材料合成与制备(2)
- 格式:ppt
- 大小:3.48 MB
- 文档页数:93
材料合成与制备方法材料合成是材料科学领域中的关键环节,合成方法的选择直接影响到材料的性能和应用。
本文将介绍几种常见的材料合成方法和制备技术,包括化学合成、物理合成和生物合成等。
一、化学合成化学合成是一种通过化学反应来制备新材料的方法。
通常需要原料物质在特定条件下进行反应,生成目标产物。
常见的化学合成方法包括溶液法、气相法和固相法等。
1. 溶液法溶液法是一种将原料物质溶解在适当的溶剂中,通过溶液中物质的扩散、固相沉淀和晶体生长等过程,制备出所需的材料的方法。
这种方法操作简单,适用于多种材料的合成。
2. 气相法气相法是一种将原料物质气化或溶解在惰性气体中,通过气相反应生成目标产物的方法。
这种方法通常用于制备高纯度、高质量的材料,适用于一些高温、高真空条件下的合成。
3. 固相法固相法是一种将原料物质混合均匀后,在高温条件下进行反应生成目标产物的方法。
这种方法适用于高温烧结、固相反应等制备过程。
二、物理合成物理合成是一种利用物理方法实现材料合成的方式。
常见的物理合成方法包括熔融法、机械合成和溅射法等。
1. 熔融法熔融法是一种将原料物质加热至熔化状态后冷却凝固成材料的方法。
这种方法通常用于金属材料、陶瓷材料等的制备,具有制备工艺简单、成本低廉的优点。
2. 机械合成机械合成是一种通过机械力对原料物质进行机械混合、压缩、研磨等过程,实现材料合成的方法。
这种方法适用于一些不容易发生化学反应的材料,可以制备出高性能的复合材料。
3. 溅射法溅射法是一种利用高能粒子轰击靶材表面,使靶材表面原子或分子脱落并沉积在基底上形成薄膜的方法。
这种方法适用于制备薄膜、涂层等材料,广泛应用于电子、光电等领域。
三、生物合成生物合成是一种利用生物体或生物体系来合成材料的方法。
常见的生物合成方法包括生物体内合成、发酵法和生物模板法等。
1. 生物体内合成生物体内合成是一种利用生物体自身代谢过程中产生的物质合成材料的方法。
这种方法适用于生物体本身就能够合成目标产物的情况,具有环境友好、资源可再生的优点。
第一章溶胶-凝胶法名词解释1.胶体(Colloid):胶体是一种分散相粒径很小的分散体系,分散相粒子的质量可以忽略不计,粒子之间的相互作用主要是短程作用力。
2.溶胶:溶胶是具有液体特征的胶体体系,是指微小的固体颗粒悬浮分散在液相中,不停地进行布朗运动的体系。
分散粒子是固体或者大分子颗粒,分散粒子的尺寸为1nm-100nm,这些固体颗粒一般由10^3个-10^9个原子组成。
3.凝胶(Gel):凝胶是具有固体特征的胶体体系,被分散的物质形成连续的网络骨架,骨架孔隙中充满液体或气体,凝胶中分散相含量很低,一般为1%-3%。
4.多孔材料:是由形成材料本身基本构架的连续固相和形成孔隙的流体所组成。
填空题1.溶胶通常分为亲液型和憎液型型两类。
2.材料制备方法主要有物理方法和化学方法。
3.化学方法制备材料的优点是可以从分子尺度控制材料的合成。
4.由于界面原子的自由能比内部原子高,因此溶胶是热力学不稳定体系,若无其它条件限制,胶粒倾向于自发凝聚,达到低比表面状态。
5.溶胶稳定机制中增加粒子间能垒通常用的三个基本途径是使胶粒带表面电荷、利用空间位阻效应、利用溶剂化效应。
6.溶胶的凝胶化过程包括脱水凝胶化和碱性凝胶化两类。
7.溶胶-凝胶制备材料工艺的机制大体可分为三种类型传统胶体型、无机聚合物型、络合物型。
8.搅拌器的种类有电力搅拌器和磁力搅拌器。
9.溶胶凝胶法中固化处理分为干燥和热处理。
10.对于金属无机盐的水溶液,前驱体的水解行为还会受到金属离子半径的大小、电负性和配位数等多种因素的影响。
简答题溶胶-凝胶制备陶瓷粉体材料的优点?制备工艺简单,无需昂贵的设备;对多元组分体系,溶胶-凝胶法可大大增加其化学均匀性;反应过程易控制,可以调控凝胶的微观结构;材料可掺杂的范围较宽(包括掺杂量及种类),化学计量准确,易于改性;产物纯度高,烧结温度低等。
第二章水热溶剂热法名词解释1.水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过将反应体系加热至临界温度(或接近临界温度),在反应体系中产生高压环境而进行无机合成与材料制备的一种有效方法。
第2章材料合成与制备的主要途径材料合成与制备的方法很多,从材料的物态上看,材料合成与制备的主要途径可以分为三种类型,即:基于液相—固相转变的材料制备;基于固相-固相转变的材料制备;基于气相—固相转变的材料制备。
2.1 基于液相—固相转变的材料制备基于液相—固相转变的材料制备一般可分为两类:一类是从熔体出发,通过降温固化得到固相材料,如果条件适合并且降温速率足够慢可以得到单晶体,如果采用快冷技术可以制备非晶(玻璃态)材料;另一类则从溶液出发,在溶液中合成新材料或有溶液参与合成新材料,再经固化得到固相材料。
2.2.1 从熔体制备单晶材料单晶材料的制备必须排除对材料性能有害的杂质原子和晶体缺陷。
低杂质含量、结晶完美的单晶材料多由熔体生长得到。
熔体生长中应用得最广的方法是直拉法(Czochralski法)生长。
直拉法的特点是所生长的晶体的质量高,速度快。
半导体电子工业所需的无位错Si单晶就是采用这种方法制备的。
图2.l是直拉法晶体生长的示意图。
熔体置于坩埚中,一块小单晶,称为籽晶,与拉杆相连,并被置于熔体的液面处。
加热器使单晶炉内的温场保证坩埚以及熔体的温度保持在材料的熔点以上,籽晶的温度在熔点以下,而液体和籽晶的固液界面处的温度恰好是材料的熔点。
随着拉杆的缓缓拉伸(典型速率约为每分钟几毫米),熔体不断在固液界面处结晶,并保持了籽晶的结晶学取向。
为了保持熔体的均匀和固液界面处温度的稳定,籽晶和坩埚通常沿相反的方向旋转(转速约为每分钟数十转)。
显然,这种旋转使得长成的单晶对转轴有柱面对称性。
高压惰性气体(如Ar)常被通人单晶炉中防止污染并抑制易挥发元素的逃逸。
对易挥发材料也可采用液封技术,即在熔体表面覆盖一层不挥发的惰性液体,如生长GaAs单晶时使用的液封材料是B2O3。
图2.1 直拉法单晶生长示意图1:籽晶;2:熔体;3、4:加热器坩埚下降法又称定向凝固法,也是一种应用广泛的晶体生长技术。
其基本原理是使装有熔体的坩埚缓慢通过具有一定温度梯度的温场,如图2.2所示。
第一章1、1 溶胶凝胶1、什么是溶胶——凝胶?答:就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
2、基本原理(了解)3、设备:磁力搅拌器、电力搅拌器4、优点:该方法制备块体材料具有纯度高、材料成分易控制、成分多元化、均匀性好、材料形状多样化、且可在较低的温度下进性合成并致密化等5、工艺过程:自己看6、工艺参数:自己看2、1水热与溶剂热合成1、水热法:是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热、加压(或自生蒸气压),创造一个相对高温、高压的反应环境。
2、溶剂热法:将水热法中的水换成有机溶剂或非水溶媒(例如:有机胺、醇、氨、四氯化碳或苯等),采用类似于水热法的原理,以制备在水溶液中无法长成,易氧化、易水解或对水敏感的材料。
3、优点:a、在有机溶剂中进行的反应能够有效地抑制产物的氧化过程或水中氧的污染;b、非水溶剂的采用使得溶剂热法可选择原料范围大大扩大;c、由于有机溶剂的低沸点,在同样的条件下,它们可以达到比水热合成更高的气压,从而有利于产物的结晶;d、由于较低的反应温度,反应物中结构单元可以保留到产物中,且不受破坏。
同时,有机溶剂官能团和反应物或产物作用,生成某些新型在催化和储能方面有潜在应用的材料4、生产设备:高压釜是进行高温高压水热与溶剂热合成的基本设备;(分类自己看),高压容器一般用特种不锈钢制成,5、合成工艺:选择反应物核反应介质——确定物料配方——优化配料顺序——装釜、封釜——确定反应温度、压力、时间等试验条件——冷却、开釜——液、固分离——物相分析6、水热与溶剂热合成存在的问题:1、无法观察晶体生长和材料合成的过程,不直观。
2、设备要求高耐高温高压的钢材,耐腐蚀的内衬、技术难度大温压控制严格、成本高。
第一章绪论1.材料按化学组成可分为金属材料、无机非金属材料、高分子材料、复合材料四类。
2.材料合成与制备是通过一定的途径,从气态、液态或固态的各种不同原材料中得到化学上及性能上不同于原材料的新材料。
研究内容:一是研究新型材料的合成方法;二是研究已知材料的新合成方法、新合成技术,从而指定节能、经济、环保的合成路线及开发新型结构和功能的材料。
3.材料科学与工程的四个基本要素:合成与加工、组成与结构、性质、使用性能。
第二章无机材料合成实验技术1.表征真空泵的工作特性的四个参量:起始压强、临界反压强、极限压强、抽气速率。
2.平衡分离过程:借助分离媒介(如热能、溶剂或吸附剂)使均相混合物系统变成两相系统,再以混合物中各组分在处于相平衡的两相中不等同的分配为依据而实现分离。
3.速率分离过程:在某种推动力(浓度差、压力差、温度差、电位差等)的作用下,有时在选择性透过膜的配合下,利用各组分扩散速率的差异实现组分的分离。
4.吸附分离过程:利用混合物中各组分与吸附剂表面结合力强弱的不同,即各组分在固体相(吸附剂)和流体相间的吸附分配能力的差异,使混合物中难吸附组分与易吸附组分得以分离。
特点:①多数吸附剂具有良好的选择性,同时,被吸附组分又可在不同的条件下脱附,方便被吸附组分的分别收集和吸附剂的再生利用;②吸附剂化学稳定性好,分离所得产物纯度高;③吸附与解吸速度快,为快速分离和获得小体积淋洗液创造了条件;④吸附剂价廉易得,实验操作简单;⑤为了增加表面作用位置,吸附剂通常制成多孔结构和大比表面积。
吸附机理:⑴吸附作用机理复杂,包括静电吸附、氢键作用、离子交换、络合作用等多种物理和化学过程;⑵从分子间作用力的观点来看,吸附作用是吸附剂表面的立场与吸附质分子之间相互作用的结果,主要是物理吸附;⑶硅胶、Al2O3表面含有大量羟基及O原子,能与许多物质形成氢键。
氢键和电荷转移相互作用均产生较强的吸附能;⑷极性吸附剂与极性分子之间的吸附力较强,选择性也较高。
《材料制备与合成[料]》课程简介课程编号:02034916课程名称:材料制备与合成/Preparation and Synthesis of Materials学分: 2.5学时:40 (课内实验(践):0 上机:0 课外实践:0 )适用专业:材料科学与工程建议修读学期:6开课单位:材料科学与工程学院材料物理与化学系课程负责人:方道来先修课程:材料化学基础、物理化学、材料科学基础、金属材料学考核方式与成绩评定标准:期末开卷考试成绩(占80%)与平时考核成绩(占20%)相结合。
教材与主要参考书目:教材:《材料合成与制备》. 乔英杰主编.国防工业出版社,2010年.主要参考书目:1. 《新型功能材料制备工艺》, 李垚主编. 化学工业出版社,2011年.2. 《新型功能复合材料制备新技术》.童忠良主编. 化学工业出版社,2010年.3. 《无机合成与制备化学》. 徐如人编著. 高等教育出版社, 2009年.4. 《材料合成与制备方法》. 曹茂盛主编. 哈尔滨工业大学出版社,2008年.内容概述:本课程是材料科学与工程专业本科生最重要的专业选修课之一。
其主要内容包括:溶胶-凝胶合成法、水热与溶剂热合成法、化学气相沉积法、定向凝固技术、低热固相合成法、热压烧结技术、自蔓延高温合成法和等离子体烧结技术等。
其目的是使学生掌握材料制备与合成的基本原理与方法,熟悉材料制备的新技术、新工艺和新设备,理解材料的合成、结构与性能、材料应用之间的相互关系,为将来研发新材料以及材料制备新工艺奠定坚实的理论基础。
The course of preparation and synthesis of materials is one of the most important specialized elective courses for the undergraduate students majoring in materials science and engineering. It includes the following parts: sol-gel method, hydrothermal/solvothermal reaction method, CVD method, directional solidification technique, low-heating solid-state reaction method, hot-pressing sintering technique, self-propagating high-temperature synthesis, and SPS technique. Its purpose is to enable students to master the basic principles and methods of preparation and synthesis of materials, and grasp the new techniques, new processes and new equipments, and further understand the relationship among the synthesis, structure, properties and the applications of materials. The course can lay a firm theoretical foundation for the research and development of new materials and new processes in the future for students.《材料制备与合成[料]》教学大纲课程编号:02034916课程名称:材料制备与合成/Preparation and Synthesis of Materials学分: 2.5学时:40 (课内实验(践):0 上机:0 课外实践:0 )适用专业:材料科学与工程建议修读学期:6开课单位:材料科学与工程学院材料物理与化学系课程负责人:方道来先修课程:材料化学基础、物理化学、材料科学基础、金属材料学一、课程性质、目的与任务【课程性质】材料制备与合成[料]是材料科学与工程专业重要的专业选修课。
材料合成与制备方法随着科学技术的不断进步和应用领域的拓展,材料的合成和制备方法也在不断发展和创新。
本文将从几个常见的材料类别出发,介绍其合成过程和制备方法。
一、金属材料的合成与制备方法1.1 金属合金的制备方法金属合金是由两种或更多种金属元素组成的材料。
它具有优良的物理和化学性质,广泛应用于工程领域。
目前常见的金属合金制备方法主要有:1.1.1 熔融法熔融法是最常见和广泛应用的金属合金制备方法之一。
通过将不同比例的金属元素加热至其熔点,使其熔融混合,并通过淬火、调质等工艺处理,得到所需的金属合金。
1.1.2 粉末冶金法粉末冶金法是利用金属粉末混合、压制和烧结等工艺制备金属合金的方法。
通过粉末混合、球磨和压制等工艺,将金属粉末制备成所需形状,然后通过烧结工艺使其变得致密,并进行后续的热处理,最终得到金属合金。
1.1.3 溶液法溶液法是将金属溶解在适当的溶剂中,形成金属离子,并通过还原反应得到金属合金的方法。
常见的溶液法制备金属合金的方法有电解法、浸渍法等。
二、无机材料的合成与制备方法2.1 陶瓷材料的合成方法陶瓷材料是由非金属元素组成的一类材料,具有高温稳定性、绝缘性、耐磨性等特点。
常见的陶瓷材料合成方法包括:2.1.1 固相反应法固相反应法是利用固体材料的化学反应生成所需陶瓷材料的方法。
将相应的无机化合物粉末按照一定的配比混合均匀,然后进行高温煅烧,使其发生化学反应,最终得到所需的陶瓷材料。
2.1.2 溶胶-凝胶法溶胶-凝胶法是将溶解的无机盐或金属有机化合物通过溶胶凝胶反应生成凝胶的方法,然后通过热处理使其形成致密的陶瓷材料。
该方法可以制备出高纯度、均匀性好的陶瓷材料。
2.2 硅材料的合成方法硅材料是一类重要的无机材料,广泛应用于光电、电子等领域。
硅材料的主要合成方法包括:2.2.1 气相沉积法气相沉积法是利用气相反应生成硅材料的方法。
通过将硅源气体在特定温度和压力下与反应气体反应,使其沉积在衬底上,形成所需的硅材料。
材料合成与制备1. 引言材料合成与制备是一项重要的科学研究领域,涉及到从原材料到最终产品的整个过程。
通过合成和制备材料,我们可以获得具有特定性质和功能的新材料,以满足不同领域的需求。
本文将介绍材料合成与制备的基本概念、方法和应用。
2. 材料合成的基本概念2.1 材料合成的定义材料合成是指通过化学反应、物理方法或其他途径将原始物质转化为具有期望性质和结构的新物质。
这一过程可以包括单一组分材料的制备,也可以是复合材料的合成。
2.2 材料合成的分类根据原始物质和反应方式的不同,材料合成可以分为以下几类:•化学气相沉积(CVD):通过气相反应在固体表面上生成薄膜或纳米颗粒。
•溶液法:利用溶液中溶解度差异来实现晶体生长或纳米颗粒形成。
•固相法:通过固态反应在固体材料中生成新的晶相或化合物。
•电化学法:利用电化学反应来合成材料,如电沉积、电解等。
•水热合成:利用高温高压水环境下的化学反应来合成材料。
3. 材料制备的基本概念3.1 材料制备的定义材料制备是指通过加工和处理原始材料,将其转化为具有特定形状、结构和性质的最终产品。
这一过程可以包括物理加工、化学处理、热处理等。
3.2 材料制备的分类根据加工方式和处理方法的不同,材料制备可以分为以下几类:•熔融法:将原始材料加热至熔点,使其熔化后再冷却固化成所需形状。
•粉末冶金法:将粉末材料通过压制、烧结等工艺制备成所需形状。
•涂覆法:通过涂覆技术将液态或粉末材料均匀地覆盖在基底上,形成所需表面层。
•光刻技术:利用光敏物质的特性,在光照和化学处理的作用下制备微米或纳米尺度的结构。
•3D打印技术:通过逐层堆积材料来制备三维结构。
4. 材料合成与制备的方法材料合成与制备的方法多种多样,具体选择哪种方法取决于材料的性质、结构和应用要求。
以下是一些常用的方法:4.1 化学合成化学合成是指通过化学反应将原始物质转化为所需材料。
常见的化学合成方法包括溶液法、气相法、固相法等。
例如,利用溶液法可以通过溶解金属盐和还原剂来合成金属纳米颗粒。
材料合成制备By Maximus第一章1合成:指促使原子、分子结合而构成材料的化学过程制备:研究如何控制原子与分子使之构成有用的材料,还包括在更为宏观的尺度上或以更大的规模控制材料的结构,使之具备所需的性能和适用效能,即包括材料的加工、处理、装配和制造。
2 合成与制备就是建立原子、分子的新排列,从微观到宏观尺度对结构予以控制,从而制造材料和零件的过程3 单晶体定义:晶体内部的原子呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序4 再结晶:冷变形后的金属加热到一定温度之后,在变形基体中,重新生成无畸变的新晶粒的过程叫再结晶。
再结晶包括成核与长大两个基本过程。
5 退火是将材料加热至某一温度,保温后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。
其主要目的是均匀材料的化学成分及组织,消除内应力和加工硬化6 退火过程三个阶段:回复,再结晶,晶粒长大7 回复:1.回复阶段不涉及大角度晶面的迁动;2.通过点缺陷消除、位错的对消和重新排列来实现;3.过程是均匀的。
8 使结晶产生应变不是自发过程,退火是自发过程9 回复测量方法:量热法,测量回复过程硬度,X射线10 组织结构及规则聚集排列状态类似于天然纤维或织物的结构和纹理,故称之为织构11 二次再结晶:将再结晶完成后的金属继续加热至某一温度以上,或更长时间的保温,会有少数晶粒优先长大,成为特别粗大的晶粒,而其周围较细的晶粒则逐渐被吞食掉,整个金属由少数比再结晶后晶粒要大几十倍甚至几百倍的特大晶粒组成烧结就是加热压实多晶体,烧结过程中晶粒长大的推动力主要是由残余应变、反向应变和晶粒维度效应等因素引起。
烧结仅用于非金属材料中的晶粒长大12 影响晶粒长大的因素:温度,杂质与合金元素,第二相粒子,相邻晶粒的位向差13 固-固:优点:能在较低温度下生长;生长晶体的形状预先固定缺点:难以控制成核以形成大晶粒14 整个系统的吉布斯自由能可能存在几个极小值,其中最小的极小值相当于系统的稳定态,其它较大的极小值相当于亚稳态。