理学这一章主要介绍了细胞的基本结构和功能,包括细胞膜的结构和功能、细胞器的结构和功能等内容。
同时还介绍了细胞内信号转导的机制和细胞运动的原理。
第三章:神经生理学这一章主要介绍了神经系统的组成和功能。
包括神经元的结构和功能、神经传递的机制、神经递质的种类和作用等内容。
同时还介绍了感觉器官的基本原理和神经系统对外界刺激的处理过程。
第四章:心血管生理学这一章主要介绍了心血管系统的结构、功能和调节机制。
包括心脏的结构和功能、血管的结构和功能、血液循环的原理和调节机制等内容。
同时还介绍了血压的调节和心血管疾病的生理学基础。
第五章:呼吸生理学这一章主要介绍了呼吸系统的结构、功能和调节机制。
包括呼吸器官的结构和功能、呼吸过程的物理原理、呼吸的神经调节和化学调节等内容。
同时还介绍了呼吸系统的疾病和调节异常的生理学基础。
第六章:血液生理学这一章主要介绍了血液的组成、功能和调节机制。
包括血液成分的组成和功能、血液凝固的生理机制、免疫系统的功能和调节等内容。
同时还介绍了血液相关疾病的生理学基础。
第七章:消化生理学这一章主要介绍了消化系统的结构、功能和调节机制。
包括消化器官的结构和功能、消化酶的分类和作用等内容。
同时还介绍了消化系统对食物的消化和吸收过程,以及胃酸的分泌和胃肠动力的调节机制。
第八章:生殖生理学这一章主要介绍了生殖系统的结构、功能和调节机制。
包括生殖器官的结构和功能、生殖细胞的形成和发育过程等内容。
同时还介绍了雄性和雌性激素的合成和作用,以及生殖周期和孕育过程的生理学基础。
第九章:内分泌学这一章主要介绍了内分泌系统的结构、功能和调节机制。
生理学第二章重点知识梳理(一)引言概述:生理学是研究生物机体正常生命活动的科学,通过对生物体的结构、功能和调节等方面的研究,揭示了生物体内部的各种生命现象。
本章将重点梳理生理学第二章的重要知识,包括细胞膜的结构与功能、细胞内运输、细胞信号传导、神经元细胞和神经传递的基本原理。
通过深入学习这些内容,将有助于我们加深对生物体内部调节和适应能力的理解,为进一步学习生理学奠定基础。
一、细胞膜的结构与功能:1. 脂质双层结构:了解细胞膜由磷脂和蛋白质构成的脂质双层结构,以及双层结构对细胞的重要功能。
2. 细胞膜的通透性:详细说明细胞膜的通透性包括选择性通透性、主动转运和被动扩散。
3. 载体蛋白:介绍载体蛋白在细胞膜上的分布和功能,包括离子通道蛋白和运输体蛋白等。
4. 细胞识别和黏附:探讨细胞膜上的糖蛋白和蛋白多糖对细胞识别和细胞黏附的作用。
5. 细胞膜的脂质调节:了解细胞膜中脂质的组成和调节机制,如膜蛋白的合成和降解等。
二、细胞内运输:1. 基本运输方式:介绍细胞内运输的基本方式,包括主动转运、被动扩散和胞吞作用等。
2. 胞内运输系统:梳理细胞内运输系统的组成和功能,如微管、中间纤维和微丝等。
3. 物质进出细胞的方式:详细解析物质通过细胞膜进出细胞的方式,包括胞吞作用、胞吐作用和内质网-高尔基体系统等。
4. 分泌机制:探讨细胞内物质的分泌机制,包括内质网的蛋白质合成和蛋白质的包装与运输等。
5. 运输与物质代谢:了解细胞内运输与物质代谢之间的关系,对细胞内运输的重要性进行分析。
三、细胞信号传导:1. 信号分子和受体:介绍细胞信号传导的基本概念,包括信号分子和受体的特点和功能。
2. 离子通道的信号传导:详细解析离子通道在细胞信号传导中的作用,如离子通道的打开和关闭等。
3. 第二信使系统:梳理第二信使系统的组成和功能,包括cAMP、cGMP和钙离子等。
4. 细胞核内信号传导:探讨细胞核内信号传导的机制,详细说明转录因子的作用和调控。
生理学第二章名词解释(一)引言:生理学是研究生物体各个器官、组织和细胞在正常生理状态下的功能活动规律的科学。
本文将解释生理学第二章中的一些重要概念和术语。
正文:第一大点:细胞膜1. 细胞膜是位于细胞外部和内部环境之间的一个薄层结构。
2. 细胞膜由磷脂双分子层和蛋白质组成。
3. 细胞膜在维持细胞形态、控制物质进出细胞和传递信号过程中起着重要作用。
4. 细胞膜具有半透性,能选择性地通过溶解度、电荷、分子大小等因素控制物质的进出。
第二大点:膜蛋白1. 膜蛋白是嵌入到细胞膜中的一类蛋白质。
2. 膜蛋白可以分为通道蛋白、载体蛋白和受体蛋白等不同类型。
3. 通道蛋白能够媒介离子和小分子物质的跨膜转运。
4. 载体蛋白能够促进大分子物质的跨膜转运。
5. 受体蛋白能够与特定的信号分子结合,传递信号并产生生物效应。
第三大点:细胞外液1. 细胞外液是细胞膜外的液体环境,主要由细胞外液和间质液组成。
2. 细胞外液中含有多种离子,如钠离子、钙离子等。
3. 细胞外液在维持细胞的渗透压、电解质平衡和细胞外信号传递过程中起重要作用。
第四大点:细胞内液1. 细胞内液是细胞膜内的液体环境,主要由细胞器溶液和细胞质组成。
2. 细胞内液中含有多种离子和溶解物质,如钾离子、葡萄糖等。
3. 细胞内液在维持细胞的渗透压、代谢平衡和细胞内信号传递过程中起重要作用。
第五大点:渗透压1. 渗透压是指溶液中溶质造成的渗透力。
2. 渗透压可引起水分子的净流动,从低浓度溶液向高浓度溶液流动。
3. 渗透压能够调节细胞的体积和维持细胞内溶液浓度的平衡。
总结:本文对生理学第二章中的名词进行了解释。
细胞膜、膜蛋白、细胞外液、细胞内液和渗透压是生理学中的重要概念,它们在维持细胞正常功能、物质传递和环境平衡等方面起着关键作用。
了解这些概念有助于理解和研究生物体的生理活动。
第二章肌细胞:又称肌纤维,是肌肉的基本结构和功能单位。
肌内膜:肌纤维外面包有的一层薄的结缔组织膜。
肌外膜:肌束聚集在一起构成一块肌肉,外面包以结缔组织膜。
A带:由粗肌丝和细肌丝组成。
I带:只有细肌丝而没有粗肌丝。
H区:只有粗肌丝而没有细肌丝。
肌小节:是肌纤维最基本的结构和功能单位。
终末池:肌质网在接近横小管处形成的特殊的膨大。
三联管结构:每一个横小管和来自两侧的终末池构成的复合体。
兴奋性:指的是组织细胞产生动作电位的能力。
静息电位:细胞处于安静状态,细胞膜内外所存在的电位差,简称膜电位。
动作电位:可兴奋细胞兴奋时,细胞内产生的可扩布的电位变化称为动作电位。
极化状态:是指细胞膜内外存在内负外正的电位差,即静息电位的状态。
去极化:细胞膜的静息电位由-90mV减小到0mV的过程被称为去极化,去极化是膜电位消失的过程。
反极化:细胞膜电位由0mV转变为内正外负的过程称为反极化。
阈强度:阈刺激一般将引起组织发生反应的最小刺激强度称为阈强度。
兴奋—收缩耦联:通常把以肌细胞膜电变化为特征的兴奋过程和以肌丝滑行为基础的收缩过程之间的中介过程称为兴奋—收缩耦联。
兴奋性:骨骼肌(可兴奋组织)受到刺激后可产生兴奋(即产生动作电位),这种特性称为兴奋性。
收缩性:肌肉受到刺激产生兴奋后,立即产生收缩反应,这种特性称为收缩性。
阈刺激:引起肌肉兴奋的最小刺激强度称为阈刺激。
(大于阈刺激强度的刺激称为阈上刺激;低于阈刺激强度的刺激称为阈下刺激。
)单收缩:整块骨骼肌或单个肌细胞受到一次刺激时,先产生一次动作电位,紧接着出现一次机械收缩,称为单收缩。
收缩期:从肌肉收缩产生张力到张力最大所经历时间为收缩期。
舒张期:从张力最大到张力恢复到最低水平所经历时间为舒张期。
向心收缩:肌肉收缩时,长度缩短的收缩。
又称缩短收缩。
向心收缩时肌肉长度缩短、起止点相互靠近,因而引起身体运动。
向心收缩可以是等张收缩和等动收缩。
等张收缩:肌肉张力在肌肉开始缩短后即不再增加,直到收缩结束。
引言概述:细胞是生物体的基本结构单位,是生命活动的基本单元。
细胞的基本功能决定了生物体的生理特性和生命活动的进行。
在生理学第二章中,我们将重点讨论细胞的基本功能,以帮助我们深入了解生物体的生理过程。
本文将介绍细胞的五个主要功能,包括细胞的兴奋传导、物质运输、合成代谢、能量转化和自我修复等方面,以全面揭示细胞的工作机制和重要性。
正文内容:一、细胞的兴奋传导1. 神经细胞中的兴奋传导机制a. 动作电位的产生和传导b. 突触传递的过程与原理c. 兴奋传导在神经系统中的作用和意义2. 心肌细胞中的兴奋传导机制a. 心肌细胞的起搏和传导系统b. 心肌的收缩和松弛过程c. 兴奋传导与心脏功能的关系3. 肌肉细胞中的兴奋传导机制a. 肌肉收缩的兴奋-收缩耦联机制b. 肌肉纤维与运动控制的联系c. 兴奋传导与肌肉功能的关联二、细胞的物质运输1. 细胞膜的结构与功能a. 脂质双层构成的细胞膜b. 细胞膜的通透性和选择性c. 细胞膜对物质运输的调节作用2. 细胞内物质的运输机制a. 主动转运和被动转运的区别b. 胞吞和胞吐的过程与机制c. 运输蛋白的作用和调控3. 分子在细胞内的定位和分布a. 信号序列的识别和目标分选b. 转运蛋白和细胞器的结合和转运c. 物质分布对细胞功能的影响三、细胞的合成代谢1. 蛋白质合成的过程与机制a. DNA转录为mRNA的过程b. tRNA与mRNA的配对和翻译c. 蛋白质合成的调控和后续修饰2. 糖代谢的途径与调控a. 糖异生与糖原代谢的关系b. 糖酵解与细胞能量的产生c. 糖代谢与代谢疾病的关联3. 脂质代谢的调节和过程a. 脂质降解和合成的平衡b. 脂质代谢与激素的调控c. 脂质运输与细胞膜组成的调节四、细胞的能量转化1. 细胞能量的产生与储存a. 有氧呼吸和无氧呼吸的途径b. ATP的合成与储存c. ATP在细胞能量转化中的作用2. 能量代谢的调节与平衡a. 能量代谢与酶的调节b. 细胞的能量平衡和稳态维持c. 细胞能量转化与整体生理调节3. 细胞能量的分配和利用a. 细胞内能量分配的优先级b. 细胞能量与生物体生理活动的关系c. 能量转化与疾病发生的关联五、细胞的自我修复1. 细胞自我修复的概念和机制a. 细胞损伤的修复过程b. DNA修复和蛋白质合成的关系c. 细胞自我修复与细胞寿命的关联2. 细胞自我修复与疾病治疗a. 干细胞的应用和发展前景b. 细胞疗法在疾病治疗中的应用c. 细胞自我修复与疾病康复的关系总结:细胞的基本功能是维持生物体的正常生理活动和适应外部环境的重要保证。
第二章肌细胞:又称肌纤维,就是肌肉得基本结构与功能单位。
肌内膜:肌纤维外面包有得一层薄得结缔组织膜。
肌外膜:肌束聚集在一起构成一块肌肉,外面包以结缔组织膜。
A带:由粗肌丝与细肌丝组成。
I带:只有细肌丝而没有粗肌丝。
H区:只有粗肌丝而没有细肌丝。
肌小节:就是肌纤维最基本得结构与功能单位。
终末池:肌质网在接近横小管处形成得特殊得膨大。
三联管结构:每一个横小管与来自两侧得终末池构成得复合体。
兴奋性:指得就是组织细胞产生动作电位得能力。
静息电位:细胞处于安静状态,细胞膜内外所存在得电位差,简称膜电位。
动作电位:可兴奋细胞兴奋时,细胞内产生得可扩布得电位变化称为动作电位。
极化状态:就是指细胞膜内外存在内负外正得电位差,即静息电位得状态。
去极化:细胞膜得静息电位由90mV减小到0mV得过程被称为去极化,去极化就是膜电位消失得过程。
反极化:细胞膜电位由0mV转变为内正外负得过程称为反极化。
阈强度:阈刺激一般将引起组织发生反应得最小刺激强度称为阈强度。
兴奋—收缩耦联:通常把以肌细胞膜电变化为特征得兴奋过程与以肌丝滑行为基础得收缩过程之间得中介过程称为兴奋—收缩耦联。
兴奋性:骨骼肌(可兴奋组织)受到刺激后可产生兴奋(即产生动作电位),这种特性称为兴奋性。
收缩性:肌肉受到刺激产生兴奋后,立即产生收缩反应,这种特性称为收缩性。
阈刺激:引起肌肉兴奋得最小刺激强度称为阈刺激。
(大于阈刺激强度得刺激称为阈上刺激;低于阈刺激强度得刺激称为阈下刺激。
)单收缩:整块骨骼肌或单个肌细胞受到一次刺激时,先产生一次动作电位,紧接着出现一次机械收缩,称为单收缩。
收缩期:从肌肉收缩产生张力到张力最大所经历时间为收缩期。
舒张期:从张力最大到张力恢复到最低水平所经历时间为舒张期。
向心收缩:肌肉收缩时,长度缩短得收缩。
又称缩短收缩。
向心收缩时肌肉长度缩短、起止点相互靠近,因而引起身体运动。
向心收缩可以就是等张收缩与等动收缩。
等张收缩:肌肉张力在肌肉开始缩短后即不再增加,直到收缩结束。