初中七年级数学练习题 (1)
- 格式:doc
- 大小:173.53 KB
- 文档页数:4
人教版七年级上册数学第一章第一节练习题(含答案)一、单选题1.下列各数中,是负分数的是()A.56B.﹣12C.﹣0.8D.02.如果温度上升3℃记作+3℃,那么下降8℃记作()A.﹣5℃B.11℃C.﹣8℃D.+8℃3.如果把一个物体向右移动1m时记作移动+1m,那么这个物体向左移动2m时记作移动()A.﹣1m B.+2m C.﹣2m D.+3m4.下列四个有理数中是负数的是()A.0B.−12C.2D.3.55.若零上5°C记作+5°C,则零下4°C应记作()A.−5°C B.+5°C C.−4°C D.+4°C二、填空题6.中国人很早就开始使用负数,中国古代数学著作《九章算术》的方程一章,在世界数学史上首次正式引入负数.如果收入20元记作+20元,那么支出10元记作元.7.若盈利8万元记作+8万元,则亏损7万元记作万元.8.中国是最早采用正负数表示相反意义的量的国家,一艘潜水艇向下潜50m记为+50m,则向上浮30m记为m.9.做生意盈亏属于正常现象,如果盈利500元记作+500元,那么-300元表示.10.如果“+20%”表示增产20%,那么“−12%”表示.三、解答题11.有24筐大庙香水梨,以每筐20千克为标准,超过或不足的分别用正、负来表示,记录如下:请你计算这24筐香水梨的总质量是多少千克.四、综合题12.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?13.某校组织学生去东南花都进行研学活动.第一天下午,学生队伍从露营地出发,开始向东的方向直走到距离露营地500米处的科普园地.学校联络员也从露营地出发,不停地沿途往返行走,为队伍护行.以向东的方向为正方向,联络员从开始到最后行走的情况依次记录如下(单位:米):+150,-75,+205,-30,+25,-25,+30,-25,+75.(1)联络员最终有没有到达科普园?如果没有,那么他离科普园还差多少米?(2)若联络员行走的平均速度为80米/分,请问他此次行程共用了多少分钟?14.城固资源富集,享有“天然药库”的美誉,现有20筐药材,以每筐10千克为标准质量,超过的质量用正数表示,不足的质量用负数表示,结果记录如下:(1)与标准质量相比,这20筐药材总计超过或不足多少千克?(2)若这些药材平均以每千克15元的价格出售,则这20筐药材可卖多少元?15.以45千克为七年级学生的标准体重测量7名学生的体重,把超过标准体重的千克数记为正数,不足的千克数记为负数,将其体重记录如下表:(1)最接近标准体重的是学生(填序号).(2)最大体重与最小体重相差千克.(3)求7名学生的平均体重.16.某食品厂从生产的食品中抽出样品20袋,检测每袋的质量是否符合标准,超过的部分用正数表示,不足的部分用负数表示,记录如表:(1)若每袋标准质量为350克,则这批抽样检测的样品的总质量是多少克?(2)若该食品的包装袋上标有产品合格要求为“净重350±2克”,则这批样品的合格率为多少?17.某粮库10月23日到25日这3天内进出库的吨数记录如下(“+”表示进库,“-”表示出库):(1)经过这3天进出库后,粮库管理员结算时发现粮库里结存480吨粮食,那么3天前粮库里的存量有多少吨?(2)如果进库的装卸费是每吨8元,出库的装卸费是每吨10元,那么这3天要付出多少装卸费?18.一天,某出租车被安排以A地为出发地,只在东西方向道路上营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣8、+6、﹣7、﹣6、﹣4、+10.假设该出租车每次乘客下车后,都在停车地等待下一个乘客,直到下一个乘客上车再出发.(1)将最后一名乘客送到目的地,出租车在A地何处?19.测量一幢楼的高度,七次测得的数据分别是:79.8m,80.6m,80.4m,79.1m,80.3m,79.3m,80.5m.(1)以80为标准,用正数表示超出部分,用负数表示不足部分,写出七次测得数据对应的数;(2)求这七次测量的平均值;(3)写出最接近平均值的测量数据,并说明理由.20.王敏为了解自家小汽车的使用情况,连续记录了这周的7天中她家小汽车每天行驶的路程.以20km为标准,每天超过或不足20km的部分分别用正数、负数表示.下面是她记录的数据(单位:km):+4,-2,-4,+8,+6,-3,+4.(1)王敏家小汽车这7天中,行驶路程最多的一天比最少的一天多多少km?(2)请你计算王敏家小汽车这7天共行驶的路程.答案1.C 2.C 3.C 4.B 5.C 6.-10 7.-7 8.-30 9.亏损300元10.减产12% 11.解:−3×1+(−2×4)+(−1.5×4)+(0×6)+(1×5)+(2.5×4)+20×24=−3−8−6+5+10+480=478(千克).答:这24筐香水梨的总质量是478千克.12.(1)解:∵14﹣9+8﹣7+13﹣6+12﹣5=20,∴B地在A地的东边20千米(2)解:∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5千米;14﹣9+8=13千米;14﹣9+8﹣7=6千米;14﹣9+8﹣7+13=19千米;14﹣9+8﹣7+13﹣6=13千米;14﹣9+8﹣7+13﹣6+12=25千米;14﹣9+8﹣7+13﹣6+12﹣5=20千米.∴最远处离出发点25千米;(3)解:这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升)13.(1)解:+150-75+205-30+25-25+30-25+75=330米,330<500,∴联络员最终没有到达科普园,离科普园还差170米(2)解:(150+75+205+30+25+25+30+25+75)÷80=8分钟,∴他此次行程共用了8分钟.14.(1)解:(-0.8)×1+(-0.5)×4+(-0.3)×2+0×3+0.4×2+0.5×8,=-0.8-2-0.6+0+0.8+4,=1.4(千克),所以这20筐药材总计超过1.4千克.(2)解:(10×20+1.4)×15,=201.4×15,=3 021(元),所以这20筐药材可卖3021元.15.(1)4号(2)11(3)解:7名学生的平均体重=45+(﹣5+3+2﹣1﹣2+4+6)÷7=46(千克), ∴7名学生的平均体重为46千克.16.(1)解:超出的质量为:−5×2+(−2)×4+0×5+1×5+3×1+6×3=−10−8+0+5+3+18=8(克), 总质量为:350×20+8=7008(克), 答:这批抽样检测样品总质量是7008克.(2)解:因为绝对值小于或等于2的食品的袋数为: 4+5+5=14(袋),所以合格率为:1420×100%=70%,答:这批样品的合格率为70%.17.(1)解:26-38-20+34-32-15=(26+34)-(38+20+32+15)=60-105=-45,∴3天前粮库里的存量=480+45=525吨 (2)解:60×8+105×10=48+1050=1098元. ∴这3天要付出1098元装卸费.18.(1)解:∵行车里程依先后次序记录:+9、﹣3、﹣5、+4、﹣8、+6、﹣7、﹣6、﹣4、+10,∴将最后一名乘客送到目的地出租车在A 地位置:19.(1)解:79.8−80=−0.2,80.6−80=0.6,80.4−80=0.4,79.1−80=−0.9,80.3−80=0.3,79.3−80=−0.7,80.5−80=0.5.故七次测得数据对应的数分别是−0.2,+0.6,+0.4,−0.9,+0.3,−0.7,+0.5. (2)解:79.8+80.6+80.4+79.1+80.3+79.3+80.57=80m故这七次测量的平均值为80m .(3)解:79.8 m ,理由如下:因为|−0.2|=0.2,在七次测得数据中绝对值最小,故最接近平均值的测量数据.20.(1)解:8−(−4)=12(km).答:行驶最多的一天比行驶最少的一天多12km. (2)解:超过或不足20km 的部分的和为(+4)+(−2)+(−4)+(+8)+(+6)+(−3)+(+4)=13, 这7天共行驶的路程是13+7×20=153(km). 答:王敏家小汽车这7天共行驶的路程是153km.。
章节测试题1.【答题】已知点O是线段AB上的一点,且AB=12cm,点M、N分别是线段AO、线段BO的中点,那么线段MN的长度是( )A. 6cmB. 5cmC. 4cmD. 无法确定【答案】A【分析】根据线段中点的性质,可得OM,ON,根据线段的和差,可得答案.【解答】∵点O是线段AB上一点,∴AO+BO=AB=12∵点M、N分别是线段AO、线段BO的中点,∴MO=AO,NO=BO.∴MN=MO+NO=(AO+BO)=6(cm).选A.2.【答题】下列关系中,与图示不符合的式子是( )A. AD-CD=AB+BCB. AC-BC=AD-DBC. AC-BC=AC+BDD. AD-AC=BD-BC【答案】C【分析】根据线段之间的和差关系依次进行判断即可得出正确答案.【解答】解: A. AD-CD=AC=AB+BC,正确;B. AC-BC=AD-DB=AB,正确;C. AC-BC=AC+BD,错误;D. AD-AC=BD-BC=CD,正确.选C.3.【答题】平面上有四点,经过其中的两点画直线最多可画出( )A. 三条B. 四条C. 五条D. 六条【答案】D【分析】画出图形即可确定最多能画的直线的条数.【解答】解:如图,最多可画6条直线.选D.方法总结:此题考查直线问题,只有在任意三点不在同一直线时,才能画出最多的直线.4.【答题】为比较两条线段AB与CD的大小,小明将点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,则( )A. AB<CDB. AB>CDC. AB=CDD. 以上都有可能【答案】B【分析】根据线段的比较,点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,可得答案.【解答】解:由点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,得AB>CD.选B.5.【答题】线段AB=2 cm,延长AB到C,使BC=AB,再延长BA到D,使BD =2AB,则线段DC的长为( )A. 4 cmB. 5 cmC. 6 cmD. 2 cm【答案】C【分析】由已知条件可知,BD=2AB,直接代入求值即可.【解答】解:∵BD=2AB,AB=2cm,∴BD=4cm,DC=DB+BC=4+2=6cm.选C.方法总结:在未画图类问题中,正确画图很重要.所以能画图的一定要画图这样才直观形象,便于思维.6.【答题】已知线段AB=1 cm,BC=3 cm,则点A到点C的距离为( )A. 4 cmB. 2 cmC. 2 cm或4 cmD. 无法确定【答案】D【分析】没有明确A、B、C三点是否在同一直线上,故点A到点C的距离无法确定.【解答】解:选D.7.【答题】下列说法正确的是( )A. 两点之间直线最短B. 画出A,B两点间的距离C. 连接点A与点B的线段,叫A,B两点间的距离D. 两点之间的距离是一个数,不是指线段本身【答案】D【分析】根据线段的性质,两点间的距离的定义对各选项分析判断利用排除法求解.【解答】解: A. 两点之间线段最短,故A错误;B. 量出A,B两点间的距离,故B错误;C. 连接点A与点B的线段的长,叫A,B两点间的距离,故C错误;D. 两点之间的距离是一个数,不是指线段本身,正确.选D.8.【答题】如图,C,D是线段AB上的两个点,CD=3 cm,M是AC的中点,N 是DB的中点,AB=7.8 cm,那么线段MN的长等于( )A. 5.4 cmB. 5.6 cmC. 5.8 cmD. 6 cm【答案】A【分析】由已知根据线段的和差和中点的性质可求得MC+DN的长度,再根据MN=MC+CD+DN不难求解.【解答】解:∵M是AC的中点,N是DB的中点,CD=3cm,AB=7.8cm,∴MC+DN=(AB-CD)=2.4cm,∴MN=MC+DN+CD=2.4+3=5..4cm.选A.9.【答题】C为AB的一个三等分点,D为AB的中点,若AB的长为6.6 cm,则CD的长为( )A. 0.8 cmB. 1.1 cmC. 3.3 cmD. 4.4 cm【答案】B【分析】题干中只是说C是线段AB的三等分点,并没有说是哪一个三等分点,线段的三等分点有两个,故应分类讨论,分为AC=AB和BC=AB两种情况.在不同的情况下根据线段之间的关系得出AB的长度.【解答】根据三等分点可得:AC=6.6÷3=2.2cm,根据中点的性质可得:AD=6.6÷2=3.3cm,则CD=AD-AC=3.3-2.2=1.1cm,故选择B.方法总结:本题主要考查的就是中点以及三等分点的性质,属于简单的题型,解决这个问题我们首先要能够根据给出的条件画出图形,然后根据所得的图形进行线段的长度计算.在求线段长度的题目中很多时候我们要根据点的位置关系来进行分类讨论,做题的时候一定要注意这个点是在线段上还是直线上.10.【答题】如图,AB=CD,那么AC与BD的大小关系是( )A. AC=BDB. AC<BDC. AC>BDD. 不能确定【答案】A【分析】由题意已知AB=CD,根据等式的基本性质,两边都减去BC,等式仍然成立.【解答】根据AB=CD可得:AC+BC=BD+BC,则AC=BD,故选择A.11.【答题】下列错误的判断是( )A. 任何一条线段都能度量长度B. 因为线段有长度,所以它们之间能比较大小C. 利用圆规配合尺子,也能比较线段的大小D. 两条直线也能进行度量和比较大小【答案】D【分析】根据直线、线段的性质:直线不可以度量,无法比较长短;线段可以度量,能比较长短,逐项判定即可.【解答】直线和射线的长度是无法度量的,则两条直线不能比较大小.12.【答题】如图,C是线段AB上的点,D是线段AC的中点,E是线段BC的中点,若DE=10,则AB的长为( )A. 10B. 20C. 30D. 40【答案】B【分析】灵活运用寻求到的解题线索,搞清图形中隐含的线段之间的和、倍、差的关系,并合理利用等量代换或消元处理等代数方法证明几何问题,用代数方法证明几何中的问题是很重要的方法.【解答】∵点D是线段AC的中点,∴CD=AC,∵点E是线段BC的中点,∴DE=CD+CE= (AC+BC),∴AC+BC=2DE=20.∴AB=AC+BC=20选B.13.【题文】如图,是线段上一点,M是线段的中点,N是线段BC的中点且MN=3cm,则的长为cm.【答案】6【分析】根据线段中点的性质,可得AC+CB=2MN的长,依此可得AB的长.【解答】解:∵M是线段AC的中点,N是线段BC的中点,∴AC=2MC,BC=2CN,∴AB=AC+BC=2(MC+CN)=2MN=6cm.故答案为:6.14.【题文】直线上有A,B,C三点,点M是线段AB的中点,点N是线段BC 的一个三等分点,如果AB=6,BC=12,求线段MN的长度.【答案】1或5或7或11.【分析】分类讨论点C在AB的延长线上,点C在B的左边,根据线段的中点,三等分点的性质,可得BM、BN的长,根据线段的和差,可得答案.【解答】解:(1)点C在射线AB上,如:点M是线段AB的中点,点N是线段BC的三等分点,MB=AB=3,BN=CB=4,或BN′=BC=8,MN=BM+BN=3+4=7,或MN′=BM+BN′=3+8=11;(2)点C在射线BA上,如:点M是线段AB的中点,点N是线段BC三等分点,MB=AB=3,BN=CB=4,或BN′=BC=8,MN=BN﹣BM=4﹣3=1,或MN′=BN′﹣BM=8﹣3=5.方法总结:本题考查了两点间的距离,分类讨论是解题的关键,根据线段中点的性质,线段的和差,可得出答案.15.【题文】已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是直线AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.【答案】(1)k=2;(2)CD的长为1cm或3cm.【分析】(1)把x=-3代入方程进行求解即可得k的值;(2)由于点C的位置不能确定,故应分点C在线段AB上与点C在BA的延长线上两种情况进行讨论即可得.【解答】解:(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;(2)当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm,当C在线段AB上时,如图1,∵D为AC的中点,∴CD=AC=1cm;当C在BA的延长线时,如图2,∵BC=2AC,AB=6cm,∴AC=6cm,∵D为AC的中点,∴CD=AC=3cm,即CD的长为1cm或3cm.16.【题文】(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M,N分别是AC,BC的中点,求线段MN的长度.(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜出MN的长度吗?请你用一句简洁的话表述你发现的规律.(3)对于(1)题,如果我们这样叙述它:“已知线段AC=6cm,BC=4cm,点C 在直线AB上,点M,N分别是AC,BC的中点,求MN的长度.”结果会有变化吗?如果有,求出结果.【答案】(1)5cm;(2)MN=,直线上相邻两线段中点间的距离为两线段长度和的一半;(3)有变化,会出现两种情况:①当点C在线段AB上时,MN==5cm;②当点C在AB或BA的延长线上时,MN=1cm.【分析】(1)(2)在一条直线或线段上的线段的加减运算和倍数运算,首先明确线段间的相互关系,最好准确画出几何图形,再根据题意进行计算;(3)会出现两种情况:①点C在线段AB上;②点C在AB或BA的延长线上.不要漏【解答】解:(1)∵AC=6cm,BC=4cm,点M,N分别是AC,BC的中点,(2)直线上相邻两线段中点间的距离为两线段长度和的一半;(3)如图,有变化,会出现两种情况:①当点C在线段AB上时,②当点C在AB或BA的延长线上时,17.【题文】已知:线段a,b求作:线段AB,使AB=2a+b(用直尺、圆规作图,不写作法,但要保留作图痕迹)【答案】见解析【分析】先在射线上依次截取再截取,则线段【解答】解:如图:,线段AB即为所求.18.【题文】如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD 的中点,若CD=6,求:(1)线段MC的长.(2)AB:BM的值.【答案】(1)3(2)4:5【分析】(1)AB:BC:CD=2:4:3,可得线段、线段的长,根据线段的和差,可得线段的长,根据线段中点的性质,可得的长,根据线段的和差,可得答案;(2)根据线段中点的性质,可得的长,根据线段的和差,可得的长,根据比的意义,可得答案.【解答】解:(1)由AB:BC:CD=2:4:3,CD=6,得AB=4,BC=8.由线段的和差,得AD=AB+BC+CD=4+8+6=18.由线段中点的性质,得由线段的和差,得MC=MD−CD=9−6=3;(2)由线段的和差,得BM=AM−AB=9−4=5.由比的意义,得AB:BM=4:5.19.【题文】如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣4,点C在数轴上表示的数是4,若线段AB以3个单位长度/秒的速度向右匀速运动,同时线段CD以1个单位长度/秒的速度向左匀速运动.(1)问运动多少秒时BC=2(单位长度)?(2)线段AB与线段CD从开始相遇到完全离开共经过多长时间?(3)P是线段AB上一点,当B点运动到线段CD上,且点P不在线段CD上时,是否存在关系式BD﹣AP=3PC.若存在,求线段PD的长;若不存在,请说明理由.【答案】(1)1或2;(2)1.5秒;(3)5或 3.5.【分析】(1)分点B在点C的左边和点B在点C的右边两种情况讨论;(2)所走路程为这两条线段的和,用路程,速度,时间之间的关系可求解;(3)随着点B的运动,分别讨论当点B和点C重合、点C在点A和B之间及点A与点C重合时的情况.【解答】解:(1)设运动t秒时,BC=2单位长度,①当点B在点C的左边时,由题意得:3t+2+t=6,解得:t=1;②当点B在点C的右边时,由题意得:3t﹣2+t=6,解得:t=2.(2)(2+4)÷(3+1)=1.5(秒).答:线段AB与线段CD从开始相遇到完全离开共经过1.5秒长时间.(3)存在关系式BD﹣AP=3PC.设运动时间为t秒,①当t=(4+2)÷(3+1)=1.5时,点B和点C重合,点P在线段AB上,0<PC≤2,且BD=CD=4,PA+3PC=AB+2PC=2+2PC,当PC=1时,BD=AP+3PC,即BD﹣AP=3PC;②当1.5<t<2.5时,点C在点A和点B之间,0<PC<2:当点P在线段BC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+4PC=AB﹣BC+4PC=2﹣BC+4PC当PC=0.5时,有BD=AP+3PC,即 BD﹣AP=3PC,③当t=2.5时,点A与点C重合,0<PC≤2,BD=CD﹣AB=2,AP+3PC=4PC,当PC=0.5时,有BD=AP+3PC,即BD﹣AP=3PC,∵P在C点左侧或右侧,∴PD的长有2种可能,即5或3.5.20.【题文】已知线段AB=6cm,点P是线段AB的中点,E是线段AB延长线上的一点,BE=AB,求线段PE的长.【答案】5cm.【分析】根据线段的倍分关系与和差关系求解. 【解答】解:∵点P是线段AB的中点,AB=6cm,∴PB=AB=3cm,∵EB=AB,∴EB=2cm,∴PE=PB+BE=5cm.。
人教版七年级数学(上)第一章《整式》经典例题及练习一. 教学内容:整式1. 单项式的有关概念,如何确定单项式的系数和次数;2. 多项式的有关概念,如何确定多项式的系数和次数;3. 什么是整式;4. 分析实际问题中的数量关系,培养用字母表示数量关系以及解决实际问题的能力.二. 知识要点:1. 用字母表示数时,应注意以下几点:(1)加、减、乘、除、乘方等运算符号将数和表示数的字母连接而成的式子是代数式.(2)代数式中出现的乘号一般用“·”或省略不写,例如4乘a写作4a.(3)在代数式中出现除法运算时,一般按分数的写法来写,例如a除以t写作.(4)代数式中大于1的分数系数一般写成假分数,例如2. 单项式(1)如3a,xy,-6m2,-k等,它们都是数与字母的积,像这样的式子叫做单项式. 对于单项式的理解有以下几点需要注意:①单项式反映的或者是数与字母,或者是字母与字母之间的运算关系,且这种运算只能是乘法,而不能含有加减运算,如代数式(x+1)3不是单项式.②字母不能出现在分母里,如不是单项式,因为它是n与m的除法运算.③单独的一个数或一个字母也是单项式,如0,-2,a都是单项式.(2)单项式的系数:是指单项式中的数字因数,如果一个单项式只含有字母因数,它的系数就是1或-1,如m就是1·m,其系数是1;-a2b就是-1·a2b,其系数是-1.(3)单项式的次数:是指一个单项式中所有字母的指数的和. 掌握好这个概念要注意以下几点:①从本质上说,单项式的次数就是单项式中字母因数的个数,如5a3b就是5aaab,有4个字母因数,因此它的次数就是4.②确定单项式的次数时,不要漏掉“1”. 如单项式3x2yz3的次数是2+1+3=6,字母因数的指数为1时,不能认为它没有指数.③单项式的次数只与单项式中的字母因数的指数有关,而不能误加入系数的指数,如单项式-2a3b4c5的次数是字母a、b、c的指数和,即3+4+5=12,而不是2+3+4+5=14.④单独一个非零数字的次数是零.3. 多项式(1)多项式:是指几个单项式的和. 其含义有:①必须由单项式组成;②体现和的运算法则,如3a2+b-5是多项式,(2)多项式的项:是指多项式中的每个单项式. 其中不含字母的项叫做常数项. 要特别注意,多项式的项包括它前面的性质符号(正号或负号).另外,一个多项式化简后含有几项,就叫做几项式. 多项式中的某一项的次数是n,这一项就叫做n次项. 如多项式x3+2xy+x2-x+y-1是六项式,x3的次数是3,叫三次项,2xy、x2的次数都是2,都叫二次项,-x、y的次数都是1,都叫一次项,后面的-1叫常数项.(3)多项式的次数:是指多项式里次数最高的项的次数. 应当注意的是:不要与单项式的次数混淆,而误认为多项式的次数是各项次数之和,如多项式3x4+2y2+1的次数是4,而不是4+2=6,故此多项式叫做四次三项式.4. 单项式与多项式统称为整式.三. 重点难点:1. 重点:单项式和多项式的有关概念.2. 难点:如何确定单项式的次数和系数,如何确定多项式的次数.【典型例题】例1. (1)(2008年宁夏)某市对一段全长1500米的道路进行改造. 原计划每天修x米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了__________天.(2)(2008年全国数学竞赛广东初赛)某商店经销一批衬衣,每件进价为a元,零售价比进价高m%,后因市场变化,该商店把零售价调整为原来零售价的n%出售,那么调整后每件衬衣的零售价是()A. a(1+m%)(1-n%)元B. am%(1-n%)元C. a(1+m%)n%元D. a(1+m%·n%)元分析:(1)修这条路实际用的天数等于这条路的全长1500米除以实际每天的工作量,原计划每天修x米,实际施工时,每天比原计划的2倍还多35米,即(2x+35)米. 用1500除以(2x+35)就可以了. (2)每件衬衣进价为a元,零售价比进价高m%,那么零售价就是a(1+m%),后来零售价调整为原来的n%,也就是a(1+m%)n%.评析:用字母表示数时,要注意书写代数式的惯例(数字在前字母在后,乘号省略,如果是除法写成分数的形式,系数是代分数时写成假分数,数字和字母写在括号的前面等)例2. 找出下列代数式中的单项式,并写出各单项式的系数和次数.单独一个数字是单项式,它的次数是0.8a3x的系数是8,次数是4;-1的系数是-1,次数是0.评析:判定一个代数式是否是单项式,关键就是看式子中的数字与字母或字母与字母之间是不是纯粹的乘积关系,如果含有加、减、除的关系,那么它就不是单项式.例3. 请你用代数式表示如图所示的长方体形无盖的纸盒的容积(纸盒厚度忽略不计)和表面积,这些代数式是整式吗?如果是,请你分别指出它们是单项式还是多项式.分析:容积是长×宽×高,表面积(无盖)是五个面的面积,在分辨它们是不是整式,是单项式还是多项式时,牵牵把握住概念,根据概念判断.解:纸盒的容积为abc;表面积为ab+2bc+2ac(或ab+ac+bc+ac+bc). 它们都是整式;abc是单项式,ab+2bc+2ac(或ab+ac+bc+ac+bc)是多项式.评析:①本题是综合考查本节知识的实际问题,作用有二:一是将本节所学知识直接应用到具体问题的分析和解答中,既巩固了知识,又强化了对知识的应用意识;二是将几何图形与代数有机结合起来,有利于综合解决问题能力的提高. ②本题解答关键:长方体的体积公式和表面积公式.故只剩下-2x2a+1y2的次数是7,即2a+1+2=7,则a=2.解:2评析:本题考查对多项式的次数概念的理解. 多项式的次数是由次数最高的项的次数决定的.例5. 把代数式2a2c3和a3x2的共同点填写在下列横线上.例如:都是整式.(1)都是____________________;(2)都是____________________.分析:观察两式,共同点有:(1)都是五次式;(2)都含有字母a.解:(1)五次式;(2)都含有字母a.评析:主要观察单项式的特征.例6. 如果多项式x4-(a-1)x3+5x2-(b+3)x-1不含x3和x项,求a、b的值.分析:多项式不含x3和x项,则x3和x项的系数就是0. 根据这两项的系数等于0就可以求出a和b 的值了.解:因为多项式不含x3项,所以其系数-(a-1)=0,所以a=1.因为多项式也不含x项,所以其系数-(b+3)=0,所以b=-3.答:a的值是1,b的值是-3.评析:多项式不含某项,则某项的系数为0.【方法总结】1. “用字母表示数”是代数学的基础,这种符号化的表示方法随着学习的深入会逐渐加深数学抽象化的程度,我们要体会这种抽象化,它更接近数学的本质,也是有效地解决数学问题的工具.2. 在学习多项式的时候,要注意和单项式的概念进行比较,通过比较两者之间的相同点和不同点,掌握两个概念之间的联系与区别,突出概念的本质,帮助我们理解多项式的概念.【模拟试题】(答题时间:40分钟)一. 选择题1. 在代数式中单项式共有()A. 2个B. 4个C. 6个D. 8个*2. 下列说法不正确的是()C. 6x2-3x+1的项是6x2,-3x,1D. 2πR+2πR2是三次二项式3. 下列整式中是多项式的是()4. 下列说法正确的是()A. 单项式a的指数是零B. 单项式a的系数是零C. 24x3是7次单项式D. -1是单项式5. 组成多项式2x2-x-3的单项式是下列几组中的()A. 2x2,x,3B. 2x2,-x,-3C. 2x2,x,-3D. 2x2,-x,3*7. 下列说法正确的是()B. 单项式a的系数为0,次数为2C. 单项式-5×102m2n2的系数为-5,次数为58. 下列单项式中的次数与其他三个单项式次数不同的是()**9. (2007年华杯初赛)如果一个多项式的各项的次数都相同,则称该多项式为齐次多项式. 例如:x3+2xy2+2xyz+y3是3次齐次多项式. 若x m+2y2+3xy3z2是齐次多项式,则m等于()A. 1B. 2C. 3D. 4二. 填空题1. (2007年云南)一台电视机的原价为a元,降价4%后的价格为__________元.三. 解答题*1. 下列代数式中哪些是单项式,并指出其系数和次数.2. 说出下列多项式是几次几项式:(1)a3-ab+b3(2)3a-3a2b+b2a-1(3)3xy2-4x3y+12(4)9x4-16x2y2+25y2+4xy-1四. 综合提高题**3. 一个关于字母a、b的多项式,除常数项外,其余各项的次数都是3,这个多项式最多有几项?试写出一个符合这种要求的多项式,若a、b满足︱a+b︱+(b-1)2=0,求你写出的多项式的值.【试题答案】一. 选择题1. B2. D3. B4. D5. B6. C7. D8. B9. B二. 填空题三. 解答题2. (1)三次三项式(2)三次四项式(3)四次三项式(4)四次五项式四. 综合提高题1. 由题意可知m+2+1=8,∴m=52. (1)四次六项式,最高次项是-3x3y,最高次项系数是-3,常数项是1(2)三次三项式,最高次项是y3,最高次项系数是1,常数项是-0.53. 最多有5项(可以含有a3,b3,a2b,ab2),如a3+a2b+ab2+b3+1(答案不唯一). 因为︱a+b ︱+(b-1)2=0,所以b=1,a=-1,所以原式=-1+1-1+1+1=1。
七年级数学上册期末备考:《一元一次方程》应用练习题(一)一.选择题1.我国古代问题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”其题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份绳长比水井深度多四尺;如果将绳子折成四等份,那么每等份绳长比水井深度多一尺.问绳长和井深各多少尺?若假设井深为x尺,则下列符合题意的方程是()A.B.3(x+4)=4(x+1)C.D.3x+4=4x+12.我国明朝珠算发明家程大位,他完成的古代数学名著《直指算法统宗》,详述了传统的珠算规则,确立了算盘用法.书中记载如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?设大和尚有x人,则可列方程为()A.3x+(100﹣x)=100 B.3x+3(100﹣x)=100C.x+3(100﹣x)=100 D.x+(100﹣x)=1003.中国明代数学著作《算法统宗》中有这样一首古诗:“巍巍古寺在山中,不知寺内几多僧?三百六十四只碗,恰好用尽不用争.三人共餐一碗饭,四人共尝一碗羹,请问先生能算者,算出寺内几多僧?”其大意是,某古寺用餐,3个和尚合吃一碗饭,4个和尚合分一碗汤,一共用了364只碗,问有多少个和尚?根据题意,可以设和尚的个数为x,则得到的方程是()A.3x+4x=364 B.x+x=364C.x+4x=364 D.3x+x=3644.某车间有28名工人生产螺钉和螺母,每人每小时平均能生产螺钉12个或螺母18个,1个螺钉需要配2个螺母,若安排m名工人生产螺钉时每小时生产的螺栓和螺母刚好配套,那么可列方程为()A.12×m=18×(28﹣m)×2 B.12×(28﹣m)=18×m×2C.12×m×2=18×(28﹣m)D.12×(28﹣m)×2=18×m5.某网上电器商城销售某种品牌的高端电器.已知该电器按批发价上浮50%进行标价,若按照标价的九折销售,则可获纯利润350元,现由于商城搞促销,该电器按照标价的八折销售,则可获纯利润()A.180元B.200元C.220元D.240元6.某商店有两个进价不同的计算器,都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店()A.不赔不赚B.赚了8元C.赔了8元D.赚了32元7.甲仓库有煤200吨,乙仓库有煤80吨,如果甲仓库每天运出15吨,乙仓库每天运进25吨,问多少天后两仓库存煤相等()A.6天B.5天C.4天D.3天8.某品牌商品,按标价八折出售,仍可获得10%的利润.若该商品标价为275元,则商品的进价为()A.192.5元B.200元C.244.5元D.253元二.填空题9.我国古代《算法统宗》里有这样一首诗:我问开店李三公.众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?设该店有房x间,则可列方程:.10.我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二而税一.次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.”其意思为“今有人持金出五关,第1关所收税金为持金的,第2关所收税金为剩余金的,第3关所收税金为剩余金的,第4关所收税金为剩余金的,第5关所收税金为剩余金的,5关所收税金之和,恰好重1斤.”若设这个人原本持金x斤,根据题意可列方程为.11.小华和小明周末到北京三山五园绿道骑行.他们按设计好的同一条线路同时出发,小华每小时骑行18km,小明每小时骑行12km,他们完成全部行程所用的时间,小明比小华多半小时.设他们这次骑行线路长为xkm,依题意,可列方程为.12.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x个中国结,可列方程.13.如图1是一个由1~28的连续整数排成的“数阵”.如图2,用2×2的方框围住了其中的四个数,如果围住的这四个数中的某三个数的和是27,那么这三个数是a,b,c,d中的.14.水果在物流运输过程中会产生一定的损耗,下表统计了某种水果发货时的重量和收货时的重量.发货时重量(kg)100 200 300 400 500 600 1000收货时重量(kg)94 187 282 338 435 530 901若一家水果商店以6元/kg的价格购买了5000kg该种水果,不考虑其他因素,要想获得约15000元的利润,销售此批水果时定价应为元/kg.15.我国古代数学著作中有这样一道题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.意思是:远远望见一座7层高的雄伟壮丽的佛塔,每层塔点着的红灯数,下层比上层成倍增加,共381盏.则塔尖有盏灯.三.解答题16.根据题意设未知数,并列出方程(不必求解).(1)有两个工程队,甲队人数30名,乙队人数10名,问怎样调整两队的人数,才能使甲队的人数是乙队人数的7倍.(2)有一个班的同学准备去划船,租了若干条船,他们计算了一下,如果比原计划多租1条船,那么正好每条船坐6人;如果比原计划少租1条船,那么正好每条船坐9人.问这个班共有多少名同学?17.小王离岗创业,销售某品牌电脑,1月份的销售量为100台,每台电脑售价相同,2月份的销售量比1月份增加10%,每台售价比1月份降低了400元,2月份与1月份的销售总额相同,求每台电脑1月份的售价.18.新型冠状病毒肺炎是一种极性感染性肺炎,其病原体是一种先前未在人体中发现的新型冠状病毒,市民出于防疫的需求,持续抢购防护用品.某药店口罩每袋售价20元,医用酒精每瓶售价15元.(1)该药店第一周口罩的销售袋数比医用酒精的销售瓶数多100,且第一周这两种防护用品的总销售额为9000元,求该药店第一周销售口罩多少袋?(2)由于疫情紧张,该药店为了帮助大家共渡难关,第二周口罩售价降低了a%,销量比第一周增加了2a%,医用酒精的售价保持不变,销售比第一周增加了a%,结果口罩和医用酒精第二周的总销售额比第一周增加了a%,求a的值.19.《算法统宗》是中国古代数学名著之一,其中记载了这样的数学问题:“用绳子测水井深度,绳长的三分之一比井深多4尺;绳长的四分之一比井深少1尺,问绳长、井深各是多少尺”.若设这个问题中的绳长为x尺,求x的值.20.力“皖”狂澜,新冠肺炎期间,安徽共出动八批,共计1362位医护人员驰援武汉,他们是新时代最可爱的人.3月19日,第二批和第八批医护人员共130人乘坐飞机返回合肥,其中第二批人数是第八批人数的3倍还多10人,第八批安徽共出动了多少名医护人员?21.有76张全等的矩形卡纸,用其做成圆锥,其中x张卡纸用A方法每张剪裁出6个全等的半圆,其余卡纸用B方法每张剪裁出12个全等的圆,一个半圆和一个圆正好做成一个圆锥.(1)一张矩形卡纸长与宽的比是,能做圆锥侧面个,底面个.(2)最多可以做圆锥多少个?卡纸还剩多少张?(3)剩下的卡纸用C方法剪裁,最多还能做几个圆锥?请画出C方法的剪裁示意图.参考答案一.选择题1.解:设井深为x尺,依题意,得:3(x+4)=4(x+1).故选:B.2.解:设大和尚有x人,则小和尚(100﹣x)人,由题意得:3x+(100﹣x)=100,故选:A.3.解:设和尚的个数为x,根据题意得,,故选:B.4.解:设安排m名工人生产螺钉,则(28﹣m)人生产螺母,由题意得12×m×2=18×(28﹣m),故选:C.5.解:设该商品批发价为x元/件,则该商品的标价为(1+50%)x元/件,根据题意,得:(1+50%)x•0.9﹣x=350,解得:x=1000,则其标价为(1+50%)×1000=1500元/件,∴该电器按照标价的八折销售,则可获纯利润为1500×0.8﹣1000=200元,故选:B.6.解:设进价低的计算器进价为x元,进价高的计算器进价为y元,根据题意得:(1+60%)x=64,(1﹣20%)=64,解得:x=40,y=80,∴64×2﹣x﹣y=8.故选:B.7.解:设x天后两仓库存煤相同,则200﹣15x=80+25x,解得x=3.答:3天后两仓库存煤相同.故选:D.8.解:设商品的进价为x元,根据题意得:(1+10%)x=275×80%,1.1x=220,x=200.故商品的进价为200元.故选:B.二.填空题(共7小题)9.解:设该店有房x间,则可列方程:7x+7=9(x﹣1).故答案为:7x+7=9(x﹣1).10.解:设这个人原本持金x斤,根据题意可列方程为:.故答案为:.11.解:设他们这次骑行线路长为xkm,依题意,可列方程为,故答案为:.12.解:设计划做x个“中国结”,根据题意得=.故答案为=.13.解:①若这三个数分别是a、b、c时,依题意得:a+b+c=a+a+1+a+7=27.此时a=,不合题意,舍去.②若这三个数分别是a、b、d时,依题意得:a+b+d=a+a+1+a+8=27.此时a=6,符合题意.③若这三个数分别是b、c、d时,依题意得:b+c+d=a+1+a+7+a+8=27.此时a=,不合题意,舍去.④若这三个数分别是a、c、d时,依题意得:a+c+d=a+a+7+a+8=27.此时a=4,符合题意.综上所述,符合题意的组合为:a,b,d或a,c,d.故答案是:a,b,d或a,c,d.14.解:设销售此批水果时定价为x元/kg,由表格可知,水果的损耗接近10%,则5000×(1﹣10%)x﹣5000×6=15000,解得,x=10答:销售此批水果时定价应为10元/kg,故答案为:10.15.解:设塔的顶层装x盏灯,则从塔顶向下,每一层灯的数量依次是2x、4x、8x、16x、32x、64x,所以x+2x+4x+8x+16x+32x+64x=381127x=381x=381÷127x=3答:塔的顶层装3盏灯.故答案为:3.三.解答题(共6小题)16.解:(1)设从乙队调x人去甲队,则乙队现在有10﹣x人,甲队有30+x人,由题意得30+x=7(10﹣x);(2)设这个班共有x名同学,由题意得﹣1=+1.17.解:设每台电脑1月份的售价为x元,根据题意得,100(1+10%)(x﹣400)=100x,解得:x=4400,答:每台电脑1月份的售价为4400元.18.解:(1)设该药店第一周销售口罩x袋,则医用酒精销售量为(x﹣100)瓶,根据题意得:20x+15(x﹣100)=9000,解得:x=300,答:该药店第一周销售口罩300袋;(2)根据题意得:20(1﹣a%)×300(1+2a%)+15×200(1+a%)=9000(1+a%),令t=a%,原方程整理为5t2﹣t=0,解得:t1=,t2=0,∴a1=20,a2=0(舍去).答:a的值为20.19.解:∵绳长为x尺,则设井深为(x+1)尺,依题意得:x﹣(x+1)=4,解得:x=60,答:x的值为60.20.解:设第八批安徽共出动了x名医护人员,由题意可知:3x+10+x=130,解得:x=30,答:第八批安徽出动了30名医护人员.21.解:(1)观察图形,可知:一张矩形卡纸长与宽的比是4:3,能做圆锥侧面6个,底面12个.故答案为:4:3;6;12.(2)假设76张全等的矩形卡纸全部用完.则有6x=12(76﹣x),解得x=50.6,∴76张全等的矩形卡纸不可能全部用完,假设x=50,则50×6=300,300÷12=25,∵50+25=75(张),76﹣57=1(张)∴最多可以做300个圆锥,卡纸还剩1张.(3)剩下的卡纸用C方法剪裁,最多还能做4个圆锥,如图所示:。
七年级数学试卷有理数解答题专题练习(及答案)(1)一、解答题1.观察下列两个等式:2﹣=2× +1,5﹣=5× +1,给出定义如下:我们称使等式a ﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是________;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)________“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为________;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.2.已知式子M=(a+5)x3+7x2-2x+5是关于x的二次多项式,且二次项系数为b,数轴上A,B两点所对应的数分别是a和b.(1)a=________,b=________.A,B两点之间的距离=________;(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度……按照如此规律不断地左右运动,当运动到第2019次时,求点P所对应的有理数;(3)在(2)的条件下,点P会不会在某次运动时恰好到达某一位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.3.已知数轴上,一动点Q从原点O出发,沿数轴以每秒2个单位长度的速度来回移动,其移动的方式是:先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度…,(1)动点Q运动3秒时,求此时Q在数轴上表示的数?(2)当动点Q第一次运动到数轴上对应的数为10时,求Q运动的时间t;(3)若5秒时,动点Q激活所在位置P点,P点立即以0.1个单位长度/秒的速度沿数轴运动,试求点P激活后第一次与继续运动的点Q相遇时所在的位置.4.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是________;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.5.数轴上两个质点A.B所对应的数为−8、4,A.B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位/秒。
七年级上册数学例题汇总P3例(2)某年下列国家的商品进出口总额比上年的变化情况是: 美国减少6.4%, 德国增长1.3%, 法国减少2.4%, 英国减少3.5%, 意大利增长0.2%,中国增长7.5%. 写出这些国家该年商品进出口总额的增长率. 解:六个国家该年商品出口总额的增长率:美国 -6.4%, 德国 1.3%, 法国 -2.4%, 英国 -3.5%,意大利 0.2%, 中国 7.5%. P13 例比较下列各数的大小(1))1(--和)2(+- ; (2) 73218--和 ; (3)31)3.0(---和解:(1)先化简,1)1(=--,2)2(-=+-. 因为正数大于负数,所以21->,即>--)1()2(+-(2)这是两个负数比较大小,先求它们的绝对值。
218218=-,2197373== 因为219218<,即73218-<-, 所以73218->-。
(3)先化简,3.0)3.0(=--,3131=-。
因为313.0<, 所以31)3.0(-<--。
P18例1 计算(1))9()3(-+-; (2)9.3)7.4(+-解(1)12)93()9()3(-=+-=-+- (2)8.0)9.37.4(9.3)7.4(-=--=+-P19例2 计算)35(24)25(16-++-+。
解:)35(24)25(16-++-+)]35()25[(2416-+-++= )60(40-+=20=P20例3 每袋小麦的标准重量为90千克,10袋小麦称重记录如 图所示,与标准重量比较,10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少?解法1:先计算10袋小麦的总重量,91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4再计算总计超过多少千克, 905.4 –90×10=5.4答:10袋小麦总计超过标准重量5.4千克,总重量是905.4千克. 解法2:每袋小麦超过标准重量的千克数记作正数,不足的千克数记作负数,10袋小麦对应的数为+1,+1, +1.5,–1,+1.2,+1.3,–1.3,–1.2,+1.8,+1.1.1+1+1.5+(–1)+1.2+1.3+(–1.3)+(–1.2)+1.8+1.1 =[1+(–1)]+[1.2+(–1.2)]+[1.3+(–1.3)]+(1+1.5+1.8+1.1) =5.490×10+5.4=905.4答:10袋小麦总计超过标准重量5.4千克,总重量是905.4千克. 例4 计算(1))5()3(--- (2)70- (3))8.4(2.7-- (4)415)213(-- 解:(1)25)3()5()3(=+-=--- (2)7)7(070-=-+=- (3)128.42.7)8.4(2.7=+=-- (4)438)415()213(415)213(-=-+-=--。
人教版七年级上册数学第一章《有理数》尖子生练习题1 1.对数轴上的点P进行如下:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P1,称为完成一次操作,第二次把P1同样操作后得到P2,如此依次操作下去.(1)如图,在数轴上若点A表示的数是﹣3,对点A进行上述一次操作后得到点A′,则点A′表示的数是;对点B进行上述一次操作后得到点B′,点B′表示的数是2,则点B表示的数是;(2)已知数轴上的点E经过上述一次操作后得到的对应点E′,若点E′与点E的距离为3,求点E表示的数;(3)已知数轴上的点E经过上述一次操作后得到的对应点E′与点E重合,求点E表示的数.2.在数轴上,点A表示的数为﹣4,点B表示的数为b(b>0),甲、乙两只蚂蚁同时分别从点A、B出发沿着数轴相向而行,蚂蚁甲的速度是每秒2个长度单位,蚂蚁乙的速度是每秒3个单位长度.若两只蚂蚁均爬到与原点的距离相等且分别位于原点的两侧,请用含有b的式子表示爬行时间t,并结合数轴直接写出b所表示的数的范围(画出相应的示意图).3.数轴上,A点表示的数为10,B点表示的数为﹣6,A点运动的速度为4单位/秒,B点运动的速度为2单位/秒.(1)B点先向右运动2秒,A点在开始向左运动,当他们在C点相遇时,求C点表示的数.(2)A,B两点都向左运动,B点先运动2秒时,A点在开始运动,当A到原点的距离和B到原点距离相等时,求A运动的时间.4.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A,B之间的距离记作|AB|.(1)设点P在数轴上对应的数为x,当|PA|﹣|PB|=2时,求x的值;(2)若点P在A的左侧,M,N分别是PA,PB的中点,当点P在A的左侧移动时,式子|PN|﹣|PM|的值是否发生改变?若不变,请求其值;若发生变化,请说明理由.5.如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)请说明原点在第几部分;(2)若AC=5,BC=3,b=﹣1,求a;(3)若点B到表示1的点的距离与点C到表示1的点的距离相等,且a﹣b﹣c=﹣3,求﹣a+3b﹣(b﹣2c)的值.6.一只蚂蚁从原点O出发,它先向左爬行2个单位长度到达A点,再向左爬行3个单位长度到达B点,再向右爬行8个单位长度到达C点.(1)写出A、B、C三点表示的数,并将它们的位置标注在数轴上;(2)根据C点在数轴上的位置,请回答该蚂蚁实际上是从原点出发向什么方向爬行了几个单位长度?7.如图,一条生产线的流水线上依次有5个机器人,它们站立的位置在数轴上依次用点A1,A 2,A3,A4,A5表示.(1)若原点是零件的供应点,5个机器人分别到达供应点取货的总路程是多少?(2)若将零件的供应点改在A1,A3,A5中的其中一处,并使得5个机器人分别到达供应点取货的总路程最短,你认为应该在哪个点上?通过计算说明理由.8.已知数轴上A,B,C三点对应的数分别为﹣1、3、5,点P为数轴上任意一点,其对应的数为x.点A与点P之间的距离表示为AP,点B与点P之间的距离表示为BP.(1)若AP=BP,则x=;(2)若AP+BP=8,求x的值;(3)若点P从点C出发,以每秒3个单位的速度向右运动,点A以每秒1个单位的速度向左运动,点B以每秒2个单位的速度向右运动,三点同时出发.设运动时间为t秒,试判断:4BP﹣AP的值是否会随着t的变化而变化?请说明理由.。
一、选择题1.某测绘小组的技术员要测量A,B两处的高度差(A,B两处无法直接测量),他们首先选择了D,E,F,G四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A,B之间的高度关系为()A.B处比A处高B.A处比B处高C.A,B两处一样高D.无法确定2.已知︱x︱=4,︱y︱=5且x>y,则2x-y的值为()A.-13 B.+13 C.-3或+13 D.+3或-13.下列说法中,正确的是()A.正数和负数统称有理数B.既没有绝对值最大的数,也没有绝对值最小的数C.绝对值相等的两数之和为零D.既没有最大的数,也没有最小的数4.下列有理数的大小比较正确的是()A.1123<B.1123->-C.1123->-D.1123-->-+5.将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是() A.(-3.4)3<(-3.4)4<(-3.4)5B.(-3.4)5<(-3.4)4<(-3.4)3C.(-3.4)5<(-3.4)3<(-3.4)4D.(-3.4)3<(-3.4)5<(-3.4)46.一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 37.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=b C.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|8.如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 29.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多1010.如果向右走5步记为+5,那么向左走3步记为( )A .+3B .-3C .+13D .-1311.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( )A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m 12.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃ 13.已知有理数a ,b 满足0ab ≠,则||||a b a b +的值为( ) A .2±B .±1C .2±或0D .±1或0 14.把实数36.1210-⨯用小数表示为() A .0.0612 B .6120 C .0.00612 D .612000 15.下面说法中正确的是 ( )A .两数之和为正,则两数均为正B .两数之和为负,则两数均为负C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数二、填空题16.23(2)0x y -++=,则x y 为______.17.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.18.若两个不相等的数互为相反数,则两数之商为____.19.把35.89543精确到百分位所得到的近似数为________.20.下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1b a=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.21.点A 表示数轴上的一个点,将点A 向右移动10个单位长度,再向左移动8个单位长度,终点恰好是原点,则点A 到原点的距离为______.22.在数轴上,距离原点有2个单位的点所对应的数是________.23.在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ . 24.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________. 25.用计算器计算:(1)-5.6+20-3.6=____;(2)-6.25÷25=____;(3)-7.2×0.5×(-1.8)=____;(4)-15×(-2.4)÷(-1.2)=____; (5)4.6÷113-6×3=____; (6)42.74.23.5-≈____(精确到个位). 26.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位;(2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.三、解答题27.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?28.表格记录的是龙岗区图书馆上周借书情况:(规定:超过200册记为正,少于200册记为负).(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?29.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用. 30.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯-。
1.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b判断出a 和b 异号. 2.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.3.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③ 1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道B .2道C .3道D .4道A 解析:A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.【详解】①2018(1)1-=,故本小题错误;②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题.故选A .【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键. 4.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.5.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( )A .6B .12C .8D .24B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B .【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.6.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a D 解析:D【解析】【分析】根据数轴表示数的方法得到a <0<b ,且|a|>b ,则-a >b ,-b >a ,然后把a ,b ,-a ,-b 从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.7.若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1C解析:C【解析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.8.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.9.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.10.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.11.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】 根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D .【点睛】 本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 12.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0C解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误.故选C .13.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.14.计算(-2)2018+(-2)2019等于( )A.-24037B.-2 C.-22018D.22018C 解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.15.下列计算结果正确的是()A.-3-7=-3+7=4B.4.5-6.8=6.8-4.5=2.3C.-2-13⎛⎫-⎪⎝⎭=-2+13=-213D.-3-12⎛⎫-⎪⎝⎭=-3+12=-212D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.1.若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积2000abcde=,则它们的和a b c d e++++的最小值为__.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.2.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.3.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.4.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.5.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对解析:71.610⨯【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.16000000 =71.610⨯.6.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.7.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:1621(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-. 【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.8.填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.9.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.++-+++-++++-=_____.【分析】第1 10.计算:(1)(2)(3)(4)(2019)(2020)个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.11.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;当输入2-时,输出的结果为24(3)524350-+---=-++-=.故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 1.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =154()68-÷⨯- =5468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.2.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】 (1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=;①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.3.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.4.计算:(1)13 |38|44⎛⎫--+- ⎪⎝⎭(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦解析:(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13 544 --=5-1 =4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157 (48)()(48)(48)2812 -⨯---⨯+-⨯=24+30-28=26.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.。
(暑假一日一练)2018年七年级数学上册第1章有理数1-2-1启埋数习题(新版)新人教版学校:___________ 姓名:___________ 班级: ____________一.选择题(共15小题)1.卜列四个数中,是正整数的是()A. - 1B. 0 C D. 132.最小的正整数是()A. 0B. 1C. - 1D. /、存在3.卜列说法正确的是()A. 一个数前面加上”号,这个数就是负数B.零既是正数也是负数C.若a是正数,则-a不一定是负数D.零既不是正数也不是负数4.最小的止后埋数是()A. 0B. 1C. - 1D. /、存在5.在0, 2.1 , - 4, - 3.2这四个数中,是负分数的是()A. 0 B, 2.1 C. - 4 D. - 3.26.在卜'列各数:-,+1, 6.7, - (- 3) , 0, , -5, 25% 中,属于整数而(wA. 2个B. 3个C 4个D. 5个7.如果对有理数a, b使等式a b=a?b+1成立,那么这对有理数a, b叫做“共生有理数对",记为(a, b),根据上述定义,下列四对有理数中不是“共生后埋数对”的是()A. (3,)B. (2,)C. (5,)D. (—2,一)璃般8.如果mlb^个有理数,那么m是()A.正数B. 0C.负数D.以上二者情况都启可能9.下列说法正确的是()A.非负数包括零和整数B.正整数包括自然数和零C.零是最小的整数D.整数和分数统称为启埋数10.卜列说法不正确的是()A.0既不是正数,也不是负数B.0的绝对值是0C.一个后埋数不是整数就是分数D.1是绝对值最小的正数11.在兀,-2, 0.3, - , 0.1010010001这五个数中,有理数的个数有22()用A. 1个B. 2个C 3个D. 4个―-SmdI — u - o 〜一■P- g 0 T- l-or -― ―― ——of。
章节测试题1.【题文】某商店出售一种商品,其原价为m元,现有两种调价方案:一种是先提价10%,在此基础上又降价10%;另一种是先降价10%,在此基础上又提价10%.1)用这两种方案调价的结果是否一样?2)两种调价方案改为:一种是提价20%;另一种是先提价5%,在此基础上又提价25%,这两种调价方案结果是否一样?【答案】(1),,一样;(2),,不一样【分析】(1)先提价10%为110m%,再降价10%后价钱为99m%;先降价10%为90m%,再提价10%后价钱为99m%,可知,两种方法结果都一样;(2)提价20%为120%m;先提价5%为105%m,再提价25%后价钱为13125%m.可知,两种方法结果不一样.【解答】解:(1)方案一:先提价10%为:(1+10%)m=110%m,再降价10%后价钱为:110%m×(1-10%)=99%m;方案二:先降价10%为(1-10%)m=90%m,再提价10%后价钱为90%m×(1+10%)=99%m;两种方法结果都一样;(2)方案一:提价20%为:(1+20%)m=120%m;方案二:先提价5%为(1+5%)m=105%m,再提价25%后价钱为105%m×(1+25%)=131.25%m;两种方法结果不一样.2.【题文】已知,,且的值与无关,求的值【答案】【分析】把A与B代入3A+6B中计算得到结果,由结果与x的值无关求出a的值即可.【解答】解:∵A=2x2+3ax-2x-1,B=-x2+ax-1,∴3A+6B=3(2x2+3ax-2x-1)+6(-x2+ax-1)=6x2+9ax-6x-3-6x2+6ax-6=(15a-6)x-9,由结果与x无关,得到15a-6=0,解得:a=0.4.3.【题文】已知:有理数m所表示的点到点3距离4个单位,a,b互为相反数,且都不为零,c,d互为倒数.求:的值.【答案】-3或-11.【分析】根据有理数m所表示的点到点3距离5个单位长度,a,b互为相反数且都不为零,c,d互为倒数,可以求得m的值为3+5或3-5,a+b=0和cd=1,然后根据m的值有两个,分别求出2a+2b+(-3cd)-m的值即可.【解答】解:由题意得:m=-1或7,a+b=0,=-1,cd=1.∴当m=-1时,=2(a+b)+(-1-3)-(-1)=0-4+1=-3;当m=7时,=2(a+b)+(-1-3)-7=0-4-7=-11.故值为:-3或-11.4.【题文】某检修小组乘一辆汽车在东西走向的公路上检修线路,约定向东走为正,某天从A地出发到收工时的行走记录如下(单位:km):+15,-2,+5,-1,+10,-13,-2,+12,-5,+4,+6,求:(1)问收工时检修小组是否回到A地,如果回到A地,请说明理由;如果没有回到A 地,请说明检修小组最后的位置;(2)距离A地最近的是哪一次?距离多远?(3)若汽车每千米耗油3升,开工时储油180升,到收工时,中途是否需要加油,若加油最少加多少升?若不需要加油,到收工时,还剩多少升汽油?(假定汽车可以开到油量为0)【答案】(1)检修小组最后在A地东面29km处;(2)第七次最近,距离A地12km;(3)需要中途加油至少45升.【分析】(1)把所有数据相加,根据结果判定方向与距离;(2)根据数据可知,数据和的绝对值最小时距离A地最近;(3)算出走的总路程,得出耗油量,与180比较得出答案即可.【解答】解:(1)15-2+5-1+10-13-2+12-5+4+6=29,检修小组最后A地东面29km处;(2)15-2+5-1+10-13-2=12km,第六次最近,距离A地12km;(3)由题意可知,|+15|+|-2|+|+5|+|-1|+|10|+|-13|+|-2|+|+12|=60,汽车最多可以开60km,汽车还需开15km,需要中途加油至少45升.5.【答题】计算2m2n-3m2n的结果为( )A. -1B. -23C. -m2nD. -6m4n2【答案】C【分析】合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变;计算即可.【解答】2m2n-3m2n=(2-3)m2n=-m2n.故选:C.6.【答题】有下列四个算式:①(﹣5)+(+3)=﹣8;②﹣(﹣2)3=6;③(+)+(-)=;④-3÷(-)=9.其中,正确的有()A. 0个B. 1个C. 2个D. 3个【答案】C【分析】原式各项计算得到结果,即可做出判断.【解答】①(-5)+(+3)=-2,错误;②-(-2)3=-(-8)=8,错误;③(+)+(-)=,正确;④-3÷(-)=-3×(-3)=9,正确.则其中正确的有2个.故选C.7.【答题】如果单项式3a n b2c是5次单项式,那么n的值为( )A. 2B. 3C. 4D. 5【答案】A【分析】根据单项式的次数是单项式中所有字母的指数和,建立关于n的方程,求解即可【解答】得:n=2.故选:A.8.【答题】下表是淮河某河段今年雨季一周内水位变化情况,(其中0表示警戒水位)那么水位最高是()星期一二三四五六日水位变化/米+0.03 +0.41 +0.25 +0.10 0 -0.13 -0.2A. 周一B. 周二C. 周三D. 周五【答案】D【分析】结合数轴,根据数轴上数的特点比较大小.【解答】+0.03、+0.41、+0.25、+0.10、0、-0.13、-0.2表示水位在上升和下降,周五时达到最大值,所以正确答案选D.9.【答题】有理数a,b,c在数轴上的位置如图所示,则下列结论正确的是( )A. a>b>0>cB. b>0>a>cC. b<a<0<cD. a<b<c<0【答案】C【分析】根据数轴上数的排列特点:右边的数总比左边数大.【解答】解:根据数轴上右边的数总是比左边的数大可得b<a<0<c.故选C.10.【答题】下列各题去括号错误的是( )A.B. m+(-n+a-b)=m-n+a-bC. (4x-6y+3)=-2x+3y+3D.【答案】C【分析】根据去括号法则依次计算各项后即可解答.【解答】选项A,=;选项B,;选项C,;选项D,.综上,只有选项C错误,故选C.11.【答题】下列语句正确的个数是()①整数和分数统称为有理数;②任何有理数都有相反数;③任何有理数都有倒数;④任何有理数的绝对值都是非负数.A. 1个B. 2个C. 3个D. 4个【答案】C【分析】根据有理数,相反数,倒数,绝对值的定义进行判断即可.【解答】①整数和分数统称为有理数;正确.②任何有理数都有相反数;正确.③0没有倒数,故错误.④任何有理数的绝对值都是非负数.正确.正确的有3个.故选:C.12.【答题】(﹣1)2018的倒数是()A. 1B. ﹣1C. 2018D. ﹣2018【答案】A【分析】根据乘方的意义求出(﹣1)2018的值,根据乘积为1的两个数互为倒数求出即可.【解答】(﹣1)2018=1根据乘积为1的两个数互为倒数可知:1的倒数为1.故选:A.13.【答题】中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,将这个数用科学记数法表示为()A. 44×108B. 4.4×108C. 4.4×109D. 4.4×1010【答案】C【分析】对于一个绝对值较大的数,用科学记数法写成的形式,其中,n是比原整数位数少1的数.【解答】4400000000=4.4×109.故选C.14.【答题】实数a、b在数轴上对应的位置如图所示,化简∣a∣+∣a+b∣的值是()A. 2a+bB. -2a-bC. bD. a【答案】C【分析】首先根据数轴可以得到a、b的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.认真计算即可得到答案.【解答】通过数轴得到∴∴故选:C.15.【答题】一个数的绝对值等于3,则这个数是______.【答案】3或-3【分析】根据绝对值的意义求解即可.【解答】∵,∴这个数是3或-3.故答案:3或-3.16.【答题】计算⑴=______,⑵-0.3的倒数是______【答案】(1)(2)【分析】(1)根据绝对值的定义解答即可;(2)先化成分数,再根据倒数的定义求解即可.【解答】(1)=;(2)∵-0.3=,∴-0.3的倒数是.故答案为:(1);(2)17.【答题】把1.249取近似数(精确到0.1)为______;【答案】1.2【分析】把百分位上的数字4进行四舍五入即可.【解答】1.249≈1.2(精确到0.1).故答案为:1.2.18.【答题】若2a x b y与﹣3a3b2是同类项,则x=______,y=______.【答案】3,2【分析】依据同类项的定义,即可求出的值.【解答】2a x b y与﹣3a3b2是同类项,则故答案为:19.【答题】若|m|=3,|n|=5,且m<n,则m+n的值是______.【答案】8或2【分析】根据绝对值的意义,由已知条件可求得m=3,n=5或m=-3,n=5从而求出m+n=8或2.【解答】解:∵|m|=3,|n|=5,∴m=3或-3,n=5或-5.∵m<n,∴m=3或-3,n=5.当m=3,n=5时,m+n=8;②当m=-3,n=5时,m+n=2.故本题答案为8或2.20.【答题】单项式的系数是______,次数是______.【答案】,3.【分析】本题考查了单项式。
一、选择题1.为庆祝“六·一”儿童节,綦江区某中学初一年级学生举行火柴棒摆“金鱼”比赛.如图所示:……按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .+26n B .+86nC .44n +D .8n2.81x >0.8x ,所以在乙超市购买合算.故选B . 【点睛】本题看起来很繁琐,但只要理清思路,分别计算降价后的价格是原价的百分之多少便可判断.渗透了转化思想.3.生物学家发现一种病毒的长度约为0.000043mm ,用科学记数法表示这个数的结果为(单位:mm )( ) A .4.3×10﹣5B .4.3×10﹣4C .4.3×10﹣6D .43×10﹣54.7-的绝对值是 ( ) A .17-B .17C .7D .7-5.按如图所示的运算程序,能使输出结果为10的是( )A .x =7,y =2B .x =﹣4,y =﹣2C .x =﹣3,y =4D .x =12,y =3 6.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .81B .508C .928D .13247.如图,从左面看该几何体得到的形状是( )A .B .C .D .8.下列数中,最小的负数是( ) A .-2B .-1C .0D .19.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .7210.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( ) A .2017B .2016C .191D .19011.如图,将一三角板按不同位置摆放,其中1∠与2∠互余的是( )A .B .C .D .12.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40 13.如果||a a =-,下列成立的是( )A .0a >B .0a <C .0a ≥D .0a ≤ 14.我县人口约为530060人,用科学记数法可表示为( )A .53006×10人 B .5.3006×105人 C .53×104人 D .0.53×106人 15.2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km ,把 384 000km 用科学记数法可以表示为( ) A .38.4 ×10 4 kmB .3.84×10 5 kmC .0.384× 10 6 kmD .3.84 ×10 6 km二、填空题16.当k =_____时,多项式x 2+(k ﹣1)xy ﹣3y 2﹣2xy ﹣5中不含xy 项.17.A ∠与B 的两边分别平行,且A ∠比B 的2倍少45°,则A ∠=__________. 18.数轴上点A 、B 的位置如下图所示,若点B 关于点A 的对称点为C ,则点C 表示的数为___19.如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n 个图案中白色正方形比黑色正方形多________个.(用含n 的代数式表示)20.某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x 人,则列方程为_____21.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.22.若有理数a 、b 、c 在数轴上的位置如图所示,则化简:| a |+| a -b |-| c +b |=________.23.若数轴上表示互为相反数的两点之间的距离是16,则这两个数是____. 24.如图,AB ∥ED ,AG 平分∠BAC ,∠ECF =80°,则∠F AG =_____.25.用科学记数法表示:-206亿=______.三、解答题26.如图,在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、b 满足|a+2|+(c ﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB= ,AC= ,BC= .(用含t 的代数式表示) (4)请问:3BC ﹣2AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值. 27.阅读理解与计算:(1)用“⊕”定义新运算:对于任意有理数,a b ,都有21a b b ⊕=+.例如:2744117⊕=+=.则①填空:53⊕= ;②当m 为有理数时,求()2m m ⊕⊕的值;(2)已知,m n 互为相反数,,x y 互为倒数,1=a ,试求()()201220122a m n xy -++-的值.28.如图,∠AOB=90°,∠BOC=2∠BOD ,OD 平分∠AOC ,求∠BOD 的度数.29.(9分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张? 30.解下列方程. (1)2(35)26x x -=+; (2)2(1)132x x+=+.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15答案 A A C D B B A D D C B D B B二、填空题16.3【解析】【分析】不含有xy 项说明整理后其xy 项的系数为0【详解】解:整理只含xy 的项得:(k-3)xy∴k -3=0k=3故答案为3【点睛】本题考查多项式的概念不含某项说明整理后的这项的系数之和为017.或【解析】【分析】由∠A 与∠B 的两边分别平行可得到∠A=∠B 或者∠A 与∠B 互补再结合已知条件即可求出∠A 的度数【详解】∵∠A 和∠B 的两边分别平行∴∠A=∠B 或∠A+∠B=180°当∠A=∠B 时∠A=18.-5【解析】分析:点A表示的数是-1点B表示的数是3所以|AB|=4;点B关于点A的对称点为C所以点C到点A的距离|AC|=4即设点C表示的数为x则-1-x=4解出即可解答;解答:解:如图点A表示的19.4n+3【解析】【分析】利用给出的三个图形寻找规律发现白色正方形个数=总的正方形个数-黑色正方形个数而黑色正方形个数第1个为1第二个为2由此寻找规律总个数只要找到边与黑色正方形个数之间关系即可依此类20.x-1413=x+2614【解析】【分析】设春游的总人数是x人由包租相同的大巴13辆有14人没有座位可得一辆大巴所坐的人数为x-1413人;由多包租1辆就多了26个空位可得一辆大巴所坐的人数为x+221.1838【解析】分析:类比于现在我们的十进制满十进一可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数即1×64+2×63+3×62+0×6+222.2a+c【解析】【分析】【详解】解:根据数轴上点的位置得:c<b<0<a∴a-b>0c+b <0则原式=a+a-b+c+b=2a+c故答案为:2a+c【点睛】本题考查整式的加减;数轴;绝对值23.-88【解析】因为互为相反数的两个数表示在数轴上是关于原点对称的两个点到原点的距离相等所以互为相反数的两个数到原点的距离为8故这两个数分别为8和-8故答案为-8824.140°【解析】【分析】根据平行线的性质求出∠BAC求出∠BAF和∠BAG即可得出答案【详解】∵AB∥ED∠ECF=80°∴∠BAC=∠FCE=80°∴∠BAF=180°﹣80°=100°∵AG平分25.-206×1010【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题二、填空题16.3【解析】【分析】不含有xy项说明整理后其xy项的系数为0【详解】解:整理只含xy的项得:(k-3)xy∴k-3=0k=3故答案为3【点睛】本题考查多项式的概念不含某项说明整理后的这项的系数之和为0解析:3【解析】【分析】不含有xy项,说明整理后其xy项的系数为0.【详解】解:整理只含xy的项得:(k-3)xy,∴k-3=0,k=3.故答案为3.【点睛】本题考查多项式的概念.不含某项,说明整理后的这项的系数之和为0.17.或【解析】【分析】由∠A与∠B的两边分别平行可得到∠A=∠B或者∠A与∠B互补再结合已知条件即可求出∠A的度数【详解】∵∠A和∠B的两边分别平行∴∠A=∠B或∠A+∠B=180°当∠A=∠B时∠A=解析:45︒或105︒【解析】【分析】由∠A与∠B的两边分别平行,可得到∠A=∠B或者∠A与∠B互补,再结合已知条件即可求出∠A的度数.【详解】∵∠A和∠B的两边分别平行∴∠A=∠B或∠A+∠B=180°,当∠A=∠B时,∠A=45°当∠A+∠B=180°时∵∠A比∠B的两倍少45°,∴∠A=2∠B-45°,∵∠A=2∠B-45°,∠A+∠B=180°∴∠A=105︒.综上可知∠A的度数为45︒或105︒故答案为:45︒或105︒.【点睛】此题考查了平行线的性质与方程组的解法.此题难度不大,解题的关键是由∠A和∠B的两边分别平行,即可得∠A=∠B或∠A+∠B=180°,注意分类讨论思想的应用.18.-5【解析】分析:点A表示的数是-1点B表示的数是3所以|AB|=4;点B关于点A的对称点为C所以点C到点A的距离|A C|=4即设点C表示的数为x则-1-x=4解出即可解答;解答:解:如图点A表示的解析:-5【解析】分析:点A表示的数是-1,点B表示的数是3,所以,|AB|=4;点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,即,设点C表示的数为x,则,-1-x=4,解出即可解答;解答:解:如图,点A表示的数是-1,点B表示的数是3,所以,|AB|=4;又点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,设点C表示的数为x,则,-1-x=4,x=-5;故答案为-5.19.4n+3【解析】【分析】利用给出的三个图形寻找规律发现白色正方形个数=总的正方形个数-黑色正方形个数而黑色正方形个数第1个为1第二个为2由此寻找规律总个数只要找到边与黑色正方形个数之间关系即可依此类解析:4n+3【解析】【分析】利用给出的三个图形寻找规律,发现白色正方形个数=总的正方形个数-黑色正方形个数,而黑色正方形个数第1个为1,第二个为2,由此寻找规律,总个数只要找到边与黑色正方形个数之间关系即可,依此类推,寻找规律. 【详解】 解:方法一:第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3-1个, 第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5-2个, 第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7-3个, 依此类推,第n 个图形黑、白两色正方形共3×(2n+1)个,其中黑色n 个,白色3×(2n+1)-n 个,即:白色正方形5n+3个,黑色正方形n 个, 故第n 个图案中白色正方形比黑色正方形多4n+3个, 方法二第1个图形白色正方形共8个,黑色1个,白色比黑色多7个,第2个图形比第1个图形白色比黑色又多了4个,即白色比黑色多(7+4)个, 第3个图形比第2个图形白色比黑色又多了4个,即白色比黑色多(7+4×2)个, 类推,第n 个图案中白色正方形比黑色正方形多[7+4(n-1)]个,即(4n+3)个, 故第n 个图案中白色正方形比黑色正方形多4n+3个. 【点睛】本题考查了几何图形的变化规律,是探索型问题,图中的变化规律是解题的关键.20.x-1413=x+2614【解析】【分析】设春游的总人数是x 人由包租相同的大巴13辆有14人没有座位可得一辆大巴所坐的人数为x-1413人;由多包租1辆就多了26个空位可得一辆大巴所坐的人数为x+2解析:x−1413=x+2614.【解析】 【分析】设春游的总人数是x 人,由包租相同的大巴13辆,有14人没有座位可得一辆大巴所坐的人数为x−1413人;由多包租1辆,就多了26个空位可得一辆大巴所坐的人数为x+2614人,由此即可得方程x−1413=x+2614.【详解】设春游的总人数是x 人. 根据题意可列方程为:x−1413=x+2614,故答案为:x−1413=x+2614.【点睛】本题考查了一元一次方程的应用,根据题意表示出一辆大巴所坐的人数是解决问题的关键.21.1838【解析】分析:类比于现在我们的十进制满十进一可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数即1×64+2×63+3×62+0×6+2解析:1838【解析】分析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数,即1×64+2×63+3×62+0×6+2=1838.详解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1838,故答案为:1838.点睛:本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.22.2a+c【解析】【分析】【详解】解:根据数轴上点的位置得:c<b<0<a∴a-b>0c+b<0则原式=a+a-b+c+b=2a+c故答案为:2a+c【点睛】本题考查整式的加减;数轴;绝对值解析:2a+c.【解析】【分析】【详解】解:根据数轴上点的位置得:c<b<0<a,∴a-b>0,c+b<0,则原式=a+a-b+c+b=2a+c故答案为:2a+c.【点睛】本题考查整式的加减;数轴;绝对值.23.-88【解析】因为互为相反数的两个数表示在数轴上是关于原点对称的两个点到原点的距离相等所以互为相反数的两个数到原点的距离为8故这两个数分别为8和-8故答案为-88解析:-8、8【解析】因为互为相反数的两个数表示在数轴上是关于原点对称的,两个点到原点的距离相等,所以互为相反数的两个数到原点的距离为8,故这两个数分别为8和-8.故答案为-8、8.24.140°【解析】【分析】根据平行线的性质求出∠BAC求出∠BAF和∠BAG即可得出答案【详解】∵AB∥ED∠ECF=80°∴∠BAC=∠FCE=80°∴∠BAF=180°﹣80°=100°∵AG平分解析:140°.【解析】【分析】根据平行线的性质求出∠BAC,求出∠BAF和∠BAG,即可得出答案.【详解】∵AB∥ED,∠ECF=80°,∴∠BAC=∠FCE=80°,∴∠BAF=180°﹣80°=100°,∵AG平分∠BAC,∴∠BAG=12∠BAC=40°,∴∠F AG=∠BAF+∠BAG=100°+40°=140°,故答案为140°.【点睛】本题考查了平行线的性质和角平分线定义,能正确根据平行线的性质求出∠BAC是解此题的关键,注意:两直线平行,内错角相等.25.-206×1010【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时解析:-2.06×1010【解析】【分析】科学记数法的表示形式为a×10 n 的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将-206亿=-20600000000用科学记数法表示为-2.06×1010 .故答案为:-2.06×1010.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10 n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题26.(1)-2, 1,c=7;(2)4;(3)3t+3, 5t+9, 2t+6;(4)不变,3BC﹣2AB=12.【解析】【分析】(1)利用|a+2|+(c−7)2=0,得a+2=0,c−7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)AB 原来的长为3,所以AB =t +2t +3=3t +3,再由AC =9,得AC =t +4t +9=5t +9,由原来BC =6,可知BC =4t−2t +6=2t +6;(4)由 3BC−2AB =3(2t +6)−2(3t +3)求解即可.【详解】(1)∵|a +2|+(c−7)2=0,∴a +2=0,c−7=0,解得a =−2,c =7,∵b 是最小的正整数,∴b =1;故答案为:−2;1;7.(2)(7+2)÷2=4.5,对称点为7−4.5=2.5,27.(1)①10;②26;(2)2【解析】【分析】(1)根据新定义运算法则可得:①53⊕=32+1;②()2221551m m ⊕+=⊕=+; (2)根据互为相反数和互为倒数的两个数的关系,和绝对值定义可得:m+n=0,xy=1,a 2=1,代入式子可得.【详解】解:(1)根据新定义运算法则可得:①53⊕=32+1=10故答案为:10②()222155126m m ⊕+=⊕=+=(2)因为,m n 互为相反数,,x y 互为倒数,1=a ,所以m+n=0,xy=1,a 2=1所以()()201220122a m n xy -++-=1-0+1=2【点睛】考核知识点:新定义运算,有理数运算.理解新定义运算法则,掌握有理数运算法则是关键. 28.∠BOD=22.5°.【解析】【试题分析】根据两角的等量关系列方程求解即可.【试题解析】设∠BOD=x ,因为∠AOB=90°,则∠AOD=90°-x , 因为 OD 平分∠AOC ,所以∠D OC=∠AOD=90°-x , 所以∠BOC=∠DOC-∠BOD=90°-2x , 因为∠BOC=2∠BOD ,所以90°-2x=2x ,解得:x =22.5°.即∠BOD=22.5°.【方法点睛】本题目是一道考查角平分线的题目,在本题中,根据两角的数量关系借助方程解决更简单一些.29.甲种票买了20张,乙种票买了15张.【解析】试题分析:设甲、乙两种票各买x 张,y 张,根据“共买了35张电影票”“共用750元”作为相等关系列方程组即可求解.试题解析:设甲买了x 张,乙买了y 张,由题意可知,352418750x y x y +=⎧⎨+=⎩, 解方程组可得2015x y =⎧⎨=⎩. 答:甲买了20张,乙买了15张.30.(1)4x =;(2)2x =【解析】【分析】(1)先去括号,再移项,合并同类项,系数化为1即可得到方程的解;(2)先去分母,再去括号,再移项,合并同类项,系数化为1即可得到方程的解.【详解】解:(1)去括号,得61026x x -=+,移项,得62610x x -=+,即416x =.两边同除以4,得4x =.(2)去分母,得4(1)36x x +=+,去括号,得4436x x +=+,移项,得4364x x -=-,即2x =.【点睛】此题考查解一元一次方程,正确掌握解方程的顺序是解题的关键.。
一、选择题1.为庆祝“六·一”儿童节,綦江区某中学初一年级学生举行火柴棒摆“金鱼”比赛.如图所示:……按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .+26nB .+86nC .44n +D .8n2.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( ) A .24里B .12里C .6里D .3里3.将一副直角三角尺按如图所示摆放,图中锐角∠1的度数为( )A .58°B .59°C .60°D .61° 4.用科学记数方法表示0.0000907,得( ) A .49.0710-⨯ B .59.0710-⨯C .690.710-⨯D .790.710-⨯5.x =5是下列哪个方程的解( )A .x +5=0B .3x ﹣2=12+xC .x ﹣15x =6 D .1700+150x =24506.将如图所示的Rt △ACB 绕直角边AC 旋转一周,所得几何体的主视图(正视图)是( )A .B .C .D.7.如图,O是直线AB上一点,OD平分∠BOC,OE平分∠AOC,则下列说法错误的是()A.∠DOE为直角B.∠DOC和∠AOE互余C.∠AOD和∠DOC互补D.∠AOE和∠BOC互补8.一个多项式加上3y2-2y-5得到多项式5y3-4y-6,则原来的多项式为().A.5y3+3y2+2y-1B.5y3-3y2-2y-6C.5y3+3y2-2y-1D.5y3-3y2-2y-1 9.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°10.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017B.2016C.191D.19011.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A .20B .27C .35D .40 12.如果||a a =-,下列成立的是( )A .0a >B .0a <C .0a ≥D .0a ≤ 13.我县人口约为530060人,用科学记数法可表示为( ) A .53006×10人 B .5.3006×105人 C .53×104人 D .0.53×106人 14.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++15.解方程2153132x x +--=,去分母正确的是( ) A .2(21)3(53)1x x +--= B .21536x x +--=C .2(21)3(53)6x x +--=D .213(53)6x x +--=二、填空题16.3-2的相反数是_____________,绝对值是________________17.我国明代数学读书《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么设竿子长为x 尺,依据题意,可列出方程得____________.18.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_______(结果用含a 、b 代数式表示).19.30万=42.3010⨯ ,则2.30中“0”在原数中的百位,故近似数2.30万精确到百位.20.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是_____.21.正整数按如图的规律排列,请写出第10行,第10列的数字_____.22.比较大小:123-________ 2.3.(“>”“<”或“=”)23.已知实数x ,y 满足150x y ++-=,则y x 的值是____. 24.若a 与b 互为相反数,c 与d 互为倒数,则a+b+3cd=_____.25.有理数a 、b 、c 在数轴上的位置如图所示,化简:-|c-a|+|b|+|a|-|c|= ________.三、解答题26.(1)填一填 21-20=2( ) 22-21=2( ) 23-22=2( ) ⋯(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+⋯+22019.27.某班原分成两个小组进行课外体育活动,第一组28人,第二组20人,根据学校活动器材的数量,要将第一组的人数调整为第二组的一半,应从第一组调多少人到第二组去? 28.已知22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+.()1化简:2B A -; ()2已知x 22a b --与y1ab 3的同类项,求2B A -的值. 29.解下列方程. (1)2(35)26x x -=+; (2)2(1)132x x+=+. 30.已知A =2x 2+xy +3y -1,B =x 2-xy . (1)若(x +2)2+|y -3|=0,求A -2B 的值; (2)若A -2B 的值与y 的值无关,求x 的值.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题二、填空题16.2-2-【解析】【分析】一个数a的相反数是-a正数的绝对值就是这个数本身负数的绝对值是它的相反数据此即可求解【详解】解:-2的相反数是:-(-2)=2-;∵<2∴-2<0∴|-2|=-(-2)=2-17.【解析】【分析】设竿子为x尺则绳索长为(x+5)根据对折索子来量竿却比竿子短一托即可得出关于x的一元一次方程【详解】解:设竿子为x尺则绳索长为(x+5)根据题意得:【点睛】本题考查了一元一次方程的应18.a+8b【解析】【分析】观察可知两个拼接时总长度为2a-(a-b)三个拼接时总长度为3a-2(a-b)由此可得用9个拼接时的总长度为9a-8(a-b)由此即可得【详解】观察图形可知两个拼接时总长度为19.无20.0【解析】【分析】由70=171=772=4973=34374=240175=16807…得出规律个位数4个数一循环由1+7+9+3=20(2019+1)÷4=505即可得出结果【详解】解:∵70=21.91【解析】【分析】观察如图的正整数排列可得到第一列的数分别是1491625…可得出一个规律:第一列每行的数都等于行数的2次方且每行的数个数与对应列的数的个数相等【详解】解:由第一列数149162522.<【解析】【分析】直接根据负数比较大小的法则进行比较即可【详解】∵||=≈233|−23|=23233>23∴−233<−23∴<−23故答案为:<【点睛】本题考查有理数的大小比较解题突破口是根据负23.【解析】∵∴且∴∴点睛:(1)两个非负数的和为0则这两个数都为0;(2)的奇数次方仍为24.【解析】【分析】【详解】解:∵ab互为相反数∴a+b=0∵cd互为倒数∴cd=1∴a+b+3c d=0+3×1=3故答案为3【点睛】本题考查代数式求值25.b+2c【解析】【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a<b则c-a<0原式=三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题二、填空题16.2-2-【解析】【分析】一个数a 的相反数是-a 正数的绝对值就是这个数本身负数的绝对值是它的相反数据此即可求解【详解】解:-2的相反数是:-(-2)=2-;∵<2∴-2<0∴|-2|=-(-2)=2-解析: 【解析】 【分析】一个数a 的相反数是-a ,正数的绝对值就是这个数本身,负数的绝对值是它的相反数,据此即可求解. 【详解】的相反数是:;2,<0,∴故答案为: 【点睛】本题考查了实数的性质:相反数和绝对值,熟记相反数的概念和绝对值的性质是解决此题的关键.17.【解析】【分析】设竿子为x 尺则绳索长为(x+5)根据对折索子来量竿却比竿子短一托即可得出关于x 的一元一次方程【详解】解:设竿子为x 尺则绳索长为(x+5)根据题意得:【点睛】本题考查了一元一次方程的应 解析:()1552x x -+= 【解析】 【分析】设竿子为x 尺,则绳索长为(x+5),根据“对折索子来量竿,却比竿子短一托”,即可得出关于x 的一元一次方程. 【详解】解:设竿子为x 尺,则绳索长为(x+5), 根据题意得: ()1552x x -+= 【点睛】本题考查了一元一次方程的应用,找准等量关系是解题的关键.18.a+8b 【解析】【分析】观察可知两个拼接时总长度为2a-(a-b)三个拼接时总长度为3a-2(a-b)由此可得用9个拼接时的总长度为9a-8(a-b)由此即可得【详解】观察图形可知两个拼接时总长度为解析:a+8b【解析】【分析】观察可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),由此可得用9个拼接时的总长度为9a-8(a-b),由此即可得.【详解】观察图形可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),四个拼接时,总长度为4a-3(a-b),…,所以9个拼接时,总长度为9a-8(a-b)=a+8b,故答案为:a+8b.【点睛】本题考查了规律题——图形的变化类,通过推导得出总长度与个数间的规律是解题的关键. 19.20.0【解析】【分析】由70=171=772=4973=34374=240175=16807…得出规律个位数4个数一循环由1+7+9+3=20(2019+1)÷4=505即可得出结果【详解】解:∵70=解析:0【解析】【分析】由70=1,71=7,72=49,73=343,74=2401,75=16807,…,得出规律个位数4个数一循环,由1+7+9+3=20,(2019+1)÷4=505,即可得出结果.【详解】解:∵70=1,71=7,72=49,73=343,74=2401,75=16807,…,∴个位数4个数一循环,4个数一循环的个位数的和:1+7+9+3=20,∵(2019+1)÷4=505,∴70+71+72+…+72019的结果的个位数字是0,故答案为:0【点睛】本题考查了尾数特征,仔细观察数据的个位数字,得到每4个个位数字为一个循环组依次循环是解题的关键.21.91【解析】【分析】观察如图的正整数排列可得到第一列的数分别是1491625…可得出一个规律:第一列每行的数都等于行数的2次方且每行的数个数与对应列的数的个数相等【详解】解:由第一列数1491625解析:91【解析】【分析】观察如图的正整数排列可得到,第一列的数分别是1,4,9,16,25,…可得出一个规律:第一列每行的数都等于行数的2次方.且每行的数个数与对应列的数的个数相等.【详解】解:由第一列数1,4,9,16,25,…得到:1=124=229=3216=4225=52…所以第10行第1列的数为:102=100.又每行的数个数与对应列的数的个数相等.所以第10行第9列的数为100﹣9=91.故答案为:91.【点睛】此题考查规律型:数字的变化类的知识,解题关键是找出两个规律,即第一列每行的数都等于行数的2次方和每行的数个数与对应列的数的个数相等.22.<【解析】【分析】直接根据负数比较大小的法则进行比较即可【详解】∵||=≈233|−23|=23233>23∴−233<−23∴<−23故答案为:<【点睛】本题考查有理数的大小比较解题突破口是根据负解析:<【解析】【分析】直接根据负数比较大小的法则进行比较即可.【详解】∵|123-|=123≈2.33,|−2.3|=2.3,2.33>2.3,∴−2.33<−2.3,∴123-<−2.3.故答案为:<.【点睛】本题考查有理数的大小比较,解题突破口是根据负数比较大小的法则进行比较. 23.【解析】∵∴且∴∴点睛:(1)两个非负数的和为0则这两个数都为0;(2)的奇数次方仍为解析:1-【解析】50y-=,∴10x +=且50y -=,∴1?5x y =-=,, ∴5(1)1yx =-=-.点睛:(1)两个非负数的和为0,则这两个数都为0;(2)1-的奇数次方仍为1-.24.【解析】【分析】【详解】解:∵ab 互为相反数∴a+b=0∵cd 互为倒数∴cd=1∴a+b+3cd=0+3×1=3故答案为3【点睛】本题考查代数式求值解析:【解析】 【分析】 【详解】解:∵a ,b 互为相反数,∴a+b=0,∵c ,d 互为倒数,∴cd=1,∴a+b+3cd=0+3×1=3. 故答案为3. 【点睛】本题考查代数式求值.25.b+2c 【解析】【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a <b 则c-a<0原式=解析:b+2c 【解析】 【分析】由图可知, c-a<0,根据正数的绝对值等于它本身,负数的绝对值等于它的相反数,分别求出绝对值,再根据整式的加减运算,去括号,合并同类项即可. 【详解】由图可知c<0,0<a <b ,则c-a<0, 原式=(c-a )+b+a-(-c) =c-a+b+a+c =b+2c . 【点睛】本题考查的知识点是整式的加减和绝对值,解题关键是熟记整式的加减运算实际上就是去括号、合并同类项.三、解答题 26.(1)0,1,2(2)11222n n n ---=(3)22020-1 【解析】 【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得11222n n n ---=,然后利用提公因式法12n -可以证明这个等式成立;(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式相减即可.【详解】(1)10022212-=-=,21122422-=-=,32222842-=-=,故答案为:0,1,2;(2)第n 个等式为:11222n n n ---=,∵左边=()111222212n n n n ----=-=,右边=12n -,∴左边=右边,∴11222n n n ---=;(3)20+21+22+⋅⋅⋅⋅⋅⋅+22019=21-20+22-21+⋅⋅⋅⋅⋅⋅+22020-22019=22020-1∴01220192020222221++++=-….【点睛】此题主要考察了探寻数列规律问题,认真观察,总结出规律,并能正确的应用规律是解答此题的关键.27.应从第一组调12人到第二组去【解析】【分析】设应从第一组调x 人到第二组去,根据第一组28人,第二组20人打扫包干区,要使第一组人数是第二组人数的一半,从而可列方程求解.【详解】解:设应从第一组调x 人到第二组去,根据题意,得()12820.2x x -=+ 解得:12.x =经检验,符合题意答:应从第一组调12人到第二组去,【点睛】本题考查的是调配问题,关键知道调配后的数量关系从而可列方程求解.28.(1)225x 9xy 9y +-(2)63或-13【解析】【分析】(1)把A 与B 代入2B-A 中,去括号合并即可得到结果;(2)利用同类项的定义求出x 与y 的值,代入原式计算即可得到结果.【详解】()1∵22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+,∴()()22222222222B A 22xy 3y 4x 3x 3y 5xy 4xy 6y 8x 3x 3y 5xy 5x 9xy 9y -=-+-+-=-+--+=+-; ()2∵x 22a b --与y 1ab 3的同类项, ∴x 21-=,y 2=,解得:x 3=或x 1=,y 2=,当x 3=,y 2=时,原式45543663=+-=;当x 1=,y 2=时,原式5183613=+-=-.【点睛】本题考查了整式的加减,以及同类项,熟练掌握运算法则是解本题的关键.29.(1)4x =;(2)2x =【解析】【分析】(1)先去括号,再移项,合并同类项,系数化为1即可得到方程的解;(2)先去分母,再去括号,再移项,合并同类项,系数化为1即可得到方程的解.【详解】解:(1)去括号,得61026x x -=+,移项,得62610x x -=+,即416x =.两边同除以4,得4x =.(2)去分母,得4(1)36x x +=+,去括号,得4436x x +=+,移项,得4364x x -=-,即2x =.【点睛】此题考查解一元一次方程,正确掌握解方程的顺序是解题的关键.30.(1)-10(2)x =-1【解析】【分析】(1)把A 与B 代入A ﹣2B 中,去括号合并得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值;(2)由A ﹣2B 结果与y 值无关,确定出x 的值即可.【详解】解:(1)∵A=2x 2+xy+3y ﹣1,B=x 2﹣xy ,∴A ﹣2B=2x 2+xy+3y ﹣1﹣2x 2+2xy=3xy+3y ﹣1,∵(x+2)2+|y-3|=0,∴x=-2,y=3,∴A﹣2B=-10;(2)由A﹣2B=y(3x+3)﹣1,与y值无关,得到3x+3=0,解得:x=﹣1.考点:整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.。
人教版七年级数学上册第3章《一元一次方程》解答题专练(1)1.(2019秋•龙岗区校级期末)列方程解应用题:现有校舍面积20000平方米,为改善办学条件,计划拆除部分旧校舍,建造新校舍,使新造校舍的面积是拆除旧校舍面积的3倍还多1000平方米.这样,计划完成后的校舍总面积可比现有校舍面积增加20%. (1)改造多少平方米旧校舍;(2)已知拆除旧校舍每平方米费用80元,建造新校舍每平方米需费用700元,问完成该计划需多少费用. 2.(2019秋•越秀区期末)已知数轴上A ,B 两点对应的数分别为﹣2和8,P 为数轴上一点,对应的数为x . (1)线段P A 的长度可表示为 (用含x 的式子表示).(2)在数轴上是否存在点P ,使得P A ﹣PB =6?若存在,求出x 的值;若不存在,请说明理由;(3)当P 为线段AB 的中点时,点A ,B ,P 同时开始在数轴上分别以每秒3个单位长度,每秒2个单位长度,每秒1个单位长度沿数轴正方向运动?试问经过几秒,PB =2P A ?3.(2019秋•越秀区期末)某电视台组织知识竞赛,共设30道选择题,各题分值相同,每题必答.下表记录了3个参赛者的得分情况.参赛者 答对题数 答错题数得分 A 28 2 108 B 26 4 96 C24684(1)每答对1题得多少分?(2)参赛者D 得54分,他答对了几道题?4.(2019秋•福田区校级期末)(1)计算:﹣32﹣|﹣6|﹣3×(−13)+(﹣2)2÷12; (2)解方程:2x −13=x +24.5.(2019秋•龙岗区校级期末)已知多项式3m 3n 2﹣2mn 3﹣2中,四次项的系数为a ,多项式的次数为b ,常数项为c ,且4b 、﹣10c 3、﹣(a +b )2bc 的值分别是点A 、B 、C 在数轴上对应的数,点P 从原点O 出发,沿OC 方向以1单位/s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动(点P ,Q 其中有一点停止运动,另一点同时停止运动),两点同时出发. (1)分别求4b 、﹣10c 3、﹣(a +b )2bc 的值;(2)若点Q 运动速度为3单位/s ,经过多长时间P 、Q 两点相距70; (3)当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,试问xx −xx xx的值是否变化,若变化,求出其范围:若不变,求出其值.6.(2019秋•罗湖区校级期末)已知,数轴上点A 、C 对应的数分别为a 、c ,且满足|a +7|+(c ﹣1)2020=0,点B 对应点的数为﹣3.(1)a = ,c = ;(2)若动点P 、Q 分别从A 、B 同时出发向右运动,点P 的速度为3个单位长度/秒;点Q 的速度为1个单位长度/秒,求经过多长时间P 、Q 两点的距离为43;(3)在(2)的条件下,若点Q 运动到点C 立刻原速返回,到达点B 后停止运动,点P 运动至点C 处又以原速返回,到达点A 后又折返向C 运动,当点Q 停止运动点P 随之停止运动.求在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数.7.(2019秋•高明区期末)研学基地高明盈香生态园的团体票价格如表:数量(张) 30~50 51~100 101及以上单价(元/张)806050某校七年级(1)、(2)班共102人去研学,其中(1)班人数较少,不足50人,两个班相差不超过20人.经估算,如果两个班都以班为单位购票,则一共应付7080元,问: (1)两个班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可省多少钱?8.(2019秋•雨花区校级期末)定义:对于一个有理数x ,我们把[x ]称作x 的对称数. 若x ≥0,则[x ]=x ﹣2;若x <0,则[x ]=x +2.例:[1]=1﹣2=﹣1,[﹣2]=﹣2+2=0. (1)求[32],[﹣1]的值;(2)已知有理数a >0,b <0,且满足[a ]=[b ],试求代数式(b ﹣a )3﹣2a +2b 的值; (3)解方程:[2x ]+[x +1]=1.9.(2019秋•惠来县期末)某市要印刷高中招生的录取通知书,有两个印刷厂前来联系制作业务,甲厂的优惠条件是:按每份定价1.5元的8折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元价格不变,而制版费900元则6折优惠.回答下列问题:(1)印刷多少份时,两厂所需费用相等?(2)如果要印刷3000份录取通知书,那么应当选择哪个厂?需要多少费用? 10.(2019秋•江城区期末)当x 取何值时,式子x−13的值比x +12的值大﹣1?11.(2019秋•江城区期末)足球比赛的规则为:胜场得3分,平场得1分,负一场得0分,一支球队在某个赛季共需比赛14场,现已经赛了8场,输了一场,得17分,请问: (1)前8场比赛中胜了几场?(2)这支球队打满14场后最高得多少分?(3)若打14场得分不低于29分,则在后6场比赛中这个球队至少胜几场?12.(2019秋•白云区期末)为提高公民社会责任感,保证每个纳税人公平纳税,调节不同阶层贫富差距,营造“纳税光荣”社会氛围,2019年我国实行新的《个人收入所得税征收办法》,将个人收入所得税的起征点提高至5000元(即全月个人收入所得不超过5000元的,免征个人收入所得税);个人收入超过5000元的,其超出部分称为“应纳税所得额”,国家对纳税人的“应纳税所得额”实行“七级超额累进个人所得税制度”该制度的前两级纳税标准如下:①全月应纳税所得额不超过3000元的,按3%的税率计税.①全月应纳税所得额超过3000元但不超过12000元的部分,按10%的税率计税.按照新的《个人收入所得税征收办法》,在2019年某月,如果纳税人甲缴纳个人收入所得税75元,纳税人乙当月收入为9500元,纳税人丙缴纳个人收入所得税110元. (1)甲当月个人收入所得是多少? (2)乙当月应缴纳多少个人收入所得税? (3)丙当月个人收入所得是多少? 13.(2019秋•黄埔区期末)解方程: (1)5x +5=9﹣3x (2)x+12−1=2+2−x 414.(2019秋•番禺区期末)列方程解应用题.(1)某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t ;如果用新工艺,则废水排量比环保限制的最大量少100t ;新、旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少? (2)元旦期间,晓睛驾车从珠海出发到香港,去时在港珠澳大桥上用了60分钟,返回时平均速度提高了5千米/小时,在港珠澳大桥上的用时比去时少用了5分钟,求港珠澳大桥的长度.15.(2019秋•封开县期末)政府准备修建一条公路,若由甲工程队单独修需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元. (1)甲、乙两工程队合作修建需几个月完成? (2)合作修建共耗资多少万元?16.(2019秋•封开县期末)如图,点A 、B 都在数轴上,O 为原点.(1)线段AB 中点表示的数是 ;(2)若点B 以每秒3个单位长度的速度沿数轴向右运动了t 秒,当点B 在点O 左边时,OB = ,当点B 至点O 右边时,OB = ;(3)若点A 、B 分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t 秒后,A 、B 、O 三个点中有一个点是另外两个点为端点的线段的中点,求t 的值. 17.(2019秋•龙华区期末)列方程解应用题:某校组织七年级师生共300人乘车前往“故乡”农场进行劳动教育活动.(1)他们早晨8:00从学校出发,原计划当天上午10:00便可以到达“故乡”农场,但实际上他们当天上午9:40便达到了“故乡”农场,已知汽车实际行驶速度比原计划行驶速度快10km /h .求汽车原计划行驶的速度. (2)到达“故乡”农场后,需要购买门票,已知该农场门票票价情况如右表,该校购买门票时共花了3100元,那么参加此次劳动教育的教师、学生各多少人?类型 单价(元/人)成人 20 学生1018.(2019秋•斗门区期末)如图,已知数轴上点A 表示的数为6,点B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为11,动点P 从点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)数轴上点B 表示的数是 ,当点P 运动到AB 中点时,它所表示的数是 ;(2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数辅向右匀速运动,若P ,Q 两点同时出发,求点P 与Q 运动多少秒时重合?(3)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若P ,Q 两点同时出发,求: ①当点P 运动多少秒时,点P 追上点Q ?①当点P 与点Q 之间的距离为8个单位长度时,求此时点P 在数轴上所表示的数.19.(2019秋•斗门区期末)某班去商场为书法比赛买奖品,书包每个定价40元,文具盒每个定价8元,商场实行两种优惠方案:①买一个书包送一个文具盒:①按总价的9折付款若该班需购买书包10个,购买文具盒若干个(不少于10个).(1)当买文具盒40个时,分别计算两种方案应付的费用; (2)当购买文具盒多少个时,两种方案所付的费用相同;(3)如何根据购买文具盒的个数,选择哪种优惠方案的费用比较合算? 20.(2019秋•龙华区期末)阅读并解决其后的问题: 我们将四个有理数a 1、a 2、a 3、a 4写成[a 1a 2a3a 4]的形式,称它为由有理数a 1、a 2、a 3、a 4组成的二阶矩阵,称a 1、a 2、a 3、a 4为构成这个矩阵的元素,如由有理数﹣1、2、3、﹣4组成的二阶矩阵是[−123−4],﹣1、2、3、﹣4是这个矩阵的元素,当且仅当两个矩阵相同位置上的元素相等时,我们称这两个二阶矩阵相等,下面是两个二阶矩阵的加法运算过程:①[−2354]+[3−304]=[−2+33+(−3)5+04+4]=[1058],①[30−68]+[975−4]=[3+90+7−6+58+(−4)]=[127−14], (1)通过观察上述例子中矩阵加法运算的规律,可归纳得二阶矩阵的加法运算法则是: 两个二阶矩阵相加, . (2)①计算:[1001]+[−131526−4];①若[x220x +1]+[−3(x −2)−20−x ]=[1001],求x 的值;(3)若记A =[a 1a 2a 3a 4],B =[b 1b 2b 3b 4],试依据二阶矩阵的加法法则说明A +B =B +A 成立.21.(2019秋•揭西县期末)列方程解应用题某校体育用品商场销售A 、B 两种品牌的足球,已知每个A 种品牌足球的售价比B 种品牌足球的售价高20元,售出5个A 种品牌足球与售出6个B 种品牌足球的总价相同,求A 、B 两种品牌足球的售价. 22.(2019秋•白云区期末)解下列方程: (1)5(x +1)=3(x ﹣1)+2 (2)2(x−1)3−4−3x 4=1−1−2x 323.(2019秋•光明区期末)解方程 (1)5(x ﹣3)+3=2x (2)x+13−1=2−x 424.(2019秋•番禺区期末)解方程: (1)3x ﹣7(x ﹣1)=3﹣2(x +3) (2)x −x−13=7−x+3525.(2019秋•海珠区期末)已知代数式M =3(a ﹣2b )﹣(b +2a ). (1)化简M ;(2)如果(a +1)x 2+4x b ﹣2﹣3=0是关于x 的一元一次方程,求M 的值.26.(2019秋•海珠区期末)解下列方程: (1)5x =3(2+x ) (2)x+42−x+23=127.(2019秋•南山区期末)解下列方程 (1)7x−54=38(2)y−12=2−y+2528.(2019秋•南沙区期末)广州恒大足球队在亚冠足球联赛小组赛中屡次晋级.亚冠小组赛规则:①小组赛内有4支球队,每两支球队之间要进行两场比赛;①每队胜一场得3分,平一场得1分,负场得0分;①小组赛结束,积分前两名出线.广州恒大队经过6场小组赛后,总积分为10分,且负的场数是平的场数的两倍,求广州恒大队在小组赛共打平了多少场比赛? 29.(2019秋•福田区校级期末)解方程: (1)﹣3x ﹣7=2x +3 (2)x+12−2−3x 6=−130.(2019秋•云浮期末)解方程 (1)5(2﹣x )=﹣(2x ﹣7); (2)5x+13−2x−16=131.(2019秋•高明区期末)已知数轴上三点A 、O 、B 表示的数分别为4、0、﹣2,动点P 从A 点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是 .(2)另一动点R 从点B 出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多长时间追上点R ?(3)若点M 为AP 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.参考答案与试题解析一.解答题(共31小题)1.【解答】解:(1)设需要拆除的旧校舍的面积是x 平方米,则新造校舍的面积是(3x +1000)平方米, 依题意,得:20000﹣x +3x +1000=20000(1+20%), 解得:x =1500.答:改造1500平方米旧校舍.(2)80×1500+700×(1500×3+1000)=3970000(元). 答:完成该计划需3970000元.2.【解答】解:(1)①A 点对应的数为﹣2,P 点对应的数为x , ①P A =|x ﹣(﹣2)|=|x +2|. 故答案为:|x +2|.(2)当x <﹣2时,﹣x ﹣2﹣(8﹣x )=6,方程无解; 当﹣2≤x ≤8时,x +2﹣(8﹣x )=6, 解得:x =6;当x >8时,x +2﹣(x ﹣8)=6,方程无解. 答:存在符合题意的点P ,此时x 的值为6; (3)①P 点为线段AB 的中点, ①P 点对应的数为3.当运动时间为t 秒时,A 点对应的数为3t ﹣2,B 点对应的数为2t +8,P 点对应的数为t +3, ①P A =|t +3﹣(3t ﹣2)|=|5﹣2t |,PB =|t +3﹣(2t +8)|=t +5. ①PB =2P A , ①t +5=2|5﹣2t |,即t +5=10﹣4t 或t +5=4t ﹣10, 解得:t =1或t =5.答:经过1秒或5秒,PB =2P A .3.【解答】解:(1)设答对一道题得x 分,则答错一道题得108−28x2=(54﹣14x )分,依题意,得:26x +4(54﹣14x )=96, 解得:x =4. ①54﹣14x =﹣2. 答:每答对1题得4分.(2)由(1)可得,答错一道题得54﹣14x =﹣2(分). 设参赛者D 答对了m 道题,则答错(30﹣m )道题, 依题意,得:4m ﹣2(30﹣m )=54, 解得:m =19.答:参赛者D 答对了19道题.4.【解答】解:(1)原式=﹣9﹣6﹣(﹣1)+4×2=﹣15+1+8=﹣6; (2)去分母得:4(2x ﹣1)=3(x +2),去括号得:8x ﹣4=3x +6, 移项、合并同类项得:5x =10, 系数化为1得:x =2.5.【解答】解:(1)①多项式3m 3n 2﹣2mn 3﹣2中,四次项的系数为a ,多项式的次数为b ,常数项为c , ①a =﹣2,b =5,c =﹣2,①4b =4×5=20;﹣10c 3=﹣10×(﹣2)3=80;﹣(a +b )2bc =﹣(﹣2+5)2×5×(﹣2)=90; (2)设运动时间为t 秒,则OP =t ,CQ =3t , 当P 、Q 两点相遇前:90﹣t ﹣3t =70, 解得:t =5;当P 、Q 两点相遇后:t +3t ﹣70=90, 解得:t =40>30(所以此情况舍去), ①经过5秒的时间P 、Q 两点相距70;(3)由题意可知:当点P 运动到线段AB 上时,OB =80,AP =t ﹣20, 又①分别取OP 和AB 的中点E 、F , ①点F 表示的数是20+802=50,点E 表示的数是t2,①EF =50−t2, ①OB−AP EF=80−(t−20)50−t2=2,①OB−AP EF的值不变,OB−AP EF=2.6.【解答】解:(1)由非负数的性质可得:{a +7=0c −1=0,①a =﹣7,c =1, 故答案为:﹣7,1.(2)设经过t 秒两点的距离为43由题意得:|1×t +4−3t|=43, 解得t =43或83,答:经过43秒或83秒P ,Q 两点的距离为43.(3)点P 未运动到点C 时,设经过x 秒P ,Q 相遇, 由题意得:3x =x +4, ①x =2,表示的数为:﹣7+3×2=﹣1,点P 运动到点C 返回时,设经过y 秒P ,Q 相遇, 由题意得:3y +y +4=2[1﹣(﹣7)], ①y =3,表示的数是:﹣3+3=0,当点P 返回到点A 时,用时163秒,此时点Q 所在位置表示的数是−13,设再经过z 秒相遇,由题意得:3z +z =−13−(−7), ①z =53, ①53+163=213<4+4,①此时点P 、Q 均未停止运动, 故z =53还是符合题意.此时表示的数是:−7+53×3=−2,答:在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数分别是﹣1,0,﹣2.7.【解答】解:(1)设七年级(1)班的人数为x ,则(2)班的人数为(102﹣x ),由题得:80x +60(102﹣x )=7080 化简得:20x =960 解得:x =48(人)①102﹣x =102﹣48=54(人)答:七年级(1)班有48人,(2)班有54人. (用算术方法求解正确同样给分)(2)联合购票应付钱数为:102×50=5100(元) 则节省的钱数为:7080﹣5100=1980(元) 答:如果两个班联合起来购票可省1980元. 8.【解答】解:(1)[32]=32−2=−12,[﹣1]=﹣1+2=1;(2)a >0,b <0,[a ]=[b ],即a ﹣2=b +2,解得:a ﹣b =4, 故(b ﹣a )3﹣2a +2b =(b ﹣a )3﹣2(a ﹣b )=(﹣4)3﹣8=﹣72;(3)当x ≥0时,方程为:2x ﹣2+x +1﹣2=1,解得:x =43; 当﹣1≤x <0时,方程为:2x +2+x +1﹣2=1,解得:x =0(舍弃); 当x <﹣1时,方程为:2x +2+x +1+2=1,解得:x =−43; 故方程的解为:x =±43.9.【解答】解:(1)设印刷x 份,此时甲厂所需费用是:1.5×0.8x +900, 此时乙厂所需费用是:1.5x +900×0.6,当1.5×0.8x +900=1.5x +900×0.6, 解得:x =1200,答:印刷1200份时,两厂所需费用相等;(2)当x =3000时,甲厂所需费用是:1.5×0.8x +900=4500(元), 此时乙厂所需费用是:1.5x +900×0.6=5040(元), 故应当选择甲厂,需要费用是4500元. 10.【解答】解:根据题意得:x−13−(x +12)=﹣1,即x−13−x −12=−1,去分母得到:2(x ﹣1)﹣6x ﹣3=﹣6, 去括号得:2x ﹣2﹣6x ﹣3=﹣6, 移项合并得:﹣4x =﹣1, 解得:x =0.25, 则x =0.25时,x−13的值比x +12的值大﹣1.11.【解答】解:(1)设这个球队胜x 场,则平(8﹣1﹣x )场, 依题意可得3x +(8﹣1﹣x )=17, 解得x =5.答:这支球队共胜了5场;(2)打满14场最高得分17+(14﹣8)×3=35(分). 答:最高能得35分;(3)由题意可知,在以后的6场比赛中,只要得分不低于12分即可, 所以胜场不少于4场,一定可达到预定目标. 而胜3场,平3场,正好也达到预定目标. 因此在以后的比赛中至少要胜3场. 答:至少胜3场.12.【解答】解:(1)①3000×3%=90(元),由甲缴纳个人收入所得税75元, ①甲的当月个人收入所得小于5000+3000=8000(元), ①甲当月个人收入所得是:5000+75÷3%=7500(元);(2)①纳税人乙当月收入为9500元,①乙当月应缴纳个人收入所得税为:3000×3%+1500×10%=240(元);(3)①纳税人丙缴纳个人收入所得税110元,纳税超过90元,但纳税小于240元,即收入超过8000元, ①设丙当月个人收入所得是x 元, 则3000×3%+(x ﹣8000)×10%=110, 解得:x =8200,答:丙当月个人收入所得是8200元. 13.【解答】解:(1)移项合并得:8x =4, 解得:x =0.5;(2)去分母得:2(x +1)﹣4=8+2﹣x , 去括号得:2x +2﹣4=8+2﹣x , 移项合并得:3x =12, 解得:x =4.14.【解答】解:(1)设新、旧工艺的废水排量分别为2xt 、5xt , 则依题意得5x ﹣200=2x +100, 解得 x =100. 则2x =200, 5x =500.答:新、旧工艺的废水排量分别为200t 和500t ;(2)设港珠澳大桥的长度y 千米, 由题意可得:y6060+5=y60−560解得:y =55答:港珠澳大桥的长度55千米.15.【解答】解:(1)设由甲、乙两工程队合作修建需x 个月完成.,根据题意 得(13+16)x =1,解得x =2.答:由甲、乙两工程队合作修建需2个月完成;(2)(12+5)×2=34(万元) 答:合作修建共耗资34万元.16.【解答】解:(1)线段AB 中点表示的数是:2−42=−1.故答案是:﹣1;(2)当点B 在点O 左边时,OB =4﹣3t ,当点B 至点O 右边时,OB =3t ﹣4; 故答案是:4﹣3t ,3t ﹣4;(3)①当点O 是线段AB 的中点时,OB =OA 4﹣3t =2+t t =0.5①当点B 是线段OA 的中点时,OA =2OB 2+t =2(3t ﹣4) t =2;①当点A 是线段OB 的中点时,OB =2OA3t ﹣4=2(2+t )t =8.综上所述,符合条件的t 的值是0.5,2或8.17.【解答】解:(1)设汽车原计划行驶的速度是xkm /h ,则汽车实际行驶速度是(x +10)km /h ,由题意得 2x =53(x +10)解得x =50答:汽车原速度为50km /h ;(2)设参加此次劳动教育的教师有x 人,则学生有(300﹣x )人,由题意得 20x +10(300﹣x )=3100解得x =10答:参加此次劳动教育的教师有10人,则学生有290人.18.【解答】解:(1)①数轴上点A 表示的数为6,点B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为11, ①数轴上点B 表示的数是6﹣11=﹣5,①点P 运动到AB 中点,①点P 对应的数是:12×(﹣5+6)=0.5, 故答案为:﹣5,0.5;(2)设点P 与Q 运动t 秒时重合,点P 对应的数为:6﹣3t ,点Q 对应的数为:﹣5+2t ,①6﹣3t =﹣5+2t ,解得:t =2.2,①点P 与Q 运动2.2秒时重合;(3)①运动t 秒时,点P 对应的数为:6﹣3t ,点Q 对应的数为:﹣5﹣2t ,①点P 追上点Q ,①6﹣3t =﹣5﹣2t ,解得:t =11,①当点P 运动11秒时,点P 追上点Q ;①①点P 与点Q 之间的距离为8个单位长度,①|6﹣3t ﹣(﹣5﹣2t )|=8,解得:t =3或t =19,当t =3时,点P 对应的数为:6﹣3t =6﹣9=﹣3,当t =19时,点P 对应的数为:6﹣3t =6﹣57=﹣51,①当点P 与点Q 之间的距离为8个单位长度时,此时点P 在数轴上所表示的数为﹣3或﹣51.19.【解答】解:(1)第①种方案应付的费用为:10×40+(40﹣10)×8=640(元),第①种方案应付的费用为:(10×40+40×8)×90%=648(元);答:第①种方案应付的费用为640元,第①种方案应付的费用648元;(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得:10×40+(x ﹣10)×8=(10×40+8x )×90%,解得:x =50;答:当购买文具盒50个时,两种方案所付的费用相同;(3)由(1)、(2)可得:当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案①比较合算.20.【解答】解:(1)通过观察上述例子中矩阵加法运算的规律,可归纳得二阶矩阵的加法运算法则是: 两个二阶矩阵相加,等于两个矩阵对应位置上的元素相加;故答案为:等于两个矩阵对应位置上的元素相加;(2)①原式=[1−130+150+261−4]=[−122615−3]; ①根据题意得:x 2−3(x ﹣2)=1, 去分母得:x ﹣6(x ﹣2)=2,去括号得:x ﹣6x +12=2,移项合并得:﹣5x =﹣10,解得:x =2;(3)证明:①A =[a 1a 2a3a 4],B =[b 1b 2b 3b 4], ①A +B =[a 1+b 1a 2+b 2a 3+b 3a 4+b 4],B +A =[b 1+a 1b 2+a 2b 3+a 3b 4+a 4]=[a 1+b 1a 2+b 2a 3+b 3a 4+b 4], 则A +B =B +A .21.【解答】解:设每个B 种品牌足球售价为x 元,则每个A 种品牌足球售价为(x +20)元,依题意得:5(x +20)=6x解得:x =100①x +20=120元,答:每个A 品牌足球的售价120元,每个B 品牌足球的售价100元.22.【解答】解:(1)去括号得:5x +5=3x ﹣3+2,移项合并得:2x =﹣6,解得:x =﹣3;(2)去分母得:8(x ﹣1)﹣3(4﹣3x )=12﹣4(1﹣2x ),去括号得:8x ﹣8﹣12+9x =12﹣4+8x ,移项合并得:9x =28,解得:x =289. 23.【解答】解:(1)去括号得:5x ﹣15+3=2x ,移项合并得:3x =12,解得:x =4;(2)去分母得:4x +4﹣12=6﹣3x ,移项合并得:7x =14,解得:x =2.24.【解答】解:(1)去括号得:3x﹣7x+7=3﹣2x﹣6,移项合并得:﹣2x=﹣10,解得:x=5;(2)去分母得:15x﹣5x+5=105﹣3x﹣9,移项合并得:13x=91,解得:x=7.25.【解答】解:(1)M=3(a﹣2b)﹣(b+2a)=3a﹣6b﹣b﹣2a=a﹣7b;(2)由题意得:a+1=0,b﹣2=1,解得:a=﹣1,b=3,则M=﹣1﹣7×3=﹣22.26.【解答】解:(1)去括号得:5x=6+3x,移项合并得:2x=6,解得:x=3;(2)去分母得:3(x+4)﹣2(x+2)=6,去括号得,3x+12﹣2x﹣4=6,移项合并得:x=﹣2.27.【解答】解:(1)去分母得:14x﹣10=3,移项合并得:14x=13,解得:x=13 14;(2)去分母得:5y﹣5=20﹣2y﹣4,移项合并得:7y=21,解得:y=3.28.【解答】解:设广州恒大队在小组赛共打平了x场比赛,则负的场数是2x场,胜的场数是(6﹣3x),由题意得3(6﹣3x)+x=10,解得x=1答:广州恒大队在小组赛共打平了1场比赛.29.【解答】解:(1)方程移项合并得:﹣5x=10,解得:x=﹣2;(2)去分母得:3x+3﹣2+3x=﹣6,移项合并得:6x=﹣7,解得:x=−7 6.30.【解答】解:(1)去括号得:10﹣5x=7﹣2x,移项得:﹣5x+2x=7﹣10,合并同类项得:﹣3x=﹣3,将系数化为1得:x=1;(2)去分母得:2(5x+1)﹣(2x﹣1)=6,去括号得:10x+2﹣2x+1=6,移项得:10x﹣2x=6﹣2﹣1,合并同类项得:8x=3,将系数化为1得:x=3 8.31.【解答】解:(1)①A,B表示的数分别为4,﹣2,①AB=6,①P A=PB,①点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x 解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:①M为P A的中点,N为PB的中点①MP=12AP,NP=12BP又①MN=MP+NP①MN=12AP+12BP=12(AP+BP)①AP+BP=AB,AB=6①MN=12AB=12×6=3①当P点在线段AB的延长线上时,如图示:①MN=MP﹣NP,AB=AP﹣BP=6①MN=12AP−12BP=12(AP−BP)=12AB=12×6=3.。
2021-2022学年度人教版七年级数学上册练习一1.2.2 数轴-数轴上的动点问题1.A,B两点在数轴上的位置如图所示,其中O为原点,点A对应的有理数为﹣4,点B对应的有理数为6.(1)动点P从点A出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒(t>0).①当t=1时,AP的长为,点P表示的有理数为;②当PB=2时,求t的值;(2)如果动点P以每秒6个单位长度的速度从O点向右运动,点A和B分别以每秒1个单位长度和每秒3个单位长度的速度向右运动,且三点同时出发,那么经过几秒PA=2PB.2.点A、B、C、D在数轴上的位置如图1所示,已知AB=3,BC=2,CD=4.(1)若点C为原点,则点A表示的数是;(2)若点A、B、C、D分别表示有理数a,b,c,d,则|a﹣c|+|d﹣b|﹣|a﹣d|= ;(3)如图2,点P、Q分别从A、D两点同时出发,点P沿线段AB以每秒1个单位长度的速度向右运动,到达B点后立即按原速折返;点Q沿线段CD以每秒2个单位长度的速度向左运动,到达C点后立即按原速折返.当P、Q中的某点回到出发点时,两点同时停止运动.①当点停止运动时,求点P、Q之间的距离;②设运动时间为t(单位:秒),则t为何值时,PQ=5?3.如图,已知点A 在数轴上对应的数为a ,点B 对应的数为b ,A 与B 之间的距离记作AB .已知a=-2,b 比a 大12,(1)则B 点表示的数是_____;(2)设点P 在数轴上对应的数为x ,当PA-PB=4时,求x 的值;(3)若点M 以每秒1个单位的速度从A 点出发向右运动,同时点N 以每秒2个单位的速度从B 点向左运动.设运动时间是t 秒,则运动t 秒后,①用含t 的代数式表示M 点到达的位置表示的数为_____, N 点到达的位置表示的数为_____; ②当t 为多少秒时,M 与N 之间的距离是9?4.如图,数轴的单位长度为1,点M ,A ,B ,N 是数轴上的四个点,其中点A ,B 表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点O 表示;(2)点M 表示的数是________,点N 表示的数是________,M ,N 两点间的距离是________;(3)将点M 先向右移动4个单位长度,再向左移动2个单位长度到达点C ,点C 表示的数是________,在数轴上距离C 点3个单位长度的点表示的数是________.5.如图,在数轴上A 点表示的数a ,B 点表示的数b ,C 点表示的数c ,b 是最大的负整数,且,a c 满足360a c ++-=.(1)求a ,b ,c 的值;(2)若将数轴折叠,使得A 点与B 点重合,求与C 点重合的点对应的数;(3)点A ,B ,C 在数轴上同时开始运动,其中B 以1单位每秒的速度向左运动,C 以2单位每秒的速度向左运动,点A 以3单位每秒的速度运动,当B ,C 相遇时,A 停止运动,求此时AC两点之间的距离.6.如图,点A,B在数轴上表示的数分别为﹣4和+16,现有甲、乙两只小虫分别从A,B两点出发,甲虫的速度为每秒1个单位长度,乙虫的速度为每秒3个单位长度,两虫同时出发,运动时间为t秒(t>0).(1)甲虫向左运动,乙虫向右运动,t秒后甲乙两虫相距个单位长度;(2)甲、乙两虫皆向右运动,t秒后甲乙两虫相距个单位长度;(3)甲、乙两虫皆向左运动,求t秒后甲乙两虫相距多少个单位长度?7.数轴上的点A,B所表示的数如图所示,回答下列问题:(1)求出A,B两点间的距离;(2)若点A在数轴上移动了m个单位长度到点C,且B,C两点间的距离是3,求m的值.8.已知A、B两地相距30米,小鸟龟从A地出发前往B地,第一次它前进1米,第二次它后退2米,第三次再前进3米,第四次又向后退4米…,按此规律行进,如果A地在数轴上表示的数为-20.(1)求出B地在数轴上表示的数。
1、生活中蕴含着大量的几何图形,这些几何图形可以抽象为几何体.常见的几何体有()、()、()、()、()、和()等。
2、几何图形包括立体图形和(),几何图形是由()、()、()构成。
面有平面和(),面不分厚薄;线有直线和(),线不分粗细。
面与面相交得到(),线与线相交得到(),点不分大小。
3、从运动的角度看,点动成(),线动成(),面动成()。
(例如,把笔尖看做一个点,笔尖在纸上移动就能形成一条线,即点动成线。
点动成线的实例还有:流星划过天空、粉笔在黑板上划动、保龄球滚动过的路线等。
钟表的分针旋转一周形成一个圆面,即线动成面。
线动成面的实例还有:汽车上的雨刷扫过玻璃窗、用刷子涂油漆等。
长方形绕它的一边旋转一周就能形成一个圆柱,即面动成体。
面动成体的实例还有:以三角形的一边为轴旋转一周形成的几何体等)4、如图所示的立体图形,是由()个面组成的,其中有()个平面,有()个曲面;面与面相交成()条线,其中曲线有()条。
5、立体图形的识别。
几何图形的特征:(1)圆柱:两个底面是(),侧面是()。
如()、()等。
(2)圆锥:底面是(),侧面是(),像锥子。
如()、()等。
(3)长方体:有6个面,底面是(),相对的两个面平行且()。
如()、()等。
(4)正方体:6个面是大小完全相同的()。
如()、()等。
(5)棱柱:所有()都相等,底面是(),上、下底面的(),侧面的形状都是()。
(6)球:由一个()组成,圆圆的。
如足球、乒乓球等。
(7)棱锥:一个面是多边形,其余各面是一个有公共顶点的()。
多边形的面称为棱锥的(),其余各面称为棱锥的()。
根据()可将棱锥分为三棱锥、四棱锥……谈重点从哪几个方面认识几何体的特征①有几个面围成,是平面还是曲面;②有无顶点,有几个顶点;③侧面是平面还是曲面;④底面是什么形状,是多边形还是圆,有几个底面等。
6、请在每个几何体下面写出它们的名称。
7、如图,在下面四个物体中,最接近圆柱的是( ).8、几何体的分类(1)几何体按柱、锥、球的特征分为:(2)按围成的面分为:9、在粉笔盒、三棱镜、乒乓球、易拉罐瓶、书本、热水瓶胆等物体中,形状类似于棱柱的有( )。
七年级数学一二章综合练习题一、单选题1.计算:(1)14(27)2(24)49-÷⨯÷- (2)111(6)32353333-⨯+⨯-⨯(用简便方法计算) 2.计算()()2001200222-+-所得结果为( ).A.2B.20012C.20012-D.200223.等式()33.4605--⨯-⎛⎫⎡⎤ ⎪⎣⎦⎝⎭=,则表示的数是( ) A.3.4 B. 3.4- C.365 D.04.下面的数与2-的和为0的是( )A.2B. 2-C. 12D. 12- 5.如图,是一个正方体的平面展开图,在正方体中写有“心”字的那一面的对面的字是( )A .祝B .你C .事D .成6.设a 是最小的自然数,b 是最小的正整数,c 是绝对值最小的数,则a b c ++的值为( )A.1-B.0C.1D.27.下列说法正确的是( )A .两个数的绝对值相等,这两个数也相等B .一个有理数若不是正数必定是负数C .两个数不相等,这两个数的绝对值也不相等D .互为相反数的两个数绝对值相等8.在25⎛⎫-- ⎪⎝⎭,95%,32--,34-,0中正数有( ) A .1个 B .2个 C .3个 D .4个9.如图,将正方体沿面AB C '剪下,则截下的几何体为( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱10.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是1 11.在数轴上,A 点和B 点所表示的数分别为2-和1,若使A 点表示的数是B 点表示的数的3倍,应把A 点( )A .向左移动5个单位B .向右移动5个单位C .向右移动4个单位D .向左移动1个单位或向右移动5个单位12.火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京.根据以上规定,杭州开往北京的某一直快列车的车次号可能是( )A . 200B .119C . 120D .31913.如果在数轴上的A B 、两点所表示的有理数分别是x y 、,且2x =,3y = ,则A B 、两点间的距离是( )A.5B.1C.5或1D.以上都不对二、解答题14.计算:(1)(8)5(0.125)-⨯⨯-(2)(5)(15)(3)-÷-÷- (3)1111()()64224-+÷- 15.()()()3108243-+÷---⨯- 16.()1371242812⎛⎫--+⨯- ⎪⎝⎭ 17.计算(1)(732)2-+---(2)()()451206⨯+-÷-(3)()1191235.54 5.5412⨯-+⨯-⨯ (4)2212(3)15|4|5⎡⎤⎛⎫-----++- ⎪⎢⎥⎝⎭⎣⎦ 18.计算:(1)23(3)-+-(2)()()201811224-÷--⨯ 19.计算:(1)22019128(2)(1)4-+÷-⨯-- (2)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦20.计算:(1)20(14)(18)133-+---+-+(2)2459(5)25⨯- (3)222020142(1)(1)29---⨯+- (4)31373()(24) 2.51()86484+-⨯--÷⨯- 21.计算: (1)11212643⎛⎫-+-⨯+- ⎪⎝⎭; (2)2232513(3)(1)3⎛⎫-+-⨯-÷- ⎪⎝⎭22.计算:()3213426-⨯--+-. 23.计算:()2014(3.14)4-+-+-π-.24.计算:(1)4241(10.25)2(3)3⎡⎤---⨯⨯--⎣⎦ (2)113(36)1264⎛⎫--⨯- ⎪⎝⎭25.计算:(1)11112462⎛⎫+-⨯ ⎪⎝⎭; (2)()222(4)1322⎡⎤---⨯÷⎣⎦.26.计算:(1)231111(6)3222⎛⎫⎛⎫⎛⎫-⨯-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)2018311(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦ (3)3751121412936⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭. 27.4431334⎛⎫⎛⎫-÷-⨯- ⎪ ⎪⎝⎭⎝⎭28.计算.(1)23(1)5(2)4-⨯+-÷ (2)35211()24()|22|8342-⨯+÷-+- 29.观察如图中的几何体,画出从左面、上面两个方向看到的形状图.30.计算题(1)122333-+- (2)()8.63 1.37--(3)()()253415665-+++-(4)()310.52244⎛⎫---+ ⎪⎝⎭(5)()()52247412-+-++.(6)31589323773⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(7)11323243⎛⎫⎛⎫⎛⎫⎛⎫++--+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭31.把下列各数填在相应的大括号内:5-,34-,12-,0, 3.14-, 1.99+,()6--,227(1)正数集合:{ …}(2)负数集合:{ …}(3)整数集合:{ …}(4)分数集合:{ …}.32.一辆货车从百货大楼出发负责送货,向东走了5千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了9.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A 表示,小红家用点B 表示,小刚家用点C 表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油0. 6升,那么这辆货车此次送货共耗油多少升?33.若22335||0x y z -+++-=计算:(1)x y z ,,的值.( 2)求x y z +-的值.34.某路公交车从起点经过A B C D ,,,站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数)(2)车行驶在那两站之间车上的乘客最多_______站和______站;(3)若每人乘坐﹣站需买票0.5元,问该车出车一次能收入多少钱?写出算式.35.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是2-,已知点A B ,是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A 表示数﹣3,将点A 向右移动7个单位长度,那么终点B 表示的数是______,A B ,两点间的距离是_______;(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是_______,AB ,两点间的距离为_________; (3)如果点A 表示数4-,将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是______,A B 、两点间的距离是___________;(4)一般地,如果A 点表示的数为m ,将A 点向右移动n 个单位长度,再向左移动p 个单位长度,那么请你猜想终点B 表示什么数?AB ,两点间的距离为多少? 三、计算题36.计算:()341162|3|1--+÷-⨯-37.计算题(1)()517248612⎛⎫-+-⨯- ⎪⎝⎭(2)()()4211235⎡⎤---⨯--⎣⎦ 38.简算:(1))201620180311243⎛⎫⎛⎫-⨯÷ ⎪ ⎪⎝⎭⎝⎭ (2)22102525298⨯-⨯39.计算. (1)3351 (1)()48624-+÷- (2)3221113()(2)(2)()(3)()222⨯---÷+-⨯-÷- (3)2419(5)25-⨯- (4)43510.712(15)0.7(15)9494⨯+⨯-+⨯+⨯- (5)2111315()1(2)(5)223114-⨯-⨯÷⨯-÷- (6)31002111132(2)()(1)3(3)82--++⨯-+-⨯-- 40.计算. (1)()()50.750.34-÷÷-. (2)()349731221⎛⎫⎛⎫⨯⨯- ⎪ ⎪⎝⎭⎝-÷⎭- .(3)()11150.6 1.75232⎛⎫-⨯-⨯÷- ⎪⎝⎭. (4)3777148128⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+--+-÷- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 41.计算(1)()1481341()1139⎛⎫⎛⎫⨯÷- -÷+⎝-⎪ ⎪⎭⎝⎭. (2)()453251⎡⎤⎛⎫⎛⎫÷÷- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣-⎦-. (3)157136918⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭. 四、填空题42.如果正午(中午12:00)记作0小时,午后3点钟记作+3小时,那么上午8点钟可表示为________小时.43.A 市某天的温差为7℃,如果这天的最高气温为5℃,这天的最低气温是________.44.比较大小:68-_______78-. 45.用平面去截一个六棱柱,截面的形状最多是__________边形.46.某次数学测验共20道选择题,规则是:选对一道的5分,选错一道的1-分,不选得零分,王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是__________.47.在数轴上,到原点距离小于或等于2的所有整数有___________.48.如果210||a b ++-=,那么a b +=________.49.用小立方块搭一个几何体,如图所示,这样的几何体最少需要_________个小立方块,最多需要_________个小立方块.参考答案1.答案:(1)29;(2)-30 解析:2.答案:B解析:3.答案:B解析:4.答案:A解析:设这个数为x ,根据题意可得方程()20x +-=,再解方程即可.解:设这个数为x ,由题意得: ()20x +-=,20x -=,2x =,故选A.5.答案:D解析:正方体的平面展开图中,相对的面一定相隔一个正方形,所以在正方体中写有“心”字的那一面的对面的字是成.故选D.6.答案:C解析:因为a 是最小的自然数, b 是最小的正整数, c 是绝对值最小的数,所以 0,1,0,a b c ===则1a b c ++=.7.答案:D9.答案:A解析:因为截下的几何体的底面为三角形,且,,AB CB B B '交于一点B ,所以该几何体为三棱锥.故选A.10.答案:D 解析:A. 一个数的绝对值一定比0大,有可能等于0,故此选项错误;B. 一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C. 绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D. 最小的正整数是1,正确。
七年级数学
一、 静心选一选(每题3分,共30分)
1.在代数式x x 3252-,y x 22π,x 1,5-,a ,0中,单项式的个数是( ) A 、1 B 、2 C 、3 D 、4
2. 下列各式中计算正确的是( )
A 、523)(x x =-
B 、632])[(x x =-
C 、1221)(--=n n x x
D 、1025x x x =⋅ 3. 如图:矩形花园ABCD 中,a AB =,b AD =,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK 。
若c RS LM ==,则花园中可绿化部分的面积为
( )
A.2b ac ab bc ++-
B.ac bc ab a -++2
C.2c ac bc ab +--
D.ab a bc b -+-22
4.某种冠状病毒的直径是120纳米,1纳米=10-9米,则这种冠状病毒的直径用科学记数法表示为( )
A 、1.2×10-9米
B 、1.2×10-8米
C 、1.2×10-7米
D 、1.2×10-6米
5. 一个角与它的余角相等,则这个角为( )
A 、 45
B 、 90
C 、 9045或
D 、 50
6.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+ ,你觉得这一项应是:
( )A .23b B .26b C .29b D .236b
7. 如图,a//b,∠1=70°,则∠2的度数是( ) (A )20° (B )70° (C )110° (D )130° 8. 下列说法错误的是( )
A. 内错角相等,两直线平行.
B. 两直线平行,同旁内角互补.
C. 同角的补角相等.
D. 相等的角是对顶角.
9. 已知,∠α的两边与∠β的两边分别平行,则∠α与∠β的关系是( )
21
c b
a A D L
Q
M P
R K S T
A 、相等
B 、互余
C 、互补
D 、相等或互补
10. 数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(-x 2+3xy -
21y 2)-(-21x 2+4xy -23y 2)= -2
1x 2_____+y 2空格的地方被钢笔水弄污了,那么空格中的一项是( ) A .-7xy B.7xy C.-xy D.xy
二、耐心填一填(每题3分,共24分)
11. -232y x π的系数是__ ___,次数是__ ___。
12. 计算: ()()___________1x =-+1x ;()______________12
=-x 13. 近似数4103.2⨯-精确到 位,有 个有效数字;
14. 若46x y -与133m n x y -的和仍是单项式,则m n
=_________ 15. 若10m =5,10n =3,则102m-3n 的值是
16. 如图①,如果∠ = ∠ ,可得AD ∥BC ,
你的根据是 。
17. 观察下列各式:
①.8)13)(13(132=-+=-②.16)35)(35(3522=-+=-
③.28)57)(57(5722=-+=-④.32)79)(79(7922=-+=-
求:⑴.=-221921
⑵.猜想:任意两个连续奇数的平方差一定是 。
18. 如图,已知=∠⊥⊥AOC OB OA OD OC ,, ,
理由是 。
三、细心对待,精确计算(每题5分,共20分)
(19))4
36532(12222y xy x y x +-- (20) )4()4816(2234a a a a -÷--
(21)22()()x y x y +-- (22)022009)14.3()2
1()1(π-+-+--
四、阅读下题并填空)101(分分,共每空
23、已知:△ABC, ∠A 、∠B 、∠C 之和为多少?为什么?
解:∠A+ ∠∴AB ∴∠而∠∴∠ACB+ + = 180(等量代换)
24、如图,DG ⊥BC AC ⊥BC ,EF ⊥AB ,∠1=∠2。
求证:CD ⊥AB
A 证明:∵DG ⊥BC,AC ⊥BC( 已知 )
E ∴∠DGB=∠ACB=90º(垂直的定义)
1 F ∴DG//AC ( )
D ∴∠2=DCA ∠( ) 2 ∵∠1=∠2( )∴∠1=∠DCA(等量代换)
B C ∴EF//CD( )
G ∴∠AEF=∠ADC( )
∵EF ⊥AB ∴∠AEF=90º ∴∠ADC=90º 即CD ⊥AB
五、用心想一想,再动笔做一做!(第25题6分,第26题10分,共16分)
25、先阅读下面例题的解答过程,在解答后面的问题:
例:已知代数式7
-y
-
y,求7
92=
4
6
y的值。
+y
22+
3
解:由7
y,即2
-y
-
4
+y
y
=
62=
y,得9
92=
62-
4
-
6
7
-y
4
因此1
=
22=
+
+y
3
y
+
y,所以8
32=
7
+y
2
1
7
问题:已知代数式2
x,求5
62+
x的值。
+x
-x
4
21
-
5
=
142-
26、一粒米,许多同学都认为微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整块馒头或整碗米饭倒掉。
针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米约重11.07克。
现在请你来计算
(1)一粒大米重约多少克?(结果保留两个有效数字)
(2)按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?
(3)假若我们把一年节约的大米卖成钱,按2.5元∕千克计算,可卖得人民币多少元?
(4)对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学?
(5)经过以上计算,你有何感想和建议?。