克立格法储量估算
- 格式:pdf
- 大小:1.27 MB
- 文档页数:25
限制性克立格法在矿产资源储量估算中的应用2023-10-27CATALOGUE目录•引言•限制性克立格法概述•限制性克立格法在矿产资源储量估算中的实施步骤•限制性克立格法在矿产资源储量估算中的案例分析CATALOGUE目录•限制性克立格法在矿产资源储量估算中的改进与发展趋势•结论与建议01引言研究背景与意义限制性克立格法是一种基于概率论和数理统计学的储量估算方法,适用于具有复杂地质条件的矿产资源储量估算。
随着矿产资源勘查和开发工作的深入,复杂地质条件下的矿产资源储量估算问题越来越突出,因此限制性克立格法的应用具有广泛的实际意义。
矿产资源是国民经济和社会发展的重要物质基础,储量估算的准确性对于保障国家能源安全和经济发展具有重要意义。
研究目的与方法研究目的本研究旨在探讨限制性克立格法在矿产资源储量估算中的应用,提高储量估算的准确性和可靠性。
研究方法本研究采用理论分析、数值模拟和实际应用相结合的方法,首先对限制性克立格法的基本原理和数学模型进行阐述和分析,然后利用数值模拟方法模拟不同地质条件下的矿产资源储量分布,最后将限制性克立格法应用于实际矿产资源储量估算中,并与传统方法进行对比分析。
02限制性克立格法概述定义限制性克立格法是一种用于矿产资源储量估算的统计方法,它考虑了地质变量和空间自相关结构,通过将地质变量与矿产资源储量之间的关系模型化,来估算矿产资源的储量。
原理限制性克立格法基于地质统计学原理,通过分析地质变量与矿产资源储量之间的空间自相关结构,建立条件概率模型,从而估算矿产资源的储量。
限制性克立格法的定义与原理•优点•考虑了地质变量和空间自相关结构,能够更准确地估算矿产资源的储量。
•适用于各种类型的地质体和矿产资源类型。
•能够处理不完整和不规则的数据。
•缺点•需要大量的数据和计算资源,计算过程可能较为复杂。
•对地质变量的选择和模型参数的设定敏感,需要专业知识和经验。
•可能存在主观性和不确定性。
面向智慧矿山的智能型克里格储量估算法研究随着人类社会的向前发展,地质采矿条件越趋复杂、生产系统日益庞大、采掘环境复杂多变,而人们对矿山的包括安全、生产、自动化、监测监控等方面的要求日益增多,传统的矿山建设模式已经不能满足上述要求,亟需全新的实施体系和管理方法,构建绿色环保,智能化理念的智慧矿山,其中也包括储量估算方法的创新。
从目前情况看,传统的储量估算方法不能应对复杂海量数据背景下的矿山环境,难以支持“智慧矿山”建设,亟待研究和开发出高性能、高精度的新一代储量估算方法。
基于这一认识,本文针对复杂的矿山地质条件及其海量数据环境,开展了一系列的探索性研究,尝试开发出一套具有智能特征的新型克里格储量估算方法,并通过实践检验其可行性。
本文的研究从传统克里格储量估算的概念模型出发,综合分析了所涉及的数据获取层、模型构建层、储量计算层、结果输出层的关键步骤和实施方法,并在此基础上引入遗传算法、动态规划和并行GPU计算等前沿技术,构建了智能克里格储量估算概念模型。
通过分析智慧矿山的核心特征,以及智慧矿山搭建的三个关键步骤:物联化、互联化、智能化,将智能克里格储量估算概念模型融入智慧矿山的三层架构中去,形成了面向智慧矿山的智能克里格储量估算实施方案。
在此基础上,对智能化层所需要的智能过程做了重点论述。
首先,针对克里格计算流程中关键的变差计算的智能化问题,采用了通过优化搜索的方式对样品整体并行计算,采用局部输出的方式来加速实验变差函数的计算过程,采用遗传算法自动拟合的步骤来提高计算结果的精度;其次,对整个智能储量估算过程需要用到的诸如三维建模技术、矿体储量动态计算技术、空间克里格快速插值技术、最佳边界品位动态计算技术,以及估算结果的三维模型空间切割技术等做了论述。
最后,基于石门寺钨铜矿区的数据做了系统的应用试验,并对所构建的方案做了系统验证。
本文的主要研究内容包括:(1)分析智能型克里格储量估算系统的作用及对于智慧矿山建设的必要性;研究数据处理流程和对数据传输的需求,确定系统的功能结构与逻辑结构。
地质统计学法资源储量估算部分编写提纲(以勘探报告为例)1 估算范围、对象资源量和储量估算截至日期;估算矿种、矿体(矿层、矿化域)及其编号;估算最高标高和最低标高、最小埋深和最大井埋深、估算面积(平面最大投影面积)和拐点坐标;估算范围与矿业权范围的关系(插叠合图)。
矿业权范围内未估算资源量和储量的地段地质勘查工作开展情况及资源赋存情况。
2 工业指标叙述资源量和储量估算所采用的工业指标,说明工业指标的来源或确定的依据。
如采用矿块指标体系的边际品位圈定矿体,需说明边际品位的制订原则。
3 估算方法选择依据说明所选择的估算方法(克里格法或距离幂次反比法),从矿体的形态、产状、成矿期次、勘查工程间距的疏密程度、矿体或矿化域内样品的数量和品位的统计分布、变化系数等方面论述其合理性及依据。
说明所选三维估算软件的名称、版本号和认证部门批准文号。
4 估算数据、信息可靠性论述叙述地质数据库的建立,说明数据库的名称、数目及其结构内容。
详细列出本次资源量和储量估算利用的有效工程数、样品数等以及其他相关原始资料的具体来源,并进行质量和可靠性论述。
通过三维软件对工程数据进行位置对比,对数据进行纠错及完整性和逻辑性检查。
5 矿体(矿化域)圈定叙述圈矿采用的工业指标体系、根据矿床地质特征、成矿控制因素及矿化规律等圈连矿体(矿化域)和外推的原则,以及估算需要做的实体模型(例如地形三维模型、矿体或矿化域模型、夹石模型、岩体模型和地质构造模型等,宜以插图方式说明)。
6 样品数据统计分析及特异值处理叙述以矿体(矿化域)为单位,对样品进行基本统计分析(列表统计样品数量、最小和最大值、平均值、方差、变化系数、西舍尔T 估值等,并附样品统计直方图、累计频率分布曲线或概率图等插图)。
说明特异值的判别和处理方法,宜以表格的形式,列出特异值所在的工程号、样品号、原始值和替代值等。
7 样品等长度组合结合对样品长度的统计分析(样品长度直方图、平均值等),论述样品组合长度的选取依据,并对比组合前后样品的统计结果,论证组合样长度的合理性(宜以插图和列表的方式说明)。
克里格估值方法(一)克里格估值方法详解什么是克里格估值法?克里格估值法(Kriging)是一种通过插值方法对未知地点进行估值的统计技术。
它将已知地点上的观测值用于预测未知地点上的数值,常用于地质、地理、环境等领域的研究。
克里格估值法通过建立空间相关性模型,可以提供对未知地点上现象的可信度估计。
克里格估值法的基本原理克里格估值法的基本原理是空间相关性。
其假设对空间上相邻点之间的值存在一定的相关性,且该相关性可通过距离进行量化。
基于该假设,克里格估值法可以通过已知点与未知点之间的空间距离进行权重的计算,进而进行预测。
克里格估值法的步骤1.数据获取:克里格估值法需要已知点的观测值作为输入,可以通过采集现有数据或者实地测量获得。
2.空间相关性分析:通过观测值之间的空间相关性判断模型类型,常用的模型包括球型模型、指数模型和高斯模型等。
3.参数估计:使用已知观测值中的半方差数据,通过最小二乘法或最大似然法对模型的空间相关参数进行估计。
4.半方差图绘制:通过绘制半方差图,可以了解观测值之间的空间相关性和变化趋势。
5.克里格估值:根据已知点的观测值和模型的参数,计算未知点上的估值。
常用的克里格估值方法包括简单克里格法、普通克里格法和泛克里格法等。
6.估值验证:通过验证估值和实际值之间的误差,评估克里格估值方法的精度和可靠性。
克里格估值法的优缺点克里格估值法作为一种插值方法具有以下优点: - 利用空间相关性进行预测,能够充分利用已知数据的信息; - 通过建立空间模型,可以对估值进行可靠的分析和解释; - 适用于各种数据类型和标度水平,可用于多种研究领域。
然而,克里格估值法也存在一些缺点: - 对观测值的空间相关性要求较高,如果空间相关性较弱,克里格估值的精度可能较低; - 克里格估值法对异常值敏感,对异常值进行处理是很重要的一步; - 克里格估值法无法考虑其他外部因素的影响,如地形、土壤等因素。
克里格估值法的应用领域克里格估值法广泛应用于地理信息系统(GIS)、环境调查和资源评价等领域,常见的应用包括: - 土壤污染程度评估; - 水资源管理及水质预测; - 土地利用规划和生态环境研究; - 地质勘探和矿产资源评估。
矿产资源储量计算的原理和一般过程自然界产出的矿体大多数是形态复杂和矿化不均一的,无论用哪种方法计算矿产储量,其计算结果与实际储量间总存在着误差,只是误差的性质和大小可能不同而已。
我们的任务只是在于根据矿床(体)地质特征及其工程控制和地质研究程度,结合实际需要,找到既简便易行,又误差较小能满足要求的储量计算方法。
储量计算的基本原理就是人们把自然界客观存在的形态复杂的矿体分割转变为体积与之大体相等、矿化相对均一的形态简单的几何体,运用恰当的数学方法,求得储量计算所需的各种参数,最后计算出矿产(矿石或金属)储量来。
储量计算的一般过程是:(1)确定矿床工业指标。
(2)圈定矿体边界或划分资源/储量计算块段。
(3)根据选择的计算方法,测算求得相应的资源储量计算参数:矿体(或矿段)面积 S,平均厚度M,矿石平均体重,平均品位,等等。
(4)计算矿体或矿块的体积V和矿石资源量/储量Q:或金属量P:(5)统计计算各矿体或块段的资源量/储量之和,即得矿床的总资源量/储量。
三、矿床工业指标的确定(一)矿床工业指标的概念和内容1 矿床工业指标的概念概念:矿床工业指标,简称工业指标,它是指在现行的技术经济条件下,工业部门对矿石原料质量和矿床开采条件所提出的要求,即衡量矿体能否为工业开采利用的规定标准。
意义:它常被用于圈定矿体和计算资源储量所依据的标准。
也是评价矿床工业价值、确定可采范围的重要依据。
工业指标的高低取决于矿床地质构造特征、矿产资源方针、经济政策和矿石采、选、冶的技术水平等。
反过来,矿床工业指标直接影响着所圈定矿体的形态复杂程度、规模大小、储量的多少、采出矿石质量的高低及对矿床地质特征、成矿规律的正确认识,进而影响到确定矿床开采范围,生产规模、采矿方案和选矿工艺,开采中的损失与贫化率、选矿回收率等技术参数的确定;最终影响到矿山生产经营的技术经济效果、矿产资源的回收利用程度和矿山服务年限等。
工业指标是地质与技术经济联合研究的主要课题之一。
基于克里格插值法在矿产储量估算中的应用[摘要]介绍了克里格插值法的理论基础,结合Quanty Mine软件,论述了克里格插值法应用于矿产储量估算的一般流程,并在某铜锌矿的储量估算中进行了应用。
实例验证了克里格插值法可以有效地应用于矿产储量估算,且具有较高的可靠性和精度。
[关键词]克里格插值法;矿产储量;估算1.引言随着GIS技术的飞速发展,GIS技术不再局限于地理信息、测绘等传统领域的应用,而是被广泛应用于资源调查、灾害预测、国土管理、城市规划、交通运输、农林牧业等众多领域,而在矿业领域的应用也越来越频繁与深入。
克里格插值法(Kriging)是GIS技术的重要方法之一,又称为空间自协方差最佳内插法,它是地质统计学的主要内容之一,由于地质统计学是基于统计特征的,所以用克里格插值法进行插值可以获得较好的预测结果,因此逐渐在矿产储量估算中得到广泛的应用。
本文以紫金矿业集团股份有限公司与中国地质大学联合开发的QuantyMine软件为工具,利用该软件的克里格插值法对某铜锌矿进行储量估算,并与该矿体的地质勘探报告中的储量计算结果进行比较分析。
2.矿产储量估算流程采用克里格插值法进行矿产储量估算是将整个矿体划分成许多小块段(待估块段),在充分考虑信息样品的形状、大小及其与待估块段相互间的空间分布位置等几何特征以及品位的空间结构之后,对每一信息样品值分别赋予一定的权系数,最后进行加权平均来估计块段品位的方法,从而实现对该矿区储量的总体估算。
采用克里格插值法进行储量估算可以分为三个步骤:第一步建立矿区数学模型,也就是估值模型;第二步利用估值模型进行块段估值:第三步进行储量估算及汇总。
图1显示了采用克里格插值法进行矿产储量估算的大致流程。
其中,正则化处理是进行样品等长或等体积处理,形成几何形态基本相似的组合样;统计分析主要是对组合样进行直方分析,拟合满足正态分布的区域化变量;变差分析就是在实验变差函值的基础上进行结构分析,建立块段估值模型,为块段品位计算及矿产储量估算提供数学依据。
资源量与储量计算方法储量(包括资源量,下同)计算方法的种类很多,有几何法(包括算术平均法、地质块段法、开采块段法、断面法、等高线法、线储量法、三角形法、最近地区法/多角形法),统计分析法(包括距离加权法、克里格法),以及SD法等等。
(一)地质块段法计算步骤:1.首先,在矿体投影图上,把矿体划分为需要计算储量的各种地质块段,如根据勘探控制程度划分的储量类别块段,根据地质特点和开采条件划分的矿石自然(工业)类型或工业品级块段或被构造线、河流、交通线等分割成的块段等;2.然后,主要用算术平均法求得各块段储量计算基本参数,进而计算各块段的体积和储量;3.所有的块段储量累加求和即整个矿体(或矿床)的总储量。
地质块段法储量计算参数表格式如表下所列。
表地质块段法储量计算表需要指出,块段面积是在投影图上测定。
一般来讲,当用块段矿体平均真厚度计算体积时,块段矿体的真实面积S需用其投影面积S′及矿体平均倾斜面与投影面间的夹角α进行校正。
在下述情况下,可采用投影面积参加块段矿体的体积计算:①急倾斜矿体,储量计算在矿体垂直纵投影图上进行,可用投影面积与块段矿体平均水平(假)厚度的乘积求得块段矿体体积。
图在矿体垂直投影图上划分开采块段(a)、(b)—垂直平面纵投影图; (c)、(d)—立体图1—矿体块段投影; 2—矿体断面及取样位置②水平或缓倾斜矿体,在水平投影图上测定块段矿体的投影面积后,可用其与块段矿体的平均铅垂(假)厚度的乘积求得块段矿体体积。
优点:适用性强。
地质块段法适用于任何产状、形态的矿体,它具有不需另作复杂图件、计算方法简单的优点,并能根据需要划分块段,所以广泛使用。
当勘探工程分布不规则,或用断面法不能正确反映剖面间矿体的体积变化时,或厚度、品位变化不大的层状或脉状矿体,一般均可用地质块段法计算资源量和储量。
缺点:误差较大。
当工程控制不足,数量少,即对矿体产状、形态、内部构造、矿石质量等控制严重不足时,其地质块段划分的根据较少,计算结果也类同其他方法误差较大。